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Abstract. — A class of pseudodifferential operators on the Heisenberg group is defined.
As it should be, this class is an algebra containing the class of differential operators. Fur-
thermore, those pseudodifferential operators act continuously on Sobolev spaces and the loss
of derivatives may be controled by the order of the operator. Although a large number of
works have been devoted in the past to the construction and the study of algebras of variable-
coefficient operators, including some very interesting works on the Heisenberg group, our ap-
proach is different, and in particular puts into light microlocal directions and completes, with
the Littlewood-Paley theory developed in [7] and [5], a microlocal analysis of the Heisenberg
group.

RESUME. Nous définissons une classe d’opérateurs pseudo-différentiels sur le groupe de
Heisenberg. Comme il se doit, cette classe constitue une algebre contenant les opérateurs
différentiels. De plus, ces opérateurs pseudo-différentiels sont continus sur les espaces de
Sobolev et I’'on peut controler la perte de dérivée par leur ordre. Si un grand nombre de travaux
ont été déja consacrés a la construction et a I’étude d’algebres d’opérateurs a coeflicients
variables, y compris des travaux tres intéressants sur le groupe de Heisenberg, notre approche
est différente et en particulier elle conduit & la notion de direction microlocale, et complete
I’élaboration d’une analyse microlocale sur le groupe de Heisenberg commencée dans [7] et [5]
par le développement d’une théorie de Littlewood-Paley.
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CHAPTER 1

INTRODUCTION AND MAIN RESULTS

1.1. Introduction

1.1.1. The Heisenberg group. — The Heisenberg group is obtained by constructing the
group of unitary operators on L%(R™) generated by the n-dimensional group of translations
and the n-dimensional group of multiplications (see for instance the book by M. Taylor [59]).
It is an unimodular, nilpotent Lie group whose Haar measure coincides with the Lebesgue
measure, and its remarkable feature is that its representation theory is rich as well as simple in
structure. It is actually the first locally compact group whose infinite-dimensional, irreducible
representations were classified (see [23]). It can be identified with a subgroup of the group
of (n+ 2) x (n + 2) real matrices with 1’s on the diagonal and 0’s below the diagonal.

It has a dual nature, in the sense that it may be realized as the boundary of the unit ball in
several complex variables (thus extending to several complex variables the role played by the
upper half plane and the Hilbert transform on its boundary) as well as being closely tied to
quantum theory (via the Heisenberg commutators). We refer to the book by E. Stein [58],
Chapter XII, for a comprehensive presentation of that duality.

Harmonic analysis on the Heisenberg group is a subject of constant interest, due on the one
hand to its rich structure (though simple compared to other noncommutative Lie groups), and
on the other hand to its importance in various areas of mathematics, from Partial Differential
Equations (see among others [7], [12], [16] [35], [36], [49], [50], [66], [67]) to Geometry
(see [2], [19], [37], [62]) or Number Theory (see for instance [47], [61]). Many research
articles and monographs have been devoted to harmonic analysis on the Heisenberg group,
and we shall give plenty of references as we go along.

1.1.2. Microlocal analysis on R". — Microlocal analysis in the euclidian space appeared
in the early seventies ([56]-[57]), and it allowed for a very general study and classification
of linear Partial Differential Equations with variable coefficients. The main idea consists in
taking into account the oscillation frequencies of a function (by means of a local Fourier
analysis, using for instance Littlewood-Paley type operators) simultaneously with its main
features in the standard variables. To functions depending on the space variable one therefore
associates a mathematical object depending on twice more variables: variables in the phase
space. Doubling the number of variables in this way allows to understand in a precise fashion
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some seemingly complicated phenomena in physical space (which turn out to be projections
of less complicated phenomena in phase space).

In the case of nonlinear Partial Differential Equations, the situation is of course much more
complicated, but paradifferential calculus ([13]) turned out to be a very useful tool, for in-
stance to analyze the propagation of singularities of solutions to such equations, or to study
the associate Cauchy problem (see for instance [3], in the case of quasilinear wave equations).

Pseudodifferential operators are crucial mathematical objects in the theory of microlocal
analysis. For instance, microlocalization operators which select a range of frequencies
(Littlewood-Paley operators) are pseudodifferential operators, and so are paradifferential
operators. Besides, pseudodifferential operators form an algebra containing differential
operators and Fourier multipliers.

1.1.3. Microlocal analysis on the Heisenberg group. — The development of microlo-
cal tools adapted to the geometric situation at hand is an important issue: we refer for
instance to the work of S. Klainerman and I. Rodnianski [44] in the case of the Einstein
equation, where the construction of an adapted Littlewood-Paley theory is a crucial tool to
reach optimal regularity indexes for the initial data. Microlocal theory on R" easily passes to
submanifolds. Other constructions have been performed on more exotics sets, like the torus
or more general compact Lie groups (see for instance [55]).

A number of articles can be found in the literature, which develop a pseudodifferential calculus
on the Heisenberg group. For example, in [58], [59], this question is investigated through the
angle of the Weyl correspondence (see also the previous work [41]): as recalled above, that
correspondence is one of the rich features of the Heisenberg group, and is thoroughly developed
in those references. The important work [39] consists in constructing an analytic calculus
enabling one to obtain parametrices for a class of operators which are analytic hypoelliptic;
we also refer to [48] and [9] as well as [18] where a parametrix is constructed for sum-of-
squares type operators. One also must mention the series of papers by P. Greiner and his
coauthors (see for instance [10], [38] and [40] and and the references therein) in which in
particular symbols of left-invariant vector fields are constructed, from the point of view of
Laguerre calculus as well as using the Hermite basis and the recent works [25]-[27], where
a symbolic calculus on the Heisenberg group is developped, related to contact manifolds.
Finally, we refer to the work [22] where is constructed a pseudodifferential calculus based on
Hormander calculus, using exclusively the convolution rather than the Fourier transform.

Our approach here is not quite of the same nature as in the works refered to above, as we
aim at defining an algebra of operators on functions defined on the Heisenberg group, which
contains differential operators and Fourier multipliers, and which has a structure close to
that of pseudodifferential operators in the Euclidian space. The difficulty in this approach
is that there is no simple notion of symbols as functions on the Heisenberg group H?, since
the Fourier transform is a family of operators on Hilbert spaces depending on a real-valued
parameter A\. Those operators are built using the so-called Bargmann representation, or the
Schrodinger representation (obtained from the previous one by intertwining operators). One
can easily check that what may appear as the symbol associated with a left-invariant vector
field is itself a family of operators. This family reads in the Schrédinger representation of H?
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as a family of differential operators belonging to a class of operators of order 1 for the Weyl-
Hormander calculus (see [42]) of the harmonic oscillator. That basic observation is the heart
of the matter achieved in this paper. Let us point out that in fact symbols on the Heisenberg
group cannot depend only on the harmonic oscillator, and this has to do with the dependence
on the parameter A. This induces a number of technical problems that are dealt with by
introducing also a specific calculus in the A\ direction.

A symbol on the Heisenberg group is thus a function on H? valued in the space of families of
symbols of the Weyl-Hormander class associated to the harmonic oscillator, indexed by the
parameter A. Then, to this symbol, one associates a pseudodifferential operator as is usually
done by use of the inverse Fourier transform as well as the family of Weyl-quantized operators
associated with the symbol.

Once those pseudodifferential operators have been defined, we first prove that they are oper-
ators on the Schwartz class, which results from classical Fourier analysis on the Heisenberg
group. We then prove that the adjoint of a pseudodifferential operator and the composition
of two pseudodifferential operators are also pseudodifferential operators. Our arguments here
are deeply inspired by the analysis of the classical case as developped for instance in the book
of S. Alinhac and P. Gérard [1]. We analyze first the link between the kernel of a pseudo-
differential operator and its symbol, using the Fourier transform and its inverse. Then, it is
possible to compute the function which could be the symbol of the adjoint of a pseudodiffer-
ential operator or of the composition of two pseudodifferential operators and to prove that it
actually is a symbol. This comes from the careful analysis of oscillatory integrals. We also
give asymptotic formula for the symbol of the adjoint or of the composition. These formulas
result from a Taylor formula in the spirit of what is done in the Euclidian space but adapted
to the case of the Heisenberg group; in particular, we crucially use functional calculus. The
specific feature of these asymptotic formula is that there is no gain on the Heisenberg group:
the commutator of two horizontal vector fields is a derivation.

We also study the action of pseudodifferential operators on Sobolev spaces. We prove in
particular that zero order operators are bounded on Lz(Hd) and more generally a pseudod-
ifferential operator is continuous from one Sobolev space to another, the link between the
regularity exponents of the Sobolev spaces being controled by the order of the symbol. The
arguments of this proof are inspired by the Euclidian proof of R. Coifman and Y. Meyer [21]
whose approach consists mainly in decomposing the symbol of the pseudodifferential operator
on R™ (which is a function on the phase space T* R™) into a convergent series of reduced sym-
bols for which the continuity is a consequence of paradifferential calculus of J.-M. Bony [13].
The main interest of this approach is that it requires little regularity on the symbol and that
it can be carried out when the pseudodifferential calculus has no gain, which is the case in our
situation. Roughly speaking, the proof of Coifman and Meyer is done in three steps. In the
first step, a symbol is decomposed using a dyadic partition of unity. This reduces the problem
to the study of symbols compactly supported in the frequency variable. Next, using a Fourier
series expansion, the symbol is expressed as a sum of reduced symbols which are much easier
to deal with. Finally, taking advantage of the Littlewood-Paley decomposition on R", the
continuity on Sobolev spaces of the associate operator is established. To adapt that method
to the setting of the Heisenberg group H?, we begin by decomposing the symbol associated
with a given operator (defined as explained above via the Weyl-Hérmander calculus of the
harmonic oscillator), using a suitable dyadic partition of unity. Then, we use Fourier series to
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write the symbol as a convergent series of reduced symbols. But, in contrast to the R™ setting,
the reduced symbols in that case cannot be treated as a sum of Littlewood-Paley operators
on the Heisenberg group. To overcome this difficulty, we use Mehler’s formula to prove that
these operators can be related in some sense to the reduced symbols obtained in the R™ case.
This allows us to finish the proof in more or less the same way as in the R" case, up to the
fact that an additionnal microlocalization is needed because the spectral parameter is made
of two different variables — as pointed out above, this is due to the special structure of the
Heisenberg group.

This paper completes, with the Littlewood-Paley theory developed in [7] and [5], a microlocal
analysis of the Heisenberg group. It calls for developments : a significant application would
be the generalization of the concept of wave front set to the setting of the Heisenberg group,
in order to obtain results related to the propagation of singularities as in [64] for instance.
One can also expect a construction of parametrices for sub-elliptic operators, as well as the
development of a notion of microlocal defect measure (or H-measure). Such studies are
postponed to a future work.

Generalizations to other locally compact Lie groups should also be considered, like for instance
the diamond Lie group [46]. The generalization of the Littlewood-Paley decomposition is in
itself a challenge : although it is known (see [43]) that a frequency localization process can be
defined in general as a convolution product with a function of the Schwartz class, Bernstein
inequalities seem very difficult to obtain in general (and these inequalities are the crucial
property that allow to construct a Littlewood-Paley theory). Once that difficulty is overcome,
the next step should be the understanding of the phase space in more general contexts.

1.1.4. Structure of the paper. — The structure of the paper is the following. The rest of
this chapter is devoted to a recollection of the main facts on the Heisenberg group which will be
useful for us, as well as to the statement of the main results. More precisely, in Section 1.2.1,
we introduce our notation and give the basic definitions and in Section 1.2.2, we recall the
definition of the Fourier transform, using irreducible representations. The purpose of the next
section of this chapter is to provide the setting for symbols and operators on the Heisenberg
group, and it also contains the statement of the main results; for this some elements of Weyl-
Hoérmander calculus are required, and the necesary definitions are recalled. The main results
stated in this chapter (in Section 1.4) concern the continuity of pseudodifferential operators
on Sobolev spaces, along with the fact that those classes of operators form an algebra.

The second chapter is devoted to the analysis of examples and to the proof of some funda-
mental properties of pseudodifferential operators, such as their action on the Schwartz class,
the study of their kernel, their composition with differentiation operators.

In the third chapter, we prove that the classes of pseudodifferential operators defined in the
previous chapter are stable by adjunction and composition and prove asymptotic expansion
of their symbol.

In the fourth chapter we give an outline of the basic elements of Littlewood-Paley theory on
the Heisenberg group developed in [7] and [5] recalling in that framework the properties of
Besov spaces that we shall need later on. Next, we compare Littlewood-Paley operators with
pseudodifferential operators. This is of crucial importance in the next chapter. More precisely,
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we prove that in some sense, a pseudodifferential operator associated to a truncated symbol,
in the Weyl-Hormander calculus of the harmonic oscillator, is close to a Littlewood-Paley
operator.

In the fifth chapter, we prove the continuity on Sobolev spaces, by a (non trivial) adaptation
of the technique of R. Coifman and Y. Meyer [21] to the case of the Heisenberg group; in
particular an additional microlocalization is required, compared to the classical case.

Finally this paper comprises two appendixes. Appendix A is devoted to the proof of some
technical lemmas and formulas concerning the Heisenberg group that are used in the paper. In
Appendix B we prove a number of important results used in the proofs of the main theorems
of this paper , but for which the arguments are too lengthy or too technical to appear in the
main text; they are mainly related to Weyl-Hormander calculus.

1.2. Basic facts on the Heisenberg group H?

1.2.1. The Heisenberg group. — Before stating the principal results of this paper, let
us collect a few well-known definitions and results on the Heisenberg group HY. We recall
that it is defined as the space R?! whose elements w € R?***! can be written w = (x,y,s)
with (z,y) € R? x R?, endowed with the following product law:

(1.2.1) w-w' = (z,y,s) (@, y,s)=(e+2 y+y, s+ -2y +2y-2),

where for z,2 € R? z -2’ denotes the Euclidean scalar product of the vectors z and z’.
Equipped with the standard differential structure of the manifold R?*!, the set H is a non
commutative Lie group with identity (0,0). Note also that

v w = (ﬂj‘,y, 8) € Hd7 w_l = (_x7_y7 _8)'

The Lie algebra of left invariant vector fields (see Section A.1 of the Appendix) is spanned by
the vector fields

1
X; %o, +2y0,, v; €0, — 20,0, withje{l,...,d}, and S0, = 715, %]

for j € {1,...,d}. In the following, we will denote by X" the family of vector fields generated
by X; and by X;.4=1Yj for j € {1,...,d}. Then for any multi-index a € {1,...,2d}*, we
write

(1.2.2) xe e x X,
Using the complex coordinate system (z, s) obtained by setting z; = x; + iy;, we note that
V((z,9),(¢,¢)) € HeY x HY,  (z,8)-(2,8') = (2 + 2,5+ 5 + 2Im(z - 7)),

where z - Z' = Z;-lzl zjZ;. Furthermore, the Lie algebra of left invariant vector fields on the
Heisenberg group H? is generated by the vector fields:

— 1 —
Zj = E?Zj +i§j85, Zj = agj — iZjas, with j € {1, ,d} and S=0;= Z[Z],ZJ]
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Denoting by Z the family of vector fields generated by Z; and by Z;, 4 = Z;forj e {1,...,d},
we write for any multi-index a € {1,...,2d}*

(1.2.3) zo ¥t T,
One can easily check that for all j € {1,...,d},
(1.2.4) X;=2Z;j+Z; and Y; =i(Z; — Z;).

The space H? is endowed with a smooth left invariant measure, the Haar measure, which in

the coordinate system (z,v, s) is simply the Lebesgue measure dw def dx dy ds. It satisfies the
fundamental property:

(1.2.5) Vf e LYHY), Yo' € HY, /d f(w) dw = /d fw" - w) dw.
H H
The convolution product of two functions f and ¢ on H? is defined by

fro@ [ oo = [ f@ato™ - wde,

It should be emphasized that the convolution on the Heisenberg group is not commutative.
Moreover if P is a left invariant vector field on H¢, then one has

(1.2.6) P(fxg)=fx(P(g))

Indeed, thanks to the classical differentiation theorem, we have

P(fx)w) = [ F@PG0™ -w)d
Due to (A.1.2), one can write

P(g(v™" - w)) = (Pg)(v™" - w),
which yields (1.2.6).

However in general f x (P(g)) # (P(f)) * g.

Note that the usual Young inequalities are nevertheless valid on the Heisenberg group, namely

1 1 1

3

v W x gl ey < W oy |9l pomay, 1+ r + 7

In fact, Young inequalities are more generally available on any locally compact topological

group endowed with a left invariant Haar measure p which satisfies in addition
(A1) = p(A) for all borelian sets A.

Y(p,q,7) € [1,00]

Let us also point out that on the Heisenberg group H?, there is a notion of dilation defined
for a > 0 by

(1.2.7) 0a(z,8) def (az,a’s).
Observe that for any real number a > 0, the dilation ¢, satisfies
0a(2,8) - 04(2',8") = 64((2,5) - (#/,5))
and that the vector fields Z; change the homogeneity in the following way:
(1.2.8) Zi(foda) =alZ;f) o dq.
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This fact is crucial in order to obtain Bernstein or Hardy inequalities [4] (see Chapter 4).

Let us also remark that the Jacobian of the dilation d, is a” where N def 2d + 2 is called the

homogeneous dimension of H.

Let us now recall how Sobolev spaces on the Heisenberg group are associated with the system
of vector fields X for nonnegative integer indexes.

Definition 1.1. — Let k be a nonnegative integer. We denote by Hk(Hd) the inhomogeneous
Sobolev space on the Heisenberg group of order k which is the space of functions u in LQ(Hd)
(for the Haar measure) such that

X% e L*  for any multi-index o € {1,...,2d} with |a| <k.

Moreover, we state

def o
(1.2.9) HUHH’V(Hd) = Z X u”i2(Hd)
o <k
Remark 1.2. — FEquivalently, powers of the Laplacian-Kohn operator defined by
d . . d .
(ZiZ;+ Z;Z5) =4 _(Z;Z; + i),
—1 j=1

d
(1.2.10) Aga 1 (X2 +Y7) =2

Jj=1 J
can be used to define those Sobolev spaces, which take into account the different role played by

the s-direction. Thus
k
2

[ll i gggay ~ [1(1d — Aga)
where ~ stands for equivalent norms.

ull 2 gay

Note that homogeneous norms may also be defined, where the summation in (1.2.9) is replaced
by a summation over |a| =k, and above (Id — AHd)% is replaced by (—AHd)g.

When ¢ is any nonnegative real number, one can, as in the case of classical Sobolev spaces
on R”, define the space H?(H?) by complex interpolation (see for instance [11]). As in the
euclidian case, other equivalent definitions of Sobolev spaces H” (Hd) can be used: the defini-
tion using integrals and kernels (see [54] and [58]), or the definition using Weyl-Hérmander
calculus (see [18]). Finally, a definition using the Littlewood-Paley theory on the Heisenberg
group, in the same spirit as in the Euclidian case and due to [7], will be given in Section 4.4.2.

There is a natural Heisenberg distance to the origin defined by

def 1
p(z5) = (|2[* + 597,

d
where |z|> = Z zjZj. Similarly, we define the Heisenberg distance by
j=1

(1.2.11) d(w,w') = p(w™"-w').
The distance d incorporates left translation invariant properties

(1.2.12) Vo e HY, d (@ w, - w') = d(w,w).
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To define Holder spaces on the Heisenberg group, we shall introduce another distance on He.
Denote by P = P(Xy,...,Xs4) the set of continuous curves which are piecewise integral
curves of one of the vectors fields +X7,...,£Xs5. To any such curve v : [0,7] — H?, we

associate its length [(7) 4 7 It is known (see [33, 34]) that, for any couple of points w
and w’ of H?, there exists a curve of P joining w to w’ and that the function

(1.2.13) d(w,w') = min{l(y), ~ € P, joining w to u/}

is a distance on the Heisenberg group, which turns out to be equivalent to the one introduced
in (1.2.11).

Now, up to the change of the Euclidean distance into CZ the definition of Holder spaces on the
Heisenberg group is similar to the definition of Holder spaces on R

Definition 1.3. — Let r = k + o, where k is an integer and o €]0,1]. The Holder
space CT(Hd) on the Heisenberg group is the space of functions u on H? such that

Xa _ Xa /

Xul) = X))

Jullerseny = sup (|X*ul o + sup ¢
o (H) la| <k wF#w’ d(w,w’)‘f

where d denotes the distance on the Heisenberg group defined by (1.2.13).

Remark 1.4. — Thanks to (1.2.12) and the fact that the distances d and d are equivalent,
the spaces C’T’(Hd) are invariant under left translations. It will be useful to point out that
Holder spaces on the Heisenberg group can be also defined using the Littlewood-Paley theory
on the Heisenberg group, in the same way as in the Euclidian case (see Section 4.4.2).

Finally let us define the Schwartz space.

Definition 1.5. — The Schwartz space S(Hd) is the set of smooth functions u on H® such
that, for any k € N, we have

d .
|lullk,s def sup |Z°‘ ((\2]2 — zs)%u(z,s))‘ < 00.
lo| <k, n<k
(z,5)€H?

The Schwartz space on the Heisenberg group S(Hd) coincides with the classical Schwartz
space S(R2¥*1). This allows to define the space of tempered distributions S’(H?). The weight
in (z,s) appearing in the definition above is linked to the Heisenberg distance to the origin p
defined above.

1.2.2. Irreducible representations and the Fourier transform. — Let us now recall
the definition of the Fourier transform. We refer for instance to [28], [50], [58], [59] or [60]
for more details. The Heisenberg group being non commutative, the Fourier transform on H

is defined using irreducible unitary representations of H?. As explained for instance in [59]
Chapter 2, all irreducible representations of H? are unitarily equivalent to one of two rep-
resentations: the Bargmann representation or the L? representation. The representations
on L?(R%) can be deduced from Bargmann representations thanks to intertwining operators.
The reader can consult J. Faraut and K. Harzallah [28] for more details. Both representations
will be used here.
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1.2.2.1. The Bargmann representations. — They are described by (u*, H,), with A € R\{0},
where H) is the space defined by

H def {F holomorphic on C%,||F|3, < oo},

with
def [ 2IA\* _
(12.14) 171, 2 (22) [ em2ieR

while u? is the map from H? into the group of unitary operators of H, defined by

2 def e =\ Lids+2A(E2—2]2/2)
(1.2.15) {“z,sF(@ F(§—7)e for A >0,

U?,SF(O def F¢— Z)ei’\s_2’\(§'5_|z|2/2) for A <0.

Let us notice that H) equipped with the norm || - |3, defined in (1.2.14) is a Hilbert space.
The monomials

def (£/2|A] £)©

Fa,)\(é) = ( ‘ ‘6) ) OZENd,
val

constitute an orthonormal basis of H.

The Fourier transform of an integrable function of HY is given by the following definition.

Definition 1.6. — For f € L'(H?), we define

FHo Y

= f(w)u dw.
Hd

The function F(f), which takes values in the space of bounded operators on Hy, is by definition
the Fourier transform of f.

Note that one has
F(f xg)(A) = F(f)A) o F(g)(N).

We recall that an operator A(\) of H, such that
Z |(A(>‘)Fa,)m Fa,)\)HA| < 400

aeN?
is said to be of trace-class. One then sets
def
(1.2.16) tr(AN) D (AN Fapr, Far)n, .-
aeN?

We recall that if besides the operator A(\) has a kernel, namely that if there exists a func-
tion ky (&, &) such that

(1217) VF et ANP(E) = [ B(EE)FE)aE,
then, its trace is given by

(1.2.18) fr (AN) = /C k(€. )de.
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Now, if A(X)*A(A) is trace class, then A()\) is said to be a Hilbert-Schmidt operator. The
quantity

def
IAM gsgey = | Y. AN Faal?

aeN?

is then a norm on the vector space of Hilbert-Schmidt operators. The following property on
Hilbert-Schmidt norms, which can be found in [51] (Volume 1 Chapter VI.6) will be of frequent
use in what follows. Let A and B be two bounded operators on H), with A Hilbert-Schmidt.
Then

(1.2.19) I1BA[ sy + 1ABl s < 1Bl el Al msery)-
Similarly if A and B are two Hilbert-Schmidt operators, then AB is trace-class and
(1.2.20) [tr(AB)| < [[AM s @) 1B s34,

These notions are important for stating the Plancherel theorem for the Heisenberg group.

Theorem 1. — Let A denote the Hilbert space of one-parameter families A = {A(N) }aer\ 0}
of operators on Hy which are Hilbert-Schmidt for almost every A € R, with [|A(N)||gsx,)
measurable and with norm

1
1Al = = (Fd—l—l/ [A(A )H%{S(HA)|/\|dd)‘> < 0.

The Fourier transform can be extended to an isometry from L2(Hd) onto A and we have the
Plancherel formulas:

2d—1 o)

(1221) 9oty = Zarr | IFDN sy AN and
d—1

(12.22) e = =arr [ (FGO) FEOD) A

Remark 1.7. — If A= {A(N)}rer\{oy and B = {B(\)}rer\{0} are two families in A, then

/ (A BO)| A dA < [|4] 1B].

Moreover, the following inversion theorem holds.

Theorem 2. — If a function f satisfies

(1.2.23) 3 / IF )N Pl A < o0

aeN?

then we have for almost every w,

1) =Zr [ o (s F0)0) It
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Remark 1.8. — The above hypothesis (1.2.23) is satisfied in S(HY) (see for example [6]).
Therefore, if we consider for wy € H?, the Dirac distribution in wy, dwo (W), defined by

VfeSMHY), <6y, f>= flwo),

we have an expression of 0y, as a singular integral

2d—1 e’ N J

Now let us study the action of the Fourier transform on derivatives. Straightforward compu-
tations (performed in Lemma A.3 page 101 for the convenience of the reader), show that

F(Zi )N = F(£HNQ},
where Qﬁ‘ is the operator on H ) defined by

QFan ' VRN F TFar, 0 (A0
(1.2.25) © AN Faa,n HA<O

and in the same way,
A

F(Zi[)N) = F(FHNQ;,
where @;‘ is the operator on H ) defined by
def

—=A .
QjFa)\ = \/2\)\\,/a]—Fa_1j7>\ ifA>0
(1.2.26) © 2N Va; F 1Farr, s EA<O,

while we have written v £ 1; = 3 where 8 = a3, if k # j and 8; = a; £ 1.

1 R
Observe that <ZQ;\> = ;Q;‘ and that
A 2INg i A >0, —A | O if A>0,
(1:2:27) @ —{ O, if A< 0, and @5 =\ Z9ng; it A<o.
Introducing the following diagonal operator on Hy:
(1.2.28) Va € N4 Dy Fax € aN|2lal + d) Fy s,
we deduce that for any real number p,
_ p — p

F((Id = Aga)?F)(X) = F(F)(A) o (1d + Dy)".

Notice that (1.2.28) shows that the quantity |A|(2|a|+ d) may be considered as a ”frequency”
on the Heisenberg group. Finally one sees easily that

F(0s [)A) = iAF(f)(A)-

This explains why the partial derivative d, is usually considered as a second-order operator,
though one notices here that its ”strength” is somewhat weaker than that of the Laplacian
since its action, in Fourier space, corresponds to a multiplication by A while the Laplacian
produces 4|\|(2|a| + d).
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Finally it will be useful later on to notice that due to formulas (1.2.25), (1.2.26) and (1.2.28),
the operators D;m/ ’o (Q;‘)m and D;m/ ’o (@j\)m are uniformly bounded on H) for any
integer m.

Note that one can also prove, in the same fashion as in the Euclidean case, relations be-
tween F ((is — |2[?)f) (A) and F(f)(\); we refer to Proposition 1.11 below for formulas.

Remark 1.9. — The above computations show that for any function f € S(Hd),
2d—1

Ziiw = T [ e (@aF e}

2d— 1

_ > A Vol d
Zif(w) = /_OO tr (wh - F(HNG; ) N, and
2d—1 [e'e) N 4
Agaf(w) = W/_Ootr (uw,l}“(f)()\)DA) IA9dA.
In particular, if we consider the derivatives of the Dirac distribution d,,(w) defined as usual
by duality through
< Zibuo, f >= — < 0wy, Zjf >=—Zjf(wy) and
< Zibwes [ >= — < Owys Z;f >= —Zjf(wo)

for all f € S(Hd) and for some fized wy € HY, we obtain an expression of the derivatives of
the Dirac distribution as singular integrals

20-1 oo A A d
760y (w) = _W/ tr<uwo,1ij)|/\| d\,
o 2d—1 o] N .\ d
Z 60y (w) = _W/ tr(uwo,lej)yAy d\,  and

2d—1 fe'e) N J
~Bgabuy (W) = tr<uwo,1wD>\> I\[4d).

It turns out that for radial functions on the Heisenberg group, the Fourier transform becomes
simplified. Let us first recall the concept of radial functions on the Heisenberg group.

Definition 1.10. — A function f defined on the Heisenberg group H® is said to be radial if it
is invariant under the action of the unitary group U(d) of C?, meaning that for any u € U(d),
we have

f(z,8) = f(u(z),s), V¥(z,s) € H.

A radial function on the Heisenberg group can then be written under the form

f(z:8) = g(|2], 5).

Then it can be shown (see for instance [50]) that the Fourier transform of radial functions
of L?(H?), satisfies the following formula:

F(F)N)Fan = Rjo)(A) Fax



1.2. BASIC FACTS ON THE HEISENBERG GROUP H¢ 21

where

m

def {f m+d—1 -1 - 2
Ry(\) = ( ) / e f(z, )LD (2]N||2[*)e” M1 dzds,

)

and where Lgﬁ are Laguerre polynomials defined by

m k
@) def X, k[ mEp | T 2
(1.2.30) LP)(t) = kz_o( 1) < ek ) w0 £20, (mp) €N

Note that in that context, Plancherel and inversion formulas can be stated as follows:
1

2d-1 m+d—1 o an )’
11l 2 may = <m ( m > /_OO | Ron (V)2 A]%d

and
2d—1 ) 5
(1.2.31) f(z,8) = mZ/e—m}zm(A)ng—D(2|A||z|2)e—*llzl IA|%d.

The context of radial functions allows to compute the Fourier transform of (is — |z|?)f, as
stated below (see [7] for a proof).

Proposition 1.11. — For any radial function f € S(Hd), we have for any m > 1,

Fllis — 1501 N) = < Ffm,N) ~ "(Ffm,X) = Ffm—1,N) #A>0, and

F((is — |z f)(m,\) = %}"f(m,)\)+m|T+|d(ff(m,)\)—ff(m+l,)\)) if A<0.

1.2.2.2. The L? representation. — In order to define pseudodifferential operators, it will
be useful to use rather the L? (or Schrédinger) representations, denoted in the following
by (U;"s £)(€), where € belongs to R? and f to L?*(R%). As recalled above, the representa-

tions vﬁ:s and ui‘,s are equivalent. The intertwining operator is the Hermite-Weber trans-
form K : H) — L2(Rd) given by

def [N |y 162 1T O\ e
1.2.32 K = el S
(1:2.82) )@ = Zame™ 7o\ oz )¢
which is unitary and intertwines both representations: we have indeed K ,\u;s = v; <K and
(1.2.33) V2 f(€) = eMTRVTO £(e _0) YA ER”.

A short proof of this fact is given in Appendix A.2 for the convenience of the reader (see Propo-
sition A.1 page 98). We also recall that the inverse of K is known as the Segal-Bargmann
transform (see for instance [29]). Let us denote by h, the multidimensional Hermite function
defined by

Vo= (a1, aq) € N% V= (t, - ta) € RE ha(t) ©ha, (1) - ha, (ta),

with

hi(t) def (2" n! \/7_1)_1/2 e_tQ/QHn(t) and H,(t) def ¢2 <—%> (e_tQ) .
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Introducing the scaling operator

(1.2.31) Vf € LARY), Tof(€) € AV 1F(IA %),
and setting h, y = T} ho we observe that
(1.2.35) Vo € N, K\Fox = hox

where h, ) is an eigenfunction of the rescaled harmonic oscillator —Ag + |A||€[?. This implies
by straightforward computations that

K\QMK; =0, — & and  K\Q) K} = 9, + |N& if A> 0,

KAQ?K/\ =0 + A& and K \QF K} = 0 — |Ay; if A <0.
Defining the operator

(1.2.36) h 1K,

and observing that
To(=A¢ + [EPAPTY = [M(=Ag + [¢),
we infer that
Q) T5 = /A (0, — &) and JAQg J5=VIMN (0, +&) if A>0
NQIT5 = VI (0, + &)  and  InQ;JT5 = /A (9, — &) if A <0,
which finally implies that
(1.2.38) IAD)J; = 4]M\(=A¢ + [€]7).
In view of Remark 1.9, the Laplacian —Apya is associated with the operator Dy of H) in the

Bargmann representation; by Equation (1.2.38), it is associated with the harmonic oscillator
in the L?(R?) framework.

(1.2.37)

These computations indicate that symbolic calculus on H) is, via the unitary operator Jy,
equivalent to symbolic calculus on the harmonic oscillator. That theory is well understood:
it consists in Weyl-Hormander calculus associated with a harmonic oscillator metric. This is
made precise in the next section.

Before proceeding further, it is instructive to compute the Fourier transform for instance of the
function Z;Z; f for f € S (Hd). Indeed, we notice that with the previous notations, for A > 0,

F((=iZ)(=iZ) YN = F(=iZ; Y NIV N (=ide; + ;)T
= F(HN I (—ide, — i) (—ide; + i&;) I
= F(NHNIZNE =32 + 1)

This implies that symbols on the Heisenberg group must not only include harmonic oscillator
type symbols, but also functions such as powers of \.

1.3. Weyl-Hormander calculus
Let us recall in this section some results on the Weyl-Hérmander calculus of the harmonic

oscillator which we shall be using. We shall only state the definitions that will be needed in
the following, and for further details, we refer for instance to [14], [15], [18] and [42].
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1.3.1. Admissible weights and metrics. — Let us denote by w[0,0'] the standard
symplectic form on T*R? (which we shall identify in the following to R??) : if @ = (£, 7)

and ©' = (&,17), then w[©,0] L'y ¢ — iy . ¢,

For any point © = (£,7) in R2? we consider a Riemannian metric gg (which depends mea-
surably on ©) to which we associate the conjugate metric gg by

T, 7'
VT € R, @ (TVL/2 — |wIT, .
(96(T)) T,S;l@d g0 (T)1/2

We also define the gain factor
1
3
(1.3.1) Ao & (9_§> :
9o
Definition 1.12. — We shall say that the metric g is of Hormander type if it is:

1. Uncertain: For all © € R??, Ag < I
2. Slowly varying: There is a constant C' > 0 such that

go(® —0) < C ' = sup (g@(T) >i1 <C.
B rer2 \9o' (T) B

3. Temperate: There are constants C > 0 and N € N such that for all (0,0') € R4,

g@(T) = ral w NN
s, (o) =0 mE-o

The constants C and N are called structural constants.

In the definition above we have used the notation
(g@(T) )il def go(T) L g (1)
ger (T) 9o (T) ~ ge(T)

We also define a weight as a positive function on R?? satisfying the same type of conditions
as a Hormander metric.

Definition 1.13. — Let g be a metric in the sense of Definition 1.12. A positive function m
on R?? js a g-weight if there are structural constants C' >0 and N' € N such that

1. go(@-0)<T "= <%>ﬂ <.

m(@) = Vol w /
2. (m(@,)> <C(1+g8©—-0)N".

It is easy to see that the set of g-weights has a group structure (for the usual product of
functions).
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For such metrics and weights, one can then define the class S(m,g) of smooth functions a
on R?? such that, for any integer n,

e 0n,...0r,a(©)|
132 a n:S(m = S Rt SRl R AL < 007
(1.3.2) alln:5(m.g) i<moer  m(O)

ge(T5)<1

where Ora denotes the map (da,T). Now, if a is a symbol in S(m, g), then its Weyl quanti-
zation is the operator which associates to u € S(R?) the function op®(a)u defined by

def

!
(1.3.3) Wew,«wwmﬂo=@m%/mﬂ&w%(§§ﬂﬁw&%ww
R
The main interest of this quantization is that op™(a)* = op®(@).

Observe also that if a(§,n) = a(§), the operator op™(a) is the operator of multiplication by
the function a and if a(§,n) = a(n), the operator op™(a) is the Fourier multiplier a(D). In
k

1
particular one has opw(n§-€ )= <—,85j> for any k£ € N.
i

Besides, for all symbols a € S(mq,g) and b € S(mg,g) where m; and mgo are g-weights, we
have the following composition formulas:

op®(a) o op”(b) = op™(a#b) with a#b € S(mima,g) and

(1.3.4) (a#b)(©) = 72 / o~ 2i(0-01,.0-62 (9 15(9,)dO ,dOs.

RZd % RQd

The (non commutative) bilinear operator # is often referred to as the Moyal product.

This leads to an asymptotic formula

1
(1.3.5) aftb = ab+ o-{a,b} + - 41,

1
where ab belongs to S(mima, g) and E{a, b} belongs to S(A~tmimay, g), recalling that {a, b}

is the usual Poisson bracket
d
def
{a,0} =) (9y,a0¢,b — O¢,adyb) .
j=1

Finally for any integer N, the remainder rx belongs to S(A~Nmyma, g).

Let us mention that the operator op”(a) has a kernel k(¢,&’) defined by

(1.3.6) k(€& = (2m) ¢ /R , e&=€)mg <5 z ¢ n) dn

which is linked to its symbol through
! /
(137) aleon = [ e (e §ue- 5 ) ae
Rd 2 2

Let us also point out that a concept of Sobolev space H(m,g) was introduced by R. Beals
in [8]. We will use the following characterization of those spaces.
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Definition 1.14. — Let g and m be respectively a Hormander metric and a g-weight, in the
sense of Definitions 1.12 and 1.13. We denote by H(m,g) the set of all tempered distribu-
tions u on R? such that, for any a € S(m,g), we have op®(a)u € L*(RY). In particular H(1, g)
coincides with L*(RY).

Note that the study of Sobolev spaces associated with a Héormander metric g and a g-weight
has been developed in [8], [14], [15], [18] and [59] and in particular in [14], it was shown
that these spaces are “almost independent” of the metric g. The Weyl quantization defined
by (1.3.3) can be extended to an operator on S'(R?) which acts on the Sobolev spaces H(m, g)
in the following way.

Proposition 1.15. — Let g be a Hormander metric, and let m and m1 be g-weights. There
exists a constant C, depending only on the structural constants of Definitions 1.12 and 1.13,
such that the following holds. Let a be in S(my,g). Then, there exist an integer n and a
constant C' such that for any u in H(m,g), we have

108" (@)1l i1 ) < Cllalln;sm [l 1mg)-

In particular, there exist an integer n and a constant C' such that if a € S(1, g), then for any
u € L*(R?) one has

(1.3.8) llop™ (a)ullr2may < C llallnsg)llull 2 ra)-

1.3.2. The case of the harmonic oscillator. — As pointed out in Section 1.1.2.2, it is
natural to base the quantization of symbols on the Heisenberg group on the calculus related
to the harmonic oscillator. In that case one is considering the metric defined by

def d&€? + dn?

(1.3.9) VO = (€ €RY, go(d,dn) = rm
while the g-weight is
(1.3.10) VO = (&,m) € R, m(0) € (1 4+ +2)e.

It is an exercise to check that g is a Hormander metric in the sense of Definition 1.12, and
that m is a g-weight in the sense of Definition 1.13. This will in fact be performed in the
proof of Proposition 1.20 below in a more general setting.

We will be interested in the class of symbols belonging to S(m#, g) for some real number g,
where we notice that (1.3.2) can simply be written equivalently in the following way:

def |Bl—=p
lalln:smeg = sup (L& +n?) 7|0, al&m)| < oo
|8 <n,(&,m) R

It is useful, in particular in the framework of the Littlewood-Paley transformation on the
Heisenberg group investigated in Chapter 4, to be able to write the Weyl symbol of functions
of the harmonic oscillator on L?(R%). The formula for such symbols is derived using Mehler’s
formula (see [30] for instance)

(1.3.11) e € =2) = (cht)~ op® (e—(€2+n2)tht) _

More precisely, we have the following result, whose proof is postponed to Appendix B (see
page 108).
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Proposition 1.16. — Consider R a smooth function satisfying symbol estimates:

(1.3.12) JueR, 3IC>0, VneN, |[(1+]- I)"‘“O”RHLOO(R) <Cc".
Then, R(£? — A¢) = op® (r(£2 + 772)) with for all x € R,

! / (cos 7) 4@ R(£)dr dE.
RxR

T o

(1.3.13) r(z)
Besides (&,n) — r(£2 +n?) is a symbol of the class S(m*, g).

One also has the inverse formula
1 .

(1.3.14) op" (T(y2 + 772)) =5 /?(7')eZ (yZ_A)ArCth(l + 7'2)_d/2d7'.
T

This yields that the operator Jiop™(r(y® + n®))Jx is diagonal in the basis (Fu,)),ene and
thus commutes with operators of the form x(D,) for all continuous bounded functions Yy,
where x (D)) is the operator

(1.3.15) X(Da)Fan = x(4A|(2lal + d)) Fox.

Remark 1.17. — Let us note that the operator Id — A¢ + €2 has for symbol m?, while the
symbol of 4(—A¢ + €2) is m(€,n)? where m(€,n) d:ef2(£2 + 772)%.

Besides, for i € R, Proposition 1.16 shows that there exists a function m, € S(mt,g) such
that 20(1d — A¢ + €22 = op¥(my,). In particular, for any p, i’ € R, my#m, = my .

Finally if p > 0, then there exists a function m, € S(m*,g) such that 2*(—A¢ + 22 =
op”(my). In particular, for any p,p' € R, mu#my = myq,s. Note that the restriction
to p > 0 is natural and holds also in the euclidean case.

1.4. Main results: pseudodifferential operators on the Heisenberg group

In this section, motivated by the examples studied in the previous sections of this chapter, we
shall give a definition of symbols, and pseudodifferential operators, on the Heisenberg group.
Then we will state the main results proved in this paper concerning those operators.

1.4.1. Symbols. — We define a positive, noninteger real number p, which will measure the
regularity assumed on the symbols (in the Heisenberg variable). This number p is fixed from
now on and we emphasize that the definitions below depend on p. We have chosen not to
keep memory of this number on the notations for the sake of simplicity.

Definition 1.18. — A smooth function a defined on H? x R* x R?? is a symbol if there is a
real number 1 such that for all n € N, the following semi norm is finite:
def _lal 2
lallns,ag = sup sup  [A[72 (14[A[(1+O7)
OeR™

18—
2

1(A02) 05 a(: A, ©)ll o sz
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Besides, one additionally requires that the function

(1.4.1) (w, M, &) — ala)(w,\ &n) Ya <w, A, sgn

£ m
(A) :
VIAL VA
is smooth close to X =0 for any (w,&,n) € H? x R??. In that case we shall write a € Spga(p).

Remark 1.19. — The additional assumption (1.4.1) is necessary in order to guarantee that
pseudodifferential operators associated with those symbols are continuous on S(H?) (see Propo-
sition 2.6). It is also required to obtain that the space of pseudodifferential operators is an
algebra.

In the remainder of this section, we shall discuss two points of view. The first consists in
considering the symbol a € Sya(p) as a symbol on R?? depending on the parameters (w, \)
in H? x R and belonging to a A-dependent Hormander class (see Proposition 1.20). The second
point of view consists in emphasizing the function o(a) (see Proposition 1.22). Both points
of view are in fact interesting, and both will be used in the following.

Let us first analyze the properties of a € Sya(p) for a fixed A\. The following proposition is
proved in Appendix B (see page 105).

Proposition 1.20. — The (\-dependent) metric g™ defined by

N|(d€? + dn?)
\ RH O (g, ap) 24 M +dn")
YA#0, V0O e 9o (d€, dn) 1+ [\(1+02)

1s a Hormander metric in the sense of Definition 1.12, and the function

def

mM(©) € (14 A1 +62)"?

is a g™ -weight. Moreover the structural constants of Definitions 1.12 and 1.18 are indepen-
dent of \.

Finally if a is a smooth function defined on H® x R* x R??, then a belongs to Sya(p) if and
only if (1.4.1) defines a smooth function and for any k € N, the function (A0 )*a is a symbol
of order 1 in the Weyl-Hormander class defined by the metric ¢ and the g™ -weight m™,
uniformly with respect to .

Proposition 1.20 has important consequences which are stated below. The first one will be
used often in the sequel and states that the continuity constants of Weyl quantizations of
symbols are independent of A and w.

Corollary 1.21. — Let a be a symbol in Syi(p). Then for any w € H? and X\ € R*, the
operator op®(a(w,\)) is continuous from H(m,g™) into H (m(mo‘))_“,g()‘)) for any g™ -
weight m, and the constant of continuity is uniform wih respect to A and w. In particular
for p = 0, the operator op®(a(w,\)) maps L*(RY) into itself uniformly with respect to w
and .
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The second consequence concerns the stability of our class of symbols with respect to the
Moyal product: if a € Sya(p1) and b € Spa(u2), then the functions ab and a # b are symbols
in the class Sya(p1 + p2). Besides, the asymptotic formula can be written

1Al
a#b=ab+ —
s S e et e i)
Let us also point out that if a belongs to Sya(p), then for any j € {1,...,d} the func-
1 1
o W&Ua belong to Sya(p —1).

VIA

Let us now mention some properties of the function o(a) defined in (1.4.1). The following
proposition, which is proved in Appendix B (see page 107), will be useful in the proofs of
Chapter 3.

Proposition 1.22. — A function a belongs to Sya(p) if and only if o(a) € C°(H? x R¥+1)
satisfies: for all k,n € N, there exists a constant Cyp 1, > 0 such that for any 8 € N satisfy-
ing |8 < n, and for all (w, \,y,n) € H? x R2+1,

tions 85ja and

p=181
2
(1.4.2) |o%og, (o) ooty < Ok (LA +€ 4 ORI
1.4.2. Operators. — We define pseudodifferential operators as follows.
Definition 1.23. — To a symbol a of order u in the sense of Definition 1.18, we associate
the pseudodifferential operator on H® defined in the following way: for any f € S(Hd),
d def 2071 A d
(1.4.3) vweH, Opla)f(w) @ S [ & (uw,lf(f)()\)A,\(w)) A4 d,
R
where
d x  w .
(1.4.4) Ax(w) :efJ)\ op(a(w, N\, &,m)) Jn if X#0.

while Jy is defined in (1.2.36), page 22.

Examples of pseudodifferential operators are provided in Section 2.1 of Chapter 2.

Observe that the operator Op(a) has a kernel

, 2d 1 00 N d
(1.4.5) ol ') = 2y /_ootr (151 An() ) AN
since by definition of the Fourier transform, one can write
(1.4.6) Op(a) f(w) = / aw,f) Jw') du.
H

We shall prove in Chapter 2 an integral formula giving an expression of the kernel in terms
of the function o(a) defined in (1.4.1): see Proposition 2.4 page 34.

(N

Let us denote by m,;’ the function

def
(1.4.7) mM (&) = mu(VINE VA,
where m, is defined in Remark 1.17, page 26.
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Then we note that if a is a symbol of order u, then the operators
Ax(Id + D,\)_"/2 = Jyop”(a(w, \) # m(_)‘l)L)J,\ and

(Id + Dy) "2 Ay = Jj\kopw(m(_)‘z #a(w, )y
are uniformly bounded on H) (see Corollary 1.21, page 27). More precisely we have, for some

integer n,

(1.4.8) 14N (Td + D)2 £ry) + 10 + D)2 Ax| 231y < Crlallnis -

1.4.3. Statement of the results. — Let us first state a result concerning the action of
pseudodifferential operators on the Schwartz class. This theorem is proved in Chapter 2.

Theorem 3. — If a is a symbol in Syi(p) with p = 400, then Op(a) maps continuously
S(HY) into itself.

Notice that Theorem 3 allows to consider the composition of pseudodifferential operators, as
well as their adjoint operators. The following result therefore considers the adjoint and the
composition of such operators. It is proved in Chapter 3.

Theorem 4. — Consider Op(a) and Op(b) two pseudodifferential operators on the Heisen-
berg group of order u and v respectively.

— If p > 2(2d+1)+|p|, then the operator Op(a)* is a pseudodifferential operator of order
on the Heisenberg group. We denote by a* its symbol, which is given by (3.1.2).

— If p > 2(2d+1)+|u|+|v|, then the operator Op(a)oOp(b) is a pseudodifferential operator
of order less or equal to p+v. We denote by a#yab its symbol.

We have the following asymptotic formulas for A € R*,

(1.4.9) @ = at > (zga, ny+igh +{Zja. 0 —i&}) +n
2V 524
(1.4.10) a#gab = b#a
1 _
b > (Zib# ({a, nj +i&}) + Zb# ({a, m; —i&})) + 2
2V 52,

where 11 (resp. o) depends only on Z%a (resp. Z%b) for |a| > 2.

Note that the asymptotic formulas only make sense when the semi norms || - ||,,. Sypa () 1€ finite
for p > 0 large enough. Let us also emphasize that due to (1.4.10), the pseudodifferential
operator [Op(a), Op(b)] is of order p+ v. Actually the same phenomenon occurs when Op(a)
and Op(b) are differential operators: there is no gain in the order of the commutators.

It is also important to point out that the asymptotics of (1.4.9) (respectively of (1.4.10)) can
be pushed to higher order, as shown in Section 3.4 of Chapter 3. We will discuss in that
section in which sense the formula are asymptotic. In fact, in the case where Op(a) is a
differential operator, one obtains a complete description in (1.4.9) and in (1.4.10) since the
asymptotic series are in fact finite.

Finally, we point out that even though a is real valued, a* is generally different from a.
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The final result of this paper concerns the action of pseudodifferential operators on Sobolev
spaces.

Theorem 5. — Let u be a real number, and p > 2(2d + 1) be a noninteger real number.
Consider a symbol a in Sya(p) in the sense of Definition 1.18. Then the operator Op(a) is
bounded from H*(H?) into H*~H(H?), for any real number s such that |s — pu| < p. More
precisely there exists n € N such that

10P(a) || £ (prs ey, rs—n(may) < Cnllallngs g u)-
If p > 0, then the result holds for 0 < s — pu < p.

Remark 1.24. — The weaker result for small values of p is due to the fact that the adjoint
of a pseudodifferential operator is also a pseudodifferential operator is only known to be true
under the assumption that p is large enough. A way of overcoming this difficulty would be
to have a quantification, stable by adjonction (of the type of the Weyl quantization in the
Euclidean space). Unfortunately, the non commutativity of the Heisenberg group seems to
make such a quantization difficult to define.

Theorem 5 is proved in Chapter 5. The idea of the proof consists, as in the classical case, in
decomposing the symbol into a series of reduced symbols. The new difficulty here compared
to the classical case is that an additionnal microlocalization, in the A direction, is necessary in
order to conclude. This requires significantly more work, as paradifferential-type techniques
have to be introduced in order to ensure the convergence of the truncated series (see for
instance Proposition 4.15, page 75).



CHAPTER 2

FUNDAMENTAL PROPERTIES OF
PSEUDODIFFERENTIAL OPERATORS

The main part of this chapter is devoted to the proof a number of important properties
concerning pseudodifferential operators on H defined in Definition 1.23 page 28, which will
be crucial in the proof of the main results of this paper. Before stating those properties, we
first present several elementary examples of pseudodifferential operators, and analyze their
action on Sobolev spaces. Then, we study the action of pseudodifferential operators on the
Schwartz space, and prove Theorem 3 stated in the introduction.

2.1. Examples of pseudodifferential operators

Let us give some examples of pseudodifferential operators and their associate symbols. In this
section and more generally in this article we will make constant use of functional calculus.

2.1.1. Multiplication operators. — It is easy to see that if b is a smooth function on
H, then Op(b) is the multiplication operator by b(w) and clearly maps H*(H¢) into itself
provided that there exists p > |s| and a constant C such that ||b]|c» < C.

2.1.2. Generalized multiplication operators. — Consider b(w, \) a C?(H?) real-valued
function depending smoothly on A so that for some C > 0,

sup 5 Moy < C-

If b is rapidly decreasing in A in the sense that
Vk € N, supl|(1+ [A)*ONb(, Ml ey < oo,
AeR

then b is a symbol of order 0 and the operator op” (b(w, A)) is the operator of multiplication
by the constant b(w,\), which does not depend on (y,n). Therefore, Ay(w) = b(w, ) is a
uniformly bounded operator of H,. Moreover, if f € L2(H?) then {F(f)(\) o Ax(w)}x € A
(as defined in Theorem 1), then

[F(F)A) o Ax(w)ll sy = 0w, VHTF )M asae) < CIFS) N s@)
which implies that
HOp(b)f||L2(Hd) <C ||f||L2(Hd)'
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Besides, one observes that for all m € N and all j € {1,...,d}, we have by Lemma A.3,
F (27 (0p(0)f) (V) = F(Op®)f) (V) o (@)
= b, \) F ((~8ga)"2F) () 0 D™ 0 (@)
with D;m/ 20(@?‘)’” uniformly bounded on Hy. A similar fact occurs for Z;. This computation

shows that Theorem 5 is easily proved for all s, by interpolation and duality. More precisely,
there exists a constant C' such that

HOP(b)f”Hs(Hd) <C ”f”Hs(Hd)-

2.1.3. Differentiation operators. — Let us prove the following result, which provides the
symbols of the family of left-invariant vector fields.
Proposition 2.1. — We have for 1 < j<d, peR, v >0

1 , 1- .

~2; = Op (VI +isen(N &) . ~Z; = Op (VIN(m; — isen(V) &)

Xj = Op(2isgn(A) V/|Aln;), Y; = —Op(2i /[A[E),
S =Op(iX), —Aya =40p (|A[(* +£)),
(Id — Aya)z = Op(mV (&), (~Aya)? = Op(miM (€, n)).

In particular Z;, 7j, X; and Y; are pseudodifferential operators of order 1, while S and Aya
are of order 2 and (Id — Aya)H is of order 2p.

1 1 —
Observe that if ;Zj = Op(d;), ;Zj = Op(d;), we have using the map o defined in (1.4.1)
page 27,

a(dj)(&,n) =mn; +i&; and o(d;)(&n) = o(d;)(§n) = n; — i&;.

Proof. — We perform the proof for Z;. For A > 0, we have from (1.2.37) along with
Lemma A.3 stated page 101,

F(320) 0 = 1AW
= FOW o KV (72 16 )

i
= F()A) o JXop” (V[A[(n; +i&5))Ix.
On the other hand, for A < 0,

#(325) 0 = FOW oSV (0 + 16 )
= F(HN) o Jrop” (VIN(nj — i) -

The other cases are treated similarly, except for the operators (Id — Aga)* and (—Aya), for
which we refer to Remark 1.17, page 26. This concludes the proof of Proposition 2.1. U
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2.1.4. Fourier multipliers. — A Fourier multiplier is an operator K acting on & (Hd) such
that

FE A = F(F)A) o U ()

for some operator Uk (A) on Hy.

For instance, the differentiation operators Z; and Z; are Fourier multipliers, and Ug()) is
respectively equal to QJA» and @j\ as given in formulas (1.2.25) and (1.2.26) page 19. Similarly
the Laplacian —Aya is a Fourier multiplier, with Ux (\) = D) according to (1.2.29).

An interesting class of Fourier multipliers consist in the operators obtained from the Laplacian
by means of functional calculus: for ¥ bounded and smooth, the operator W(—Aya) is a

bounded operator on H*(H?) for all s € R, one has
Ve LX), F(U(-Aga)f)(N) = F(F)(N) 0 ¥(Dy).

Such operators commute with one another, and so do the operators W (D)) for different
functions ¥. The Littlewood-Paley truncation operators that we will introduce later (see
Chapter 4) are of this type, and we will see that they are pseudodifferential operators (see
Proposition 4.18 stated page 80). Observe too that if U € C§°(R), then the operator ¥(—Aya)
is a smoothing operator which maps H*(H¢) into H*(H?) for all s € R.

Another class of Fourier multipliers which are also pseudodifferential operators, is built with
functions b in S(m#, g) with p > 0 in the following way.

Proposition 2.2. — If a(w,\,&,n) =b (sgn (MVIAE VI 77) with b € S(m*,g) and p > 0,

then a belongs to Sya(p) and the operator Op(a) is a Fourier multiplier. Moreover,

(2.1.1) vu € H*(H), HOP(Q)U”H#M(Hd) < C”b”n;S(m“,g)HU’HHS(]HId)‘

Proof. — The fact that a belongs to Sya(p) and that the operator Op(a) is a Fourier multiplier
are straightforward. Now let us prove (2.1.1). We have

2d—1

Op(a)u(w) =~ /Rtr <ufv,1]-'(u)(/\)A,\> A% dX,
with Ay = J5 op®(a) Jx.

In view of the Plancherel formula (1.2.21) recalled page 18, to estimate the H* *-norm
of Op(a)u, we evaluate the Hilbert-Schmidt norm of F ((Id - AHd)%Op(a)u> (M\). We have

F((1d = Ag)F0p(a)u) (A) = Fu)(\)Ar(1d + D)) F*
- F ((Id Aga)t ) (\)(Id + Dy) "3 Ay (Id + Dy) 7",
In light of (1.4.8) page 29, the operators (Id + Dy)~2 Ay(Id + Dy) 2 are uniformly bounded

on L(Hx) by C|[b|ln;s(mn,q) Which ends the proof of the estimate thanks to property (1.2.19),
recalled page 18. This ends the proof of Proposition 2.2. O

More generally, a pseudodifferential operator which is a Fourier multiplier has a symbol which
does not depend on w. For this reason, Theorem 4 is easy to prove in that case.
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Proposition 2.3. — Consider a and b two symbols of Sya(p) which do not depend on the
variable w. Then Op(a)* = Op(a) and Op(a) o Op(b) = Op(b#a).

Proof. — By the Plancherel formula,

2d—1
(Op(a)f,g) = mAtr((f(g)(k))*f(f)(A)Ax) Al dA

with Ay = J{op™(a(A))Jx. Therefore,
F (Op(a)"g) (A) = F(g)(M)AX.
The fact that A3 = J{op™(a(\))Jy gives the first part of the proposition.
Let us now consider Op(a) o Op(b). We have
F(Op(a) o Op(b)f)(A) = F(f)(A) e By o Ay
with By = J{op”(b(A))Jx. The fact that op™(b) o op®(a) = op™(b#a) finishes the proof. O

2.2. The link between the kernel and the symbol of a pseudodifferential operator

The kernel of a pseudodifferential operator on the Heisenberg group is given by (1.4.5) page 28.
The following proposition provides an integral formula for the kernel of a pseudodifferential
operator, as well as a formula enabling one to recover the symbol of an operator, from its
kernel.

Proposition 2.4. — The kernel of the pseudodifferential operator Op(a) is given by

1

k(w,w') = p2d+1

/e2i)\(x-y’—yvm’)o_(a)(w’ \ €, C)ei)\(s’—s)+2iz-(y’—y)—2ig‘v(x’—x)d)\ de dc,
where o(a) is defined in (1.4.1), page 27.

Conwversely, one recovers the symbol a through the formula

(2.2.1) o(a)(w, A\, &,n) :/ 2 W=t A () (') ) duw
Hd

Before proving the proposition, we notice that it allows to obtain directly the symbol of a
pseudodifferential operator if one knows its kernel: the following corollary is obtained simply

by using Proposition 2.4 and Relation (1.4.1) between a and o(a).

Corollary 2.5. — Let Q be an operator on H? of kernel k(w,w") such that for some p € R,
the function defined for (w,€,n) € HY x R2? by

(222) (J,('w7 )\7 67 7]) d:ef / e2i [Al (Sgn()‘)y/'f—xl'ﬁ)ei)\s’k(,w7 w(wl)—l) dw’
Hd

belongs to Sya(p). Then @ = Op(a).
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Proof of Proposition 2.4. — Let us start by recalling (1.4.5), which states that

! 2d_1 A * W d
k(w,w") = —I tr <uw,1w,J>\0p (a(w, \)) J)\> |A|“dA.

The Bargmann representation u) and the Schrodinger representation v, are linked by the
intertwining formula uf,‘J = Kf\ng A, S0 using the operator T\ = Jy\ K} we have

2d—1
kw,w') = = tr(vg,uuiiopw(a(ugA))7)>\AWdA.

By rescaling it is easy to see that

(2.2.3) Txop” (a(w,\)) T\ = op¥ (a <w, MV W)) ,

SO we get

2d—1 .
(2.2.4) k(w,w") = — /tr <v —140D" < (w,)\, N \/ﬁ))) A4

In order to compute the trace of the operator vl’),lw,op“’ <a (w, A VA ﬁ) ) , we shall

start by finding its kernel 6(&,¢’), and then use the formula (1.2.18) page 17, giving the trace
of an operator in terms of its kernel.

So let us first compute 0(&, &), which we recall is defined by

o)y op® [ a | w, A, )\-,% = [0 ¢ Nde'.
A 10D ( ( N m))f(&) /(££)f(£)£

We also recall that

op® (a <w,A, VIM W)) f(&) = / A(E,€) (€ dg,

where as stated in (1.3.6) page 24,

A(¢,¢) = (2m)” / ie=¢)-= <w A, \/|T<£+£/> , \/EW> d=.

Finally using Formula (1.2.33) page 21 defining vz\u,lw,, we get

—
—

e ea - — 2z ! = - ~ g
9(578) _ (27T)—dez)\(s—2x-y+2y§ / (w /\ \/|7< z+& > ’ P\]) elu'(5—2x—§ )dE,

where @ % =14, Using the relation (1.2.17) given page 17 between the trace and the kernel
of an operator and (2.2.4) above, we infer that

1 IN(3—22-§+27-€)—21E & =
k) = oy [0 a<w,A,\/|A|<s—x>,m

)MW@

—_
—
—

>|AWdAd_dg

1

— [ gher2iga-2icE, w,)\,is
27T2d+1/ /‘)\‘ g /’)\
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where we have performed the change of variables £ — = = &Sgn(/\), and = = (.
To end the proof of the proposition, one just needs to notice that
1 ; ! oy K
kw,ww') ™) = o5 / NIRRT g () (w, A, 2, ()dz dC dA
and to apply an inverse Fourier transform (in the Euclidean space). O

2.3. Action on the Schwartz class

The aim of this section is to prove Theorem 3, stating that if a belongs to Sy (p) and p = 400,
then Op(a) maps continuously S(HY) into S(H?).

Before entering the proof of that result, let us point out that the smoothness condition (1.4.1)
(see page 27) is necessary in order for Op(a) to act on S(H?). A counterexample is provided
in the proof of the next statement. Actually one can define Op(a) without that condition,
and typically the counterexample provided below provides an operator which is continuous
on all Sobolev spaces.

Proposition 2.6. — There is a function a such that |lal|ln;s,, s finite and such that the

operator Op(a) is not continuous over S(H?).

Proof. — Let us consider the function a(w,\,§,n) = A(\), where A(\) = \)\\]‘H'% for some
integer k. Let f be defined by

F(HINFor = oM Fon, F(f)AN)Far=0 VYa#0,

where ¢ is a nonnegative, smooth, compactly supported function such that ¢(0) = 1. An easy
computation shows that f € S(HY). Indeed writing
d—1

fw) = 2y [ (o FOW) A

and using the definition of the Fourier transform of f given above, a simple computation
shows that for some constant C,

flw) = C'/e_i)‘sgb()\)e—)‘||zlz </e—2|A£2 d5> A2 dA

which gives the result since ¢ is smooth and compactly supported. Now let us consider Op(a)f.
A similar computation shows that if IV is any integer, then for some fixed constants C’ and C”
one has

Nop(a)f(w) = ¢ / SNe=Nsg () AN)e NI X4 g
= " / e N (V)AL AN e ) dx,

For any fixed z, this is the (real) Fourier transform at the point s of the function

A= AN (V)T AN e A,
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Let us evaluate this integral at the point z = 0. Taking N large enough, the result is clearly
not bounded in s. O

Proof of Theorem 3. — Consider f € S(H?), and let us start by proving that Op(a)f belongs
to L°(H?). By definition of Op(a), we need to find a constant Cy such that for all w € HY,

(2.3.1) ‘/tr wh F(HN) Ax(w)) |)\|dd>\‘ < Co.

Consider x a frequency cut-off function defined by x(r) = 1 for |r| < 1 and x(r) = 0 for |r| > 2.
We write

[ (B F OO w) Ntir = 11+ 1

where
def

1 [ (1 F OO A ) ) N
and we deal separately with each part.

Let us first observe that for any k£ € N and by Remark 1.7 stated page 18, we have

N

T ( / Huﬁ17:(f)()\)(1d+Dx)k|ﬁ15(m)’)\’dd)\>

D=

(232 100+ D) (D) AW By A
Besides, using (1.2.19) page 18, there exists a constant C' such that
[t F(FYNAD + D) sy < CIF (YN + D) |l s, ),

and
1(Id + D)X (D2) Ax (W) | sy ) < 1A + D) ™2 Ax(w) | ) 1T + D) 2 =X (D)l sy
< O (1d + D) 2" x(Da)ll sy

where we have used (1.4.8) (see page 29) for the last bound. We then observe that on the one
hand

F(HN) A+ Dy)" = F((1d = Aga)*f)(N)
so that by the Plancherel formula

2d—1
m/llf(f)(A)(IdJer) [FrsI A %A = ||(Id — Aya)* f”Lz O
On the other hand

/ 114+ Dy (D sty = Y / 11d + D) F (D) P32, 1A%

aeN?

S / (1+ [\@la] + )5~ x(A|2la] + d)|Adr,
aeN4
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hence

/ 1(1d + D)% (D) s AN

<CY @m+ d)d‘l/(l +A2m + d)EFy (A (2m + d))| A9
meN

where we have used that the number of o € N? such that |a| = m is controlled by m¢'.

Then, the change of variables 8 = (2m + d)\ gives

[+ Dy rshatan < ¢ (n%rlmz) [ xsp+ jgyE++as,

Therefore, (2.3.2) becomes

1 "
1] < 11 = Ao Fll e (Z — m2> [ xsi+ 1o tas < g
meN

for any k.

A similar argument applies to I and allows to get

1 ~ B
II2] < O = Aga)* Sl 2y (Z m) / RUBI(L +18)5~++ag
meN

~ ~ 3 -
where X is a frequency cut-off function defined by x(r) = 1 for |r| > 7 and X(r) = 0
1
for |r| < 3 The choice k > 1+ d + 4 achieves the estimate of the term Is.

The end of the proof of Theorem 3 is a direct consequence of the following lemma. We will
emphasize later other formulas of that type which will be useful in the following sections. [

1) 4

Lemma 2.7. — For any symbol a € Sya(p) and j € {1,...,d}, there are symbols b; ", b;

belonging to Sya(p+ 1) and cg-l),c§-2) € Sya(p —1) and p € Sya(p) such that

[Z;, Op(a)] = Op(b}")), [Z;, Op(a)] = Op(b;”),

[z, Op(a)] = Op(cy"), [2;, Op(a)] = Op(c?),
[is, Op(a)] = Op(p).
In particular, one has

bgl) = Zja+ /|M{a,n; +isgn(N)&;} and b§2) = Zja+ v/ |M{a,n; —isgn(\)E;},

1 1 ) 2 1 )
D = 3 (016 — s} and =3 {6+ sen(Vns}-

Remark 2.8. — Notice that contrary to the classical case (see [1] for instance), [Z;, Op(a)]
is an operator of order y + 1 instead of p, due to the additionnal Poisson bracket appearing

in the definition of bg-l) (and the same goes for [Z;, Op(a)]).

On the other hand, [z; , Op(a)| and [Z;, Op(a)] are of order j— 1 as in the classical setting,
but [s,0p(a)] is only of order p.
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Let us now prove Lemma 2.7.

Proof. — Let us consider a function f in S(H), and a symbol a belonging to Spal(p). We
have for 1 < j <d,

2d—1
200(@) () = S [ 1 (20D FDNAw) + 0 FOINZAr(w)) A
with Z; A\ (w) = Jop*(Zja(w, X))J).

Thanks to Lemma A.3 page 101, we have Z; ) o1 = QJ o1, recalling that Q;‘ is de-
fined in (1.2.25) page 19. Therefore, since ]-'(Z HN) = F(HA )Qﬁ‘, and using the fact
that tr(AB) = tr(BA), we obtain

2d—1

2. Opl@fw) = 2 [t (PO ([Arw). Q)] + Zdsw)) 1N
We then use (1.2.37) page 22 to find, for A > 0,

[An@w), @] = 5 [op" (alw, X)) . VIR, = )] s
and for A < 0,
[Anw), @] = J5 [op” (a(w, X)) . VNI, +8)] I

Therefore, by standard symbolic calculus, using in particular the fact that if b is a polynomial
of degree one in (§,7), then

(2.3.3) [op” (a), op" (b)] = —op Y ({a,b}),

we get
<[Ax(w), Q;] n ZjAA(w)> = Jiop® (\/X{a(w, N, + i€} + Zia(w, A)) for A >0,
([A)\(’w),Q;\] + ZjA,\(w)> = Jyop" (\/_{a(w A),n; — &} + Zja(w A)) for A <0,

which are the expected formula. We moreover observe that if a € Sya(p) and 1 < j < d,
then \/|A\[0¢,a and \/|\|9;;a are symbols of order p + 1. Indeed since a is of order u, there
exists a constant C' such that, for k € N and 3 € N*¢,
24|43 p—1B]=1
000 g,y (VI @) < CVINT (LI + g2+ )2
1-18]

VI (1 A R+ i)

IN

A similar computation gives the result for [Z;, Op(a)].

Let us now consider the other types of commutators. For f € S (Hd) and 1 < j < d, we have

d—1
(5, 0p(@)f () = 2y [ 5 = 2t (i, An(w)) S(0) NN
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By Lemma A.2 page 100, we have z;u, [QJ, u]. Therefore, setting @ = w™w' = (Z, 3),

we get, using (1.2.37) page 22 along with the fact that Ay(w) = Jiop™ (a(w, N))Jy,
- VIA .
tr (zjugAA(w)> = Ltr ([JA((%J. + sgn()\)fj)JA,ug]AA(w)>
2)\
S n % * w
_ sy, r (310, + sen(Vg, T Jilop” (a(w, 1))

NG

= g (lor" e 0), smmO00, + gl 5).

By standard symbolic calculus, this implies that

(2.34) tr <2juf‘;,A)\(w)> \}Wtr <u Jyop” ({a, sgn(A\)n; — iﬁj})J)\)

which gives the announced formula. Besides, the same argument as before gives that if a is a

1 1
symbol in Sya(p) and if 1 < j < d, then —— W

VIAI

O¢;a and Op;a are symbols of Sya(p —1).

Indeed, for k € N and § € N2¢

—18l-1

(AN* I, (—=0ga) < CIAI (L4 N+ 1EP + )

JW

A similar argument gives the result for the multiplication by Z;. In particular, one finds for
all A € R*,

— 1
(2.3.5) tr <2juf‘;,A)\(w) =— tr (uyJiop®” ({a,sgn(N)n; +i&; 1)y ) -
R )
Finally, let us consider the last commutator. We have

2d—1

[is,Op(a)]f(w) = W/z’(s— s')tr (ui‘u,lw,AA(w)) F(w') | A[%dAdw’

Since with @ = w™w’, we have § = s’ — s — 2Im(22/) and in view of the preceding results, it

is enough to observe

2d—1
z / istr ()1, Ax () £ (') [\ dAdu!
Y

2d—1

= / fr (uz)l\;flw/J;\kOpw(g)J)\(ZU)) Fw') |\ [ddrdw’

where we have used Lemma A.4 stated page 102 and where g is defined by (A.2.4), whence
the fact that [is, Op(a)] is a pseudodifferential operator of order pu. O

We then observe that the arguments of the proof above give the following proposition.
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Proposition 2.9. — For j € {1,-,d} and a € Sya(p) in CP(HY) with p > 1, we have
Z;Op(a) = Op <Z a+ a#/IN|(—sgn(M)§; —I—an))
Op(a)Z; = Op (\/W —sgn(A)§; + mg)#a>
Z;0p(a) = Op(Zja+ atty/IN(sen(Ng +iny) ) .

Op(@)Z; = Op (VIN(sen(\g; +in;)#a)

Besides, for N € N and p > 2N, then (—Aga)NOp(a) and Op(a)(—Aga)™ are pseudodiffer-
ential operators of order p+2N. Ifk € R and p > 2k then Op(a)(Id — Aga)* and (Id —
AHd)kOp(a) are pseudodifferential operators of order u + 2k.

o

Proof. — The four first relations are by-product of the preceding proof and they directly imply
that (—Age)VOp(a) and Op(a)(—Aga)" are pseudodifferential operators. Then for k € R,
we write

2d—1
Op(a)(Id — Aya)* f(w) = =— [ tr (ug,lf( A + DA)kAA(w)> IA[4dA.
7T + R
Observing that
(1d+ Dy)F Ax(w) = Jiop” (m§#a(w, \)) Ty,
where mg;) is the symbol defined by (1.4.7) page 28, we obtain that Op(a)(Id — AHd)k is a
pseudodifferential operator of order p + 2k. We argue similarly for Op(a)(Id — Aya)¥. O






CHAPTER 3

THE ALGEBRA OF PSEUDODIFFERENTIAL
OPERATORS

This chapter is devoted to the analysis of the algebra properties of the set of pseudodifferential
operators. The two first sections are devoted to the study of the adjoint of a pseudodifferential
operator: we first compute what could be its symbol, and then prove that it actually is a
symbol. In order to prove that fact, the method consists in writing the formula giving the
symbol as an oscillatory integral, and in writing a dyadic partition of unity centered on the
stationary point of the phase appearing in that integral. This creates a series of oscillatory
integrals which are all individually well defined (since each integral is on a compact set). The
convergence of the series is then obtained by multiple integrations by parts using a vector
field adapted to the phase, as in a stationary phase method.

The approach is similar for the analysis of the composition of two pseudodifferential operators
and this is achieved in the third section. Finally, asymptotic formulas for both the adjoint
and the composition are discussed in the last section. These formulas result from a Taylor
expansion in the spirit of what is done in the Euclidian space but adapted to the case of the
Heisenberg group.

3.1. The adjoint of a pseudodifferential operator

In this section, we prove that the adjoint of a pseudodifferential operator is a pseudodifferential

operator. We first observe that if a € Sya(u), then A def Op(a) has a kernel ky(w,w’) as

given in (1.4.5) page 28, and the kernel of A* = Op(a)* is k(w,w') = ka(w’,w), whence

2d_1 * Tk W *
k‘(w,w/) = W /Rtr ((ui\w’)*lw) J)\Op (a(w/,)\)) J)\) ‘)\‘dd)\
241 A o w (= d
(311) = W Rtr <U(w)71w/ J)\Op (CL(U) ,)\)) J)\> ‘)\‘ d)\

where we have used the fact that tr(AB) = tr(BA), the formula for the adjoint of a Weyl

symbol, and tr(B) = tr(B*). Therefore, in view of Corollary 2.5 stated page 34, if Op(a)* is a



44 CHAPTER 3. THE ALGEBRA OF PSEUDODIFFERENTIAL OPERATORS

pseudodifferential operator, its symbol a* will be given for all (w, \,&,n) € H? x R* x R?? by

2d_1 2 / / ; /
* - i/ |1\ (sen(N)y"-E—a"-n)+irs
a (w7)‘7§777) - 7Td+1/]R Hde
(3.1.2) x -t (s Tiop” (@(w(w’) ™ X)) Ty ) V|1 aX duw

It remains to prove that the map a — a* which is well defined on S(H? x R?***!) can be
extended to symbols a € Sya(p) and that for such a, their image a* is also in Spa(p).
Therefore, it is enough to prove the following proposition.

Proposition 3.1. — The map a — a* extends by continuity to Sya(p) since for all k € N
there exists n € N and C > 0 such that

Va € SHd(:u)v Ha*Hk;SHd(u) <C HaHn;SHd(u)'

It is not at all obvious that the formula (3.1.2) for a* gives the expected result for the examples
studied in Section 2.1 of Chapter 2. To see that more clearly, it is convenient to transform
the expression of a* into an integral formula.

Lemma 3.2. — Let a € S(HY x R?*™Y) | then the symbol a* of Op(a)* given in (3.1.2) can
also be written

* 1 2i4/|\|(sgn x'-n)+is’ (A=N\)— N|(sgn(\)z- T
a(w,A,g,n):W/RZdHXHde N(sen(Vy' €' ) 23/ TVT(sEn ()2 —C-a)
xa (w(w) ™ N, 2,¢) [N |d¢ dz dX' dw'.

The formula given in Lemma 3.2 allows to revisit the examples of Section 2.1, Chapter 2.
Indeed if a = a(\, &, n), then integration in s’ gives A = X', then integration in a’ (resp. v'))
gives ¢ = n (resp. z = y'); whence a*(w, \,§,n) = a(\, &, n).

If @ = a(w), then integration in ¢ (resp. &) gives ' = 0 (resp. ¥’ = 0); then integration in s’
gives A = N whence a*(w) = a(w) as expected.

Remark 3.3. — Let o(a) be defined by (1.4.1) page 27, then o(a*) and o(a) are related by

. _ 1 2y’ -(€—2)—2ia’ - (n—C)+is' (A=N)
313 ol wNEn) = g [
x o(a) (w(w')_l, N, z, C) d¢ dz dN dw'.
Proof of Lemma 3.2. — The first step consists in computing the trace term using the link

between the trace and the kernel stated in (1.2.18) page 17. So let us start by studying the
kernel of our operator. Using Jy = Ty Ky, we write

(314) tr< ( =1 J)\/Op ( ('UJ A )) J)\/) =1tr (K)\/’LL?;U) 1K)\/T)\/Op ( (w A )) T)J)

where w = w(w’)_l and we observe that Kxuf‘;),),lK*, = UE\{U,),l where UE\{U,),l is the
Schrodinger representation given by (1.2.33) page 21. We shall use the same type of method

as for the proof of Proposition 2.4. We recall that if U is an operator on L2(]Rd) of kernel
ku (€, &), then the kernel of the operator

ﬁ:U(w) 1OU
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is the function kg given by
k:U(g, g/) — e—i)\’(s’+2x’-y’+2y’v§) kU(g + 2$I’ g/)

This comes from the definition of the kernel in (1.2.17), page 17, and the definition of v()‘;,),l
n (1.2.33), page 21. We take now

U =Ty op" (E(w(u/)_l, )\',f,n)) Ty .
As in (2.2.3) page 35, we have
Tyop” (@(w(w) ™' N, €,m)) Ty = op” ( LN VIV \/W>
and using (1.3.6) page 24 this gives

wie.€) =0 [ a (w(w’)‘l,x, VIVl (555) —\/|:A_|> =€)z

This implies
w@) = | k(e

_ / e~ IN (42 YR O (e 1 9a €)dg
Rd

_ (%)—d/ de-z‘A’(s’+2:c’~y’+2y’~§)+2i5~x’a (w(w/)—l’/\/, \/W(ﬁ—I—x'), = )dEd&.
R2

VN
We finally obtain via (3.1.2) and (3.1.4)

0 (w, A, €, 77) = M(sgn(A)y'-E—a'-n)+is' (A=) =20N (@' +y'-€)+2ia’ =

1
2r2d+1 R2d+1 5 d

(1]

X a <w(w’)_1, N VIV + ), N

The change of variable /|N[(§ + 2') = sgn(X)z and = = /|N|( gives the formula of the

lemma. O

) |N|4d= de dN duw'.

3.2. Proof of Proposition 3.1

To prove Proposition 3.1, we shall use Remark 3.3 and Proposition 1.22. Our aim is to analyze
the symbol properties of the oscillatory integral of (3.1.3) in order to prove that what should
be the symbol of the adjoint actually is a symbol. More precisely, we want to prove that for
all k € N, there exists a constant C' > 0 and an integer n such that for any multi-index 3 € N2
and for all m € N, if m + || < k, then

WY e RM, YA £0, (14 A(1+Y2) T | oonral et A L < Clalls

ols (Hd Hd (lu‘

The first step consists in proving this inequality when k& = 0, then, in a second step, we will
suppose k > 1 and consider derivatives of the symbol o(a*).
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We follow the classical method of stationary phase, as developed for instance in [1]. Noticing
that the phase in (3.1.3) is stationary at the point (0,0,0,&,7,A) in R x R? x R x RY x R? x R,
we introduce a partition of unity centered at zero:

1=1(u) + Z¢(2_pu), Vu € RA4H2

peN

where 1 is compactly supported in a ring and 1; in a ball. Then decomposing the inte-
gral (3.1.3) using that partition of unity, we notice that each integral

def 1 _ _ _ _ _ _
by(w, A, €,n) =< W/deﬂquﬂz Pyl 27Py 97PS 97P(2 —£),27P(C — 1), 2 p()\/_)\))

x @2 (&=2) =20 (1O %S A=A 6 (0 (w(w!) T N, 2, ) dC dz dN du!

is well defined since it is on a compact set. The convergence of the series zpeN b, will come

from integrations by parts which will produce powers of 27P. Indeed, the change of variables
2 =X,y =2V, s =28, 2 =&+ 2Pu, ( =n+2Pv, N =\ +2PA

gives with w(p) def . (2P X, 2rY, 2P S)~1

pUd+2)p A —i22P(2Y -u—2X -v+SA)
bp(w, A, &, n) = W/RMHXW?NX,KS,U,% )e

xo(a) (wp), A+ 2PA, &+ 2Pu,n + 2Pv) dudv dX dY dA dS.

Let us define the differential operator

e %(X2 FY24 82+ w40 AY)E <%X8v + %v@x - %Y@u - %uay — Sop — A83> ,

which satisfies
Le—i22P(2Y-u—2X-v+SA) _ 22pe—i22p(2Y-u—2X-v+SA)

We remark that the coefficients of (L*)" are uniformly bounded on the support of ¢. Per-
forming N integration by parts (here we assume that p > N) we obtain

2—P(2N—4d-2) —i22P(2Y u—2X v+SA)
bp(w7 )\7 éa 77) = W /de+1 « T4 ©

x (L*)N <¢ (X,Y, S u,v,A) o(a) (w(p), A + 2PA, £ + 2Pu,n + 2pv)) dudvdX dY dAdS.
We then use that o(a) satisfies symbol estimates, so
|(L)Vo(a) (w(p), A + 2, + 2w, + 270)|
< C2N [lalln,s, 00 (14 A+ 2PA] 4 [€ + 20?4 |y + 270]2)"72.
Peetre’s inequality

(1+ A+ 2PA| + [€ + 2Pul® + [ + 2P0 2)"°
< L+ A+ E 47" (14 27A] + 20 + |200]2) 72
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yields
(L4 N+ &2+ n2)—u/2 ‘(L*)NM(w(p),)\ 4PN E 4+ 2Pun + 2%)‘
< Cllallw s, (1 + 2741 + [22uf? + |220]2) /2.
Therefore,
(1+ 1AL+ € 4+ 72) 72 [bp(w, A €, m)]| < C a0y 22021,

which gives the expected inequality for k = 0 choosing N > 4d + 2 + |p|.

Let us now consider derivatives of o(a*). We observe that by integration by parts,
a)\O'((l*)(’lU, >\7 57 77)

= / L ewe e e 0N o g a) (w(w') T X 2, C) G dz dX du!
R24+1 x H

1

e —27T2d+1 /de+1 Hd e2iy’.(5_2)_2ix/.(77_<)+i5’()\—)\/)aA, (O-(a) (w(w,)_l,)\/7Z7C)) dC dZ d)\/ dw,.
X

Since for m € N, 0y'0(a) satisfies the same symbol estimates as o(a), the arguments developed
just above allow to deal with the derivatives in A. Similarly, integrating by parts

21506, 0(a”) (w, A, &, m)
— 2Z /I\{Qd+1 » e22y’(5—2)—22x’(n—C)—l-Zs’()\—)\’)y;cgj O'(a) (’lI), )\/’ 2, C) d<- dZ d)\/ dw/
X

= _A2d+1 o e2iy’.(ﬁ—z)—2im’v(77—C)+is’(A—)\/)yl/€ (8y; _ 22;2)) (O.(a) (QI), )\/’ z, C)) d< dZ d)\/ dw/
X

~.

= — 2iy"(§—2)—2iz"-(n—C)+is' (A-X") — 9N (ol (0. N '
2 /R2d+1 < T4 ¢ 0z, (8yj QZzJ) (0(&) (w, N, z, C)) dCdzd)\ dw,

with @ = w(w')~L. So, for m € N and a € N?*¥| (¢;0,, )"0 (a) satisfies the same symbol esti-
mates as o(a), thus we can treat these derivatives as above with exactly the same arguments.
Besides, it is also the case for derivatives in . This concludes the proof of Proposition 3.1. [

3.3. Study of the composition of two pseudodifferential operators

We consider now two pseudodifferential operators Op(a) and Op(b) and study their com-
position. We shall follow the classical method (see for instance [1]) consisting in studying
rather Op(a) o Op(c)*, where ¢ is such that Op(c)* = Op(d).

We recall that if A (resp. B) is an operator of kernel k4(w,w’) (resp. kp(w,w’)), then the
kernel of Ao B is

baci (') = [ baw, W)ka(W,w)dIv.
If moreover B = C* with C of kernel k¢ (w,w'), then

kg(w,w") = ke (w',w).
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Those (well-known) results applied to A = Op(a) and C = Op(c), imply that the opera-
tor Op(a) o Op(c)* has a kernel k(w,w’) given by

(3.3.1) k(w,w'") = /Hd ka(w, W)kc(w', W) dW.

If Op(a)oOp(c)* is a pseudodifferential operator of symbol d, then, by Proposition 2.4 page 34,
the symbol d is given by its associated function o(d) which satisfies,

(3.3.2) o(d)(w,\,&,n) = / AW E= MHAS L () (w) 1) da'
Hd
We shall now study the map (a,¢) — d which is well defined for a,c € S(H?).

Proposition 3.4. — The map (a,c) — d extends by continuity to Sga(p) x Sya(p') since for
all k € N there exist n,n’ € N and C > 0 such that

”d”k;SHd(u-l-,u’) < C Ha”n;SHd(,u) HcHn;SHd(u’)'

Note that the Proposition implies that the symbol d of A o B satisfies

s,y < € Nl ooy 18l

since ¢ is the symbol of B* and ||c|l,;5_,(u) < C [[blln;5,,4() for all n € N by Proposition 3.1.

Proof. — The proof is very similar to the one for the adjoint written in the previous sec-
tion: one writes the function o(d) as an oscillatory integral that we study with standard
techniques. We first obtain, thanks to Proposition 2.4 page 34, (3.3.1) and (1.2.1), that the
kernel of Op(a) o Op(c)* is

m/U(a)(w7)\17217C1)@(U~)7)\27227C2)

Xel’>\181+2iy1'21—22'961'C1—i>\282—2iy2'22+2iC2'ﬂch)\l do dzy dzo dCy dCo AW

k(w,w) =

where w='W = (21,y1,51) and W 'W = (22, y2,s2). Therefore, recalling that
o(d)(w,\,&,n) = /Hd AW E= T A Ly ap(w') ™) du’

where k is the kernel given above, we get

m/a(a)(w,)\l,zl,(1)@(10(10’)‘1,)\2,22,(2

x W AAz1,22.00,62) gy g dzy dzo dCy dCao dW du,

(3.3.3) o(d)(w,\, & n)

where the phase function ® (depending on w, A, £ and 7) is given by
(3348 = As' + Ais1 — dasa +2(y - E+yr -z —ya-20) =22 -+ ar -G — 22 ()
with wy = (x1,91,51) = w™'W and wy = (22,2, s2) = w'w™'W; in particular ws = w'w; so
writing W = (X,Y, S) and using the group law on H?, we have

r1=X -z, xo=X—ac+2, =Y -y, p=Y —y+vy,51=8—s5—2Xy + 22V,
(335) so=8—-s+5 20" —2) Y +2 —y) - X +22 - y—2¢ - 2.
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The function ® is polynomial of degree 3 in its variables and straightforward computations
give
O\ @ =51, 0\, @ = —52, 0,,P =211, 0,,2 =2y
8@(1) = —2%1, 8(2(1) = 2%2, 88/(1) =A— )\2, 85(13 = )\1 — )\2
Op® = =2(n— () + 20 —y), 0yP =2({ —22) —2X(X —2)
8)((1) = —Q(Cl — CQ) — 2)\2y’ + 2y()\2 — )\1), GYCI) = 2)\233/ — 21’()\2 — )\1) + 2(21 — 2’2).

Therefore, one can check easily that the phase ® satisfies d® = 0 if and only if
w=W,w =0, A= =X, 21=2=¢ (G =0L=1.
In the following we shall denote by Uy € R that critical point, with D = 4(2d + 1):

def
UO = (:Ev Y, s, 07 A) >\7 57 Ea m, 77)
By a tedious but straightforward computation, we check that ®(Uy) = 0, d®(Up) = 0 and
that d?®(Up) is invertible for all (w,\,&,n): computing the Hessian matrix d?®(Uy) one
notices easily that each lign of the matrix has at least one constant term (and the others are
either zero or linear in \, z,y).

We then argue as in the proof for the adjoint by use of a partition of unity centered in the
point Uy where ® degenerates. For simplicity we denote the new set of variables by
V=(X,Y, X2y, A1, Ao, 21, 22, (1, G2) € RP.

In the phase ® there are terms of order 3 and we observe that the only derivatives of order 3
which are non zero are
8§,A2,y’® = —2 and 85’/’)\27:0/@ =2.

We write, for any point U € RP, ®(U) = &(U —Up)+G(U —Uy) where by a direct application
of Taylor’s formula, one has

def 1
2
We are therefore reduced to the study of an integral under the form

def

YV eRP, (V) D*®(Up)V -V and G(V)ZE N— AN (Y —y) -2/ — (X —2)-¢).

I= [ f)e*Wqy,
RD

where we have defined

(336) VU € RD) f(U) = O-(a)(wvAl)Z17(1)@(w(w/)_17A27Z27<2)‘
We shall decompose this integral into a series of integrals by a partition of unity:
I = [ f0)e*OU - Up)dU + /D FO)e* 27U — Uy))dU
R o /R

= | S U - Uo)du + ) 24P / U+ 20V)((V)e GV gy,
R R
qgeN

where 5 and ¢ are functions defining a partition of unity, in the sense that they are nonnegative,
smooth compactly supported functions (¢ in a ball and ¢ in a ring) such that

VU eRP, ((U-To)+ ) (27U - Up)) =1.
qeN
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Each integral is now well defined, and the main problem consists in proving the convergence
of the series in ¢ € N, as well as in proving symbol estimates. We shall concentrate on the
second integral and leave the (easier) computation in the case of ¢ to the reader.

Consider

Iy 2P / [ (U +21V)¢ (V)2 R aWay,
We shall use a stationary phase method, which will be implemented differently according to
whether in the phase 2290 (V') 4 239G(V), the dominant term is the first or the second of the
two terms. More precisely, let § €]0, 5[ be any real number and let us cut the integral I, into

two parts depending on whether [VG(V)| < 279049 or not. For this, we introduce a smooth
cut-off function x € C§°(R) compactly supported on [—1,1] and write I, = I, (} +1 3, where

b 9 ger / X (22q<1+6>\VG(V)\2) F(Up + 29V) (V)21 90(V)+i2MGV) gy ang

122 [y (PHOITEWR) f(o + 2 )V By,

Let us first analyze [ ;. We introduce the differential operator

def 1 V®q(V)

= TVae Y

which satisfies
N [em%@o(v’)] — 92Nqi229%o (V)

Note that the computation of the Hessian mentioned above allows easily to obtain a bound
of the following type for V&y:

C
3.3.7 vV €S , Vo,V <

where C is a constant. It follows that L is well defined, and its coefficients are at most
linear in A\, x and y. One therefore checks easily that on the support of ¢ the operator (L*)N
has uniformly bounded coefficients (the bound is uniform in V' as well as in w, A\, £ and 7).
Therefore one can write

I(; _ 2qD2—2Nq/ei22q<I>o(V) (L*)N {C(V)X (22q(1+6)‘VG(V)‘2) ei23qG(V)f(U0 + 2qv)} dv.
Using the Leibnitz formula, we have
(3.3.5) (LY [c)x (22909 G(V) ) 27600 (U + 207 |

<c 3 @) e e o (x (22009 1w 6)2) ) 6|
|€]+m|+|n| <N

where ¢, m,n are multi-indexes in N” and where C is a function, compactly supported on a
ring, defined by
C(V) = sup [7¢(V).

ljI<N
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Now the difficulty consists in estimating each of the three terms containing derivatives on the
right-hand side of the above inequality. Recalling that f is defined by (3.3.6), f satisfies the
following symbol-type estimate:

U+ 2V < 2% sup (L 2V 21V 27, P)
{j17"'7j6}€{1,...D}d

123
2

M_
2

(3.3.9) X (14 A+ 29V, |+ 1€ + 29V [ + [ + 29V )

Now let us prove an estimate for the second term. We use Faa-di-Bruno’s formula, which in
general can be stated as follows:

DN ("N [hy, ... hy ZZ Z ﬁu;

Ip!
ceoN p=lri+-~rp=N Tp'p'
X eF(V) [DTlF(V)(hU(1)7 s aha(rl))y s ’DTPF(V)(hU(N_Tp"Fl)’ SRR hO'(N))]'

But on the support of (, the function G is bounded as well as its derivatives, so this implies
that on the support of ¥,

||

n(oi22G(V)| < 1 3ap (9—q(1+9) K
0" (e )< Cz Z rll...rp!p!2 <2 )

p=1ry ++rp:|n‘

where K & card{j, r; = 1} is the number of integers j in {1,--- ,p} such that r; = 1. We
notice that the worst situation corresponds to the case when {j, r; = 1} = (), which means
in particular that r; > 2 for all j (in the above summation it is implicitly assumed that
the 7; are not zero). The largest possible p for which such a situation may occur is p = |n|/2
(or (|n| —1)/2 if |n| is odd). But one notices that since 6 < 1/2,

< 92nlp—dlnlp
so using the fact that for any p < |n| one has clearly 22P4~P4% < 22Inla=1n19% e infer that

(3.3.10) |a”(ei23qG(V))| < ¢22Inla=Inlas,

Finally let us consider the last term, namely 0™ (X <22q(1+5)|VG(V)|2)) . Taking |m| = 1

and writing 0; for any derivative in RP we have

1 D
~8; (x (220000 )vG(V) ) ) = 220049/ (2201+0) g q(V) |2 O2G(V)8;G(V)
301 (x ) ( )y

which can be written
D
1
58]‘ <X (22q(1+6)|VG(V)|2>> q(149) Zhl (211(14—6 VGV )) O%G(V),
=1
where h; is the smooth, compactly supported function defined by
VU ERP, h(U) E UN(UP).
So, using that the derivatives of G are bouded and by Leibniz formula, one gets

‘8]- (X <22q(1+5)|vg(v)|2))‘ < 0210+9)
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and arguing in the same way for higher order derivatives one finds finally
(3.3.11) ‘am (x (22q(1+5>\VG(V)\2)>( < Colmla(i+9),
Plugging (3.3.9), (3.3.10) and (3.3.11) into (3.3.8), we get
9—2qN+qD ‘(L*)N [C(V)x (22q(1+6)|VG(V)|2) ei23qG(V)f(U0 4 2qv)] ‘
<C sup 2ltla92Inlg—|n|gdg|m|q(1+3)
R [ L ETe TS

123
X (L4 A+ 29V | + [€ + 29V, |° + | + 29V, %) 2

/L
2

X (L4 (A 29V, |+ (€ + 29V5 2 + [ + 29V )
Noticing that
9—2qN+qD Z 2ltlag2inlg—Inladglmle(1+6) CQqD(g—Mﬁ + QNQ(5—1))
€]+ [m|+|n|<N

it suffices to choose IV large enough and to use Peetre’s inequality as in the case of the adjoint
to conclude on the summability of the series, and on the symbol estimate on a1 (}

Let us now focus on Ig. In that case ®( is no longer predominant, so we shall use the full

operator

def 1 V®o(V)+21VG(V)

Lq(V) = = 2
i V& (V) + 20V G(V))

which is well defined on the support of { and satisfies

-V

Ly(V) [ei22‘1<1>0(V)+i23‘1G(V)] — 924 (22920 (V)+i2%1G(V)
This implies that I 3 is equal to
94D—2Nq /(Lq(v)*)N [(1 o X) (22(1+6)q|VG(V)|2> f(UO + 2qV)C(V) ei22q¢0(v)+i23qG(v)dV,

and it is not difficult to prove by induction that for N € N, the operator (LZ)N is of the form

* f +2qf quf 14 le"
wyrn =y 3 Bo(V 1+(2f)zvc:(v)|2kk( (),
k=0 [a|<N—k

where the f; are uniformly bounded functions on the support of (. As in the case of I ;, we
apply the Leibnitz formula to write

o [0 (2ENVEWP) £ +2v)e(V)|
<C 3 W@+l o (- (Ve mP) ) Ev)

€]+|m|<|a|

where ¢ and m are multi-indexes in N” and where ¢ is a function, compactly supported on a
ring. The first term of the right-hand side was estimated in (3.3.9), and the second one may
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be estimated similarly to (3.3.11) since as soon as |m| > 1, the support of ™ (1 — x)(V) is in
a ring far from zero. It follows that

o [(1 =) (PGP £ +20v)e(V)]| <0 3D 2lagimlai)
[€]+Im|<|a|

X sup (14—’)\4-2‘1{/’].1‘_|_’§_|_2qvj,2’2_’_’n_’_2qvj3’2)
{j1,--Je}e{1,...D}4

(S

I
2

X (1 X+ 29V |+ [€ + 29Vi [P + [ + 29V %) 7
Since on the other hand, on the support of (1 — x) (22(1+6)q|VG(V)|2) and on the support
of ¢,
fo(V) +20f1(V) +--- 2" fi (V)
[©o(V) +20VG(V)[*

' < C9-hagha(1+9).
this implies that
def %
XN (L, (V)Y [(1 =) (VGV)2) f (T +2V)C(V)]

may be bounded by

N
Xy < CZ Z Z 9—kao2k(1+0)ag|tlaglmlq(1+5)
k=0 [a| <N—k [¢|+]m]|<|a]

X sup (14 A+ 29V;, | + [€ + 29V, 2 + | + 29V, 2)
{j1,--.de}e{1,...D}4

(SIS

e
X (14 [N+ 29V, | + € + 27V, |2 + | + 29V, ]?) 2 .

Since

N
Z Z Z 9~ kag2k(1+68)g9ltlgglmla(1+6) < (9Na92Ndg
k=0 |a|<N—k |€|+|m|<|a]

we conclude that

122
XN < CaNeRNSEND g (L [N 29V, 4 [ 29V, [+ 2015, )
{g1,jee{1,...D}

’
B
2

X (14 A+ 27V, | + € + 29V |2 + [0 + 27V} %)

The choice of ¢ €]0,1/2[ allows to conclude as in the previous proof via Peetre’s inequality.

The analysis of derivatives of o(d) is very similar. Let us for the sake of simplicity only deal
with the A-derivative, and leave the study of the other derivatives to the reader. Taking a
partial derivative of o(d), defined in (3.3.3), in the A direction produces a factor is’ in the
integral, namely

ho(d)(w, A, & n) = . 3 /iS,U(a)(wy)\l,Zl;Cl)@(w(wl)_ly)\mzmC2)

(27‘r2d+1)

Xei@(W,w’,)q,)\2,Z1722,C17C2)d)\1 dXo dz1 dzo d(y dCo AW dw'.
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But one notices that

Oy (P A1 A22122.00G)) — i (§ — 5+ &' 4 22Y — 2yX — 22/ (Y — y) + 2/ (X — )
Xei@(W,w’,M,)\2,21722,C17C2)

which can also be written, using (3.3.5)
is'e’® = (=0, —is1)e’® —i(—22"y; + 2y'x1)e™®.

On the other hand an easy computation, using the formula defining ® in (3.3.4) above, allows
to write that

is16'® = (%\leiq), 2z'yle"<I> = 8zleiq>, and — 2iz1e'® = O¢, e'®
so we find the following identity:
is'e!® = (—=Ox, — O, + 20, + y'aﬁ)e@.
Finally (2729+1)20\0(d)(w, \, €, 1) is equal to
[ e 00T@ ) e )o@ M 21, G dhe s Gy da dIY
+ / 0, o(a)(w, A1, 21, (1 )o(c) (w(w') ™, Xa, 29, Ca)dAy dAa dzy dzo dCy dCo AW du
+ / 9., 0(a)(w, A1, 21, (1) (@ — 2o (c) (w(w') ™, Ag, 22, Co)dAy da dzy dza dCy dCo AW du’
/ 20, 0(a)(w, A1, 21, C1)o(e) (ww') ™Y, Ay, 20, Co)dA1 dAg dz1 dzg dCy dCo dW du’
- / "¢y 0(a)(w, Aiy 21, G) (Y = y)o(e) (w(w') ™ Ag, 22, ) X dz dzo dy do AW du

— / " ®yde, o (a)(w, A1, 21, C1)o(c) (w(w') ™, A, 22, Ca)dA1 da dzy dzo dCy dCa dW du'.

Since o(a) and o(c) satisfy symbol estimates, the expressions above can be dealt with exactly
by the same arguments as those developed above. One proceeds similarly for all the other
derivatives. Details are left to the reader. U

3.4. The asymptotic formulas

In this section, we give the asymptotics for the symbol of the adjoint and of the composition,
up to one order more than in Theorem 4. The proof that we propose does not use the integral
formula obtained for a* and a#yab but relies more precisely on functional calculus, which
suits more to the Heisenberg properties to our opinion.
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Proposition 3.5. — Let a € Sya(p1) and b € Sya(pz). Then the symbol of the adjoint
of Op(a) is given by

1 _
o = a+—— Y (ZTj+Z;T])a+

> (BT + 2T (2T + Zi TR )a
2VIM 1S

1
8LA’1§mde

1 1 .
| A5 D 0, +40) | Sa+ R

A
1<j<d

whereas the symbol of the composition Op(a) o Op(b) is given by

1 _
afgad = b#a+t—— > (Zb#Tja+ Z;b#T}a)
2 |>\| 1<5<d
1 7 7 * %k 7 * 7 *
+ Y N (ZiZib# TiTha + ZZeb# T Tia + Z;Zpb # TyTia + Z; Zyb # T Tia)
1<7,k<d

1 1 _
+ o Sh# —AaHiZ(njanﬁgjagj) a+ o

1<j<d

where S denotes s, 71 (resp. T2) depends only on Z% (resp. Z%b) for |a| > 3 and finally
where

1
Tja def gama — sgn(A)9g;a.

In view of the second term of the asymptotic expansion, one understands better in what sense
these formula are asymptotics. Let us comment the development of a*. The first term is a
symbol of order p — 1, it is of order strictly smaller than a.

The first part of the second term is of order p — 2; however, the second part of this term is
the product of A~! by a symbol of the same order p. This is a smaller term only for large
values of A. In view of the proof below, it is easy to see that one could obtain an expansion
to any order and that the term of order k will be the sum of terms of the form: A™7 times a
symbol of order y — k + 25 for 0 < 25 < k. It is in this sense that this asymptotic has to be
considered.

We shall not discuss here the precise feature of the remainder and will discuss this point in
further works for applications where these asymptotic expansions could be useful.

We point out that the asymptotic formula for a* and a#yab have their counterpart for o(a*)
and o (a#yab). By the definition of the function o(a) associated with a symbol a (see (1.4.1)),
the following corollary comes from Proposition 3.5. While the asymptotics of Proposition 3.5
appear as especially useful for large A, the asymptotics on o(a) seems more pertinent for A
close to 0.
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Corollary 3.6. — Let a € Sya(p1) and b € Sya(p1) then

o) = ola)+y 3 (4T + 2T

1<j<d

1 — _ -
+W N (ZiTy + ZiT3) (2T + ZiTy)o(a)
1<j.k<d

——8)\5 aAU( ) + 0'(7‘1)

and similarly

o (a #yab) = b#ra+ % Z (Zjo(b) #x Tjo(a) + Zjo(b) #a 7}*0((1))
1<j<d
+ % > (ZjZka(b) #\ T Two(a) + Z; 2,0 (b) #1 T T o (a)
1<j,k<d
+ 2700 # TTF0(0) + Z; 240 (b) #2 T i) — %Sa(b) 44, Oy (@) + ()

where 71 (resp. T2) depends only on Z% (resp. Z%b) for |a| > 3 and where for all func-
tions f = f(&n) and g = g(&,n)

d _2i6_6,0-
VO E R, fg(0) Y (1) [ RHI0-0100ul(0,)(61) 01 de,
1
7Y ZOn [ =, f.

The proof of the corollary is straightforward by (1.4.1) and (1.3.4).
Let us now prove Proposition 3.5.

Proof. — It turns out that the proof of the asymptotic formula for the composition and the
adjoint are identical, so let us concentrate on the product from now on.

In view of (1.4.5) and (1.4.6) page 28, we can write

9d-1 ? ,
(Op(a) 2 0p(0) ) = (27 ) [t (10 A0)) (1 0 B
< f(w")| AT |N|2dN dN dw' dw”
with
Ax(w) = Jyop¥(a(w, N)) Jy and By(w) = Jy op”(b(w, A)) Jy.

Now, we shall take into account the framework of the Heisenberg group and use the dila-
tion & (w™tw’), t € [0,1] (see (1.2.7) page 14) to transform b(w’,-) by a Taylor expansion:

b(w', X, y,1m) = b (wdy (w™w'), X, y,m) = b(w, A, y,n) + <fiz;00@(u; '), Ay, n))

d |t=0

1 d 1! d
—|—§<@b(w5t(w w))\yn)>t:0—|—§/0(1—t)d3b(w5t(w w))\yn) dt.
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1

Setting w = (Z,5) = w™w’, we get by the group rule (1.2.1),

%b(wét(w)) = 218 Sh(wb (@) + 3 [3 (9, bluwd (@) + 2,0, (w ()
1<5<d

47 (0, blwdn () — 2,0b(wé ())) ]

This leads by straightforward computations to

d _ . ——
<£b (W5t(w 1w,)7/\7y777)> = Z (szj + z; Zj)b(wv/\yyyn)
[t=0 1<j<d
d2 — ~ = 7 ~ = T
<Wb (wét(w 1w,)7/\7y777)> = Z [(Zij +szj) o (Zka +Zka)] b(w7>\7y777)
[t=0 1<j,k<d

+25Sb(w, A\, y,n).
Therefore, we deduce that
By(w') = C\(w,w") + Ry(w,w")

where R) depends only on derivatives of order 3 of b and C)(w,w’) depends polynomially
on w:

ry def (1) 3 (2) 53 .(3 3 L s
(3.4.1) Ci(w,w") = By(w) + Cy ' (w) - (2,2) + O\ (w)(2,2) - (£,2) + 5 C)" (w),

where C’S)(w) is the 2d dimensional vector-valued operator
(1) def =
C\' = (ZBa(w), ZBx(w)),
while C’)@ (w) is the 2d x 2d matrix-valued operator

c2 &f % (2.7) ® (2,7)] Ba(w)

def

and ng)(w) = SBy(w).

To summarize (Op(a) o Op(b)) f(w) is the sum of two terms:

(Op(a) 0 Op(b)) f(w) = (I) + (J)

d—1\ 2
(I) = <2d—+1> / tr (ug,lw,AA(wQ tr (u?;,),lw,,cx(w,w')) F@" AN AN du' duw”.
T

Let us now focus on the term (/) which will give the terms of the asymptotics in which we
are interested.
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Let us begin by the study of the contribution (I)y of the term of degree 0 of the polynomial
function Cy(w,w’). By (3.4.1), we get

def 2d_1 ? A N " div/|d / / "
(1o ( = tr <uw,1w,A>\(w)) tr (u(w,),lw,,BX(w)) F") A N 2NN dw dw

9d—1\ 2 :
= <m> /tr (ui},lw,,uf‘w,,),lw, tr (uf‘w,),lw,,B,\/(w)> A,\(w))
X f(w") AL [N [2dAdN dw' dw” .

The change of variables w’ — w”w’ turns the integral (I)q into

20-1\ ,
<W> / tr(ug,lw,, { / ul, tr (@w,),lBN(w)) |X|ddXdu/} Ax(w)) Fw") N4 drdw”.
w'” A

By the inverse Fourier formula, we obtain that the term between brackets is
A \ d 241\~
/uw, tr (u(w,),lB)\/(w)) N |2dN dw' = <W> B (w),

which gives
9d—1 N J
(Do = =y / tr (1)1, BA(w) Ax (w) ) f(w") A dAduo”".

We then use classical Weyl symbolic calculus to write

op” (b(w, A)) o op®(a(w, X)) = op”((b#a)(w, A)).
Thus we have
Ba(w) o Ax(w) = Jxop” ((b#a)(w, A))Jx,

whence
2d—1

(Do = 2z [ 0 (s Thop™ (), X)) S A drd”,

which gives thanks to (1.4.5) and (1.4.6) the first term in the asymptotic formula for the
composition.

Let us now consider the second term of the asymptotic expansion which comes from the term
of order 1 of the polynomial function C(w,w’). To treat this term, we shall use the following
relations for 1 < j <d,

~ * W 1 * W .
Zjtr (ugJ)\op (a(w,)\))J,\> = : |/\|tr (uf‘bJ/\op ({a,—i&; + sgn()\)nj})J,\>
(3.4.2) = ! tr (ung\"opw(Tja(w, )\)))
2V/|Al
= A 7% w _ 1 Aok w .
Zjtr (uwj)\op (a(w,)\))J,\> = 3 |)\|tr (uwj)\op ({a,i&; + sgn()\)nj})J,\>
(3.4.3) = ! tr (uf‘bJj\"opw(T*a(w, A)))
2V/|Al !

that come respectively from (2.3.4) and (2.3.5) page 40.
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This allows to write the second term under the following form

def (20717 : -
(_[)1 :e <m> / tr (u’l)i\}*lw/A)‘(w)) tr (U?w/)flw//(Z, Z) . C)(\:,l) (’LU))
X f(w")| AT N TdNdN dw’ duw”

1 2d—1 e N /
= m( d+1> > /tr w-twINOP (Tja(wa)\))JA) tr (u(w/)flw,,ZjB(w,)\)>

1<5<d
< f(w")| AT N TN dw’ dw”

1 /2t , _
+ \/’T( d+1> Z /tI‘ 1w"]>\0p (T’]*a(wv/\))'])\> tr (u?w’)flw”ZjB(wv/\,)>

1<5<d
< f (WA [N [TdAdN dw’ duw”.

Therefore, arguing as for the first term, we get

() = 1 22+1 Z /tr<uw 1 I3 0" (Z b(w, \)#Tja(w, \)
2\/’7 1<5<d

+Zb(w, N#T a(w, A)) JA> Fw) N drdw”,
which leads by (1.4.5) and (1.4.6) to the second term in the asymptotic formula for the

composition.

In order to compute the third term of the expansion, we shall consider the terms of order 2
of the polynomial C(w,w’) and use Lemma A.4 stated page 102. First, let us recall that due
o (3.4.1), we have

def 2d_1 ? 4 ~ ~ = ~ =
Iy = <m> / tr <uf‘v,1w,A,\(w)) tr (uf‘w,)flwn (sC’S’) (w) + c? (w)(z,2) - (2, z)))
< f(w") N N |2dAdN dw’ duw”

where CS’)(U)) = SB)(w) and C>(\2) =1[(2,2)® (2,2)] B\(w).

We first focus on the term in C)(\?).

(I)2,1 o <72TZ:> > /tf U1 Ax(w ))

1<j,k<d

X tr <u?;,),1w,, ((3:2; + 52;) (3nZk + zk_zk)BN(w))) Fw") M4 N 2NN dw' duw .

Let us call (1)2,; its contribution, we have

We treat those terms as those of (I);. We shall explain the argument for one of those terms
and leave the analysis of the other terms to the reader. Set

def (24717 : o
(I)QJ’k = <m> / tr <U1)1\}71w/14)\(’w)) tr (uf‘w,)flwu (ZjZijZk)BX)>
™A N[ 2dAAN duw' duw’.
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Using (3.4.2) and (3.4.3), we obtain
Zi 3 tr (uh Top"(a(w, )1 ) = tr (uhJiop" (T, T a(w, M), )

whence, arguing as for (I);

1 2d—1 2 N
([)27j,k = 2—|/\| <m> / tr (uw,lw,Jiop“’(TjT,ja(w,)\))J,\)
tr <u({v,),lw,, 7,7, B(w, X)) Fw") NN 2NN du' duw”
1 2d_1 A * o w > * " d "
_ 2—|/\|W/tr w1 Jiop (ZjZkb(w,)\)#Tkaa(w,)\)>J,\ FW"A dAdw”.

To deal with the last term
9d-1\ 2 ,
<m> / tr (ui},lw,AA(w)) tr (uf‘w,),lw,,é c® (w)) F N N |2dAdN dw' dw”
s
let us apply Lemma A.4 (see page 102) writing

9d—1\ 2 , 5
<W> / tr <ug,1w,AA(w)) tr (u?‘w,),lw,@C(,)(w)) Fw") N4 N [2dAdN dw' duw”

1/ 241\? :
= - <W> / tr (ug,lw,Jj\"opw (g(w, N)) JA> tr (uf‘w,),lw,,C)(\%)(w)) Fw) A4 dAdw”.

7

where g is the symbol of Sya(u1) given by (A.2.5) (in particular we have o(g) = —0\ (o(a)).

Finally, arguing as before we get

2d-1 2 ’ 3
(d—+1> / tr (ui‘u,lw,AA(w)> tr (uf‘w,),lw,@ C(,)(w)> F") NN TdAdN dw' dw”
™

1 2d—1
- EW/” (ug,lw,,J;opw (S b(w, N #g(w, \)) JA> Fw") N[ drduw”.

This ends the proof of the asymptotic formula for the composition.



CHAPTER 4

LITTLEWOOD-PALEY THEORY

In this chapter, we shall study various properties related to Littlewood-Paley operators, and
their link with various types of pseudodifferential operators.

In the first section, we focus on the Littlewood-Paley theory available on the Heisenberg group.
Similarly to the R? case, this theory enable us to split tempered distributions into a countable
sum of smooth functions frequency localized in a ball or a ring (see Definition 4.1 for more
details). In the second section, we recall some basic facts about Besov spaces and introduce
paradifferential calculus. Like in the R? case, it turns out that Sobolev and Holder spaces
come up as special cases of Besov spaces. The paraproduct algorithm on the Heisenberg group
is similar to the paraproduct algorithm on R? built by J.-M. Bony [13] and allows to transpose
to the Heisenberg group a number of classical results (see for instance [4], [5] [6] and [7]).
As already mentioned in Section 2.1 of Chapter 2, the Littlewood-Paley truncation operators
are Fourier multipliers defined using operators which are functions of the harmonic oscillator.
Therefore, it is important for our theory to be able to analyze the Weyl symbol of such
operators; this is achieved thanks to Mehler’s formula in the third section where we compare
Littlewood-Paley operators with pseudodifferential operators ; this will be of crucial use for
the next chapter. Finally in the last paragraph we introduce another dyadic decomposition,
in the variable A\ only, which will also turn out to be a necessary ingredient in the proof of
Theorem 5.

4.1. Littlewood-Paley operators

In [7] and [5] a dyadic partition of unity is built on the Heisenberg group H, similar to the
one defined in the classical R? case. A significant application of this decomposition is the
definition of Sobolev spaces (and more generally Besov spaces) on the Heisenberg group in
the same way as in the classical case.

Let us first define the concept of localization procedure in frequency space, in the framework
of the Heisenberg group. We start by giving the definition in the case of smooth functions.
The general case follows classically (see [7] or [5]) by regularizing by convolution, as shown
in the remark following the definition. We have defined, for any set B, the operator 1 DB
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on Hy by

v e SMEY), Va e N F(FNpsFar © Lgalray-1 500 F(N) Far.

Definition 4.1. — Let C., ;) = C(0,71,72) be a ring and B, = B(0,7) a ball of R centered
at the origin. A function f in S(H?) is said to be

— frequency localized in the ball 2PB s, if
FHA) = FHNLp 1gep . (V);
— frequency localized in the ring 2°C sy /i), if
FIHO) = FOM ptge,, (V).

In the case of a tempered distribution u, we shall say that u is frequency localized in the
ball 2°B / (respectively in the ring 2°C s /), if

uxf=0
for any radial function f € S(H?) satisfying F(f)(\)1 Dy lowB, = 0 (respectively for any f

. d c e
in S(H") satisfying f(f)()\)lszng(ﬁ’ﬁ)
the ball 2°B . (respectively in the ring 2PC( /s, /), if and only if,

= 0). In other words u is frequency localized in

U = U* Pp,
where ¢, = 2VP¢(dgs-), and ¢ is a radial function in S(H?) such that
F(o)(A) = F(@)(AR(Dx),

with R compactly supported in a ball (respectively an ring) of R centered at zero.

Let us now recall the dyadic decomposition and paradifferential techniques introduced in [7]
and [5], which we refer to for all details and proofs.

Proposition 4.2. — Let us denote by By and by Cy respectively the ball {T ER, |7 < 3} and
the ring {T €eR, 3 < I7] < 8} Then there exist two radial functions R* and R* the values of
which are in the interval [0, 1], belonging respectively to D(By) and to D(Cy) such that
(4.1.1) VreR, R'(r)+» R'(27%r)=1

p>0

and satisfying the support properties

Il
=

p— 9| > 1= supp R*(27%") N supp R*(27%")
p > 1= supp R* N supp R*(2—2p.) — (.

Besides, we have

(4.1.2) Vr R,

—i—ZR* 272P )2

p>0

l\’)l»i

The dyadic blocks A, and the low frequency cut-off operators S, are defined as follows similarly
to the R? case.
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Definition 4.3. — We define the Littlewood-Paley operators associated with the func-
tions R* and R*, for p € Z, by the following definitions in Fourier variables:

YpeEN, F(S,f)N) = F(HNR (27%D)),

VpeN, F(AH)(A) = F(fHNR* (27%D,),
FA1H)A) = F(Sof)(N),
Vp <=2, F(Af)(A) = 0.

The operator S, f may be alternately defined by
Spf = D Agf.

q<p—1

Since F(A,f)(\) = F(f)(\)R*(27%D,), it is clear that the function A,f is frequency lo-
calized in a ring of size 2P. Along the same lines, one can notice that the function S,f is
frequency localized in a ball of size 2P.

Moreover, according to the fact that the Fourier transform exchanges convolution and com-
position, the operators A, and S, commute with one another and with the Laplacian-Kohn
operator Aya.

Remark 4.4. — For simplicity of notation, we do not indicate that S, depends on R* and
that A, depends on R*. That is due to the fact that according to Lemma 4.8 below, one can
change the basis functions (hence the Littlewood-Paley operators), keeping only the fact that
one is supported near zero and the other is supported away from zero and satisfying (4.1.1),
while conserving equivalent norms for the function spaces based on those operators.

It was proved in [43], in the more general context of nilpotent Lie groups, that there are radial
functions of S(H?), denoted ¢ and ¢ such that

F@)A) = R*(Dy) and  F(p)(A) = R*(Dy).

We also refer to [7] and [5] for a different proof in the case of the Heisenberg group, the ideas
of which will be used below to prove Lemma 4.17. Using the scaling of the Heisenberg group,
it is easy to see that

Apu = ux2NVPp(S-)  and  Spu = u 2VPe(dgp-)

which implies by Young’s inequalities that those operators map L? into L? for all ¢ € [1, o]
with norms which do not depend on p.

Let us also notice that due to (1.2.8) (see page 14), if P is a left invariant vector fields then
P(Apu) = 2P (u* 2NPP(p) (620 -)).

This property is the heart of the matter in the estimate of the action of left invariant vector
fields on frequency localized functions (see Lemma 4.7 below).

In view of Mehler’s formula (see [30]) and Lemma 4.5 in [31], one can prove that the
Littlewood-Paley operators on the Heisenberg group are pseudodifferential operators in the
sense of Definition 1.23. This is discussed in Section 4.5 below.
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4.2. Besov spaces
Along the same lines as in the R? case, we can define Besov spaces on the Heisenberg
group (see [7]).

Definition 4.5. — Let s € R and (¢,r) € [1,00]2. The Besov space B;’,T,(Hd) is the space of
tempered distributions u such that

def || ops
||uHB§’T(Hd) = ‘2 [Apull fo(ma) P

Remark 4.6. — It is also possible to characterize these spaces using only the operator S :
for s > 0, we have

~ |[osp _
(4.2.1) 11, sy ~ 27010 = )l s,
and for s <0,
(4.2.2) 1, ity ~ ||2 1S s,

where ~ stands for equivalent norms.

It is easy to see that for any real number p, the operators (—Aya)?” and (Id — Aya)? are con-
tinuous from B; (H) to Bi,**(HY). Note that Besov spaces on the Heisenberg group contain
Sobolev and Holder spaces. Indeed, by (4.1.2) and the Fourier-Plancherel equality (1.2.21),
the Besov space B§,2(Hd) coincides with the Sobolev space H*(HY). When s € RT\ N, one

can show that Bgo,oo(Hd) coincides with the Holder space C*(H?) introduced in Definition 1.3.

Let us point out that a distribution f belongs to Bg,r(Hd) if and only if there exists some
constant C' and some nonnegative sequence (¢p)pen of the unit sphere of ¢"(N) such that

(4.2.3) VpeN, 2| Apfllpamay < Cop.
This fact will be useful in what follows.

Arguing as in the classical case, one can prove using this theory many results, such as Sobolev
embeddings, refined Sobolev and Hardy inequalities (see [5],[4]). This is due to the fact that
the dyadic unity decomposition on the Heisenberg group behaves as the classical Littlewood-
Paley decomposition. The key argument lies on the following estimates called Bernstein
inequalities, proved in [5].

Lemma 4.7. — Let r be a positive real number. For any nonnegative integer k, there exists
a positive constant Cy, so that, for any couple of real numbers (a,b) such that 1 <a <b> o0
and any function u of L“(Hd) frequency localized in the ball 2PB /. one has

1_1
(424) ‘lel_pkHXBuHLb(Hd) S Ok‘2pN(a b)+pk||uHLa(Hd),

where XP denotes a product of |3| vectors fields of type (1.2.2), page 13.

Let us also point out that the definition of B;T(Hd) is independent of the dyadic partition of
unity chosen to define this space. This is due to the following lemma proved in [7].
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Lemma 4.8. — Lets € R and (p,r) € [1,00]%. Let (up)pen be a sequence of LI(H?) frequency
localized in a ring of size 2P satisfying

HZPSH,LLPHLQ(Hd) Z"(N) < 0,

then we have

Zup € B HY)  and ||U‘|B3,T.(Hd) < CsHQPSHUpHLq(Hd)
peN

r(N)”

Contrary to the R? case, there is no simple formula for the Fourier transform of the product
of two functions. The following proposition (proved in [5]) ensures that spectral localization
properties of the classical case are nevertheless preserved on the Heisenberg group after the
product has been taken.

Proposition 4.9. — Let ro > r1 > 0 be two real numbers, let p and p’ be two integers, and
let f and g be two functions of S’ (Hd) respectively frequency localized in the ring 2°C( s /)

and 2p/C(\/ﬁ7\/@. Then

— there exists a ring C' such that if p'—p > 1 then fg is frequency localized in the ring 2V'C’.
— there exists a ball B' such that if |p' — p| < 1, then fg is frequency localized in the
ball 2V'B'.

Remark 4.10. — The proof of this proposition is based on a careful use of the link between
the Fourier transform on the Heisenberg group and the standard Fourier transform on R?¥t1.
For a detailed proof, see [5].

Proposition 4.9 implies that if two functions are spectrally localized on two rings sufficiently
far away one from the other, then their product stays spectrally localized on a ring.

Taking advantage of this result, one can transpose to the Heisenberg group the paraproduct
theory constructed by J.-M. Bony [13] in the classical case. Let us consider two tempered
distributions v and v on H?. We write

u= Z Apu and v = Z Agv.
P q
Formally, the product can be written as

uv = Z Apu Agv

p,q

Paradifferential calculus is a mathematical tool for splitting the above sum into three parts:
the first part concerns the indices (p,q) for which the size of the spectrum of A,u is small
compared to the size of the one of Ajv. The second part is the symmetric of the first part
and in the last part, we keep the indices (p,q) for which the spectrum of Ayu and Ajv have
comparable sizes. This leads to the following definition.
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Definition 4.11. — We shall call paraproduct of v by u and shall denote by T,v the following
bilinear operator:

(4.2.5) uv = ZS‘I 1uAgv

We shall call remainder of uw and v and shall denote by R(u,v) the following bilinear operator:
(4.2.6) R(u,v) 1 Z ApuAg
Ip—q|<1
Remark 4.12. — Just by looking at the definition, it is clear that
(4.2.7) uwv = Tyv + Tyu + R(u,v).
According to Proposition 4.9, Sq—1uAgv is frequency localized in a ring of size 29. But, for

terms of the kind ApuAgv with |p — ¢ < 1, we have an accumulation of frequencies at the
origin. Such terms are frequency localized in a ball of size 29.

The way how the paraproduct and remainder act on Besov spaces is similar to the classical
case. We refer to [5] for more details.
Taking advantage of this theory, one can prove the following useful estimates.

Lemma 4.13. — Let o be a positive, noninteger real number and consider a real number s
such that |s| < o. Then, there exists a positive constant C such that for all functions f and g,

(4.2.8) 191l s quey < CllS Nl o eyl gl prs ey

Moreover, for any integer M there exists a positive constant C' such that for any function f,
(4.2.9) 158 fllcomay < Cllfllcomays

(4.2.10) 11d = Sa) £l oo ey < C277° ll oo gaaay

and more generally, for 0 < o < p,
(4.2.11) 1(d — Sar) fll o zay < €27 fll o aay-

The proof of this lemma is classical: it is the same proof as in R? for the classical Littlewood-
Paley theory and has no specific feature to the Heisenberg group. We provide it here for the
sake of completeness, as it will be used often in the rest of this paper.

Proof. — The first ingredient of the proof of Estimate (4.2.8) is Decomposition (4.2.7) which
consists in writing

fg=Trg+Tyf + R(f,9).

Let us begin with the study of Tyg. By definition of the paraproduct and thanks to Proposi-
tion 4.9, one has

ng Z A p—lprg)a

Ip—q|<No
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where Ny is a fixed integer, chosen large enough. We deduce thanks to the continuity of
Littlewood-Paley operators on Lebesgue spaces, that

21 Aq(Tr9) p2mey < > 2711 8g(Sp-1f 2p9)|l L2ty

lp—q|<No

<C Z 2qsHS;zJ—IfHLOO(Hd)||Apg||L2([H1d)
Ip—a|<No

SO W fllgwsy Do 218590 p2gaey-

Ip—q|<No

Using Littlewood-Paley characterization of Sobolev spaces, we infer that

290 8g(Tig) 2ty <C fllpooqey D 297727 Apgll 2 sy
lp—a|<No

S C ”f”Loo(Hd) Hg”HS(Hd) Z 2(q—p)scp7

[p—ql<No

where, as in all what follows, (c,) denotes a generic element of the unit sphere of £2(N). Taking
advantage of Young inequalities on series, we obtain

2% 8q(Trg) L2ty < CIS I poo ey 191 prs ey Cq
which ensures the desired estimate for Tyg namely

1591 5rs ey < ClFllco @y 191 2o uaey-

Let us now consider the second term of the above decomposition of the product fg. Again
using spectral localization properties, one can write that

AfTyf) = > Ay(Sp198,1).

Ip—q|<No
Therefore
2qs”Aq(Tgf)”L2(Hd) < 2® Z HAq(Sp—lgApf)”LQ(Hd)
Ip—q|<No
< C02% Z 19p-190 2 ety | Ap f1] oo ey
|p—q|<No
(4.2.12) < C|fllqomay 27° 1Sp—19]| 72 may27P°
Ce (HY) p—1911L2md)

lp—ql<No

By (4.2.2), we have in the case where s < 0,

||Sp—19HL2(Hd) < C||9||H8(Hd)2_pscpa
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where (c,) still denotes an element of the unit sphere of £2(N). We deduce in that case that

zqsqu(Tgf)HH(Hd) <C Hcha(Hd) Hg”Hs(Hd) 2% Z 2_pscp2_po
lp—ql<No

<C Nlgo@a 9l gs@n 27 D, 27@ 9@k,
|p—q|<No
<C | fllgo may 19 s @y €q-
This leads in that case to

||Tgf||HS(Hd) = CHf”co(Hd) ||9||Hs(Hd)-
Let us now estimate T, f in the case where s > 0. We have

HSp-lg”LQ(Hd) < C Z HAP’Q”LQ(Hd)

p'<p—2
<C lgllgs ey Z 27 ey
p'<p—2
Thus (4.2.12) becomes

2| Ag(Ty )l gy < C M lgoqa lgllgea 2 S Y 27p727%s,
lp—q|<No p'<p—2

<C N llgoga lollgea 27 > 277
[p—q|<No

<c ||f||co(Hd) ||9||Hs(Hd) 274o=9)

<C |l may 191 s @ay co-
This obviously ends the estimate of [Ty f|| . ga) for any s satisfying [s| < o.

Finally, let us consider the remainder term R(f,g). Taking into account the accumulation of
frequencies at the origin, we can write

Ag(R(f,9)) = Z Z Ag(Apf Apg).
q<p+No |p—p'I<1

Thus

221 Ag(R(f, ) 2 (uae) 2 Y > Al ey 1A gl 2y

q<p+No |p—p'|<1

C Hcha(Hd) Hg”Hs(Hd) 29% Z Z 2—p02—p’scp/

q<p+No [p—p'|<1

> CHfHCo‘(Hd) Hg”HS(Hd)QQS Z 2—p02—pscp.
q<p+No

IA

IN

A

In the case where s > 0, we infer that

201 Ag(R(f, 9| 2 ity < ClFllooquany N9l ey Y 270",
q<p+No
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Then, thanks to Young inequalities, we get

2P A (R(f; 9l L2 ey < CllSf oo gty 191 s ey a
which implies that
| R(f, g)HHs(Hd) < CHfHCU(Hd) ”gHHS(Hd)‘

Now, in the case where s < 0, we have

29 g (R(f, 9l 2ty < CFllo gaty 190 o e27% Y 2770,
q<p+No

Again, Young inequalities allow to conclude. This achieves the proof of the estimate
IR(f, Q)HHS(Hd) < CHcho(Hd) ”gHHS(Hd)’
for any |s| < o.

Let us now turn to the proof of Inequality (4.2.9). By definition of the C”-norm, we recall
that

190 fll oo ey = sup 29\ AgSar Sl oo (may-
Using commutation properties of A, and Sjs, we obtain
”SMchp(Hd) = S%P 2qp”5MAquLoo(Hd)
< C Sl;p2qp”AQf”L°°(Hd)

< Clfllceme

thanks to the continuity of Littlewood-Paley operators on Lebesgue spaces, which ends the
proof of Estimate (4.2.9). Moreover, it is obvious that

10 = Sa) fll ooy < D IAGF Il oo ey
q>M—Ny

where V7 is a fixed integer, chosen large enough. Therefore, according to definition of the C*-
norm, we get

10 = San) fll gty <C > 27% 1 fll ooy
q>M—N,

<C ’f”cp(Hd Z 279
q>M— Ny
< CHchp(Hd)Z_Mp-

This achieves the proof of Inequality (4.2.10). Along the same lines, for 0 < o < p, one has

1A = San) Fllooay < Y 29701 8g(1d = Sar) fll oo (-
q>M—N1
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Using again the continuity of Littlewood-Paley operators on Lebesgue spaces, it comes

(1 = San) fllgo@sy <C > 2 AGFl| oo ey

q>M—N1
< CHchp(Hd) Z 21(7=¢)
q>M—N1
< CHJCHC/)(Hd)2_M(p_U)a
thus the desired estimate. This ends the proof of Lemma 4.13. O

4.3. Truncation pseudodifferential operators
In this section we shall compare Littlewood-Paley operators with the pseudodifferential oper-
ators Op (@(2722|\|(&? +n?)), for ® compactly supported in a unit ring.

We shall see that Op (®(27%|\|(§% +n?)) is “close” to A, in the sense that the opera-
tor A,Op (P(272|\[(£% 4+ 7?)) is small in L(H*(H)) norm if |p — ¢| is large. This is made
precise in the next proposition.

Proposition 4.14. — Let 5y € (0,1) and ® be a radial function, compactly supported in a
unit ring of R. There is a constant C' such that the following result holds. For any p > 0,
define the symbol

ap(w, N\, &) = ©,(IN(E2 +n?)), where ®,(r) = ®(27%Fr), Vr > 0.
Then for any integer ¢ > —1 and any real number s,
||Aqop(ap)”£(Hs(Hd)) < 02—50|p—q\’

where Ay is a Littlewood-Paley truncation, as defined in Definition 4.5.

Of course, using that A, is a pseudodifferential operator, we can write A, = Op(b,) and

Op(bg)Op(ap) = Op(bgF#yaap)-

Then, it is enough to study the symbol by#pyaa, in order to prove Proposition 4.14. We do
not proceed in this manner below but use a direct argument. In fact, both approaches lead
to the analysis of the same integral.

Proof. — We shall start by reducing the problem to the case s = 0. Let u belong to S (Hd).
The norm ||A;Op(a,)u| ms is controlled by the quantity

1/2
218,0p(ap)ul e =2 [ IFOVAR QD) By A 1 )

where Ay = J{op”(ap)Jy. Defining a smooth, compactly supported (away from zero) func-
tion R such that RR* = R*, one has

IF () (N ANR* (279D | s,y = I1F (@) (A)ANR* (272 DA)R(27* D)) 574y -
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But A, is a diagonal operator in the diagonalisation basis of D), thus it commutes with the
operator R*(2724D,). So

|F (@) (N ANR* (272 Dy)R(2™4 D)) sy = [F(Aqu) (N AR (272 D)) | 5034,

where ﬁq is the Littlewood-Paley operator associated with R(272¢). Using (1.2.19) stated
page 18, we get

IF (@) (M ANR* (272 DA)R(2 D)) | sy < IF(Bqu)Nll s | AR (279D1) | 22y,

and Remark 4.4 gives the expected result: we have reduced the problem to the L2 (Hd) case,
and by the Plancherel formula (1.2.21) and Inequality (1.2.19), it is enough to study the norm
as a bounded operator of L?(R?) of the operators

R* (27|62 = Ag)) op* (ap)-

For this, we use Mehler’s formula to turn op“(a,) into an operator given by a function of the
harmonic oscillator in order to be able to use functional calculus. From now on we suppose
to simplify that A > 0.

We will denote, as in Definition 4.3, by R* and R* the basis functions of the truncation AW
(with R* supported in a unit ball of R and R* supported in a unit ring of R).

In view of (1.3.14) (see page 26), one has

w 1 R ei(§2—A)Arctg(2*2p)\T)
op” (p(AE +1%) = o= [ ®(7) 7 dr.
27 Jp (1+ (2—2;0)\7-)2)2

But
[ (272101 = 80)) 00" (0) | sy = 1P yfer V] B (27217 (2l + )

and a similar relation holds for ]’%\1, so we are reduced to estimating, for a € N¢ and
A2724(2|a| + d) in a unit ring (or ball if ¢ = —1)

] —2P)\7)
def 1 . et(2lal+d)Arctg(2
= /<I> T dr,
R

2r (1+ (272rar)?)?
and we shall argue differently whether ¢ < p or g > p.

I (o, N)

e The case when ¢ > p. We argue differently depending on whether 272P|\| > 2¢7P
or 27%|\| < 297P. Let us first suppose that 272P|\| < 297P. Noticing that

A i(2lal+d)Arctg(2-2 A7) _ 27 X\(2|al + d) oi(2lal+d)Arctg (22 A7)
dr 14 (272PA7)2

we have

i ; pypy d (1)
I ’)\ — i(2|al+d)Arctg(272PAT) & d
() <2|a|+d>2—2m/ ) ar\(11 @ wanit)
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SO

R* ((2la] + d)A2729) [T (a, N)| < C22(r—q) (/ 13 (7)[(1 + (2_21,/\7)2)1_%&

—4p 2
/]@ T AT ddT).
(14 (272PX7)2)2

Let us consider the first integral. If d > 2, it is bounded by ||®'[|;:. On the other hand,
if d =1, we observe that

1(1)|(1 + (272A7)2) 72 < CJ&/ ()] (1 + 272 A7),
Therefore, since (14 |7]) [®'(7)| € L*, there exists a constant C' such that

22(p=9) / D' (7 272 )\7r)2) "5 dr < 02279 (14 20°P) < 027 07P),

Let us now concentrate on the last integral. We have clearly

. 9—4p \2
22@-‘1)/\@(7); ML < 92m0) 92 /\cp )| dr,
(14 (272PA7)? )

whence a constant C such that

—4p 2
2(p—q) /|<I> il —dr <2 @),
(14 (272PA7)2)2

We now suppose that [A\[272P > 297P and we perform the change of variables u = A\27?P7 in
the integral expression of I,(a, A). We obtain

2PN [ < d/2 i(2lal+d)A
5 /(I) (22p)\—1u) (1 +u2)— /2ez(2|a\+ )Arctgu du.
Y

Using that |®(7)] < C'|7|71% we get

‘EI\) (22p)\—1u)‘ < 0(2_27")\‘)1_50‘?1’_14_50.

(o, \) =

This yields that there exists a constant C' such that
[Ip(e, M| < C (2]A|71)% / [u| 7190 (1 4+ ?) =2 dy, < ¢'2~%(0=P),

As a conclusion, we have proved that in that case, for all o € Z¢,

R* (2| + d)A2729) [I,(a, \)| < C2%00~9),

e The case when ¢ < p. The idea is to compare I,(a, \) to ®(A\272P(2|a| + d)). Taking the
inverse (classical) Fourier transform we can write

Lo, \) — ®(A\272P(2]a| + d)) = % /REI;(T) (

ei(2\a|+d)Arctg(2’2pT)\)

: : : )2)d _ei221’)\7(2a|+d)> dr
1+ (272PTA)?)2

or again

Lo, \) — (A2 (2|a| + d)) = Jp(a, A) + Ry, ),
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with

1 [~ . _ .
Jp(Oé, )\) d:ef %/Rq)(,r) <e2(2\a|+d)Arctg(2 A7) o2 2p)\7(2\a|+d)) dr.

It is easy to see that
u%@%n\gcm—%A/ﬁT$uﬂdT
R

so since ® belongs to S(R), we have
R*((2la] + d)A2729) |Ry(a, A)| < OR* ((2laf + d)A2724) 272P)
C 22—

IN

using the fact that 2|a| +d > 1. Similarly
R ((2lal + d)A) [Rp(a, M) < C27%.
So now we are left with the estimate of J,, which we shall decompose into two parts:

Jp=Jy+J), with

J;(% ) def i/ @(7) (ei(2|a\+d)Arctg(2*2P>\r) _ ei2*2p>\7(2|a\+d)) dr.
2m |[T2—2p\|<1/2

The estimate of Jg is very easy, since clearly as above

2 —2 =
)] < 02 pA/&h@wTﬂdT
< 027,

SO
R* ((2a] + d)A2720) |2 (a, \)| < C272P=D and  R*((2]a] + d)A) [J2(a, A)| < C 272

Now let us concentrate on JI}. We can write

e = o= / B(r)ei2 ARl (Rl H2 I 1) g,
2T Jira-2wa|<1/2

with

(1(@2Ar)
h(t)=T Z )
et 2n +1
which is well defined, and analytic, for [7272PX| < 1/2. Observe that the function h depends

on the integer p and on A, and that one has to control this dependance. In particular, we
notice that h/(7) can easily be bounded, by 1/3, on the domain |[7272P)\| < 1/2. But

1
ei(2|a\+d)2*2p)\h(7—) 1= Z(2|Oé| + d)2_2p/\h(’7')/ eit(2\a|+d)2*2p)\h(T) dt
0
SO

. 1
Ben =5[] B(r)ei2 AN (9o | + d)22P A (r)dtdr.
21 Jo Jira-2ea<1/2
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Integrating by parts, we get

Ty (e, \) / / 2P AClal+)(r+h(r) g ‘I’(T,) h(r) | dtdr
[r2-2P\|<1/2 1+ th/(T)

L1 1 [22 20 )\(2]a|+d) (r+th(r)) ‘I’(T,) h(r)] dt.
27 Jo 1+ th/(7) r2-2pAl=1/2

Writing the above formula as JI} = Kg + Kg, with

1 ~
K2(a,\) = — / [ei22w<2a|+d><7+m<m (r) "
0

— T )]
/
2w 1+th'(1) r2=2pa1=1/2

it is obvious that

~ 1 1
|K2(a, \)] < C"<I>(§22p>\‘1)h(§22p>\‘1) :

Writing

2p)\7.) 2p)\7_)2n 1
- = 272 )\r2 )
TZ 2n—|—1 T Z 2n+1

n>1 n>1

we deduce that
K2 (o, \)] < C27 2p>\|¢>( Loz~ Dyt \=2|
< C27%),

where the second estimate comes from the fact that ® is a rapidly decreasing function. To
bound K; we just need to notice that

EI\>(7')7'2
1+ th'(7)

d(r _ . —1)" (272 \)2n—1
H—t(ihl)(T) 272 \g(1), with g(7) :Z( ™ ) )

i 2n+1

h(r) =

SO

1 EI\>(7')7'2
Kl(a,\)| < C272P) / / o (——— drdt < C27%\.
| p(Oé )| - 0 |7_22p)\|§1/2‘ <1 + th/(T) g(T)>‘ Tar=

We conclude as previously that
R ((2le] + d)X2720) | T (e, N)] < C272P=9D  and  R* ((2]a| + d)N) | T} (e, N)] < C27%.
Combining those results, we conclude that if p > ¢, then
R* ((2lal + d)A2720) |® ((2]a] + d)A27%) — L(a, \)| < 027279,

But clearly R* ((2|a| + d)A2727) @ ((2|a| + d)A27?) is equal to zero if |[p — g is large enough,
so we have proved the expected result if p > q.

That concludes the proof of the proposition. O
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4.4. A-truncation operators

We shall use, in the proof of Theorem 5, truncation operators in the variable A.

Let us consider ¥ and ¢, two smooth radial functions, the values of which are in the inter-
val [0, 1], belonging respectively to D(B) and D(C), where B is the unit ball of R and C a unit
ring of R, and such that for D =1

(4.4.1) VCeRP, 1=19()+ > p(27%¢).

p>0
We set
Ap = Op(¢(277X)) and A_1 = Op(s(A)).

We notice that A, commutes with all operators of the form Op(a(\,y,n)), and in particular
with powers of —Aya.

Then the operators A, map continuously H*(H?) into H*(H¢) independently of p and we have
the following quasi-orthogonality relation: there exists Ny such that

(4.4.2) ANy =0 for |p—q| > No,
which implies that
(4.4.3) [Apull 2 ey < cpllull 2 gay,

where ¢, is an element of the unit sphere of ¢%(Z). More precisely, there exist constants Cy
and Cy such that if f belongs to H*(H?), then the following inequality hold:

(4.4.4) CL D A 1o aay < 1F ey < Co DI 17 gga-

Besides, we are able to say something about the A,,-localization of a product by an easy
adaptation of Lemma 4.1 and of Proposition 4.2 of [5]. More precisely, we have the following
result which ensures that some A,,-spectral localization properties are preserved after the
product has been taken.

Proposition 4.15. — There is a constant My € N such that the following holds. Consider f
and g two functions of S(H?) such that

FHN) = LoameWF()N)  and
F@A) = Lpw(N)F(9)(N)

for some integers m and m’. If m' —m > M, then there exists a Ting C such that

F(f9)N) = Loaa g(MF(fg)(N).

On the other hand, if |m’ —m| < My, then there exists a ball B such that

F(fa)(A) = Losw g NF(Fa)(N).
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Proof. — The proof of that result follows the lines of the proof of Proposition 4.2 of [5], and
is in fact simpler. We write it here for the sake of completeness. By density, it suffices to
prove Lemma 4.15 for f, g in D(R?¢*1).

For simplicity, we will only deal with the case where A > 0.

By definition of F(f)()\), we have
FOWE©) = [ Feo Fanl) deds
H
= [ Rl - D g
Hd

Let us write &€ = &, + 1§, and z = 2z, + 125, Where &, 24, & and z, are real numbers.

Straightforward computations show that
QNS F2N(E 2= 1212/2) _ =i (=2X€p-2a—2MEa 2= Xs8) o= A ([€—Z*—[€[%)

Then we can observe that

(445) f(f)()\)Fa,)\(g) = ( ())\C,ff) (_2)‘5177 _2)‘5(17 _)‘)7
where h denotes the usual Fourier transform of i on R2%t! and where
(4.4.6) Nef(2,8) = Fan(§ —2)e P £z ),

Therefore, one can write

f(fg)()\)Fa,)\(g) = (Ag\[,ffg) (_2)‘567 _2)‘5(17 _)\)
Noticing that for any multi-index 3 of N? satisfying 8 < «, we have
Fo(€) = Cap Fap (&) - FpA(€),

with Cp g = ( g > , we deduce that A‘j\"gfg = ngf . Af\‘zﬁg, where

[N

Bigf(z"? s) = F,B,)\(S - f)f(z, s)

and 3 < «. Using the fact that the standard Fourier transform on R?¥*! exchanges product
and convolution, we get

(AS6F9) (=228, 220, —A) = Cays (BReS ) * (45°0) (~226, ~2260, V),

where x denotes the convolution product in R?**! and still for any multi-index 3 of N¢ satisfy-

ing 6 < a. The question is then reduced to the study of the supports of the functions (Bf ¢ f )A
and (A5%9).

According to (4.4.5), the support in A of the function (Aigﬁg(z,s» (=2, —2XEq, — ) s

included in the ring 227'C. Now, Lemma 4.15 readily follows from the properties of the
standard convolution product in R***! for the supports, and from the following lemma, whose
proof is given below.

This ends the proof of Lemma 4.15. O



4.4. X-TRUNCATION OPERATORS 77

Lemma 4.16. — Under the hypothesis of Lemma 4.15, we have

(BRef) (=226, =226, =A) = Lyznc(V) (BRef ) (—20, —2A6, ).

Proof. — By definition of the standard Fourier transform on R?**!, we have

(Bf’5f> (—2X&p, —2XEy, —A) = /e—i (_2)\&7'2(1—2)\&0,'217—)\8)Bf’sf(z7 s)dzds

_ /ei (2)‘§b'za+2)‘§“'zb+>\s)F@)\(f _ E)f(z, 8) dz ds
Denoting 2A(& - zq + &a - 2p) + As by Jx(s, z,€), it follows that
( B}, f) (—20\&, —20\Ea, —N) = / (i N528) AIEFP—EP) | (6 — ) MEZPIE £ (2 o) dz ds.

Using that
_ _ lel(¢ — 5\
N Z 3 (6 - e AE =27

ol
aeN?
and observing that the above series is normally convergent on any compact, we deduce that

2P - A5 1 !
M A€ -2) = Z (S Z)a<§> ol B+o) ;,a) Forpa(§ — 7).
aeN? ' '

This leads, since f € D(R**1), to

(BRef >A<—2A€ba—2Asa,—A> = e—w(é)ié (8 ;!a)!

2
aeN?

X /ei‘h(s’z’g)e_k(lg_z2_|§|2)Fa+ﬁ7>\(§ —2)(€ - 2)*f(2,8) dz ds.

Recalling that
AS  f(2,8) = Fax(€ —2)e M EZER (5 ),

we get

(Bf,gf)A(—2)\§b,—2)\§a,—)\) - ¥ e—Aﬁ(i)%é (5 + )

2 !
aeN¢ 5

x (AFEM € = 2)°F ) (=228, 2260, —A).
Let us study separately each term of the above series. By Lemma A.2 and using the fact
—A .
for A > 0, Q; = O, we obtain
1
a3 YNF = 5[0, FUNOE,

In particular, for any v € N%,

F NP A©) = 55 (36 F(DNFAE) — NN, Fya(6)).
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The frequency localization of the function f in the ring 22™C()) implies then that the support
in A of F((§; — 2) f)(N)Fy x(€) is included in the same ring 2*™C(A). An immediate induction

implies that for any multi-index « the support in A of F((§ — 2)® f)(A)Fy x(§) is still included
in the same ring 22™C()\). Therefore, the support in A of

(AT € - 2)°F) (-226, ~226, )
is included in the ring 22"C(\).

As each term of the series is supported in a fixed ring, the same holds for the function

(BLef) (226, ~2260. ).

which ends the proof of the lemma. ]

The following results will also be useful in Chapter 5.

Lemma 4.17 — There exists a constant C' such that for any function f,
(4.4.7) 1A ety < ClAF e

for any integers m and q.
Moreover if p is a nonnegative real number, then there exists a constant C such that for any
function f

(4.4.8) 1A f 1l oo aaty < C27™ 1 fll o -

Proof. — Let us first prove (4.4.7). We shall only give the general idea of the proof, as the
method follows closely a strategy initiated in [7] for the study of Littlewood-Paley operators,
and followed also in [6] in the analysis of the heat operator.

Recall that
F(AmAgf)A) = 627" NF(F)A)(f)R*(272Dy).

where ¢ and R* are smooth radial functions with values in the interval [0, 1] supported in a
unit ring of R. This can be also written

F(AmAgf)(N) = ¢(27" N F(f)(NR* (272 Dy) R*(2727D,)
where R* is a smooth radial function compactly supported in a unit ring so that R*R* = R*.

According to the fact that the Fourier transform exchanges convolution and composition, we
have

A Agf = Agf * by g,
where the function h,, 4 is defined by
Fhmq)(A) = $272"NR"(27%1Dy).
Taking advantage of Young’s inequalities, it therefore suffices to prove that the function h,, 4
belongs to L' (H?) uniformly in m and g.

By rescaling, we are reduced to investigating the function h; defined by

def

F(hj)(A) = ¢(27¥N)R*(Dy).
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By the inversion formula (1.2.31), we get

2d 1

(4.4.9)  hj(z Z/ e~ M B2 N R*((2m + d)N) LD (2 A 2]2)e M| 4an.

d+1

In order to prove that h; belongs to L'(H?) (uniformly in j), the idea (as in [7] and [6])
consists in proving that the function (z,s) + (is — |2|?)*h;(z,s) belongs to L>®°(H?) with
uniform bounds in j.

Let us start by considering the case k = 0. It is easy to see that the Laguerre polynomials
defined in (1.2.30) page 21 satisfy for all y > 0

LGV (y)e?| < Calm + 1)*!
Since ¢ is bounded, this gives easily after the change of variables § = (2m + d)A

(4.4.10) (2, )| < 02%/@*(5)\%.

To deal with the case k # 0, we use the result proved in [7] (see also Proposition 1.11 recalled
in the introduction) stating that for any radial function g, one has

F ((is — 12292, ) (N Fap = Qi (N Fan,

where for all m > 1,

Q) = Qn) = R @n(N) ~ Q) A0,
AN = @)+ T Q) ~ Quia (V) A <0

while @, is given by
]T(g(zvs))(A)}lmA ::CQKA(A)IQXA

The proof then consists in applying Taylor formulas in the above expressions in order to reduce
the problem to an estimate of the same type as (4.4.10). The only difference with the case
treated in [7] and [6] lies in the dependence on j. However it can be noticed that due to the
support assumptions on ¢ and E*, there are two positive constants ¢; and co such that

2d—1

hi(z,8) = e (27N R ((2m + d)A) LD (2] A]|212) e MIEF A |2

d+1
Y
meC;

with C} def {meN, ;27% <2m+d < 27 %}. Now let us decompose h; into two parts:
hj(z,s) = hjl-(z, s) + h?(z, s), where
def 2771

hj(z5) = e ((2m + AN R (2m + DN LG N2l M ax.
meC;

The term hjl- is dealt with exactly in the same way as in [7] and [6].

For h? we shall use the Taylor formula

G(277N) — ¢((2m + d)A) = (27% — (2m + d))A /01 ¢ (272X + (1 = t)(2m + d)N) dt.
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But for any m € C}, one can find ay, € [c; ', ¢ !] such that
272 = ap,(2m + d).
It follows that one can write

1
H(222) — B((2m + d)A) = (am — 1)(2m + d)A /0 & (ftam + (1 — D](2m + d)\) dt

and the change of variables u = ta,, + (1 —t) gives

R ((2m +d)AN) (6(27%N) — o((2m + d)N)) = (2m + d)AR*((2m + d)))
X / ¢ (u(@m + d)A) 1y o, 1du.
R

This form is of the same kind that considered in [7], and allows to end the proof of (4.4.7)
exactly in the same way.

Let us prove now (4.4.8). On the support of the Fourier transform of A,A,,, we have D) ~ 2%
and |A| ~ 22", Therefore, 22(P=™) has to be greater than or equal to 1. This implies that the
only indexes (p, m) that we have to consider are those such that 0 < m < p. So

A f = A (Id — Sp—1) f-
Therefore using (4.4.7), we have

A fll ety < C D IAmAGf Il po ey

q>m—1
< C Y 1Al oo ey
gzm—1
< C Y TN lonn,
q>m—1
so finally
1Al ooty < C27 N fll o
That proves the lemma. [l

4.5. The symbol of Littlewood-Paley operators

Applying Proposition 1.16 of Chapter 1 (see its statement page 26) to A-dependent functions
of the harmonic oscillator, we obtain the symbol of our Littlewood-Paley operators, as stated
in the next proposition. The proof of the proposition relies heavily on that of Proposition 1.16
which is itself proved in Appendix B. Therefore we postpone the proof also to Appendix B,
page 120.

Proposition 4.18. — The operators A, (resp. Sp) are pseudodifferental operators of or-
der 0. Besides, if we denote by ®p(\, &, n) (resp. Vp(N, &, n)) their symbols, there exist two
functions ¢ and 1) in C°(R?) such that for X # 0,

®p(N &) = A(27FIN27PN(E +1%)) and Wp(N, & 1) = w(27[A[, 27PN|(€ + n*)).
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More precisely one has

(4.5.1) VA£O0, b\ p) =

and a similar formula for 1.

sgn A
A

/(cos T)_de§ (=rm+pter) R (4r)drdr,

Remark 4.19. — The stationary phase theorem (see [1] for example) implies that the func-
tion (A, p) of (4.5.1) has an asymptotic expansion in powers of A as \ goes to 0, the first term
of which is R*(p). Besides, the change of variables T — —71 gives that ¢(—\, p) = ¢(\, p).
Therefore, the function

(y7 77) = CI)P <)‘7 Sgn()‘)\/%v \/%)

is equal to p(27%P|X|,272P (€2 + n?)) and is smooth close to A = 0.






CHAPTER 5

THE ACTION OF PSEUDODIFFERENTIAL OPERATORS
ON SOBOLEV SPACES

In this chapter we shall be giving the proof of Theorem 5. In the first paragraph we reduce
the study to the case of operators of order zero, and in the second paragraph we show that
it is possible to restrict our attention to a class regularity indexes of the Sobolev space. We
then follow the strategy of the proof of continuity of pseudodifferential operators in the R?
case due to R. Coifman and Y. Meyer [21]. The proof is based on the two following ideas: we
introduce the notion of reduced symbols (see Section 5.4) of which we prove the continuity.
Then, we obtain in Section 5.4 that any symbol a of order 0 on the Heisenberg group is
a sum of a convergent series of reduced symbols, and finally deduce the continuity for the
operator Op(a).

Let us mention that the proof below would be much easier if the symbols were only functions
of (w,y,n), and not also of X : in that case, one would not need to use an additional cutoff
in A via the operators A, (see Section 5.5), which will induce some technicalities.

5.1. Reduction to the case of operators of order zero

In this paragraph we shall reduce the study to the case of zero-order operators. Suppose
therefore that the result has been proved for any zero-order operator, meaning that for any
operator b € S(Hd)(O) of regularity C*(H?) and for any |s| < pif p > 2(2d+1) (resp. 0 < 5 < p

if p > 0), the operator Op(b) maps continuously H*®(H¢) into itself.

Let a be a symbol of order 1 € R. Then for any f € H*(H?),
2d—1
Op(@)f(w) = 57 [ tr (WA FHNAsw)) A dx
with
FHNAN(w) = F(f)A)TXop” (a(w, X))
= F((Id = Aga) % YN Top" () #a) ]y

This can be written
12
2

Op(a) f(w) = Op(b)(Id — Aya) > f(w),
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where b def m(_A/i#a is a symbol of order 0. The boundedness of Op(b) from H** to H*#
for |s — u| < p (resp. 0 < s < p if p > 0) then yields the existence of constants C' and C’ such
that

10D(a) fllgrs—n < C[|(Id = Aga) 2 fllgrs—n < C" || fll1z5-

Therefore it suffices to prove the theorem for symbols of order 0, which we will assume from
now on.

2. Reduction to the case of a fixed regularity index

In this paragraph, we shall reduce the study of the continuity of pseudodifferential operators of
order 0 on Sobolev spaces from arbitrary Sobolev spaces H*(H?), to one Sobolev space H*(H?)
with a regularity index s such that 0 < s < dp, where §y (chosen equal to p — [p]) will be the
index entering the assumptions of Proposition 4.14, page 70.

In order to do so, let us suppose that the continuity in H* (Hd) is proved for any symbol of
order 0 with 0 < s < &y (note that dy < p). Consider a symbol a(w, \,&,n) of order 0. Let «
be a multi-index in N¢ with |a| < [p] and, using Proposition 2.9, define the C% symbol b, by
lo
Op(ba) = Z2°0Op(a)(Id — Aga)” 2.

Then Op(b,) maps H(H?) into itself for 0 < t < §. Therefore, there exists a constant C
such that for any f e H*t[P)(HY),

1000 fI2smggey = D 110D(ba)(Id = Aga) T FI12, g0
|| <[p]
< C ) II(Id—AHd) fHHt i) O||f||Ht+[P](Hd
|| <[p]

Therefore, Op(a) maps H*(H?) into itself for s =t + [p], t < d, whence for 0 < s < p.

Assuming p > 2(2d+1) and using the fact that the adjoint of a pseudodifferential operator is a
pseudodifferential operator of the same order, we get the continuity on H*(H?) for 0 < |s| < p.

Then s = 0 is obtained by interpolation.

5.3. Reduced and reduceable symbols

Let us start by defining the notion of reduced and reduceable symbols.

Definition 5.1. — Let t be a symbol. Then t is reduceable if it can be decomposed in the
following way: for all (w,\,&,n) € HY x R* x R

tw A\ &n) = D t*(w, A& n), where

kez?d

Fw, A &m) = B (w, VT E ) + D b (w, NEF (A€, m).
p=0
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with
O\ €,m) 2 BE( /e, /) while (¢, ) X et@re2 g 9-2(e2 1 g2y

and ® is a smooth radial function, the values of which are in the interval [0, 1], and supported
in a unit ring of R.

Similarly

TF(N,€,n) def\I’k \/|7£ |A|n) where \I’k(ﬁ, )def k- Em g (2 4 n?)

and U compactly supported in a unit ball of RE.

Finally the functions b';(', \) belong to the Holder space CP(HY) with

(5.3.1) supr (s Ml oy = Ar < o0
p7

The symbols t* are called reduced symbols.

It follows from the analysis of the examples of Chapter 2, Section 2.1 that for any k € Z*?
and p € N, the operator Op(blg(w, A)@’;(A, £,n)) is bounded in H*(H?) since one can write by
easy functional calculus

Op (b (w, NOE(A,€m)) = Op(b(w, 1)) 0 Op (@5 (N, &)

where the two operators of the right-hand side are bounded operators on H*(H?) (see Chap-
ter 1 Sections 2.1.2 and 2.1.4 respectively).

The same fact is true for Op<b'il(w, PLVAIOWS 7])) . Besides, by Proposition 2.2 stated page 33,
there is a constant C' (independent of k) such that

(5.3.2) 1OP(BE 1 (w, VIF O\ &)l ooy < C Ak [P sy and
10D(0; (w, VA &M pprsaayy < C Ak 1®pllnisrg)

where we recall that g is the harmonic oscillator metric of Section 1.3.2 in Chapter 1.

IN

The main ingredient in the proof of Theorem 5 is the following result.

Proposition 5.2. — Let k be fized in Z*¢ and t* be a reduced symbol as defined in Defini-
tion 5.1. The operator Op(t*) maps continuously H*(H?) into itself for 0 < s < p. Its operator
norm is bounded by CAg(1 + |k|)™ for some integer n, where C' is a constant (independent

of k).

The proof of this proposition is postponed to Section 5.5.

Remark 5.3. — Due to Proposition 5.2, a reduceable symbol t is the symbol of a bounded
operator on H*(H") as soon as (Ax(1 + |k|)"),cp2e belongs to £1(Z%).
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5.4. Decomposition into reduced symbols and proof of the theorem

The aim of this section is to prove the following lemma.

Lemma 5.4. — Let a be a symbol of order 0. Then a is reduceable and, with the notation of
Definition 5.1, for any integer N, there is a constant Cy such that for any k € Z*?,
Cn
5.4.1 Ay < ——————
o4 TR

In view of Remark 5.3, Lemma 5.4 gives directly Theorem 5 (up to the proof of Proposi-
tion 5.2).

Proof. — Let us consider 1 and ¢ defining a partition of unity as in (4.4.1) page 75: one can
write

(5.4.2) VOLEm) R X R™M ¢ (A +77) + Do 27PN +07) = 1.
p>0
Then
a(w, X&) = alw, A &Y (AE +77) + D alw, X, &n)é (27PN +n%))
p>0
= by (w, A\ VNGV + D bp(w, A, 27/, 277/ [Aln)
p=>0

with

boa(w, A &) G A& n)e(E +n?)  and

bp(w, M &) S G(w, A, 228, Pn)p(2 +2)  for p >0,

def 13 n

where a(w, \,§,n) = a(w, A, ——). The functions b, are compactly supported in (§,7),

VI VI
in the ring C for p > 0 and in the ball B for p = —1. Moreover, denoting by 9 a differentiation
in £ or 7, we have, for all p > —1,

Oby(w, A, €,m) = 2P(0a) (w, A, 2P€,2Pn)p(6% + 1°) + 2£4' (€2 + nP)a(w, A, 2°€, 2Pn).
We deduce that

op

<

\/1 + Al 4 (2°€)? + (2Pn)?
|A8)\bp(w7)\7£a"7)| < C|)‘a>\a(w7)\72p£> 2P )|

|0bp(w, A, &, 1) |6(€% + %) + CI¢|[¢'(€% +n*)|,  and

so using the boundedness of the symbol norm of a and the fact that ¢ is compactly supported,
and arguing similarly for higher order derivatives, one gets the following uniform norm bound
on by:

(5.4.3) sup 00 o A& lnguey < Coom
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Now, since for p > 0 the functions b, are compactly supported in (§,7), in a ring C independent
of p, we can write a decomposition in Fourier series:

p(w, X, 6m) = > e EMpEw \)g(€? +n?),

kez2d

where <;~5 is a smooth, radial function, compactly supported in a unit ring, so that <;5<;~5 = ¢. We
have of course

L
(27T)d/c Vo (w, A, §,n)dEdn.

(5.4.4) b (w, ) =

Along the same lines, we get
bor(w, X &m) = > e®EME (w, N (€? + n?),
kez?d

where QZ is a smooth, radial function, compactly supported in a unit ball, so that WZ = 1.

Defining
D (g, n) T eMENG(E2 4 ?),

it turns out that

a(w, A &m) = boy(w, A VINE VA + Y by (w, MR (277 V/IAE 277/ [A)

D,k

= boa(w, A VINE VI + Y F(w, A ).

k

That concludes the fact that a is reduceable. It remains to prove (5.4.1). From the integral
formula (5.4.4), we infer that for any multi-index § and, to simplify, for p > 0

1
Bk — B =ik (Em)y,
(k: bp(w,)\)‘ '(%)d/k bp(w, A, €, 1) dgdn‘
< /(8(5,7 p(w A,ﬁ,n)‘ dgdn

Using (5.4.3), we deduce that

Bypk (.
(5.4.5) su)I\) Hk by ( ,)\)‘ ooty = OB
and Lemma 5.4 is proved. O

5.5. Proof of Proposition 5.2

Now it remains to prove Proposition 5.2. We will first give the main steps of the proof and
peform some reductions, and then prove the result.
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5.5.1. Reductions. — Let us give the main steps of the proof. An easy computation gives
that there is a constant C' such that for any integer p and any k € Z2?,

Tk Tk
(5.5.1) 1 s 1,9) + 195 llnss(1,9) < C (1 + K]

Therefore, in view of (5.3.2), one has

HOp (65 10, N TF O ) )H < CAR(1 + [K])".

L(Hs(H®))
It remains to consider p € N, and in particular to control the sum over p. The fact that b’; (w, \)
depends on A induces a serious difficulty, which we shall deal with by considering a partition
of unity in A. Thus by the same trick as before, we use functions ¢ and 1 such that (4.4.1)
holds and we write
b (w, \) = bE(w, Np(A) + > bE(w, \)p(272" ).
reN

Using the fact that ¢ is compactly supported, we decompose the function b];(w, 22" \)g() in
Fourier series and write

) = SN0+ Y e e,
JEL reN,jeZ
where
byl (w) = /Be_mb'é(wA)w(A)dA, b (w) = /C e (1, 22 \)6(\) dA

and %, J are smooth and compactly supported respectively in C and B, such that gz~5<;5 = ¢,
and 1) = 1. We observe that Estimate (5.4.3) satisfied by b, ensures that for all integers NN,
there is a constant Cy such that for all indexes p,r, j, k, we have

, C
VN |13k N
(552) S;P(l + ’j‘) pr,jr”C'P(Hd) < (1 + ‘k’)N

Indeed, by the Leibniz formula

PR < 03| [0 oRn) . 2 X036 i
m<n
< C sup ‘kﬁ(wu)mbl;(w,u)(
mén
S C Sl)l\p ‘()‘8)\) aé n)bp(w7)\7y7”7)‘ .
m<n

Owing to (5.4.3), we deduce that (5.5.2) holds. That estimate will ensure the convergence
in j of the series. In the following, we therefore consider, for each j and k, the quantities

9 (w, \, €,7) def Zbky <I>k()\ &,m) and
9 (w N &) me & (2T NDE(N,€,1)

where ¢/ () = e p(N), and ¢I(\) = e”)‘z/J( ). Then we will consider the summation in &
and j of t* and ¢*7.
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The analysis of the convergence of t*/ follows the same lines as that of t*/ with great sim-
plifications since the summation is only on one index, namely p. Therefore, we focus on the
convergence of t*J and leave to the reader the easy adaptation of the proof to the case of ¥

Let us therefore now study t*/. We truncate b';f} into high and low frequencies, by defining
(for some integer M to be chosen large enough later, independently of all the other summation
indices),

(5.5.3) lpr 8, b9 and by, (1A = S, )b

D,

where S}, is a Littlewood-Paley truncation operator on the Heisenberg group, as defined in
Chapter 4, Section 4.1. Let us notice that by Lemma 4.13, one has the following norm
estimates on £}, and hy,:

ki
SUPHEercp(Hd) < SUPpr,ercp(Hd)
p7r

)

IN

27" sup Hb];”r ”cp(Hd)

sup ”hpT’HLOO(Hd)
T p,r

IN

27P pp=o) SuprerCP Hd)

sup ||hpr||ccr(Hd)
s p,r

for 0 <o <p.

This allows us to write tF7 = ¢ + ? with

Pl A& ) E37 by (w)d? (277 N)@F (27PN €,27Py/[A[n)  and
p7
P A& ) 3 4 () (27 NDF 27PN 6,277V ).
p7

We have dropped the indexes k and j to avoid too heavy notations. Before performing the
study of each of those operators, we begin by a remark which will happen to be crucial for
our purpose.

5.5.2. Spectral localization. — In this subsection, we take advantage of Proposition 4.14
of Chapter 4 (see page 70) to use spectral localisation. We first observe that

Yy Em) = SVARETETI G (& 4 p?))
AIRGTRE2TIM (2728 || (€7 + 7)) @27 A (€2 + ),
where ® is a smooth radial function compactly supported in a unit ring so that PP = .
Symbolic calculus gives that for any N € N, there exists a symbol ri{\;) such that
opw(CI)];) = opw(CI)]; - ap)
= op" (@) 0 0p”(a) + 1y
where a,(y,1) = ®(2-%|\|(y2 4+ n?)) and for any integer n one has

N no—
1™ s 1,9 < C(1 + [R[)NFr2~ NP,
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One obtains that for some integer n,
N _
lop™ (rio)) | 212y < C (1 + RN 27,
is a Fourier multiplier we get

and since Op(r,%) )

N — n
(5.5.4) 10D ull gy < C27NP(L+ KDV ] gy 20

Since we deal with Fourier multipliers, we have
Op(@';)u = Op(ap)Op(CI)l;)u + Op(r,g]’\;))u.
Finally, by Proposition 4.14 of Chapter 4, we get
Op(®f)u = A,0p(ay)Op(@E)u + Y A Op(a,)Op(@)u + Op(ry))u

qF#p

(5.5.5) = A,0p(ap)Op(®f)u+ Y AR, ;Op(®h)u + Op(r,gf; N,
qF#p

where

(5.5.6) 1 Bp.gll o ar0 ey < €272,

Therefore we can write
Op(t) = Op(t*) + Op(#’) + Op(t*)
with, writing ¢%(\) = ¢7 (272" )\)

(5.5.7) Op(t') = th )Ar A,0p(a,)Op(¢ldr)
+ Z hm w)A, A oBp, qu(¢3<I>';)

q#p
(5.5.8) Op(t’) = Zzpr )ArA,Op(a,)Op(¢2®F)  and

+ Z Cor (WA ARy, qu(CM« )

q#p
(5.5.9) Op(t) = > bk (w)A,Op(ry},)
p,r

with A, = Op($(2_2T)\)) and 5 is a compactly supported function in C such that $¢j = .

In the following, we are going to study each of these three terms, beginning by Op(th) which
is a remainder term. Besides, in order to simplify the notation we shall write

def k
Op(¢1. @y )u,

and we recall that due to (5.5.1) and to the fact that Op((ﬂfbg) = Op(qﬁ)Op(@]If) with Op(¢?)
of norm 1, there is a constant C' such that for all indexes p,r, k, 7,

(5.5.10) lak s < CC1+ [l ] -
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Moreover, by quasi-orthogonality (see Chapter 4, Subsection 4.4), we have
(5.5.11) 1ApA U]l 2 < C (14 k)™ ¢per 277 [ful| s

where C is a constant and c¢,, ¢, denote from now on generic elements of the unit sphere
of 12(Z).

5.5.3. The remainder term. — We drop the kj-exponent in bl,ffr for simplicity and de-
compose by, in A-frequencies: by, = > Apby, so that Op(t7) is now a sum on three indices.
We decompose this sum into two parts, depending on whether r < m + Mj or r > m + My
where My is the threshold of Proposition 4.15 stated page 75.

Let us consider the first case, when r < m + M;. We choose ¢ such that s < ¢ < p and by
Lemma 4.17 page 78, we find constants C' such that

N N
A0 () e OB Yl proaany < C 1) o ey 10Dy el
—m(p—o N
< 270 A Op(riy) ull e
< Cmm) A 3V )Nl g g

where we have used estimates (4.4.8) and (5.5.4). We then obtain

Z A (bp ) ATOp(r,(f]’\;))u
M,p,T’Sm—i-Ml H‘S(Hd)

<C (Z(m + M1)2—m@—0>2—NP> (1 + (RN Al s g2

m?p
which ends the first step.
We now focus on the sum for » > m + M; and we use that by Proposition 4.15, the func-
tion Ay, (bp,r) ATOp(r(N))u is A-localized in a ring of size 2". Therefore, in view of (4.4.4), it is

k.p
enough to control the H*(H?)-norm of > pm A (bp,r) ATOp(r,(f]’\;))u by ¢, with (c.) € 2. We

observe that by Lemma 4.17 and (4.4.4), there exists a constant C' such that

R N
A (b) A, O ety < CllAm ()l masty e OBl sy
< 0279 Ape, 27PN (1 + |k‘|)N+n||UHHS(Hd)

where s < o0 < p and where we have used again (4.4.8) and(5.5.4). Therefore, we obtain

> Albpr) A, Op(riy) yu
m?p

m7p

<e (Z 2_m(”_0)2_Np> (1 + KDY A lJull e e,
Hs (H)

which achieves the control of the remainder term.
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5.5.4. The high frequencies. — Let us estimate Op(t*)u in H® for any |s| < p. For any
function u belonging to H*(H), we have

Op(t*)u = Z(uﬁw + wf,r) with
p’r
U;ﬁ;r = hprApATOp(ap)ulgg and wfw = Z hprAqATRp,qu];Z.
q#p
Let us deal with u,ﬁ,r. As noticed in Chapter 4 Section 4.4, on the support of the Fourier

transform of A,Op(¢(272"\)) we have Dy ~ 2% and |A| ~ 22". Therefore, 22(P~") has to be
greater than or equal to 1. This implies that the only indexes (p,r) that we have to consider

are those such that 0 < r < p. We will then simply bound the sum of norms of the terms ug,r.

To do so, let us choose o such that |s| < o < p. This leads, by Lemma 4.13, to the following
estimate

el < C27PC ol -
Finally, thanks to (5.5.10) and to the definition of h,, recalled in (5.5.3), we obtain for some
integer n (recalling that 0 < r < p)

Solublgs < CA+ ) fullas Y p27707) sup ||yl
pr p "
< C+ R lullgs Y p27Pe=) Ay

p

Since 0 < p and p > —1, we infer that u — Zugr is bounded in the space L(H*(HY)), by
p,T
the constant C(1 + |k|)" Ag.

Let us now study wf,r. Arguing as before, we restrict the sum on the integers r such that r < ¢
and we get

Dokl < € Y 277 gsup | hpellco2” PN (L + K] [lu] e
pr D.q#p "
As before, we get a control by C'(1 + |k|)™ Ag.

So the high frequency part of t*7 satisfies the required estimate.

5.5.5. The low frequencies. — We recall that by (5.5.8), we have for any function «
belonging to H*(H?)
Op(t')u =Y (u), +u),) with
p,r
u;,r = prApATOp(ap)ul;g and w;r = pr,«AqAer,q ulgﬁ
q#p

In the following, we are going to use the frequency localization induced by A, in the sense
of Definition 4.1. In particular, using Proposition 4.1 of [5] (the statement is recalled in
Proposition 4.9 page 65), we will be able to say something of the localisation of a product of
localised terms. We want to use also the localization in A induced by A,.. For that purpose, we
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truncate £, and in doing so, we add a new index of summation. We set £, = Z Aty and we

m
immediately remark that since ¢, is a low frequency term, then for m > p we have A,,¢,, = 0.
Therefore, the index m is controled by p.

According to (4.4.8), one deduce that

(55.12) A borl e sy < €27 0D 1 oy

where C is a universal constant.

We can now go into the proof of the proposition for qu- Let us start by studying

b N A AL Op(ay ki

prm

As soon as the threshold M is large enough, ulgﬁm is frequency localized, in the sense of
Definition 4.1, in a ring of size 2P due to Proposition 4.9 page 65. So we can use Lemma 4.8

to compute the H® norm of Zufjﬁm
P

Consider the threshold M; given by Proposition 4.15. We shall argue differently depending
on whether r < m — My, r > m+ My, or |r —m| < M.

For r < m — Mjy, it is enough (due to Lemmas 4.8 and 4.15) to prove that for any p,m € N,
(5.5.13) S ke < C AL+ B cp emllulls277.
r<m-—DM;
We observe that
sl < Aol 18,0, Op(ap)ugl| L2
< ClAmlprllpe cper (1 + k)™ 277 [Jul|

by (5.5.10) and (5.5.11). Therefore, for all integers m we have

S Mgl £ CO+ RN G2 fullms Y. crlAmborllze

r<m-—DM; r<m—DM;

< C(L+ D" cp 27 ullas v/msup || Aglpr|| L
pir

N

I

by the Cauchy-Schwartz inequality. So it is enough to have

(5.5.14) Vm sup || Aplpr || oo

p?r

< CAg
£2(N)

to ensure that (5.5.13) is satisfied, which is implied by (5.5.12).

Let us now consider the indexes r > m + M;. This time, it is enough to prove

(5.5.15) ST bl < CALL+ K e e 27 full e

prm
m<r—M;
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We have, following the same computations as above,
Do gl <C D7 Amborllocy e (14 [k ful s 277
m<r—M; m<r—M;
Therefore, if
(5.5.16) Zsup | A lpr || e < CAg,
m p7/r

we obtain the expected result, namely (5.5.15). Condition (5.5.16) is obviously ensured
by (5.5.12) which achieves the estimate of (5.5.15).

Finally, let us consider the case [r —m| < M;. We shall analyze for ;' € NU{—1} the quantity
Ay <Am€prApArOp(ap)u];j>. We claim that

G517 | S Ay <Am€prApArOp(ap)ul;j> < C Ap(1 + k)" cpllull =277,

[r—m|<My 12

which by quasi-orthogonality will prove the result.

We observe indeed that by Proposition 4.15, there exists a constant Ms such that

Z Ay <Am€prApArOp(ap)U];¥> = Z Ay <Am€prApArOp(ap)u];¥> .
|T—:;LEM1 |:;;f/b\_ﬁz\%1

Therefore arguing as before,

> Ay Ak dpA,Op(ay)uf?)

|r—m|< My L2

SCOA+ k)" 2P flullgs > crsup|[Amlprl|zos.
T

j<r—My P
|r—m|<M;

The property
(5.5.18) Jeg > 0, sup(sup |[|[Aplpr|L=2"0) < C A
m T’p

induces that the sequence Z 27M%0¢, belongs to E?,, which is enough to prove the

m>j’
claim (5.5.17). Estimate (5.5.12) implies (5.5.18) which concludes the proof of (5.5.17).

Now let us turn to w'l’,r. We shall separate w'l’,r into three parts, depending on whether ¢ > p

or g < p, or g ~ p. More precisely, let Ny € N be a fixed integer, to be chosen large enough
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at the end, and let us define
v =1+’ 40 = Z(vfw + vf)r + UE,T) = Z wﬁ,r with wﬁ,r = vf)r + vf)r + 1)5,, while
p,r p,T

P kj b _ kj
Vpp = Cpr AgAr Ry quyy)  and vy, = Cpr Ag A Ry qu.
q2p+No q+No<p

Recall that to compute the H* norm of v, one needs to compute the ¢2 norm in j of 275(|Av|| 2.
We are going to decompose as before £, = > A;,¢, and consider the cases m < r — Mj,
m > r+ M and |r —m| < Ms. For each term, we use the same strategy as the one developed
before, in the case of u'l’,r. We shall only write the proof for the indexes m < r — M; and leave
the other cases to the reader.

By quasi-orthogonality, it is enough to prove
(5.5.19) 18502 < CAR(L+ [K[)" ¢j e 277 ul| s,

where v} = w},. and x stands for #, b or §.

p pr

e The term vf: Let j > —1 be fixed. We recall that Ly is frequency localized in a ball of

size 2P~ M and AqAer,qulgg in a ring of size 29, so by the frequency localization of the product
(see Proposition 4.9 page 65), there is a constant N7 such that

Api= > Y Y A (Al ARy gl

m<r—M; |j—q|<N1 ¢>p+No

Therefore, we have

2jS”AJ’U£HL2 < 2 Z Z Z |’Aj(Am€pT’AqAT’Rp7qUZ¥:)”L2

m<r—M |j—q|<N1 g=p+No

<02 Y Y [ Anlorll 1A Ry g

m<r—M |j—q|<N1 g=p+No

<Y Y Y 29 Aty 2O (Lt [R) ul e,

m<r—M; |j—q|<N1 ¢>p+No
where we have used the fact that
qs kj kj
2 HAqAer,querB < Cg CrHRp,querHs

Ce, Cr250 (p—q) ||u];j ¥z

A

by (5.5.6), and then (5.5.10). Assuming (5.5.16), the result follows from Young’s inequality
which ends the proof of (5.5.19) for vf thanks to (5.5.12).

e The term v”: Using again the frequency localization of the product, one can write that for
some constant Vs,
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29180l < €27 T YT D Al oo | A A Ry qupdl 2
m<r—Mi j—p<N3 qg+No<p
< 02 Y Al el Ry guld

m<r—M; j—p<N3 q+No<p

< 02 N YN MAmbprllem2 7" 20 |

m<r—M; j—p<N3 g+No<p
< CO+IRD ellullms Y MAmbprle D 20775 37 g2l
m<r—M; J—p<N3 q+No<p
thanks to (5.5.6) and (5.5.10).
Applying Young inequality, we thus obtain for 0 < s < §g
(55200  PUAplle < COF R el 3 MAnbplie Y 20,
m<r—M lj—pl<N3
This ends the proof of the result by Estimate (5.5.12).

e The term v?: We recall that
= Y D Al ARy ull.
m<r—Mi |p—q|<No
It follows that

20 At e < €20 Y > Al ool Ag Ay Ry qug || 2
m<r—M; —1<j<q+N3
lp—q|<No
(5.5.21) < CO+ kD ellullas D Ambprlle Y 20795 ¢ 2%00ap),
m<r—M; j<g+N3

Ip—q|<No

and we conclude as in the case of v”. We point out that it is at this very place that we crucially
use that s > 0.

The proposition is proved. O



APPENDIX A: SOME USEFUL RESULTS ON THE
HEISENBERG GROUP

A.1. Left invariant vector fields

Let us recall that on a Lie group G, a vector field

X:G—TG
is said to be left invariant whenever the following diagram commutes for all h € G :
G - @
X | 1 X
¢ % 16
where 7y, is the left translate on G defined by 71,(g) = h - g. It turns out that for any h € G,
(A.1.1) X o, =dmoX.

In particular,

X(h) = dm,(e) X (e),
where e denotes the identity of G. Therefore, as soon as the vector field X is known on e, so
is its value everywhere.

Let us mention that this infinitesimal characterization is equivalent to saying that, for all
smooth functions f,

(A.1.2) (X fn) = (X f)n,
where f3, is the left translate of f on H, given by f;, = f o 7.

To start with the proof of the equivalence of the two characterizations, let us perform differ-
ential calculus in (A.1.1). We infer that (A.1.1) is equivalent to

(X om)f = (dm 0 X)f,
for any function f € C*°(G). This can be written for any h, g belonging to G
(Xf)(7l9)) = df (Tr(9))(dTn(9) X (9)) = d(f o Tn)(9) X (9) = X(f o 7n)(g)-
In other words

(X[f) o =X(f o),
for any h € G, which leads to the result.
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A.2. Bargmann and Schrodinger representations

In this paragraph we discuss some useful results concerning Bargmann and Schrodinger repre-
sentations, starting with the formula giving the Schrodinger representation, if the Bargmann
representation and the intertwining operator are known.

In a next subsection we prove some useful commutation results.

A.2.1. Connexion between the representations. — In section we shall give a formula
for the Schrodinger representation, which is linked to the Bargmann representation by an
intertwining operator. This formula is of course classical, but we present it here for the sake
of completeness.

We recall that the Bargmann representation is defined by

u} JF(§) =F(&— 2)eAs T2 IZY/2) for A >0,
ud JF(€) = F(€ — 2)eMs—2MEZ1=R2) for N <0,

and we also recall the definition of the intertwining operator, as given in (1.2.32) page 21:

def [N |12 L O e
(0)(€) 2 B o (- ) i,

Proposition A.1. — Let v} be the Schridinger representation, defined by
VF € Hy, KyuhF =v)K\F.

Then Ui‘,s is given by the following formula:
V2 f(§) = eI £(¢ —2g) VAER"
Proof. — Tt turns out to be easier to split the representation u, into three parts, using the

simple fact that

Let us prove the following relations: for A € R, z,y € R? and s € R, VF € ‘H,, and n € R%:

(A21) (KauoF) () = €™ (KaF) (),
(A22) (KauboF) () = (KaF)(n —22),
(A.2.3) (KxudyoF) () = &7 (KyF) ().
Notice that those relations give
(K/\U{)F) (n) = (K)\U?O,s—i-Zmy)u?x,O)u?iy,O)F) (n)
i (s+2y-x) (KAu?m,O)uf\iy,O)F) (n)

oA (5+2y-7) <K)\u€\iy,0)F) (n — 2z)

— ei)\s+2i)\y-n—2i)\yvm (K)\F) (,’7 _ 23:)
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which is precisely the expected result.

So it remains to prove the basic relations (A.2.1)—(A.2.3). The first one comes trivially from
the fact that uf‘o 5) is the multiplication by the phasis €%

For the two other ones, we write, for any function F in H, and using Proposition IV.2 of [28],

5d / nl? . / /
(K\F) (n) = <|A|> o= /de—%\v'(n—n »=INI 2 B (i) du dy.
R2

™

Therefore, for A > 0, we have on the one hand

A AN a2 2\ D=l 12=Aly|2+2iAy- (i : /
(Kku(i%o)) F(n) = <—> e 2 /de e~ 2w (=) =AW P= AP+ 200 (0) B (4 + ) do diy

s

5d/4

A \’7\ . s . ’ 2 72 i

_ <_ )\ +2idy-n e—22)\u-(77—77 —iy)—2iAy-n + M|y = A7 F(zu)dudn/
s RQd

MNPV 2
- <_> e)‘nT+2’>\y'77/ e~ 2w (n=n") =" 1* P (44, du dy”
Y RQd

= WI(ELF)(n).
On the other hand, one has

5d/4 2
M"‘ —22')\11(77—77) A |24-2Niz-v—A|z|? F(

<K>\uf‘x70)F) (n) = < iv — ) dvdny’

- ¢

5d/ \71 2x\2 — 2\ —2—n" Y= \|n""|2 .
= T2 Zidu(n=2z=n") =N () du dn”
R2d

) L
)

5d/
\n\ 2 —9% ) A — 2|2 g
et +2X|z| 2)\17m/ e 2idu(n—n'—z)=A|n’ —z| F(ZU) dudn/
RZd

= K)\F - 23))
Similarly, for A < 0,
A bd/4 Aln|? : ’ ’ . ;
(K)\uf‘i%o)) Fly) = (--) o= /R el A P20 ) iy 4+ ) do dy

5d/4 5
_y\Inl i\u- Nt (n—m! i) — 95 Najer! — 2 /12 .
) e M2 +2Z/\y?7/ 2w (= i) =2y =AY EHA R () dudy!
R2d

A\ 2 : >
— __> e—)\’72+22)\y~n/ e2z)\u~(77—77”)+)\|n"\ F(ZU) du dTl”
T RZd
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and

(KAU(Am,o)F> () = <—
_ <_

<_
= (K\F)(n—2x).

This proves the estimates, hence the proposition is proved. O

ot
L
~
o~

_Aln? o(n—n/ '12_9xiz 2.
5 / 622)\1}(17 7 )+ |F =2 iz-v+ |z F(Z’U _ .Z') dv dn/
RZd

5d/4

(§
. 2 .
e—)\%—2)\|x|2+2)\n~x e2z)\u(n—n’—x)+)\|n’—x\2F(iu) du d77,
R2d
5d/4
(§

Al> A> 3>

N— " N— 7

_aln=2el? 2ixu(n—2z—1") A% "
2 el K T F(iu) dudn
RZd

A.2.2. Some useful formulas. — This section is devoted to various properties for
Bargmann representation that we collect in the following lemma.

Lemma A.2. — The followmg commutation formulas hold true:
[ng w] - _Ejug and [Q]? w] = Z]’LLZ\}

for any A € R* and any w = (z,s) € HZ.

Proof. — In order to prove Lemma A.2, let us first recall formulas (1.2.27) giving the expres-
sion of Q;‘ and @;‘
A 21N i A >0, =X | O if A>0,
@ —{ O, if A< 0, and G5 =\ 5 if A <o,

Let us now prove the first formula, in the case when A > 0. On the one hand, it is obvious
that

Q upF (&) = —2X&up F(€).

On the other hand, an easy computation implies that

WAQIF(€) = —2(¢j — 7,)e N HNE P2 pe —z),

which implies that —Zju;, = 55| ;‘, up], for A > 0. In the case when A < 0 one has
QuuF(€) = 0g(uyF(©)
= W), F(€) — 2Xz;e ™ 2EZ P2 pe — 2)
= upd, F(€) — 2XZjun, F(€)
which ends the proof of the commutation properties —Ejuf‘u = ﬁ[ 3\, u].

It remains to check the formula for [Q Arguing as before, one gets for A > 0

).

] 'LU

Q; u)‘F(f) = 0, (up F(€))
= w0, F(€) + 20zje s TNEL 2 pe )
_ uﬁ@ng(f) + 2\ zup F(€),
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which gives the formula in the case when A > 0. Finally, for A <0
—A
jumF (€) = 2281, F(6)
and

WAQIF(€) = 2M(& — 2)ul, F().

This leads easily to the second commutation property. O

Lemma A.2 allows to infer the following result, which is useful in particular to prove
Lemma 2.7.

Lemma A.3. — One has the following properties:
— ——
Z; ) 1= =QMu and Zjuq’),l =Qj u;)},l.

]wl

for any A € R* and any w = (z,s) € HZ.

Proof. — First, let us compute Zjuf‘u _, in the case when A is positive. By definition, one has
ZiuyF(€) = (0 +z'zjas>u;le<s>
= (O +EOIF(E + T MR
(—2X — AzZj +iz(—1 )\))u L F(¢)
= —2Gu) L F(E).
Whence the first formula thanks to (1.2.27).
Along the same lines, when A is negative one can write
Zjup 1 F(§) = (9 + Z'Ejas)uk—lF(ﬁ)
= (8, +iZ0)F(E + 2)e N ACETED
= (Nzj + izj(—iN)uly 1 F(€) + ujy 10, F(€)
2AZjul 1 F(€) + )10, F(€).
We deduce thanks to (1.2.27) that Zjuw,1 = 2)\Ejuf‘u,1 + uq’)},lQ;‘. Let us remind that by
Lemma A.2, Q;‘ ud —ul) Q;‘ = —2\Z;u;, which can be also written
Q;\ 2]71 — u’l)i\}*l Q;\ = 2)\3]’1,%)1\}71

This implies that Zjui} 4= Q; ui‘u _1, which ends the proof of the first assertion.

Now, let us compute Zug\v _1. Again, one can write for A > 0
ZpdaF(E) = (05— iz0 b F(E)
_ (8— i2;0 ) F (€ +%)e —iAs+2N(—€-2—|2]2/2)
= w10 F(§) — (Azj +izj(—i\))up 1 F (€)
= ui},lang(g) — 2\zjud _ F ().
We point out that, again by (1.2.27), this can be expressed as follows
7]‘”5\”*1 = uf‘v,la;‘ — 2)\zjuz\v,1
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But Lemma A.2 states that @;\uf‘u — uf‘U@j\ = 2)\zjuj, which can be also written
—A —A
quf‘v,l — uz\v,le = —2/\zjuf‘v,1
This ensures that 7juf‘u = @;\uf‘u _; in the case when X\ > 0.
Finally, in the case when A < 0, one gets
7ju;))71F(£) - (6; - z'zj@s)uk,lF(g)
_ (& ’LZ] ) (f + Z) —iAs—2X\(—€-2—2|2/2)
(20 + Az — iz (—i\))u 1 F(€)
= 2X§uh F(€)
—=A
= Qjuy1F(6)
where we have used one more time (1.2.27) for the last equality. This ends the proof of the
lemma. O
Finally let us state one last result, which provides the symbol of the multiplication operator
by s.

Lemma A.4. — Let a € Sga(p), & = (2,35) € HY and w € HY, then

/tr (i§u1’}}Jj\kopw(a(w,)\))J>\) IA|TdN = /tr (uf‘DJj\"opw (g(w, N)) JA> IA[TdA

with g € Sya(p) and

(A.2.4) o(g) = —0x (o(a))
or equivalently
1
(A.2.5) g=—0sa+ 55 D 00y, +&0%,)a
1<j<d

Proof. — Let us first observe that by Proposition 1.22 page 28, the function g defined by
(A.2.4) is a symbol of order u since

B \ﬁ\

—18]
A+P+g2+m) 2 A+ ) <+ PN+ +7) 2
Besides, by the definition of u} (see (1.2.15)) we have

(1+[Ap~*

oy = (is +2¢ - 2 — |2]?) up, for X >0,
Oy = (is—26-Z+[2)*) up for A <0.

Therefore, using Lemma A.2 and using formulas (1.2.27), we have for A > 0

isu) = O\u) — Z < /\2Q>\[Qja w]-i-ﬁ[ ;\7 [@;,%ﬂ)

1<j<d

= ol - 2 (@) + Q. Q))).

1<5<d



A.2. BARGMANN AND SCHRODINGER REPRESENTATIONS 103

Similarly, for A < 0, we have

’L'S’LLi\U = 8)\’& + Z < /\2623 Qja w] 4)\2 |:Qj ) [Qja w]:|>

l<]<d

= o + (13- @@ + QT @3))

1<j<d

)\2
Setting Ax(w) = J5op™(a(w, X))Jy and using tr(AB) = tr(BA) we get
tr <i§uf‘;,A)\(w)> tr <8>\u Ax(w ) 4)\2 Z tr < [@; , Ax(w)Q? + Q;‘A,\(w)]) if A >0,

tr (z‘éu%A;&w)) tr ((%\u Ay(w ) 5Y] Z tr( Ao [ AA(w)@;— +@;\A>\(w)]) if A <0.

By (1.2.37), using the fact that op*(n;) = —idg; and op*(§;) = &;, along with formula (2.3.3)
recalled page 39, we get for A > 0,

@) AR+ QANw)| = AT O, + &, 00" (a(w, N (D, — &) + (9, — &)op” (@)] Iy

1<j<d

= 2\ Jyop"” <2da+ Z (n; +i§j)(z’85ja8nja)) I

Similarly, for A < 0,

Q? , A,\(w)@;- —i—@?A,\(w) = —=2\Jyop" | —2da + Z (n; +1&;)(i0¢;a — Op;a) | Ja.
1<j<d
Set
(A.2.6) b(w, A\, y,n) = —2da+ Y (n; +i&;)(id¢,a — Oya),
1<5<d

we have obtained

(A.2.7) VYA #0, tr <i§uf‘bA,\(w)> =tr (8,\uf‘;,A,\(w)> - %tr (uf})Jj\kopw(b)JA) .

We focus now on the term dyu) Ay (w). We have

tr <8>\u,>})A)\(w)) = 0y (tr (u,’})A,\(w))> —tr <u,>})8>\A,\(w)) .

This implies, by integration by parts, that
/ tr Dy Az () (A1 dA = — / ;tr (1w Ax(w)) [N dA - / tr (0 Az () A .

We claim that

(A28)  9\Ay(w) = Jop" (awu,uo tay 2 (@%am%a)) J

1<j<d
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This yields, with (A.2.6) and (A.2.7),
d i
s A d A pE oW
/tr (zsumA)\(w)> A dN\ = /tr <umJA0p <—Xa —O\a — X 1<§j<d(§jaﬁja —1j0¢;a)

d 1 . .
+Xa ~ 3% Z (n; +1&;)(i0¢;a — anja)> J>\> A% dA

1<j<d

* W 1
:/tr uJ5op —8,\a—|—ﬁ Z (10, +&50¢;)a | JIx IA[ZdA.

1<j<d
We then set

1
g = —0\a + ﬁ Z (nj&h + §j85j)a
1<5<d

and observe that a simple computation implies (A.2.4). Therefore, in order to finish the proof
of the lemma, it only remains to prove (A.2.8).

Let us now prove (A.2.8). We have, recalling that Ay(w) = Jop”(a(w, \))J\ and using the
fact that Ox(JyJ5) =0,

ONAx(w) = J3op” (Ora(A,w)) Jx + J5 [op™ (a(w, N)) , (Oadx)JX] Ix.
Besides, for a € Nd, we have Jy\F, » = h, whence
(OrIx)EFor = —Ir(OrFy0)-

o] €%

o

Let us recall that for ¢ € C%, F, »(¢) = (V|| so that O\F, » = —F, . We get
’ \/a ’ 2A ’
1
Va € N% (96J))J5ha = (OnJ))Fax = _%ha = —5(52 — A¢ —d)ha.
Therefore,
* 1 2 d
(OnIN) I = o (€5 —Ag+ o
We then obtain
w * 1 w
[op®(a), O\INIX] = —7% [op®(a) , € — A¢]
Z‘ w
= % Z op"'(§0y,a — n;jO¢;a),
1<5<d

which proves the lemma. O



APPENDIX B: WEYL-HORMANDER SYMBOLIC
CALCULUS ON THE HEISENBERG GROUP

In this appendix, we discuss results of Weyl-Hormander calculus associated to the Harmonic
Oscillator, and in particular we prove Propositions 1.20, 1.22 and 1.16 and stated in the
Introduction.

B.1. M-dependent metrics

This section is devoted to the proof of Proposition 1.20 stated page 27. We therefore consider
the A-dependent metric and weight

A|(d€? + dn?)

and we aim at proving that the structural constants, in the sense of Definition 1.12 page 23,
may be chosen uniformly of A; the second point stated in Proposition 1.20 is obvious to check.

and m™(©) ¥ (14 A1 +02)",

It turns out that the proofs for the metric and for the weight are identical, so let us concentrate
on the metric from now on, for which we need to prove the uncertainty principle, as well as
the fact that the metric is slow and temperate.

The uncertainty principle is very easy to prove, since of course

w 1+ M\(1+ 62
g@(/\) (d¢,dn) = —| |‘()\‘ )(d§2 + d772)
and

A <141 +62%).
The slowness property is also not so difficult to obtain. We notice indeed that, with obvious

notation,

Mg oy NO-e
90 © =9 =1 Narey

and we want to prove that there is a constant C, independent of A, such that if

AI© -2 < T 1+ [A|(1+62),
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then
L+HN(1+67)  1+N(1+6%) -
I+ M(1+072) 1+ M(1+4+62) —
To do so, we shall decompose the phase space R?? into regions in terms of the respective sizes
of ©2 and ©"2. In the following we shall write 02 < O if, say ©2 < 1002, and |©| ~ |O/|

1
will mean that, say 1—0(92 <0”? <1002

Suppose first that ©2 < ©2. Then of course

L+ [A(1+6?) < 1+|A|(1+67),
so we assume that C' > 1. Moreover, using the obvious algebraic inequality

02 <210 — 0> + 202,
we deduce that
N[O < 20M[|0 — O/ +2A[0? < (20 +2)(1 + [A|(1 +©6?))
which leads immediately to the result as soon as
20 ' +2<C.

Conversely if ©2 > ©'2, then it is clear that

1+ [A(1+67) <1+ M1+ 62).
Along the same lines as above we get

INO% < 2A|02%+2C0 (14 A1+ 62)

< (20 +2)(1+ N1 +62),

which choosing C' large enough (independently of \) gives the result. Since the estimate is ob-

vious when |©] ~ |©’], the slowness property is proved, with a structural constant independent
of A.

Finally let us prove that the metric is tempered, with uniform structural constants. This is
again slightly more technical. We need to find a uniform constant C' such that

1+|/\|(1+®2)>i1 _< 1+ |A|(1+62?) ,2>
<Cll+4+ ———2|®—-06 .
(1 arer) SOt 10-¢

Notice that in the case when |O] ~ |©'|, then the estimate is obvious because the left-hand

side is bounded by a uniform constant. Let us now deal with the two other types of cases,
namely |0]? < |©|%, and |0'|? < |©2.

Let us start with the case when the left-hand side has power +1. If |©]? < |©'|2, then the left-
hand side is uniformly bounded so the result follows with C' > 1. Conversely if |0'|? < |0]?,
then we notice that if 0 < |A| < 1, then the left-hand side is bounded by 2 4+ ©2 while the
right-hand side is larger than C(1 + c©%(1 + ©?)) so the estimate is true. On the other hand
when |A\| > 1 then factorizing the left-hand side by A and using the fact that [A|7! < 1
and (|71 +14+ 60?7t < (1460771 we get

1+ A|(1+62?) 1402

<2 < 2(1 +062).
T es < Trer =2 Te)
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Again, since in that case |© — ©'|> > ¢©2, it comes
1+ A1+ 62
<1 + %@ - @’|2> > (14 c0(1 + 6?))
which implies easily the result.

Now let us deal with the case when the left-hand side has power -1. The arguments are
similar. Indeed if |©’|> < |©]? then the left-hand side is uniformly bounded so the result
follows. Conversely if |©]? < |©'|? then when 0 < |A| < 1 we use the fact that the left-hand
side is bounded by 2+ 0" whereas the right-hand side is larger than ¢(1+©"2). When || > 1
then as above we write
1+ [Al(1+67) ol 0"
I+ [A(1+02%) —

and the result follows again from the fact that since in that case |© — ©'|> > ¢©'2, one has

gz < 21+67),

2
(1 N %,@ _ @fp) > (14 ¢02(1+02) > (1+c07?).

The proposition is proved. O

B.2. A-dependent symbols

In this subsection we shall prove Proposition 1.22 stated page 28, giving an equivalent defini-
tion of symbols in terms of the scaling function o.

For any multi-index 3 satisfying || < n, we have

oy @ em)| = [IN% (9,0) <w7 3. 5g(3) ﬁ = )'
r=181
(B.2.1) < lallns, A+ M+ +72) 2

Besides, there exists a constant C' > 0 such that for A € R,

MO (@@ Em)| < C|((Adn)'a) <w,/\,sgn

3 n
N,
WU m)‘
3 & n_
(8(5777)&) <w,/\,sgn()\)m, \/W)‘

123
< Cllallx,s () (L+[N+&+n%)°

_k, 9 PN
O D, ATEE )

The converse inequalities come easily: one has a € Sya(p) if and only if for all k,n € N,
there exists a constant Cy, , such that for any 3 € N satisfying |8| < n and for all (w, \,y,7)
belonging to HY x R24+1,

r—18]
<Cnp L+ N+ 47 2

(B.2:2) |0 ag, (o(a))

cr(H)
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We then remark that if [A\| < 1, the smoothness of o(a) yields that (B.2.1) implies on the
compact {|A\| < 1},

r=18]

L+ N 250y (@] o < Cos (L N+ €24 7) 2

cr(H?)

Besides, for |A| > 1, (B.2.2) gives

r=181
2
[250% 1 0@ ey < O (LA € +07) 7 (1 A
: : : AP
Conversely, if (1.4.2) holds, then one gets (B.2.2) since the function EG is bounded for
any integer p € {0,--- ,k}. This ends the proof of the proposition. O

B.3. Symbols of functions of the harmonic oscillator

In this section, we aim at proving that an operator R(&2 — A¢) given as a function of the
harmonic oscillator by functional calculus is a pseudodifferential operator. We refer to Propo-
sition 1.16 for a more precise statement. Taking the inverse Fourier transform, we have by
functional calculus

1 . .
RE -A) =5 /R TE=2) B(r) dr.

We then use Mehler’s formula as in [31], which gives (1.3.13) after an obvious change of
variables.

We therefore have

1

— / (cos 7) "4 @BT=YT) R(y)dr dy,
21 Jr xR

(B.3.1) r(z) =
and let us now prove that the function r is well defined, and that (£,7m) — 7(£2 4+ n?) is
a symbol of the class S(m*,g). If x € R is fixed, then (B.3.1) defines r(z) as an oscil-
latory integral: indeed the change of variables u = tgr performed on each interval of the
form ]—% + km, km + %[ for k € Z turns the integral into a series of oscillatory integral. We
then have r(z) = Zrk(az) with

keZ

ri(x) € (-1 / U R (ki + Arctgu) (1 4+ u2)2~'du
R

— kd / zxu iyArctgu— zyka( )(1 +u ) ldu dy
R xR



B.3. SYMBOLS OF FUNCTIONS OF THE HARMONIC OSCILLATOR 109

We remark that these integrals have a non stationary phasis for |k| > 1. This fact will be
used below. We also observe that for Ny € N, by integrations by parts,

1 o .
k’NO’r’k(l‘) — —k‘NO(—l)kd/ ezxu—zyArctgu—zyler(y) (1—|—u2)%_1dudy
2 R xR
L (=) kd/ iwu—iyk 2\ 4—1 9N, —iyArct
= — X 7 (1 iru—iykmT (| 0 iyArctguy 4., 4
3 D[ ) )0 (Rl ) dudy

o @

where f,(y,u) = eArcsuglo (R(y)e~wAretsr) - The fact that the integrals ri(z) are well
defined and that the series in k converges then comes from the following lemma.

1 (_Z')No . d_
— (_1)kd el iykm zyArctgu(l + u2) 5 lfNo (y7 u)du dy
R xR

Lemma B.1. — Let f and g be two smooth functions on R such that

v—m

vneN, 3CF >0, YueR, [9"g(u)| <CJ(1+ u?) 2
¥neN, 3C} >0, YyeR, [0"f(y)| < CF1+y) "7,
for some p,v € R. Then there exists a constant Cy > 0 such that the function
d izu—iyArctgu—iykm
1(f.g)a) & [ et ok (g )y du
X

satisfies
122
2 .

Vo € R, |I(£.9)(@)| < Co(1 +27)

Before proving this lemma, let us show how to use it. The function fn,(y,u) above writes
as a sum of terms satisfying the assumptions of the Lemma. Therefore, (1 4 |z|)#kNor,(x)
is uniformly bounded in k£ and z whence the convergence of the series. To prove the symbol
estimate, we notice that two integrations by parts give

or'(z) = za:/ (cosT) ~dtgre™ BT R(y) dydr
RxR
ter . .
= x/ (COST)_dgemth_ZyTR,(y)dydT
R xR T
_ —dtg_T 2\—1 ixtgT\ [ —iyT R/
= —i (cosT) (1+ (tgr)?)~'0- (e"™'87) e T R/ (y)dydr
R xR T

. ) t
= z/ e WTTILET | 4y ((cosn’)‘dg(l + (tg7)2)_1>
R xR T

1o, ((cow)—dtg—% + (th)Q)_1>

T

R (y)dydr.

This last integral is an oscillatory integral of the same kind as the one defining r(z), and can
also be studied using Lemma B.1. This allows to obtain the symbol bounds, by iteration of
the argument to any order of derivatives.

Now let us prove Lemma B.1. The idea, as is often the case in this paper, is to use a
stationary phase method. The variable x may be seen as a parameter in the problem, and
one notices easily that £ may be factorized out of the phase after having performed a change



110 APPENDIX B: WEYL-HORMANDER SYMBOLIC CALCULUS ON THE HEISENBERG GROUP

of variable z = xt. So actually the more difficult analysis comes from the case when x is close
to zero, since in the case |x| > 1, then that change of variables allows to bring the analysis
back to the case when || = 1 (up to some harmless =" factors for n > 0). This will be made
precise below, but for the time being it suggests naturally the distinction between two cases:
the case when |z| < 1 and the (easier) case |z| > 1.

Moreover one notices that the phase is stationary at the point z = v = 0, when k = 0. This
implies that one should use a dyadic partition of unity centered at that stationary point. One
furthermore notices that in the case |z| < 1, if |u|?> < |2|, then the u-derivative of the phase
is bounded from below, so it is enough to use a 9, vector field in the integrations by parts.
As it produces naturally negative powers of z, one can deduce the convergence of the dyadic
series. In the case |z| < |u|? however that vector field cannot work since the u-derivative of
the phase may vanish. One must then use the whole vector field (in both uw and z directions),
and gaining negative powers of u turns out to be much more difficult.

All this is made precise below: in Paragraph B.3.1, the case |z| < 1 is studied, with two
different subcases whether |u|?> < |z| or not. Then in Paragraph B.3.2 the case |z| > 1 is
studied, by bringing the study back to the case |x| = 1 by a change of variables.

B.3.1. The case |z| < 1. — Since 1 < 1+ |2]? < 2, it is enough to prove that |I(f, g)(z)]
is uniformly bounded in x. We write

I(F9)(@) =7 [ o) o )g(u)de du
R xR
where we have perfomed the change of variable y =  + z and defined

O (x,u, 2) def (u — Arctgu) x — z (Arctgu + k) .

The phasis ®y(x, -, -) satisfies

.Z'U2—Z

14+ u?
When k # 0, ®; is therefore non stationary, whereas when & = 0, ¢y has a non-degenerate
stationary point in (0,0).

0, Pk(x,u,z) = —Arctgu — km and 0, Pk(z, z,u) =

Therefore, we introduce a partition of unity on the real line:

VEER, 1= > ()

peNU{—-1}

with (_; compactly supported in a ball and for p € N, (,(t) = ((27Pt) where ( is compactly
supported in a ring.

We write ‘
I(f,9)(@) =™ 3" Ly(f,9)(@)
p,geNU{—-1}
with

Lo(f,9)(2) & /R XRe@kavu,zv(m + 2)g(u)Gp(2)¢g (uw)dz du.

These integrals are now well-defined because they are integrals of smooth compactly supported
functions. We have to prove the convergence of the series in p and ¢. Actually since each
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term of the series is well defined, it suffices to prove that convergence for p and ¢ larger than
some fixed number Ny. So from now on we suppose that

p > No, q = Ny,

where Ny is chosen large enough at the very end. As explained above, we shall argue differently
whether |u|> < |z| or not. So let us fix a parameter ¢ < 1/2, to be chosen appropriately
below, and let us separate the study into two subcases, depending whether 27 > 22q(1+¢)
(which corresponds to the case |u|> < |z|) or 2P < 224(1+¢),

Let us suppose p > 2¢(1 + ). We observe that since |x| < 1, then on the support of {(27%u),
one has |z|u? < C2%. Therefore, as soon as p > 2¢(1+¢), one has zu? — z # 0 on the support
of (,(2)(q(u), so as explained above one can use integrations by parts with the vector field
(B.3.2) Uz, u, z) def (10, Pz, u, 2)) " By
Of course one has

6(1’7 u, Z) (exp (Z@k(‘ra u, Z))) = exp (Z(I)k(.Z', u, k)) :
We then write

Uz u,2)" = —l(x,u,2) +id(z,u, z)

where

2 212
d(z,u, ) def 0y Pr(z u2) u(r+z) (14+u%)* ) u(z + z)

(0u®r(z,u,2))2 (14+u2)? (zu2 —2)2 (zu2 — 2)?

Let us analyze the properties of £*. If || <1 and (u, z) belongs to the support of (,(u)(y(2),
we have for p > 2¢(1 +¢)

o 2P < 2P — 0122q < ’Z — a:u2] <y 2;0(1 + 22q—p) <Oy 2P,

We infer that
10, @ (z,u, 2)| 7t < C27PF20 and |d(z,u,z)| < C 2777,

Using ¢ < ﬁa we obtain

prog< (1t )p= =P,
p2d 1+¢)P7 1427 1+c2 1

so that there exists some d > 0 such that on the integration domain
(B.3.3) 10, @ (2, u, 2)| 71 + |d(2, u, 2)| < C 2700+,
By induction one actually also can prove that

(B.3.4) VmeN, |old(xz,u,z)] < C2-mopta),

We then perform N integrations by parts, for N € N, and we find

Lpq(f,9)(@) = /R XReiq’k(m’“’z)(f*)N [f (& + 2)g(u)Cp(2)Cq (w)] dzdu.
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Now we shall use the Leibnitz formula in order to evaluate (£*)N [f(z + 2)g(u)(y(2)¢(u)].
This generates three typical terms:

(1) L (@B, u,2) VAN (C(u)g(w) fl@ + 2)G(2),

(2 L dV(r,u,2)G(wg(w) f (@ + 2)G(2) and
B N (@ 2) 0w, ) (0u0) PO (Gu)g(w) flx+ 2)G(2).
N

Due to the estimates (B.3.3) and (B.3.4), it turns out that the term (3) is an intermediate
case between (1) and (2) so we shall only study the two first types of terms here.

We observe that defining ¢(u) = sup |¢™ (u)| and using the symbol estimate on g, we have
n<N

0 (Go(u)g(w) | < C (14 [ul)” 27Ny (w)
so by (B.3.3) and using the symbol estimate on f we obtain that
(V)] < € 27N NEHD (14 ul)” (1 + |2 + 2]) G (2)Gq (u).
Using Peetre’s inequality
(14 |z + 2" < C(1+ |=[)* (1 + |z,
we therefore conclude that

(B.3.5) /R . |(1)|dzdu < C2—5N(p+q)+qV+p|u|+p+q—qN(1 + |z)H.
X

A similar argument allows to deal with the second term. Indeed we have
(B.3.6) (2)] < C27°NEFD (1 Jul)” (14 [z + 2[)" Gp(2)Cq(w)

By integration we obtain

/R X 1(2)| dudz < €27 NPFaFavtplultrrac 4 g0,
X

Therefore, choosing N > 6~ 'Max (v + 1, |uz| + 1), we obtain the convergence in p and ¢ of the
series, uniformly with respect to k and z in the set {|z| < 1}.

Let us now suppose p < 2¢(1 + ¢). The objective is now to gain negative powers of 2¢. The
difficulty then comes from the fact that 9, P, may vanish. We observe that for this range of
indexes p and ¢, we have ¢ > 0 so that the integral is supported far from uw = 0. For this
reason, if x is a smooth cut-off function, compactly supported in the unit ball and identically
equal to one near zero, then the function

e (752)

is a smooth function for any x € N. We shall choose in the following x large enough.
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We now cut I, , into two parts, writing I, ; = Iz%vq + qu with
2

o) [ e (1 (B ok 2t (26 )z

uH

Let us study first I;,q, which is the easiest term. We notice indeed that on the domain of
integration, |z — u%z| > Clu|®, so on the support of {;, we have |z —u?z| > C 259, Tt follows
that

2 —u’x

1+ u?2 > ¢ 2021,
u

which leads to
(B.3.7) |8, P (2, u, 2)|7F < €27 (F2)q,

Therefore the u-derivative of the phase does not vanish in this case, so we may use again
the vector field ¢(z,u, z) defined in (B.3.2). The coefficients of that vector field are now of
order 2~("=2)4 and one has

u(z + 2) 21(1 4 2P) 9

B.3. =2 " <02~ <02 /iq+3q(1+a)‘
We therefore choose k such that 2k > 3(1 + ). By induction, one sees that
(B39) vYm € N, ‘8md($7 u, Z)‘ <C 9—mq—2rq+3q(1+e)

We can write
2

2 (x) = /R XReiq’kW@ 0z, u, 2)")N {(1 X (Z _ufj ‘””>> g(u)(q(u)] F(@ + 2)¢(2)dz du.

Compared to the case studied above, the terms generated by (£(z, u, z)*)" are of the form
2

) @00 (x (S0 Glwlstn)) S+ 2162

uli

2

@) (S5 ) Qg+ 6) and
zZ — ’LL2.Z'
(3" def Z d"(z,u, 2)0y d(x,u, 2)(0y,Pr) "POF, <X< — >§q(u)g(u)> flx+ 2)p(2).
fratay

As in the previous case and due to (B.3.8) and (B.3.9), it is enough to control the two first
terms.

Thanks to (B.3.8), the term (2’) is bounded exactly as before, assuming that 2x > 3(1 + ¢).
Now let us study (1'). As above we apply the Leibnitz formula, which compared to the
previous case generates derivatives of y. However they produce negative powers of 29, as one
differentiation generates the term

;[ 72— u2w T K [ Z2— u2x
X ur _ZUH—I B E ur

which may easily be bounded by

— 2 2
v (222) oty (2220 < o 2 < o

uli
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assuming moreover that x > 2. Similarly m derivatives produce 279", and it is easy to
conclude that (1’) may be dealt with as above, hence can also be summed over ¢ and p
(recalling that p < 2¢(1 + ¢), so that decay in 27 is enough to conclude to both summations).

Now let us study qu, which is more challenging as the u-derivative of the phase can now

vanish. We therefore need to use the full vector field
1
Lk(l', u, Z) d:ef ;‘vq)k(xa u, Z)’_2VCI)/€(‘T7 u, Z) Y
which satisfies
Lk(:pv u, Z) (eXp (Zq>k(x> u, Z))) = exp (Zq>k($7 u, k)) .
Let us check that this vector field is well defined: on the one hand if £k = 0, then the

assumption q¢ > 5 implies ¢ > 0, thus u is supported on a ring and |Arctgu| > ¢

_pr

(I1+¢)
on the support of (,(u). On the other hand one notices that |V®,|? > (Arctgu + km)? > 6(2)
for kK > 1. It follows that there is a universal constant such that for any & > 0 and on the

domain of integration, the following bound holds:

Ve, < C.
Moreover we have
Li(z,u,2)* = —Lg(x,u, z) + ck(x,u, z)
with
def 1 _9
Ck(xauaz) = —;V (\V@k(x,u,z)\ VCI)k(a:,u,z))
1 82@k 0, (I)k 0 (I)k
= = | = -2 2810, + 02,040, Py,) — 202,040, D
i [\V@kP M (OuPi0uPi+ 0, @D D) [V 477 Kok
— —; |:|V(I)k|2 — |V(I)k|4 ((8u(1)k) au% +282u<1>k82<1>k8u<1>k)} .
In view of ( )
9 u(r + 2 5 1
= —_— @ =
0:P, =2 112 and 0. Py T
we have
(B.3.10) ek < C|VOy|72 (2073 4 2720) < ¢27 (17294,
An easy induction left to the reader actually shows that
(B.3.11) Vo e N2, |0f, ekl < €27 (D020,

We then write for N € N
2

= [ (a2 [ () fo+ g )| dsdu

uli

and we shall choose the parameter N as a function of q. To emphasize that dependence we
shall write from now one N = N,. A precise definition of that function is given in (B.3.22)
below.

Now we need to understand the action of the operator (Ly(z,u,z2)*)Ne. The main difficulty
will come from the z-derivative, which does not produce directly negative powers of u.
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The constant term ¢ has already been computed and estimated in (B.3.10)-(B.3.11). More-
over following similar computations to above, for any given function F' one may write that

(L, 2) Ve F(w,u )| < C sup 08, Flaau, )| + e| [F(z,u, 2)

la|=Ng

(B.3.12) + OV ST 10, el ek ™ 10, F s 2)].
|a+B|+m=Nq
|a‘7‘/6|7m<Nq

The first step of the analysis therefore consists in estimating, for any |3| < N,, the quantity
2

> arar (v (S5 atsere ).

uli
mem’ =]

z—u2:E

Let us start by studying the action of the u-differentiations on x < " > g(u)(y(u). On
the one hand one has, using the symbol estimate on g,
03 (Go(w)g(w)] < C 27~ ¢y (u)

where al(u) def sup |0,'Cq(w)|. This can in turn be written, up to changing the constant C,
m<Ng

into a fixed constant C' and for any m < Ny,
(B.3.13) |07 (Cy(w)g(w))] < CNa29 =M (27 00)

where ¢ is a nonnegative, smooth compactly supported function such that ¢ = 1 on the
support of (.

On the other hand, as we have seen above one has the following identity:

_ g2 .2 .2
o ((52)) v (552) o3 ()
ur ur ur— u ur

so since the support of X’ does not touch zero, one has on the support of (, the following

estimate:
2
Z — u‘x
o (x ()

as soon as k > 2. Actually by induction one also has

)
o (x(55))|= o

The Leibnitz formula yields for any m < N,

o (x () atwa) <o X ()

m/'<m

< C(Q—Q(’i—l) +279) < 0279,

(B.3.14) vm € N,

Ou (Calu)g(w)|

Ln_m/ <X <z - u2x>> ‘
u”
whence by (B.3.13) and (B.3.14) the estimate

o (v (55 “) g ‘ < ONegamZ (9 ),

uﬁ

(B.3.15)
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where we have used the fact that

(B.3.16) > ( :;’LL, > =",

m/'<m

Now let us consider z-derivatives. The Leibnitz formula again implies that for any m’ < Ny

o' (x (o) et +2)) = x (FE ) o' (a1l +2)

ur ur

(B.3.17) + > ( 7: > o <X (Z _usz“””» = (Co(2) f (@ + 2)).

o<n/<m/

For the second term in the right-hand side of (B.3.17), one uses the fact that on the support
of (4, one has the estimate
(n/) z — u2$
X ur

2
/ Z—Uu‘x 1
o (v (o >>‘ = T

(B.3.18) < VoI,

In order to also control the action of multiple differentiations in the z and w directions

2
of 9, FTue , it is useful to notice that
X ur

Z—U2f1f X ’ Z—sz K Z—sz
8“ X ur = _2un—1x uk + EX uk

2
~ . . . . zZ—ux
where Y is a smooth compactly supported function. So z-derivatives of 9, | x >>

uh}
a2
are controled exactly like 0, (X <Z 4 x))

uﬁ

Estimate (B.3.18) gives, along with the symbol estimate satisfied by f, for any n’ < m/,

8n’ Z—’LL23) m’'—n' m' o—gn’ke—p(m’—n’) w7 (9—D
S P e (G2 f(x +2))| < CT 2712 (L4 |z + 2" ¢(2772),

where again ¢ is a nonnegative, smooth compactly supported function such that ¢ = 1 on the
support of (.

Peetre’s inequality allows finally to write that for any m’ < N, and any 0 < n’ <m/,

o' (x (F52) ) ' (Gla) s+ 2D < Oz g O a1+ (20,

hence for any m’ < Ny, using (B.3.16), we get

> (e () o ste 2

o<n/<m/

< CNagmang P =) (1 g )H(1 4 [2]) MG (2772)
(B.3.19) < ONag=am+Plil(1 4 |2|)HC(27P2).
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Choosing k large enough will allow to ensure the convergence of the series, as we will see
below, recalling that p < 2¢(1 + ¢). However one cannot conclude just yet as one has not yet
made precise the dependence of N, on g.

Now the most difficult term to deal with is the first term on the right-hand side of (B.3.17),
as that term does not produce directly any negative power of u, hence no power of 279, It is
for that term that we shall use the fact that N, may depend on ¢. So we simply write, using
Peetre’s inequality again, that

zZ — U2$

(B.3.20) ‘x (

and plugging (B.3.19) and (B.3.20) into (B.3.17) therefore gives

) o (@) a -+ 2| < a1 ulyT(2 ),

or' (x (25 “) G+ )| < M1+ et 1 2os =,

Putting the above estimate together with (B.3.15) allows to obtain that

e 3 oper (x (2

mem/ = 6|

) G+ 2) )

< CNaC(2772)C (27 %) Z a(v=m) (g=artplul | g=p(m'=Iul)y
m+m/=|f]

hence finally, bounding p by 2¢(1 + ), we get

Atlah)™ S oo <x (

mem’ =5
(B321) < CMT2P)C(2U) Ty 29O (205 4 9o

2

2) GG o + )

Finally let us go back to (B.3.12). Denoting def 2|p|(1 + ¢) and calling

2
def z—uT
Feus) S (F258) fo + 0w )
one has the following estimate:

(U [a)) (L, )V P ) < O 37108, el [enl™ 107, P, 2)

o +]B|+n=Nq
|af,|8l,n<Nq

+ ey | [F(2,u,2)| + C sup |98, ) F(w,u,z)|

lo|=Ng

< CNER P )20 S S gl (-2eu—n(-2e)—am gy 9=p(15l-m))

laf+|B]+n=Nqm<|B|
|Oc\,\ﬁ|,n<Nq

+ C27Na1=2)a 4 ONaC(27P2)C(279u) 200 HD N~ gmam(gaR 4 gmPm),
m+m/=Nq

using the above estimate along with (B.3.11) and (B.3.21).
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Let us deal with the last term on the right-hand side of that estimate; the others are dealt
with similarly. To simplify let us write that C' < 2% (where K is a universal constant), and
— N
let us define Ng def %0 | Then we define IV, to be
2(1+¢)

def ~ q
( ) (vy + 1) Ny K
where [p] denotes the integer part of p and p; = Max(p,0). Note that this implies that in
particular Ny must be larger than K. Then we have

CNaga(v+i)g—ar < QKNq+q(V+ﬁ—H)7

which clearly is a negative power of 2¢ as soon as k is a large enough number. Moreover we
note that since p < 2¢(1 + ¢) then when m +m’ = N, we have

~ , N N,
CNq 24(V+H—m)2—pm < QKNq+Q(V+H)2_p2(1+qs)

def No

where we have bounded p by - So since Ny < p and recalling that No = 21 +¢)
5

_r
2(1+¢)
we get

CNaga(vti—m)g=—pm’  9KNg+q(v+i) 9—NoNg

< 9(E~=No)Ng+q(v+7)

which is a negative power of 2 by definition of N, hence produces a summable term over ¢,
and over p since p < 2¢(1 + ¢).

We leave the study of the other terms to the reader. This ends the proof of the result if |z| < 1.

B.3.2. The case |z| > 1. — It turns out that this case is easier than the previous one, as
we can essentially bring back the study to the previous case when |z| < 1, and in fact simplify
some arguments due to the fact that = does not vanish. Let us make this more precise. In
the following we shall use the notation and the methods of the previous paragraph. We first
perform the change of variables z = xt so that I(f, g) writes

I(7,)(@) = 2?7 [ G fa(1 4 t)g(u)dtdu
RxR
Then we use the previous partition of unity to write

I(f,9) =™ 3" L(f9)
p,geNU{—-1}
with as before

Ipq(f,9)(x) dzefx/RXReixq”“(l’“’t)Cp(t)Cq(U)f(w(l+t))g(U)dth-

We then follow the same lines as above, by studying successively the cases |u|?> < [t| (more
precisely p > 2q(1 +¢)) and || < |u|? (meaning p < 2¢(1 +¢)).

So let us first assume that p > 2q(1 + ¢) and let us go through the steps of the corresponding
case when |z| < 1. After the change of variable the phase is now ® (1, u,t), where u and t are
localized in the same regions as u and z of the previous case (where the phase was ®y(x, u, 2)).
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So one can again use the vector field ¢ defined in (B.3.2), and actually more precisely the vector
field £(1,u,t), which satisfies

VN c N, (6(17'“7 t))N (eixcbk(l,u,t)> — xNeiZB@k(l,u,t)'

By integrations by parts we therefore have, recalling that £ is a vector field in the u-direction,

Ipq(f,9)(x) = wl_N/ PR F (14 )Gy () (UL, u, 1) )N (G (w) g (w)dtdu.

R xR

It remains to use (B.3.3) and (B.3.4), which apply to x = 1, and u and ¢ in the domain of
integration. This allows to infer as in the cases (B.3.5)-(B.3.6) that

[Ip.a(f;9)(2)] < C\xll_N/IMR2_6N(p+q)(l + [ul) (1 + 2 (1 + )]G (1) (w)dtdu,

so by Peetre’s inequality

[Ipq(f,9)(@)] < Clwll_N2_5N(”+q)/R R(l + [ul)? (1 [ ) (1 + [t ]) 416, (£) Gy (w) dtdu,
X

Using the fact that u and t belong respectively to the support of ¢, and (,, this can be written,

since |z| > 1,

pg(£,9)@)] < Cla|'=NHlgmONEra plubrargpra(y 4 jo)
< 2 NraFplultavopta ] 4 |z|)H

as soon as N > 1+ |u|, and the result follows in this case exactly as in the case |z| < 1.

Finally let us consider the case when p < 2¢(1+¢). As previously one needs to use the vector
field L (1,u,t). Actually the computations turn out to be easier than in the case |z| < 1, and
we shall only sketch the proof. We recall that the operator Lg(1,u,t) is made of three types
of terms: a constant term cg, u-derivatives and t-derivatives. The contributions of ¢; and of
the u derivatives are dealt with exactly in the same way as previously, so we shall concentrate
on the t-derivative only. As above we consider a cut-off function x which cuts I, ; into two
parts, writing I, , = Iz%vq + qu with

def

0o [ et (1 (L)) e+ D)t

3
choosing this time the parameter s such that 5(1 +¢) < kK < 2. The term I;q was the easiest

one to study previously, and is dealt with in the same way here. As to the term qu, we notice
that on the domain of integration, one has

t=u?+ Zu" with|Z| <1,
so since x has been chosen smaller than 2, there is a constant ¢ > 0 such that
[t > fuf® = |Zu"| > c|ul?.

Contrary to the case |z| < 1 studied above, the negative powers of ¢ generated by t-derivatives
can therefore directly be traded in for negative powers of u, hence negative powers of 2¢, which
allows to conclude to the summation of the series. We leave the details to the reader.

This ends the proof of the proposition. O
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B.4. The symbol of Littlewood-Paley operators on the Heisenberg group

In this section we shall prove Proposition 4.18 stated in Chapter 4.1, giving the symbol of
the Littlewood-Paley truncation operators. The proof relies on the arguments of the previous
section, proving Proposition 1.16.

Recall that as defined in Definition 4.3,
F(ApH)X) = F(FYAR* (27 Dy) = F(f)(A)JXR* (274N (—Ag + %)) Jx.

If x is a smooth cut-off function compactly supported on R and such that y(A) = 1 for |A\| < 4
and x(A) = 0 for |A\| > 5, then

F(Apf)N) = F(FHHNIZR (274N (~Ag + €)X (27PN .

It will be important in the following to notice that for fixed p, we are only concerned with
bounded frequencies \.

We now apply Proposition 1.16 and write
R (274N (—A¢ +€%)) = op” (2p(N, €, m))

with

1 .
(B.4.1) O,(\En) = — / (cos) ™ /(€ +7*)teT=r7) p* (9=20%2| \ 1)y dir.

21 Jr xR
For A # 0, a change of variable shows that ®,(\, &, 1) = ¢(272|\[,272|\|(€2 + n?)) as stated
in Proposition 4.18.

Let us prove now that ®, € Spa(0). Actually due to the comment above, it is enough to prove
that the function (X, &,n) — ®,(A, &, n)x(272PN) is a symbol in Sga(0). It is moreover enough
to prove it for p = 0.

We first observe that by Proposition 1.16, ®q ()\, sgn()\)\/%, ﬁ) = ¢(|A[, 2 +n?) is well
defined for A # 0 and is a symbol in S(1, g) for any A. Besides, Remark 4.19 gives that ®( has
the required regularity close to A = 0, and as noted above one can also restrict our attention
to a compact set in A. All those observations imply that to prove that the function ®¢(A, &, n)
belongs to the symbol class Sya(0), it is enough due to Proposition 1.20 to prove the following
estimate: for any compact set K of R*,

(BA42)  VkneN, 3Ch, >0, VpeR, YA€ K, |(1+p%)2(A\) 00\ p)| < Cr-

We point out that by Proposition 1.16, we already now that this estimate is true for A fixed
in R*. Moreover since A belongs to a compact set, it is enough to consider the AJy derivatives
and to prove that (AJ))¢(A, p) may be bounded independently of .

In fact we shall prove that Ad\¢(\, p) has the same integral form as ¢, which by a direct
induction will allow to conclude the proof of the proposition. So let us compute Ady¢ (A, p).
We have

1 i
AN\, p) = oV (cost)~lex(pteT=rT) <

1

3 (ptgT —r7) — 1> R*(4r)dr dr,
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so integrating by parts we get

AOND(A, p) = —% (COST)_de%(pth_rT) [& <(,0th7— - T‘)R*(4T‘)> + R*(4r)} drdr,
which gives finally
- —d i (ptgr—rT) ptgr —rt *\/
AOAD(N, p) = T (cosT) “ex [477_ (RY) (47‘)] drdr.

One then notices that
i A i
pei(ptgﬂ =21+ (tgr)H)to, <e3”th> ,
i
which allows to transform the integral into

AoAd(\, p) = pye (COST)_de§(pth_rT)(R*)/(47’) drdr
_ 3 —dtg—T —irT iptgr *\/
p /(COST) s (tg7’)2)e 0 (eA ) (R*) (4r) dr dr.

The first integral on the right-hand side is exactly of the same form as ¢, so to conclude we
need to prove that the second integral can also be written in a similar way. Let us perform
an integration by parts in the 7 variable. This produces the following identity:

—d tgT —irT Liptgr
/(COST) oy o) (tg7’)2)e 0r (eA ) drdr

- / oI kot (z’r s <@@ﬂim>> (R*Y (4r) dr dr

which again is of a similar form that can be dealt with as in the proof of Proposition 1.16.

The proof of Proposition 4.18 is complete. O
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