

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work do

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems

Location-Routin Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

a new field of investigation for large scale optimization

Marc Sevaux André Rossi Kenneth Sörensen

University of South Brittany UEB – Lab-STICC – Lorient, France

University of Antwerp Faculty of applied economics – Antwerp, Belgium

29-30 April 2009

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work dor

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Energy Location-Routin Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Electronic devices are everywhere

Let's count...

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

Work don

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems

Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Electronic devices are everywhere

Let's count...

. . .

- How many mobile phones in the room, now?
 Maybe counting the people who don't have one is easier
- ► How many laptops?
- How many digital camera? don't forget the combined devices ;-)
- How many cords and power units in your hotel room?

Moore's law

M. Sevaux A. Rossi K. Sörensen

Introduction

- Architectures Optimization
- Synthesis
- HLS Work do
- Network problems NoC Solution method
- Memory problems Graph coloring Characteristics
- Other problems
- Energy Location-Routin Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

In 1965, Gordon Moore, co-founder of Intel

predicted that the number of transistors per square inch on integrated circuits will double every year.

M. Sevaux A. Rossi K. Sörensen

Introduction

- Architectures Optimization
- Synthesis
- HLS Work do
- Network problems NoC Solution method
- Memory problems Graph coloring Characteristics
- Other problems
- Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions

Moore's law

In 1965, Gordon Moore, co-founder of Intel

predicted that the number of transistors per square inch on integrated circuits will double every year.

It will not be true anymore...

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work do

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems

Energy Location-Routin Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations Demand and needs are constantly increasing

- ▶ increase in throughput
- ► increase in complexity
- ▶ and change in design strategies

SOC		MP-SoC		pto–processor RTOS	S Adaptative MP-S	SoC
MPEG2	MPEG4			H264		
		100 kbits/s		2 Mbit/s		1 Gbit/s
1998	2000	2002	2004	20	2008	2010

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

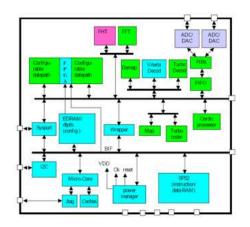
Synthesis

HLS Work do

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problem Energy Location-Routin Mutliobjective Robustness


Conclusion

Intel's predictions

FPGA (2003) : Multistandard circuit WLAN

Main features

- Bus hierarchy
- IP-based concept

M. Sevaux A. Rossi K. Sörensen

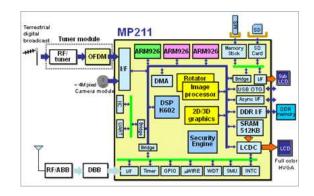
Introduction

Architectures Optimization

Synthesis

HLS

- Network pro
- NoC
- Solution method
- Memory problems Graph coloring Characteristics
- Other problems
- Energy Location-Routing Mutliobjective Robustness


Conclusion

Intel's predictions Collaborations

MPSoC (2005) : MP211 circuit

Main features

- dedicated multiprocessors
- ► cryptography, 2D/3D
- embedded image/signal processing

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

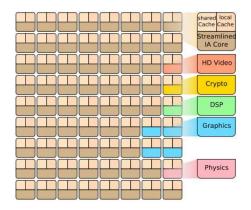
Synthesis

HLS Work d

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problem Energy Location-Routin Mutliobjective Robustness


Conclusion

Intel's predictions

Adatative MPSoC (2007) : Intel TeraScale

Main features

- change to all-processor
- dedicated processors
- communication network

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

- Synthesis HLS Work don
- Network problem NoC Solution method
- Memory problems Graph coloring Characteristics
- Other problems
- Energy Location-Routin Mutliobjective Robustness

Conclusion

Intel's predictions

How does it work?

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work dor

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Uther problem: Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

What can we do?

What is operations research doing there?

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work don

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problem Energy Location-Routin Mutliobjective

Conclusion

Intel's predictions Collaborations What is operations research doing there?

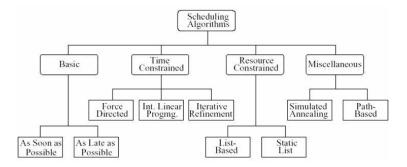
- optimization is needed at every step of the design process
- methods are known ([meta]heuristics, ILP)
- very badly implemented and used
- ▶ we have to interfere

What can we do?

It's time to help

M. Sevaux A. Rossi K. Sörensen

Introduction


Architectures Optimization

- Synthesis
- HLS Work do
- Network problems NoC Solution method
- Memory problems Graph coloring Characteristics
- Other problems
- Energy Location-Routin Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Even if they use optimization methods, look at this...

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis HLS Work done

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

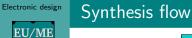
Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Contents

Introduction


Synthesis

Network problems

Memory problems

Other problems

Conclusion

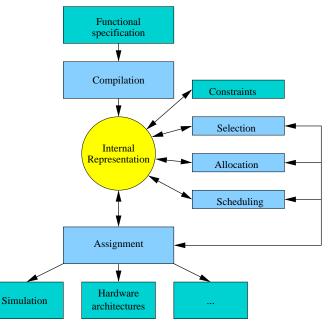
Introduction

Architectures Optimization

Synthesis

HLS

Work done


Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing

Mutliobjective Robustness

Conclusion

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS

Work done

- Network problems NoC Solution method
- Memory problems Graph coloring Characteristics
- Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Memory allocation

Build 2a + b and 2d + c with two adders in parallel

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

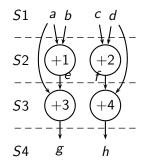
Synthesis

HLS Work do

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems


Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Memory allocation

Build 2a + b and 2d + c with two adders in parallel

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

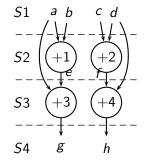
Synthesis

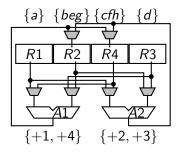
HLS Work do

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems


Energy Location-Routing Mutliobjective Robustness


Conclusion

Intel's predictions Collaborations

Memory allocation

Build 2a + b and 2d + c with two adders in parallel

And pipeline

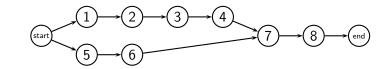
M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS


Work done

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problem: Energy Location-Routing Mutliobjective Robustness

Conclusion

And pipeline

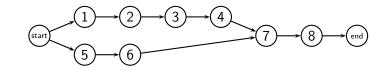
M. Sevaux A. Rossi K. Sörensen

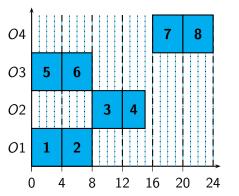
Introduction

Architectures Optimization

Synthesis

HLS Work do


Network problems NoC


Memory problems Graph coloring Characteristics

Other problems

Energy Location-Routin Mutliobjective Robustness

Conclusion

And pipeline

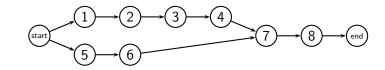
M. Sevaux A. Rossi K. Sörensen

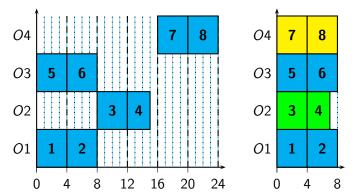
Introduction

Architectures Optimization

Synthesis

HLS Work do


Network problems NoC


Memory problems Graph coloring Characteristics

Other problems

Energy Location-Routin Mutliobjective Robustness

Conclusion

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis HLS

Work done

- Network problems NoC Solution method
- Memory problems Graph coloring Characteristics

Other problems

Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Methods for HLS

We have developped

- ► MILP
 - but limited in size and constraints
- ► VNS
 - several neighborhoods (assignment of variables/operators, scheduling order)
 - descent method as local search
- ► GRASP
 - based on MLEA (semi active schedules with minimum of registers)

A Tabu Search implementation, instead of descent method, and an effective version of the GRASP is still under improvement

Network on Chip

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis HLS

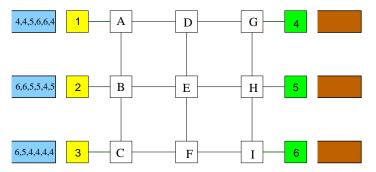
Work done

Network problems NoC

Solution metho

Memory problems Graph coloring Characteristics

Other problems


Energy Location-Routin Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

IPs or Processors communicate through the NoC Data are contained in FIFOs and should be sent to specific destinations

An edge can be occupied with only one data at a time

16/33

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work don

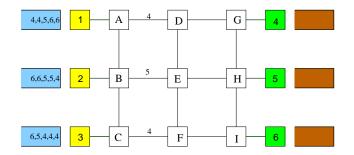
Network problems

NoC

Solution method

Memory problems Graph coloring Characteristics

Other problems


Energy Location-Routin Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Packets from left should be sent to IP on the right A shortest path algorithm is used for packets

A simple example

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work do

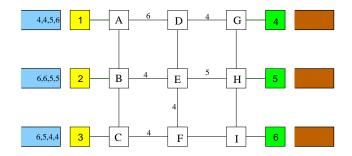
Network problems

NoC

Solution metho

Memory problems Graph coloring Characteristics

Other problems

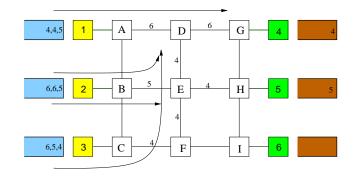

Energy Location-Routin Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

A simple example (cont'd)

SSP are increasingly computed for each packet



M. Sevaux A. Rossi K. Sörensen

A simple example (end)

And now comes the real trouble!!!

Introduction

Architectures Optimization

Synthesis

HLS Work do

Network problems

NoC

Solution metho

Memory problems Graph coloring Characteristics

Other problems

Energy Location-Routin Mutliobjective Robustness

Conclusion

Intel's predictions

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

Work done

- Network problems NoC Solution method
- Memory problems Graph coloring Characteristics

Other problems

Energy Location-Routin Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations Consider that FIFOs' sizes inside routers are infinite

1. Take the first available packet

A first heuristic

- 2. Compute its shortest path to destination
- 3. For each time instant (click), consider that an occupied edge is a unitary resource (or is not anymore in the graph for the other packets)
- 4. Go back to step one until all packets are handled

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

- Synthesis HLS
- Network problems NoC Solution method
- Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective

Conclusion

Intel's predictions Collaborations Consider that FIFOs' sizes inside routers are infinite

- 1. Take the first available packet
- 2. Compute its shortest path to destination
- 3. For each time instant (click), consider that an occupied edge is a unitary resource (or is not anymore in the graph for the other packets)
- 4. Go back to step one until all packets are handled

Return from practitioners

► Excellent results

A first heuristic

- Simple to implement and put in embedded systems
- ▶ Ignored constraints: FIFO size, order of packets, ...
- But can used for a more elaborate hybrid algorithm

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work don

Network problems NoC Solution method

Memory problems

Graph coloring Characteristics

Other problems

Energy Location-Routin Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Allocating variables in memory banks k-weighted graph coloring problem

Memory allocation

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

Work don

Network problems NoC Solution method

Memory problems

Graph coloring Characteristics

Other problems

Energy Location-Routin, Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Allocating variables in memory banks k-weighted graph coloring problem

Problem : which data should be assigned to which memory bank to minimize the conflicts when accessing data?

- conflict graph G = (V, E)
- ▶ nodes $V \rightarrow \mathsf{data}$

Memory allocation

- edges $E \rightarrow \text{conflicts}$
- ▶ weight $w_{i,j} \rightarrow \#$ memory access to conflicting data
- $k \text{ colors} \rightarrow k \text{ memory banks}$

Knowing k, the number of colors, which color to assign to which node to minimize the sum of weights of conflicting edges?

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work dor

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems

Energy Location-Routin Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Problem size and Extensions

General problem size

- ► Graph Nodes: 1 000 - 10 000 Density: 50% - 80%
- ► Colors
 - $k \in [2, 100]$

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work dor

- Network problems NoC Solution method
- Memory problems Graph coloring Characteristics

Other problems

Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Problem size and Extensions

General problem size

- ► Graph Nodes: 1 000 - 10 000 Density: 50% - 80%
- ► Colors
 k ∈ [2, 100]

Extensions

- Memory bank capacity
- Additional cost for distant memory banks
- ► DA-system for Decision-Makers in conception
- ► RAM pages (another problem?)

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work de

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems

Energy

Location-Routin Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Power consumption

Remark

Power consuption partially depends on wire length

It concerns

- ► HLS and final design
- NoC and path for packets
- Memory assignment and distance from memory banks to processors

▶ ...

Take it into account from the very begining

M. Sevaux A. Rossi K. Sörensen

Introduction

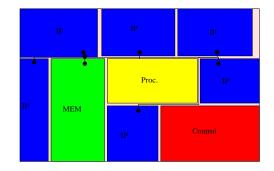
Architectures Optimization

Synthesis

HLS Work do

Network problems NoC Solution method

Memory problems Graph coloring Characteristics


Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations Location-Routing problems

Before solving the routing problem in the NoC

- The NoC itself should be built
- Placement constraints are important
- ▶ Time span and total data are basis of the constraints

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work do

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Multiobjective optimization

Customers want to

- ► increase battery life
- have smaller devices
- with more functionalities

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work doi

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Multiobjective optimization

Customers want to

- ► increase battery life
- have smaller devices
- with more functionalities

Electronic device designers want to

- reduce their costs
- meet customer needs
- reduce the time-to-market

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work don

- Network problems NoC Solution method
- Memory problems Graph coloring Characteristics
- Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Multiobjective optimization

Customers want to

- ► increase battery life
- have smaller devices
- with more functionalities

Electronic device designers want to

- reduce their costs
- meet customer needs
- ▶ reduce the time-to-market

All are conflicting objectives

- ▶ silicium (surface)
- power consuption smaller batteries and more functionalities!

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work de

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations Strong hypothesis are made: everthing is deterministic!!!

but there are malfunctions

Robustness

- ▶ so increase of redundancy (in networks)
- methods are added for reliability, security, cryptography...

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work dor

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations Strong hypothesis are made: everthing is deterministic!!!

- but there are malfunctions
- ► so increase of redundancy (in networks)
- methods are added for reliability, security, cryptography...

Why all of that?

Robustness

- heavy ions in embedded systems (satellites)
- ▶ miniaturisation → electron loss
- ► complex systems → "GALS" Globally Asynchronous Locally Synchronous
- DRAM access, variable reading time
 depending on preceding operation
 - \rightarrow depending on preceding operations
 - \rightarrow depending on cache, on HDD

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work d

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Consequences

At the circuit level

- if $p'_i > p_i$ sampling at time p_i is wrong
- register reading not complete
- error: system unstable
- ► DM should make the synthesis again...

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work do

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Consequences

At the circuit level

- if $p'_i > p_i$ sampling at time p_i is wrong
- register reading not complete
- error: system unstable
- DM should make the synthesis again...

At the NoC level

- communication delays should be added
- data are not always predictable
- \blacktriangleright stochastic or sampling models should be used

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work dor

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Consequences

At the circuit level

- if $p'_i > p_i$ sampling at time p_i is wrong
- register reading not complete
- error: system unstable
- DM should make the synthesis again...

At the NoC level

- communication delays should be added
- data are not always predictable
- stochastic or sampling models should be used

At the conception level

- ▶ the final chip/circuit might have bad areas
- ► like bad cluster in HDD, but no software layer

What's next?

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis HLS

Work done

- Network problems NoC Solution method
- Memory problems Graph coloring Characteristics
- Other problems
- Energy Location-Routing Mutliobjective Robustness

Conclusion

Intel's predictions Collaborations

Intel's top ten technology predictions for next decade

- 1. New classes of portable devices with ten times more battery life
- 2. Low-cost silicon photonics for faster, more reliable data transmission
- 3. New heights of realism in visual computing
- 4. Realistic computer generated images
- 5. Malware will become a thing of the past
- 6. Personal internet devices will be truly personal
- 7. Interactive computing devices make 'composable computing' a reality
- 8. Next-generation TV will not be about pixels
- 9. Seamlessly connected 3-D worlds
- 10. A spectrum revolution is looming

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work dor

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion Intel's prediction Collaborations

Increasing the collaborations

To be efficient we need to

- create as many contacts as possible
- ► collaborate more with the electronic community
- ► do not let them do it badly
- ► have more OR people involved
- ▶ publish in the electronic journals

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work doi

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective

Conclusion Intel's predictions Collaborations

Increasing the collaborations

To be efficient we need to

- create as many contacts as possible
- ► collaborate more with the electronic community
- ► do not let them do it badly
- ► have more OR people involved
- ▶ publish in the electronic journals
- It is time to start a real network
 - 1. exchange students
 - 2. give seminars/tutorials for the electronic community
 - 3. meet regularly
 - 4. get financial support from the institutions
 - 5. and...

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work doi

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion Intel's predictions Collaborations

Increasing the collaborations

To be efficient we need to

- create as many contacts as possible
- ► collaborate more with the electronic community
- ► do not let them do it badly
- ► have more OR people involved
- ▶ publish in the electronic journals

It is time to start a real network

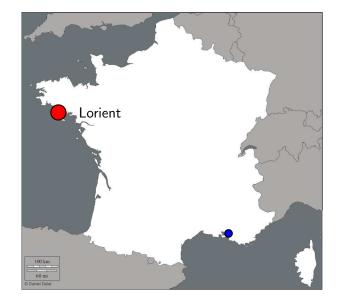
- 1. exchange students
- 2. give seminars/tutorials for the electronic community
- 3. meet regularly
- 4. get financial support from the institutions
- 5. and...why not start a European project?

M. Sevaux A. Rossi K. Sörensen

Introductior

Architectures Optimization

Synthesis HLS Work don


Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion Intel's prediction Collaborations

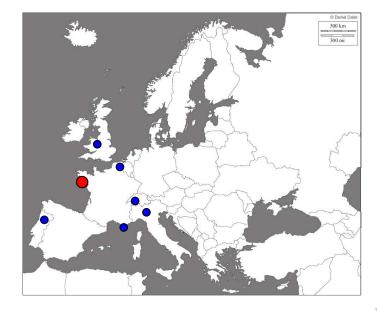
In France

M. Sevaux A. Rossi K. Sörensen

Introductior

Architectures Optimization

Synthesis HLS Work done


Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion Intel's prediction Collaborations

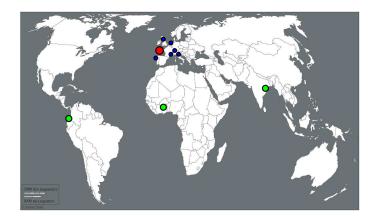
In Europe

M. Sevaux A. Rossi K. Sörensen

Introductior

Architectures Optimization

Synthesis HLS Work don


Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion Intel's prediction Collaborations

Worldwide

M. Sevaux A. Rossi K. Sörensen

Introduction

Architectures Optimization

Synthesis

HLS Work do

Network problems NoC Solution method

Memory problems Graph coloring Characteristics

Other problems Energy Location-Routing Mutliobjective Robustness

Conclusion Intel's prediction Collaborations

Electronic design

a new field of investigation for large scale optimization

Marc Sevaux André Rossi Kenneth Sörensen

University of South Brittany UEB – Lab-STICC – Lorient, France

University of Antwerp Faculty of applied economics – Antwerp, Belgium

29-30 April 2009