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We use Gale duality for complete intersections and adapt the proof of the fewnomial bound for positive solutions to obtain the bound

for the number of non-zero real solutions to a system of n polynomials in n variables having n+k+1 monomials whose exponent vectors generate a subgroup of Z n of odd index. This bound only exceeds the bound for positive solutions by the constant factor (e 4 + 3)/(e 2 + 3) and it is asymptotically sharp for k fixed and n large.

Introduction

In [START_REF] Bertrand | Polynomial systems with few real zeroes[END_REF], the sharp bound of 2n+1 was obtained for the number of non-zero real solutions to a system of n polynomial equations in n variables having n+2 monomials whose exponents affinely span the lattice Z n . In [START_REF] Bihan | Polynomial systems supported on circuits and dessins d'enfants[END_REF], the sharp bound of n+1 was given for the positive solutions to such a system of equations. This last bound was generalized in [START_REF]New fewnomial upper bounds from Gale dual polynomial systems[END_REF], which showed that the number of positive solutions to a system of n polynomial equations in n variables having n+k+1 monomials was less than

e 2 + 3 4 2 ( k 2 ) n k ,
which is asymptotically sharp for k fixed and n large [START_REF] Bihan | Sharpness of fewnomial bounds and the number of components of a fewnomial hypersurface[END_REF]. This dramatically improved Khovanskii's fewnomial bound [START_REF] Khovanskii | A class of systems of transcendental equations[END_REF] of 2 ( n+k 2 ) (n + 1) n+k . We give a bound for all non-zero real solutions. Under the assumption that the exponent vectors W span a subgroup of Z n of odd index, we show that the number of non-degenerate non-zero real solutions to a system of polynomials with support W is less than

(1) e 4 + 3 4 2 ( k 2 ) n k .
The novelty is that this bound exceeds the bound for solutions in the positive orthant by a fixed constant factor (e 4 + 3)/(e 2 + 3), rather than by a factor of 2 n , which is the number of orthants. By the construction in [START_REF] Bihan | Sharpness of fewnomial bounds and the number of components of a fewnomial hypersurface[END_REF], it is asymptotically sharp for k fixed and n large. We follow the outline of [START_REF]New fewnomial upper bounds from Gale dual polynomial systems[END_REF]-we use Gale duality for real complete intersections [START_REF] Bihan | Gale duality for complete intersections[END_REF] and then bound the number of solutions to the dual system of master functions. The key idea is that including solutions in all chambers in a complement of an arrangement of hyperplanes in RP k , rather than in just one chamber as in [START_REF]New fewnomial upper bounds from Gale dual polynomial systems[END_REF], does not increase our estimate on the number of solutions very much. This was discovered while implementing a numerical continuation algorithm for computing the positive solutions to a system of polynomials [START_REF] Bates | Khovanskii-Rolle continuation for real solutions[END_REF]. That algorithm was improved by this discovery to one which finds all real solutions. It does so without computing complex solutions and is based on [START_REF]New fewnomial upper bounds from Gale dual polynomial systems[END_REF] and the results of this paper. Its complexity depends on (1), and not on the number of complex solutions.

We state our main theorem in Section 1 and then use Gale duality to reduce it to a statement about systems of master functions, which we prove in Section 2.

Gale duality for systems of sparse polynomials

Let W = {w 0 = 0, w 1 , . . . , w n+k } ⊂ Z n be a collection of n+k+1 integer vectors (|W| = n+k+1), which correspond to monomials in variables x 1 , . . . , x n . A (Laurent) polynomial f with support W is a real linear combination of monomials with exponents from W,

(2) f (x 1 , . . . , x n ) = n+k i=0 c i x w i with c i ∈ R .
A system with support W is a system of polynomial equations

(3) f 1 (x 1 , . . . , x n ) = f 2 (x 1 , . . . , x n ) = • • • = f n (x 1 , . . . , x n ) = 0 ,
where each polynomial f i has support W. Since multiplying every polynomial in (3) by a monomial x α does not change the set of non-zero solutions but translates W by the vector α, we see that it was no loss of generality to assume that 0 ∈ W.

The system (3) has infinitely many solutions if W does not span R n . We say that W spans Z n mod 2 if the Z-linear span of W is a subgroup of Z n of odd index.

Theorem 1. Suppose that W spans Z n mod 2 and |W| = n+k+1. Then there are fewer than (1) non-degenerate non-zero real solutions to a sparse system (3) with support W.

The importance of this bound for the number of real solutions is that it has a completely different character than Kouchnirenko's bound for the number of complex solutions.

Proposition 2 (Kouchnirenko [START_REF] Bernstein | Newton polytopes[END_REF]). The number of non-degenerate solutions in (C × ) n to a system (3) with support W is no more than n!vol(conv(W)).

Here, vol(conv(W)) is the Euclidean volume of the convex hull of W. Perturbing coefficients of the polynomials in (3) so that they define a complete intersection in (C × ) n can only increase the number of non-degenerate solutions. Thus it suffices to prove Theorem 1 under this assumption. Such a complete intersection is equivalent to a complete intersection of master functions in a hyperplane complement [START_REF] Bihan | Gale duality for complete intersections[END_REF].

Let R n+k have coordinates z 1 , . . . , z n+k . A polynomial (2) with support W is the pullback Φ * W (Λ) of the degree 1 polynomial Λ :

= c 0 + c 1 z 1 + • • • + c n+k z n+k along the map Φ W : (R × ) n ∋ x -→ (x w i | i = 1, . . . , n+k) ∈ R n+k .
If we let Λ 1 , . . . , Λ n be the degree 1 polynomials which pull back to the polynomials in the system (3), then they cut out an affine subspace L of R n+k of dimension k.

Let {p i | i = 1, . . . , n+k} be degree 1 polynomials on R k which induce an isomorphism between R k and L,

Ψ p : R k ∋ y -→ (p 1 (y), . . . , p n+k (y)) ∈ L ⊂ R n+k .
Let A ⊂ R k be the arrangement of hyperplanes defined by the vanishing of the p i (y). This is the pullback along Ψ p of the coordinate hyperplanes of R n+k .

The image Φ W ((R × ) n ) inside of the torus (R × ) n+k has equations

z β 1 = z β 2 = • • • = z β k = 1 ,
where the weights {β 1 , . . . , β k } form a basis for the Z-submodule of Z n+k of linear relations among the vectors W. To these data, we associate a system of master functions on the complement M A of the arrangement A of R k , (4) p(y)

β 1 = p(y) β 2 = • • • = p(y) β k = 1 .
Here

, if β = (b 1 , . . . , b n+k ) then p β := p 1 (y) b 1 • • • p n+k (y) b n+k .
A basic result of [START_REF] Bihan | Gale duality for complete intersections[END_REF] is that if W spans Z n modulo 2 and either of the systems (3) or (4) defines a complete intersection, then the other defines a complete intersection and the maps Φ W and Ψ p induce isomorphisms between the two solution sets, as analytic subschemes of (R × ) n and M A . Since we assumed that the system (3) is general, these hypotheses hold and the arrangement is essential in that the polynomials p i span the space of all degree 1 polynomials on R k . Theorem 3. A system (4) of master functions in the complement of an essential arrangement of n+k hyperplanes in R k has at most (1) non-degenerate real solutions.

We actually prove a bound for a more general system than (4), namely for

p(z) 2β 1 = p(z) 2β 2 = • • • = p(z) 2β k = 1 .
We write this more general system as ( 5)

|p(z)| β 1 = |p(z)| β 2 = • • • = |p(z)| β k = 1 .
In a system of this form we may have real number weights β i ∈ R n+k . We give the strongest form of our theorem.

Theorem 4. A system of the form (5) with real weights β i in the complement of an essential arrangement of n+k hyperplanes in R k has at most (1) non-degenerate real solutions.

Proof of Theorem 4

We follow [START_REF]New fewnomial upper bounds from Gale dual polynomial systems[END_REF] with minor, but important, modifications. Perturbing the polynomials p i (y) and the weights β j will not decrease the number of non-degenerate real solutions in M A . This enables us to make the following assumptions.

The arrangement A + ⊂ RP k , where we add the hyperplane at infinity, is general in that every j hyperplanes of A + meet in a (k-j) dimensional linear subspace, called a codimension j face of A. If B is the matrix whose columns are the weights β 1 , . . . , β k , then the entries of B are rational numbers and no minor of B vanishes. This last technical condition as well as the freedom to further perturb the β j and the p i are necessary for the results in [7, Section 3] upon which we rely.

For functions f 1 , . . . , f j on M A , let V (f 1 , . . . , f j ) be the subvariety they define. Suppose that β j = (b 1,j , . . . , b n+k,j ). For each j = 1, . . . , k, define

ψ j (y) := n+k i=1 b i,j log |p i (y)| . Then (5) is equivalent to ψ 1 (y) = • • • = ψ k (y) = 0. Inductively define Γ k , Γ k-1 , . . . , Γ 1 by Γ j := Jac(ψ 1 , . . . , ψ j , Γ j+1 , . . . , Γ k ) ,
the Jacobian determinant of ψ 1 , . . . , ψ j , Γ j+1 , . . . , Γ k . Set

C j := V (ψ 1 , . . . , ψ j-1 , Γ j+1 , . . . , Γ k ) , which is a curve in M A .
Let ♭(C) be the number of unbounded components of a curve C ⊂ M A . We have the estimate from [START_REF]New fewnomial upper bounds from Gale dual polynomial systems[END_REF], which is a consequence of the Khovanskii-Rolle Theorem, ( 6)

|V (ψ 1 , . . . , ψ k )| ≤ ♭(C k ) + • • • + ♭(C 1 ) + |V (Γ 1 , . . . , Γ k )| .
Here, |S| is the cardinalty of the set S. We estimate these quantities.

Lemma 5.

(

) |V (Γ 1 , . . . , Γ k )| ≤ 2 ( k 2 ) n k . (2) C j is a smooth curve and ♭(C j ) ≤ 1 2 2 ( k-j 2 ) n k-j n+k+1 j • 2 j ≤ 1 2 2 ( k 2 ) n k • 2 2j-1 j! . 1 
Proof of Theorem 4. By [START_REF] Bihan | Gale duality for complete intersections[END_REF] and Lemma 5, we have

|V (ψ 1 , . . . , ψ k )| ≤ 2 ( k 2 ) n k 1 + 1 4 k j=1 4 j j! < 2 ( k 2 ) n k • e 4 + 3 4 .
Proof of Lemma 5. The bound (1) is from Lemma 3.4 of [START_REF]New fewnomial upper bounds from Gale dual polynomial systems[END_REF]. Statements analogous to (2) for C j , the restriction of C j to a single chamber (connected component) of M A , were established in Lemma 3.4 and the proof of Lemma 3.5 in [START_REF]New fewnomial upper bounds from Gale dual polynomial systems[END_REF]:

(7) ♭( C j ) ≤ 1 2 2 ( k-j 2 ) n k-j n+k+1 j ≤ 1 2 2 ( k 2 ) n k • 2 j-1 j! .
The bound we claim for ♭(C j ) has an extra factor of 2 j . A priori we would expect to multiply this bound [START_REF]New fewnomial upper bounds from Gale dual polynomial systems[END_REF] by the number of chambers of M A to obtain a bound for ♭(C j ), but the correct factor is only 2 j . We work in RP k and use the extended hyperplane arrangement A + , as we will need points in the closure of C j in RP k . The first inequality in [START_REF]New fewnomial upper bounds from Gale dual polynomial systems[END_REF] for ♭( C j ) arises as each unbounded component of C j meets A + in two distinct points (this accounts for the factor for i = 0, . . . , k -j -1 vanish. (By Lemma 3.4(1) of [START_REF]New fewnomial upper bounds from Gale dual polynomial systems[END_REF], F i is a polynomial of degree 2 i n.) The genericity of the weights and the linear polynomials p i (y) imply that these points will lie on faces of codimension j but not of higher codimension. The factor 2 ( k-j

2 ) n k-j is the Bézout number of the system F 0 = • • • = F k-j-1 on a given codimension j plane, and there are exactly n+k+1 j codimension j faces of A + . At each of these points, C j will have one branch in each chamber of M A incident on that point. Since the hyperplane arrangement A + is general there will be exactly 2 j such chambers.

1 2 )

 2 which are points of codimension j faces where the polynomialsF i (y) := Γ k-i (y) • n+k i=1 p i (y) 2 i
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