
HAL Id: hal-00379832
https://hal.science/hal-00379832

Submitted on 29 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Sharing in P2P Systems
Rabab Hayek, Guillaume Raschia, Patrick Valduriez, Noureddine Mouaddib

To cite this version:
Rabab Hayek, Guillaume Raschia, Patrick Valduriez, Noureddine Mouaddib. Data Sharing in P2P
Systems. Handbook of Peer-to-Peer Networking, Springer US, pp.531-570, 2010. �hal-00379832�

https://hal.science/hal-00379832
https://hal.archives-ouvertes.fr

Data Sharing in P2P Systems

Rabab Hayek and Guillaume Raschia and Patrick Valduriez andNoureddine
Mouaddib

Abstract In this chapter, we survey P2P data sharing systems. All along, we focus
on the evolution from simple file-sharing systems, with limited functionalities, to
Peer Data Management Systems (PDMS) that support advanced applications with
more sophisticated data management techniques. Advanced P2P applications are
dealing with semantically rich data (e.g. XML documents, relational tables), us-
ing a high-level SQL-like query language. We start our survey with an overview
over the existing P2P network architectures, and the associated routing protocols.
Then, we discuss data indexing techniques based on their distribution degree and
the semantics they can capture from the underlying data. We also discuss schema
management techniques which allow integrating heterogeneous data. We conclude
by discussing the techniques proposed for processing complex queries (e.g. range
and join queries). Complex query facilities are necessary for advanced applications
which require a high level of search expressiveness. This last part shows the lack of
querying techniques that allow for anapproximate query answering.

Rabab Hayek
LINA, 2 rue de la Houssiniere 44322 Nantes France, e-mail: rabab.hayek@univ-nantes.fr

Guillaume Raschia
LINA, 2 rue de la Houssiniere 44322 Nantes France, e-mail: guillaume.raschia@univ-nantes.fr

Patrick Valduriez
INRIA, 2 rue de la Houssiniere 44322 Nantes France, e-mail: Patrick.Valduriez@inria.fr

Noureddine Mouaddib
LINA, 2 rue de la Houssiniere 44322 Nantes France, e-mail: Noureddine.Mouaddib@univ-
nantes.fr

1

2 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

1 Introduction

The recent years have witnessed a paradigm shift in the design of internet-scale dis-
tributed systems, with widespread proliferation of peer-to-peer technologies. Nowa-
days, the P2P model is used for diverse applications and services–including content
storage and sharing (file-sharing, content distribution, backup storage) and commu-
nication (voice, instant messages, multicast) to name a few.

But, what is the P2P paradigm?

From the application perspective, the P2P paradigm is a way to leverage vast
amounts of computing power, storage, and connectivity frompersonal computers
distributed around the world [31]. Thus, the P2P model allows distributed systems
to scale up on a world wide scale without the need for an expensive infrastructure,
like the one it would be incurred by a client-server model.

From the system perspective, the P2P paradigm is about managing autonomous,
unreliable resources that connect to the system in order to provide together the de-
sired objectives, which that system is supposed to achieve.The management of such
resources should be done without any global information or central control.

In other words, the P2P model overcomes the limitations of centralized and
client-server models by introducing symmetry in roles, where each node is both a
client and a server. But unlike Grid systems, P2P networks donot arise from the col-
laboration between established and connected groups of systems. Instead, they are
characterized by ad hoc connections between autonomous anddynamic resources.
Thus, P2P systems pose new challenges including resource discovery, reliability and
availability.

In late 1999, P2P systems gained much attention with Napster’s support for music
sharing, and then have became a very interesting medium through which users share
huge amount of data. Popular examples of P2P data sharing systems (e.g. Gnutella,
KaZaa) report millions of users, sharing petabytes of data.However, a key challenge
is implementing efficient techniques for search and data retrieval, without which an
enormous shared data collection remains useless.

In a P2P data sharing system, users should be able to locate relevant data in a
resource-efficient manner. Let us examine the generic architecture of a given peer,
as shown by Figure 1. Queries are submitted through a user interface. Then, they are
handled by a data management layer which includes several techniques for support-
ing an efficient distributed query processing. This data management layer has been
enriched all along the evolution of P2P systems from simple file-sharing systems
with limited functionalities, to Peer Data Management Systems (PDMSs) which are
dealing with semantically rich data.

In early P2P file sharing systems, the data management layer lacks several com-
ponents. At a given peer, filename-based queries are blindlybroadcasted in the net-
work in order to locate the requested files. Besides, all the visited peers locally
evaluate the received queries and return results, if any, tobe finally merged at the re-
questing peer. The performance of these systems is quite dependent of the topology

Data Sharing in P2P Systems 3

of theunderlying network, and the associated routing protocol. This is discussed in
Section 2.

Local

Data source

Data Management Layer

Indexing

Caching

User Interface

Network Layer

Metadata

Repository

QueryAnswer

Query

Processing

Schema

Management

Replication
Clustering
Network

Fig. 1 Peer Generic Architecture

To enhance the search performance, P2P works started to employ data indexing
techniques (e.g. [6], [82]). At a given peer, the index allows to select a set of relevant
peers to which the query is directly sent (i.e. location indexes), or to determine the
direction through which relevant peers may be located (i.e.forwarding indexes).
Section 3 discusses the P2P indexing schemes.

Parallel works have focused on datareplicationandcachingtechniques in order
to improve the availability and the consistency of data, against the dynamic and
autonomous nature of P2P systems. In this work, we do not detail these techniques,
however good pointers can be found in [11, 46, 15].

In Schema-based P2P systems [93], each peer can provide its own database
with its own schema, and may issue queries according to its local schema. In this
case, irrespective of using data indexes, peers have to apply schema management
techniques that provide a common ground for distributed query processing (e.g.
[12], [45]). The basic idea is to identify content or structure similarities among peers.
Semantic mappingsare then defined to specify these similarities, and based on the
semantic mapping definitions, queries are reformulated foreach specific peer. Se-
mantic mappings and other metadata are stored in a specific repository. The schema
management techniques are presented in Section 4.

Network clusteringhas been also proposed as a viable solution to improve query
processing in P2P systems (e.g. [55], [7]). Clustering techniques aim to organize the

4 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

network into groups based on some criteria. A clustering criterion may be a physical
network parameter (e.g. latency, bandwidth), peer property/behavior (e.g. connec-
tivity, stability), or application-dependent parameter (e.g. similarity of interests). In
this chapter, we do not discuss P2P clustering techniques. However, representative
works are [81], [83], [7], [56].

Finally, we note that the data management layer presented inFigure 1 may in-
clude additional components depending on other application requirements, such as
trust and security.

All the above techniques have a common objective which is improving the effi-
ciency of locating data. However, they should not restrict the search expressiveness.
Certainly, the required level of search expressiveness is related to the data model
used by the application. For instance, advanced P2P applications which are deal-
ing with semantically rich data require a higher expressiveness level than key-based
lookups or keyword searches. Processing complex queries inP2P systems is dis-
cussed in Section 5.

Note that throughout this thesis, the terms “node” and “peer” are used inter-
changeably to refer to the entities that are connected in a peer-to-peer network.

2 P2P Networks

P2P systems are application-level virtual networks with their own overlay topolo-
gies and routing protocols. The overlay topology defines howthe nodes are con-
nected to each other, while the routing protocol defines how nodes can exchange
messages in order to share information and resources. The network topology and
the associated routing protocol have significant influence on application properties
such as performance, scalability, and reliability. P2P network overlays can be classi-
fied into two main categories:unstructuredandstructured, based on their structure.
By “structure” we refer to the control on overlay creation and data placement.

2.1 Unstructured

Most popular P2P applications operate on unstructured networks. In these networks,
peers connect in an ad-hoc fashion and the placement of content is completely un-
related to the overlay topology. Although P2P systems are supposed to operate in
a fully decentralized manner (i.e. fully decentralized routing mechanisms), in prac-
tice, unstructured networks with various degrees of centralization are encountered.
Accordingly, three categories can be identified.

Data Sharing in P2P Systems 5

2.1.1 Hybrid Decentralized Architectures

In these networks, a central server facilitates the interaction between nodes by in-
dexing all their shared files (Figure 2). Whenever a query is submitted, the central
server is addressed to identify the nodes storing the requested files. Then, the file
exchange may take place directly between two nodes. Certainly, this approach pro-
vides a very good search efficiency. However, the central server, which is a single
point of failure, renders hybrid decentralized networks inherently unscalable and
vulnerable to malicious attacks.

The class of P2P systems relying on such hybrid architectures, i.e. including a
server (e.g. red node) and peers (e.g. blue nodes), is usually called the first genera-
tion of P2P systems (1GP). A well-known example is Napster [4].

Fig. 2 Hybrid decentralized architecture Fig. 3 Pure decentralized architecture

2.1.2 Pure Decentralized Architectures

In pure decentralized networks, there is a complete symmetry in node roles without
any central coordination. Each node is both a client a server, i.e. each node may
issue requests and serve/forward requests of other nodes (bi-colored nodes in 3).
Hence, they exhibit high fault tolerance against node dynamicity and failure. How-
ever, resources are maintained locally and nodes have only limited knowledge. Thus,
guarantees on lookup efficiency and content availability can not be provided. Here,
search mechanisms range from brute flooding to more sophisticated mechanisms,
such as random walks [11] and routing indices [6]. These mechanisms have direct
implications on network scalability.

Representative examples of pure decentralized P2P systemsare Gnutella [2], and
FreeHaven [79].

6 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

2.1.3 Partially Decentralized Architectures

In these networks, there is a differentiation in roles betweensupernodeand leafn-
ode. Each supernode acts as a proxy for all its neighboring leaves by indexing their
data and forwarding queries on their behalf. In practice, several supernodes are des-
ignated in the system to avoid all the problems associated toa single server (Fig-
ure 4). Like pure decentralized P2P networks, the set of supernodes can be organized
in a P2P fashion and communicate with one another in sophisticated ways. They are
dynamically assigned and, if they fail, the network will automatically take action to
replace them with others.

Examples of partially decentralized P2P systems are KaZaa [3], Gnutella2 [1],
and Edutella [12]. Note that partially decentralized networks are also referred as
hierarchicalnetworks, while pure decentralized ones are referred asflat networks.
Both categories represent the so-called, second P2P generation (2GP).

Fig. 4 Partially decentralized architecture

2.2 Structured

In an attempt to remedy the scalability problem of unstructured systems, some
works have focused on introducing “structure” into network topologies. The topol-
ogy overlay is tightly controlled, and the content may be distributed according to
specific rules. These works led to the third generation of P2Psystems (3GP), i.e.
structured systems. Aiming basically to act as a decentralized index, structured over-
lays provide a mapping between content (e.g. file identifier)and location (e.g. node
address), in the form of a distributed routing table.

Structured networks consist in partitioning a key space among peers, so that
each peer is responsible for a specific key space partition, i.e. it should store all
the resources (or pointers) which are mapped into keys, which are in the respec-
tive key-space partition. Then a routing algorithm is defined to allow a deterministic
search based on key content. A representative class of structured overlays are the
Distributed Hash Tables DHTs (e.g. [44], [82]). Freenet [43] is often qualified as

Data Sharing in P2P Systems 7

a loosely structured system because the nodes of its P2P network can produce an
estimate (not with certainty) of which node is most likely tostore certain data. They
use a chain mode propagation approach, where each node makesa local decision
about which node to send the request message next.

Structure
Decentralization

Hybrid Partial Full

Unstructured

Napster KaZaa Gnutella
PubliusMorpheus FreeHaven

Gnutella2
Edutella

Structured Infrastructures

Chord
CAN

Trapestry
Pastry

Structured Systems

OceanStore
Mnemosyne
Scan, Past
Kademlia

Table 1 A classification of P2P Systems and Infrastructures Based onNetwork Structure, and
Degree of Decentralization [13]

Table 1 summarizes the P2P categories we outlined, with examples of P2P sys-
tems and infrastructures. P2P infrastructures do not constitute working applications,
but provide P2P based-services (e.g. location and routing,anonymity, reputation
management) and application frameworks. The infrastructures listed here are loca-
tion and routing infrastructures. Note that according to the centralization criteria, all
structured systems and infrastructures rely on pure decentralized topologies where
all participants have equal roles.

2.3 Unstructured vs. Structured: Competition or Complementarity?

An important question is: should the P2P overlay be “Structured” or “Unstruc-
tured”? Are the two approaches competing or complementary?

Some have considered unstructured and structured routing algorithms as compet-
ing alternatives. When generic key lookups are required, structured routing schemes
guarantee locating relevant nodes within a bounded number of hops, based on strong
theoretical foundations. The routing unstructured approaches, however, may have
large costs or fail to find available data (in particular unpopular data). Despite of the
lookup efficiency of structured overlays, several researchgroups are still leverag-
ing unstructured P2P schemes. In fact, there are two main criticisms for structured
systems [98]. First, the strict network structure imposes high overhead for handling
node join and leave, although some works have defended performance during churn
(e.g. [26]). Second, the lookup efficiency of these systems is limited to exact-match

8 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

queries. Their ability to implement keyword searches and more complex queries
is still an open issue. Therefore, given a P2P application, the best suited network
overlay depends on that application functionalities and performance metrics.

Recently, some have started to justify that unstructured and structured approaches
are complementary, not competing. The approach presented in [60] improves the
unstructured Gnutella network by adding structural components. The motivation
behind is that unstructured routing mechanisms are inefficient for data that are not
highly replicated across the P2P network, while structuredkey-based lookup per-
forms efficiently, irrespective of replication. In [21], the authors leverage the idea of
cohabiting several P2P overlays on a same network, so that the best overlay could
be chosen depending on the application. The distinctive feature of this proposal is
that, in thejoint overlay, the cohabiting overlays share information to reduce their
maintenance cost while keeping the same level of performance.

Finally, we agree with the statement saying that the “unstructured vs. structured”
taxonomy is becoming less useful, for two reasons. First, almost no network topolo-
gies are truly “unstructured”. Unstructured P2P proposals, which used initially blind
flooding and random walks, have evolved to exploit inherent structure (e.g. small
world and scale-free features), or to incorporate structure through clusters and su-
perpeers. Second, a new class ofschema-based P2Psystems, also called Peer Data
Management systems PDMSs, has emerged [93]. Examples of such systems com-
bine approaches from P2P research as well as from the database and semantic web
research areas. These systems allow the aggregation and integration of data from
autonomous, distributed data sources. They are dealing with heterogeneity of nodes
and structure within data.

Following this statement, some studies have adopted database taxonomy rather
than networking taxonomy (e.g. [20], [39]) in order to categorize P2P search net-
works. The structure is implicitly determined by the type ofthe employed index. In
the following section, we discuss the different data indexing schemes that have been
proposed in the P2P literature.

3 Data Indexing in P2P Systems

P2P search techniques rely basically on data indexes. A dataindexing scheme
should take into account the following requirements. First, the creation/maintenance
of indexes should not overload either the nodes by an extensive usage of their re-
sources, or the network by a large bandwidth consumption. Second, the mechanism
of maintaining indexes should not restrict peer autonomy. Instead, it should recover
from node leave and join in a resource-efficient manner.

Obviously, the use of indexes should contribute to enhance the efficiency of
searches made in the system. For instance, this efficiency can be quantified by the
rate of successful searches (a search issuccessfulif it locates, at least, one replica of
the requested object), the response time, the number of returned results, the number

Data Sharing in P2P Systems 9

of hops made to find a first query matching, and the number of messages exchanged
in the network, which is an important metric from the system point of view.

The related trade-offs between index update cost, efficiency of the associated
search technique, and peer churn are critical to evaluate a P2P indexing scheme.

3.1 Index Types

A P2P index can be local, centralized or distributed according to where it is main-
tained in the system, and to the distribution of data which itrefers to.

3.1.1 Local Index

A node only keeps references to its own data, without obtaining any information
about data stored at other nodes. The very early Gnutella design [2] adopted the
local-indexapproach. This approach enables rich queries, but also generates huge
traffic overhead since the query needs to be flooded widely in the network. Further-
more, any guarantees on search success can not be provided.

Considering that the key part of P2P searching approaches isan efficient routing
mechanism, the local-index approaches can be seen asindex-free, since they do
not support query routing with anyforwardingor locationhints [97]. A forwarding
index allows to reach the requested object within a varying number of hops (with the
network size), while a location index allows to reach the target in a single hop. Based
on the same reasoning, the search techniques that have been proposed to improve
the performance of index-free systems, are referred asblind search techniques [86].

Breadth First Search (BFS)

The originally Gnutella algorithm uses flooding (BFS traversal of the underlying
graph) for object discovery, and contacts all accessible nodes within a Time-To-
Leave (TTL) value (Figure 5). SmallTTL values reduce the network traffic and the
load at peers, but also reduce the chances of a successful search.

Modified BFS [89] is a variation of the BFS scheme in which the peers ran-
domly choose only a ratio of their neighbors to forward the query to (Figure 6).
This approach reduces the number of messages needed for query routing at the cost
of loosing available query answers, which might be found by the original BFS.

Iterative Deepening

In [11], the idea of iterative deepening has been borrowed from artificial intelligence
and used in P2P searching. This method is also calledexpanding ring. The querying

10 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

Fig. 5 Example of BFS: the received query is forwarded to all the neighbors

Fig. 6 Example of Modified BFS: the received query is forwarded to a randomly selected set of
neighbors

node periodically issues a sequence of BFS with increasingTTL values. The query
terminates when sufficient number of results is found, or thepredefined maximum
value of TTL is reached. Iterative deepening is tailored to applications where the
initial number of results found at peers that are closer to the query originator is
important. In this case, it achieves good performance gainscompared to the original
BFS. In other cases, its overhead and response time may be much higher.

Random Walks

In thestandard random walkalgorithm, the querying node forwards the query mes-
sage to one randomly chosen neighbor. This neighbor randomly selects one of its
neighbors and forwards the query to that neighbor, and so on until there is a query
match. This algorithm indeed reduces the network traffic, but massively increases
the search latency.

In thek-walker random walkalgorithm [11], the query is replicated at the origina-
tor, so it sendsk query messages to an equal number of randomly chosen neighbors.
Each of these messages follows its own path, having intermediate nodes forward it
to a randomly chosen neighbor at each step. These query messages are also known
aswalkers. When the TTL of a walker reaches zero, it is discarded.

Data Sharing in P2P Systems 11

Fig. 7 Example of Random Walks: each received walk is forwarded to only one neighbor

The algorithm’s most important advantage is the significantmessage reduction it
achieves. It producesk∗TTL messages in the worst case, a number which seldom
depends on the underlying network. It also achieves some kind of local “load bal-
ancing”, since no nodes are favored in the forwarding process over others. However,
the most serious problem of this algorithm is its highly variable performance. Suc-
cess rates and number of hits vary greatly depending on network topology and the
random choices made. Another drawback is its inability to adapt to different query
loads.

Adamic et al [50] addressed the first problem of random walks by recommend-
ing that instead of using purely random walks, the search protocol should bias its
walks toward high-degree nodes (i.e. nodes with large number of connections). They
assume that high-degree nodes are also capable of higher query throughputs. Cer-
tainly, the relevance of such assumption is constrained by the design of balancing
rules to avoid overloading high-degree nodes, which may nothave the capacity to
handle a large number of queries.

Finally we note that, in spite of their name, theLocal Indicesproposed in [24] do
not belong to this type of indexes. An index is locally maintained at a given node,
however, it refers to remote data stored at other nodes.

3.1.2 Centralized Index

The index is centralized at dedicated servers, but the described data is distributed.
In fact, the centralized schemes [4] were the first to demonstrate the P2P scalability
that comes from separating data index from the data itself. The centralized index
is a location (non-forwarding) index that allows to locate relevant data within one
hop, which is very efficient. However, the central servers are single points of failure
which renders the system inherently unscalable and vulnerable to malicious attack.

12 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

The P2P research community has rapidly turned its back on centralized archi-
tectures. Furthermore, P2P systems that only use local indexes are becoming rare,
since routing the query in a blind manner is still providing apoor trade-off between
the traffic overhead and the lookup efficiency. In practice, all current P2P systems
are implementing distributed indexes.

3.1.3 Distributed Index

The index refers to data from distributed sources, and is itself distributed across the
network. Here, we are talking about the global index, which is (may be virtually)
obtained from the set of indexes materialized in the network. A hybrid decentralized
approach consists in distributing such global index among some specialized nodes
(e.g. supernodes and ultrapeers). A pure decentralized approach distributes the index
among all participants, that is, each node in the system maintains a part of that index.

An early P2P proposal for a distributed index was Freenet [43]. Freenet uses a
hash function to generate keys, by which the shared files are identified. Each node
maintains a dynamic routing table containing the addressesof other nodes and the
file keys they are thought to hold. To search for a file, the usersends a request mes-
sage specifying thekeyand aTTL value. Upon receiving a query message, a node
checks its local table for either a match or another node withkeys close to the tar-
get. If the file is eventually found at a certain node (before exceedingTTL), the
query response traverses the successful query path in reverse, adding a new rout-
ing table entry (the requested key and the file provider) at each peer. A subsequent
request with the same key will be served with this cached entry. The request will
be forwarded directly to the node that had previously provided the data. Freenet
allows to significantly reduce the traffic overhead in the system. However, it only
supports exact-match queries, and only one result is returned. Another limitation is
that Freenet takes time to build an efficient index upon the arrival of a new node.

As said before, almost all of the current P2P proposals rely on distributed indexes,
which can range from simple forwarding hints to exact objectlocations. These in-
dexes can be distinguished according to whether they are semantic-free, or they cap-
ture data semantics. The semantic index is human-readable.For example, it might
associate information with keywords, document names, or database keys. A free-
semantic index typically corresponds to the index by a hash mechanism, i.e. the
DHT schemes.

3.2 Semantic-free Index: DHT

Structured systems have emerged mainly in an attempt to address that scalability
problem of Gnutella-like systems. They use the DistributedHash Table (DHT) as

Data Sharing in P2P Systems 13

a substrate, in which the overlay topology and the data placement are tightly con-
trolled.

Various DHT schemes differ in the topologies, routing protocols, fault tolerance,
and resilience to churn. In the following, we present the main geometries (i.e. the
topology and the associated routing strategies) used for DHT-based systems, and
discuss their search efficiency and their robustness.

3.2.1 Tree

Tree is the first geometry which is used for organizing the peers of a DHT and rout-
ing queries among them. In this approach, nodes and objects are assigned unique
identifiers (e.g. 160-bit key). The leaf nodes of the binary tree represent the key-
space partitions (peer’s identifiers). The depth of that tree is log(n), wheren is the
number of peers. The responsible for a given object key is thepeer whose identifier
has the highest number of prefix bits which are common with thekey. A search is
routed toward the requested object based on longest prefix matching at each inter-
mediate peer until reaching the responsible peer. The distance between two peers is
then the height of the smallest common subtree. Tapestry [25] uses similar prefix
matching in order to forward query messages. To avoid the problem of single point
of failure that root nodes constitute in the Plaxton Tree model, Tapestry assigns mul-
tiple roots to each object. Such approach allows reliability at the cost of redundancy.

L3

L1

27AB

43C9

44AF

1D76

42A2

4228

6F43

51E5

L1

L1

L2

L2

L1

L4

4227

Fig. 8 Tapestry routing mesh from the perspective of a single node.Outgoing neighbor links point
to nodes with a common matching prefix. Higher level entries match more digits. Together, these
links form the neighbor map [25].

For each level in a tree topology there are several choices toselect routing table
entries. To illustrate, each Tapestry node maintains a neighbor map as shown in
Figure 8. The neighbor map has multiple levels, each levell containing pointers to
nodes whose identifier must be matched withl bits. For instance, the node in figure 8
maintains at the third level of its routing table one pointerto one node matching his
identifier with 3 digits.

14 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

The tree geometry has good neighbor selection flexibility, i.e. each peer has 2i −1
options in choosing a neighbor at a leveli. However, it has no flexibility for message
routing: there is only one neighbor which the message must beforwarded to, i.e.
this is the neighbor that has the most common prefix bits with the given key. Several
applications have been designed on the top of Tapestry, suchas OceanStore [47].
Pastry [14] is a scheme similar to Tapestry, however, it differs in the approach to
achieving network locality and object replication. It is employed by the PAST large-
scale persistent P2P storage utility [15].

3.2.2 Ring

The Ring geometry is based on a one dimensional cyclic space such that the peers
are ordered on the circle clockwise with respect to their keys. Chord [44] is the
prototypical DHT ring. Chord supports one main operation: find a peer with the
given key. The keys are assigned both to data and peers by means of a variant of
Consistent Hashing [48]. Each key on the key-space is mappedto the peer with the
least identifier greater or equal to the key, and this peer is called the key’ssuccessor.
Thus to say, this peer is responsible for the corresponding data. The use of consistent
hashing tends to balance load, as each node receives roughlythe same number of
keys.

N1

N14

N21N42

N38

N32

N54

N51

N48

N8

Finger Table

N8+16

N14
N14
N21
N32
N42

N8+1

N8+4

N8+32

N14

N8+8

N8+2

Fig. 9 Thefinger tableat node 8 on a Chord ring of 10 nodes,m= 6 [44].

In Chord, a peer needs to track the addresses of onlym other peers, not all peers
such in the original Consistent Hashing proposal. Each peerp maintains a“finger
table” containingm= log(n) entries such that theith entry provides the address of
the peer whose distance fromp clockwise in the circle is 2i −1 mod n(see Figure 9).
Hence, any peer can route a given key to its responsible inlogn hops because each
hop reduces the distance to the destination by half. In Chord, a peer needs to track
the addresses of onlym= O(logn) other peers, not all peers such as in the original
Consistent Hashing proposal.

Data Sharing in P2P Systems 15

The correctness of the Chord routing protocol relies on the fact that each peer is
aware of its successors. When peers fail, it is possible thata peer does not know its
new successor, and that it has no chance to learn about it. To avoid this situation,
peers maintain a successor list of sizer, which contains the peer’s firstr successors.
When the successor peer does not respond, the peer simply contacts the next peer
on its list.

3.2.3 Hypercube

The Hypercube geometry is based on partitioning ad-dimensional space into a set
of separate zones and attributing each zone to one peer. Peers have unique identifiers
with log nbits, wheren is the total number of peers Each peerp haslog nneighbors
such that the identifier of theith neighbor andp differ only in theith bit. Thus, there
is only one different bit between the identifier ofp and each of its neighbors. The
distance between two peers is the number of bits on which their identifiers differ.
Query routing proceeds by greedily forwarding the given keyvia intermediate peers
to the peer that has minimum bit difference with the key. Thus, it is somehow similar
to routing on the tree. The difference is that the hypercube allows bit differences to
be reduced in any order while with the tree bit differences have to be reduced in
strictly left-to-right order.

The number of options for selecting a route between two peerswith k bit differ-
ences is(log n) ∗ (log n− 1) ∗ · · · ∗ (log n− k), i.e. the first peer on the route has
log nchoices, and each next peer on the route has one choice less than its predeces-
sor. Thus, in the hypercube, there is great flexibility for route selection. However,
each node in the coordinate space does not have any choice over its neighbors coor-
dinates since adjacent coordinate zones in the coordinate space can not change. The
high selection flexibility offered by the Hypercube is at theprice of poor neighbor
selection flexibility.

The routing geometry used in CAN [82] resembles a hypercube geometry. CAN
uses ad-dimensional coordinate space which is partitioned inton zones and each
zone is occupied by one peer (see Figure 10). Whend = log n, the neighbor sets in
CAN are similar to those of alog ndimensional hypercube.

node B’s virtual coordinate zone

1,0

0,0
0,0 0,1

1,1

C D E

B

(0−0.5, 0−0.5)

A

(0.5−1, 0−0.5)

(0.5−0.75, 0.5−1)

(0−0.5, 0.5−1) (0.75−1, 0.5−1)

Fig. 10 2-dimensional[0;1]× [0;1] coordinate space partitioned between 5 CAN nodes [82].

16 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

Other DHTs geometries are theButterflygeometry which is used in Viceroy [30],
and the XOR geometry which is used by Kademlia [69]. Certainly, two or more
geometries can be combined together to provide a hybrid geometry that satisfies
better the DHT requirements. To illustrate, Pastry [14] combines the tree and ring
geometries in order to achieve more efficiency and flexibility.

3.3 Semantic Index

The initial unstructured file sharing P2P systems offered a filename-based search
facility, while the DHT-based systems offered only a key-based lookup. However,
as stated before, the P2P systems should be able to do more than “finding” things,
i.e. to capture data semantics and to allow for rich, complexqueries. Works on both
P2P networks, unstructured and structured, have been started in order to support
P2P applications with higher levels of search expressiveness. First enhancements
to existing file sharing P2P systems have early provided keyword search facilities.
Later, providing large-scale Information Retrieval (IR),e.g. for searching the world
wide web, becomes an appealing application for P2P networks. Consequently, the
well known IR techniques have been brought into the context of P2P networks,
in order to support a decentralized document management (e.g. storing, clustering,
indexing) and retrieval.

Recently, the Database and P2P paradigm have meet. The former was slowly
moving toward a higher degree of distribution, and thus requiring a new class of
scalable, distributed architecture. The latter has started to explore more expressive-
ness infrastructures in order to extend the representationand query functionalities
it can offer to advanced applications. The P2P Data Management Systems (PDMS)
are the point where the two paradigms meet.

As the P2P networks are going to be adaptable, i.e. to supporta wide range of
applications, they need to accommodate many search types. Index engineering has
been always at the heart of P2P search methods. In the following, we introduce
the various types of semantic indexes employed by current P2P systems. Then, the
query capabilities will be discussed in Section 5.

3.3.1 Keyword Lookup

Gnutella [2] provides a simple keyword match. Queries contain a string of keywords
and peers answer when they have files whose names contain all that keywords. In its
first version, Gnutella was a local-index system. Queries were flooded in the entire
network and peers only used their local indexes for filename matches.

As a way to improve the performance of unstructured Gnutella-like systems, the
notion ofultrapeerwas introduced, so that the peer are organized into a hierarchical
network overlay. In [16], each peer maintains an index of filename keywords, called
the Query Routing Table (QRT), and forwards it to its ultrapeer. Upon receiving a

Data Sharing in P2P Systems 17

query, the latter sends the query only to leaves which have a match based on their
QRTs. Later, there has been a proposal to exploit the networkhierarchy in order to
build a hierarchical index. Aggregated QRTs are distributed amongst the ultrapeers
to improve the query forwarding from an ultrapeer to another.

In other approach, [24] suggested thelocal indices: data structures where each
node maintains an index of the data stored at nodes located within a radiusr from it-
self. The query routing is done in a BFS-like way, except thatthe query is processed
only at the peers that are at certain hop distances from the query originator. To min-
imize the overhead, the hop distance between two consecutive peers that process
the query must be 2∗ r + 1. In other words, the query must be processed at peers
whose distance from the query originator ism∗ (2∗ r + 1) for m = 1,2, This
allows querying all data without any overlap. The processing time of this approach
is less than that of standard BFS because only a certain number of peers process the
query. However, the number of routing messages is comparable to that of standard
BFS. In addition, whenever a peer joins/leaves the network or updates its shared
data, a flooding withTTL= r is needed in order to update the peers’ indices, so the
overhead becomes very significant for highly dynamic environments.

Routing Indices[6] have been proposed to support query routing with informa-
tion about “direction” towards data, rather than providingits actual location. Doc-
uments are assumed to fall into a number of topics, and queries request documents
on particular topics. Routing Indices (RIs) store information about the approximate
number of documents from every topic that can be retrieved through each outgoing
link (i.e. not only from that neighbor but from all nodes accessible from it).

Fig. 11 Example of Routing Indices [6]

Figure 11 shows an example of a P2P network with RIs built overfour topics of
interest. The first row of each RI contains the summary of the local index presented
before (i.e. radiusr = 2). In particular, the summary ofA’s local index shows thatA
has 300 documents: 30 about databases, 80 about networks, none about theory, and
10 about languages. The rest of the rows represent a compoundRI. In the example,
the RI shows that nodeA can access 100 database documents throughD (60 in D,
25 in I , and 15 inJ).

18 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

Given a query, the termination condition relates to a minimum number of hits. A
node that can not satisfy the query stop condition with its local repository will for-
ward it to the neighbor with the highest “goodness” value. Three different functions
which rank the out-links according to the expected number ofdocuments that could
be discovered through them are proposed. The routing algorithm backtracks if more
results are needed. A limitation of this approach is that RIsrequire flooding in order
to be created and updated, so they are not suitable for highlydynamic networks.
Moreover, stored indices can be inaccurate due to topic correlations, over-counts or
under-counts in document partitioning and network cycles.

3.3.2 Peer Information Retrieval

The amount of data published in the internet and its amazing growth rate become
beyond centralized web search engines. Recently, P2P systems start to represent
an interesting alternative to build large-scale, decentralized Information Retrieval
systems.

IR systems define representations of both documents and queries. They may only
support a boolean retrieval model, in which documents are indexed and a document
can match or not a given query. Note that the local and routingindices described
in the above section allow for such a retrieval model. Current IR systems are sup-
porting the retrieval model with a ranking function that quantifies the order amongst
the documents matching the query. This becomes essential inthe context of large
document collections, where the resulting number of matching documents can far
exceed the number a user could possibly require. To this end,the IR system defines
relationships between document and query representations, so that a score can be
computed for each matching document, w.r.t. the query at hand.

A P2P system differs from a distributed IR system in that it istypically larger,
more dynamic with node lifetimes measured in hours. Furthermore, a P2P system
lacks the centralized mediators found in many IR systems that assume the respon-
sibility for selecting document collections, rewriting queries, and merging ranked
results [18]. In the following, we first introduce the main IRtechniques used for
indexing documents. Then, we present the P2P IR systems thathave been proposed
in the literature.

Inverted Index

The inverted index, or sometimes called inverted file, has became the standard tech-
nique in IR. For each term, a list that records which documents the term occurs in is
maintained. Each item in the list is conventionally called aposting. The list is then
called apostings list(or inverted list), postings list and all the postings liststaken
together are referred to as the postings.

Data Sharing in P2P Systems 19

Vector Space Model

The representation of the set of documents and queries as vectors in a common
vector space is known as the Vector Space Model (VSM) and is fundamental to
support the operation of scoring documents relative to a query. Each component of
the vector represents the importance of atermin the document or query. The weight
of a component is often computed using theTerm Frequency * Inverse Document
Frequency(TF*IDF) scheme.

• Term Frequency: the frequency of each term in each document.
• Inverse Document Frequency: the document frequencyd ft is the number of doc-

uments, in a collection ofN documents, that contain a term t. The Inverse Docu-
ment Frequency of termt is given by:log(N/d ft).

Viewing a collection ofN documents as a collection of vectors leads to a natural
view of a collection as aterm-document matrix: this is anM×N matrix whose rows
represent theM terms (dimensions) of theN columns, each of which corresponds to
a document.

Latent Semantic Index

Latent Semantic Index (LSI) uses Singular Value Decomposition (SVD) to trans-
form and truncate the term-document matrix computed from VSM. This allow to
discover the semantics underlying terms and documents. Intuitively, LSI transforms
a high-dimensional document vector into a medium-dimensional semantic vector
by projecting the former into a medium-dimensional semantic subspace. The basis
of the semantic subspace is computed using SVD. Semantic vectors are normalized
and their similarities are measured as in VSM.

Several solutions for text-based retrieval in decentralized environments have been
proposed in the literature.

PlanetP [33] is a publish-subscribe service for P2P communities, supporting con-
tent ranking search. PlanetP maintains a detailed invertedindex describing all docu-
ments published by a peer locally (i.e. a local index). In addition, it uses gossiping to
replicate aterm-to-peerindex everywhere for communal search and retrieval. This
term-to-peer index contains a mappingt → p if term t is in the local index of peerp.
PlanetP approximateTF ∗ IDF by dividing the ranking problem into two stages. In
first, peers are ranked according to their likehood of havingrelevant documents. To
this end, PlanetP introduces theInverse Peer Frequency (IPF)measure. Similar to
IDF , the idea behind is that a term is of less importance if it is present in the index
of every peer. Second, PlanetP contacts only the first group of m peers from the top
of the peer ranked list, to retrieve a relevant set of documents. It stops contacting
peers when the top-k document ranking becomes stable, wherek is specified by the
user. A primary shortcoming of PlanetP is the large amount ofmetadata that should
be maintained, which restricts its scalability.

20 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

The PeerSearch system [28] proposes another approach that places documents
onto a DHT network according to their semantic vectors produced by Latent Se-
mantic Indexing (LSI) in order to reduce document dimensionality and guarantee
solution scalability. However, as semantic vectors have tobe defined a priori, the
method cannot efficiently handle dynamic scenarios and adapt to changing collec-
tions.

A query-driven indexing method has recently been proposed in [37]. However,
the solution is based on single-term indexing and does not consider indexing with
term combinations. A recent work proposes the AlvisP2P search engine [85], which
enables retrieval with multi-keywords from a global document collection available
in the P2P network. One of the merits of the proposed approachis that indexing is
performed in parallel with retrieval. However, a main limitation is that the quality
of the answer obtained for a given query depends on the popularity of the term
combinations it contains.

3.3.3 Peer Data Management

While existing architectures for distributed systems havebeen reaching their matu-
rity (e.g. distributed database systems, data integrationsystems), the P2P paradigm
has emerged as a promising alternative to provide a large-scale decentralized in-
frastructure for resource sharing. Grible et al. have addressed an important question
“how data management can be applied to P2P, and what the database community
can learn from and contribute to the P2P area?[36]. The P2P paradigm has gained
much popularity with the first successful file sharing systems (e.g. Gnutella, KaZaa)
because of the ease of deployment, and the amplification of the desired system prop-
erties as new nodes join (i.e. this is aligned with the definition of the P2P paradigm).
However, the semantics provided by these systems is typically weak. So far in this
report, we have reviewed P2P systems that support key lookups or keyword search.
In order to support advanced applications which are dealingwith structured and
semantically rich data, P2P systems must provide more sophisticated data access
techniques. The overlapping of P2P and database areas has lead to a new class of
P2P systems, called Peer Data Management Systems (PDMS) or schema-based P2P
systems (see Figure 12).

In distributed databases, the location of content is generally known, the query
optimizations are performed under a central coordination,and answers to queries
are expected to be complete. On the other side, the ad-hoc anddynamic membership
of participants in P2P systems makes difficult to predict about the location and the
quality of resources, and to maintain globally accessible indexes which may become
prohibitive as the network size grows.

The work that has been done in PDMSs mainly addresses the information in-
tegration issue. In fact, the potential heterogeneity of data schemas makes sharing
structured data in P2P systems quite challenging. This issue will be discussed in
Section 4. Besides, PDMSs have started to study the design and the implementa-
tion of complex query facilities (e.g. join and range queries). This is a fundamental

Data Sharing in P2P Systems 21

Fig. 12 Schema capabilities and distribution [93]

building block of a given PDMS which attempts to be a fully distributed data system,
with a high level of query expressiveness. Processing complex queries requires the
employment of data access techniques which deal with the structure and semantics
within data. Section 5 discusses complex queries in P2P systems.

4 Schema Management in P2P Systems

Semantic heterogeneity is a key problem in large scale data sharing systems [57].
The data sources involved are typically designed independently, and hence use dif-
ferent schemas. To be able to allow meaningful inter-operation between different
data sources, the system needs to define schema mappings.Schema mappingsdefine
the semantic equivalence between relations and attributesin two or more different
schemas.

The traditional approach for querying heterogeneous data sources relies on the
definition ofmediated schemabetween data sources [38] (see Figure 13). This me-
diated schema provides a global unified schema for the data inthe system. Users
submit their queries in terms of the mediated schema, and schema mappings be-
tween the mediated schema and the local schemas allow the original query to be
reformulated into subqueries executable at the local schemas. There is a wrapper
close to each data source that provides translation services between the mediated
schema and the local query language [88].

In data integration systems, there are two main approaches for defining the map-
pings: Global-as-view (GAV) which defines the mediated schema as a view of the
local schemas, and Local-as-View (LAV) which describes thelocal schemas as a
view of the mediated schema [54]. In GAV, the autonomy of datasources is higher
than LAV because they can define their local schemas as they want. However, if any
new source is added to a system that uses the GAV approach, considerable effort
may be necessary to update the mediator code. Thus, GAV should be favored when
the sources are not likely to change. The advantage of a LAV modeling is that new
sources can be added with far less work than in GAV. LAV shouldbe favored when

22 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

Fig. 13 Schema Mapping using a Global Mediated Schema

the mediated schema is not likely to change, i.e. the mediated schema is complete
enough that all the local schemas can be described as a view ofit.

Given the dynamic and autonomous nature of P2P systems, the definition of a
unique global mediated schema is impractical. Thus, the main problem is to sup-
port decentralized schema mapping so that a query on one peer’s schema can be
reformulated in a query on another peer’s schema. The approaches which are used
by P2P systems for defining and creating the mappings betweenpeers’ schemas
can be classified as follows: pairwise schema mapping, mapping based on machine
learning techniques, common agreement mapping, and schemamapping using IR
techniques.

4.1 Pairwise Schema Mappings

In this approach, the users define the mapping between their local schemas and the
schema of any other schema which is interesting for them. Relying on the transitivity
of the defined mappings, the system tries to extract mappingsbetween schemas
which have no defined mapping.

Piazza [45] follows this approach (see Figure [45]). In Piazza, the data are shared
as XML documents, and each peer has a schema, expressed in XMLSchema, which
defines the terminology and the structural constraints of the peer. When a new peer
(with a new schema) joins the system for the first time, it mapsits schema to the
schema of some other peers of the network. Each mapping definition begins with
an XML template that matches some path or sub-tree of an instance of the target
schema, i.e. a prefix of a legal string in the target DTD’s grammar. Elements in the
template may be annotated with query expressions (in a subset of XQuery) that bind
variables to XML nodes in the source.

The Local Relational Model (LRM) [66] is another example that follows this ap-
proach. LRM assumes that the peers hold relational databases, and each peer knows
a set of peers with which it can exchange data and services. This set of peers is

Data Sharing in P2P Systems 23

Fig. 14 An Example of Pairwise Schema Mapping in Piazza

calledp’s acquaintances. Each peer must define semantic dependencies and trans-
lation rules between its data and the data shared by each of its acquaintances. The
defined mappings form a semantic network, which is used for query reformulation
in the P2P system.

PGrid also assumes the existence of pairwise mappings between peers, initially
constructed by skilled experts [10]. Relying on the transitivity of these mappings and
using a gossiping algorithm, PGrid extracts new mappings that relate the schemas
of the peers between which there is no predefined schema mapping.

4.2 Mapping based on Machine Learning Techniques

This approach is usually used when the shared data is defined based on ontologies
and taxonomies as proposed in the Semantic Web [5]. It uses machine learning
techniques to automatically extract the mappings between the shared schemas. The
extracted mappings are stored over the network, in order to be used for processing
future queries.

GLUE [8] uses this approach. Given two ontologies, for each concept in one,
GLUE finds the most similar concept in the other. It gives wellfounded proba-
bilistic definitions to several practical similarity measures. It uses multiple learn-
ing strategies, each of which exploits a different type of information either in the
data instances or in the taxonomic structure of the ontologies. To further improve
mapping accuracy, GLUE incorporates commonsense knowledge and domain con-
straints into the schema mapping process. The basic idea is to provide classifiers for
the concepts. To decide the similarity between two conceptsA and B, the data of
concept B is classified using A’s classifier and vice versa. The amount of values that
can be successfully classified into A and B represent the similarity between A and
B.

24 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

4.3 Common Agreement Mapping

In this approach, the peers that have a common interest agreeon a common schema
description for data sharing. The common schema is usually prepared and main-
tained by expert users. APPA [76] makes the assumption that peers wishing to co-
operate, e.g. for the duration of an experiment, agree on a Common Schema De-
scription (CSD). Given a CSD, a peer schema can be specified using views. This
is similar to the LAV approach in data integration systems, except that, in APPA,
queries at a peer are expressed in terms of the local views, not the CSD. Another
difference between this approach and LAV is that the CSD is not a global schema,
i.e. it is common to a limited set of peers with common interest (see Figure 15).
Thus, the CSD makes no problem for the scalability of the system. When a peer
decides to share data, it needs to map its local schema to the CSD. In APPA, the
mappings between the CSD and each peer’s local schema are stored locally at the
peer. Given a query Q on the local schema, the peer reformulates Q to a query on
the CSD using locally stored mappings.

AutoMed [70] is another system that relies on common agreements for schema
mapping. It defines the mappings by using primitive bidirectional transformations
defined in terms of a low-level data model.

Fig. 15 Common Agreement Schema Mapping in APPA

4.4 Schema Mapping using IR Techniques

This approach extracts the schema mappings at query execution time using IR tech-
niques by exploring the schema descriptions provided by users. PeerDB [62] follows
this approach for query processing in unstructured P2P networks. For each relation
which is shared by a peer, the description of the relation andits attributes is main-
tained at that peer. The descriptions are provided by users upon creation of relations,
and serve as a kind of synonymous names of relation names and attributes. When a

Data Sharing in P2P Systems 25

query is issued, some agents are flooded to the peers to find outpotential matches
and bring the corresponding meta-data back. By matching keywords from the meta-
data of the relations, PeerDB is able to find relations that are potentially similar to
the query relations. The found relations are presented to the user who has issued the
query, and she decides on whether or not to proceed with the execution of the query
at the remote peer which owns the relations.

Edutella [12] also follows this approach for schema mappingin super-peer net-
works. Resources in the Edutella are described using the RDFmetadata model, and
the descriptions are stored at superpeers. When a user issues a query at a peer p, the
query is sent to p’s super-peer where the stored schema descriptions are explored
and the address of the relevant peers are returned to the user. If the super-peer does
not find relevant peers, it sends the query to other super-peers such that they search
relevant peers by exploring their stored schema descriptions. In order to explore
stored schemas, super-peers use the RDF-QEL query language. RDF-QEL is based
on Datalog semantics and thus compatible with all existing query languages, sup-
porting query functionalities which extend the usual relational query languages.

Independently of the approach used to implement the schema mappings, P2P sys-
tems attempt to exploit the transitive relationships amongpeer schemas to perform
data sharing and integration [99]. While in traditional distributed systems, schema
mappings form a semantic tree, in P2P systems the mappings form asemantic graph.
By traversing semantic paths of mappings, a query over one peer can obtain rele-
vant data from any reachable peer in the network. Semantic paths are traversed by
reformulating queries at a peer into queries on its neighbors.

5 Querying in P2P Systems

The support of a wider range of P2P applications motivates the evolution of current
P2P technologies in order to accommodate many search types.As said before, a
P2P system should support the operating application with anappropriate level of
query expressiveness. Advanced applications which are dealing with semantically
rich data require an expressiveness level higher than filename-based or key-based
lookup. In the following, we discuss the different techniques used for processing
complex queries in P2P systems. These querying techniques can be distinguished
according to:

• Search completeness:the network is entirely covered by the search mechanism.
Relaxing the search completeness leads topartial lookup.

• Result completeness:the found result set is entirely returned to the user. Relaxing
the result completeness leads topartial answering.

• Result granularity:generally, the returned results are retrieved from, and thus
have the same type as, the original queried data (e.g. music files, XML docu-
ments, database tuples). Returning results at a different level of granularity (by
making data abstraction) leads toapproximate answering. The term “approxi-
mate” may still be ambiguous, due to its wide employment in query processing

26 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

proposals. However, the following sections tend to give a precise definition of
what we are referring to by “approximate answers”.

5.1 Partial Lookup

The advantages of P2P data sharing systems, like scalability and decentralization,
do not come for free. In large-scale dynamic systems, it is nearly impossible to
guarantee a complete search. LetQ be a query issued by a peerp in the system, and
PQ the set of relevant peers, i.e. the peers that store, at least, one query result.Q is
said to be atotal-lookupquery if it requiresall the results available in the system.
Here, the setPQ should be entirely visited. In the case whereQ requiresany kresults,
Q is said to be apartial-lookupquery.

The impracticality of an exhaustive flooding, the limited knowledge provided by
indexes and the errors they may contain, and the incorrect semantic mappings are
reasons among others for considering that all queries in P2Psystems are in reality
processed as being partial-lookup queries. In other terms,the queryQ issued by
peerp in a P2P network of sizeN will be routed in a subnetwork of sizeN′, and
thus a subsetP′

Q ⊆PQ can be targeted. The filename-based, key-based and keyword-
based searches have been presented earlier in this chapter.Here, we discuss three
types of complex queries: range, multi-attribute and join queries. The importance of
these queries has been recognized in many distributed environments (e.g. parallel
databases, Grid resource discovery) since they significantly enhance the application
ability to precisely express its interests.

5.1.1 Range Queries

Range queriesare issued by users to find all the attribute values in a certain range
over the stored data.

Several systems have been proposed to support range queriesin P2P networks.
The query processing in these systems rely on underlying DHTs, or other indexing
structures. Some argue that DHTs are not suited to range queries [9]. The hash func-
tions used to map data on peers achieve good load balancing, but do not maintain
data proximity, i.e. the hash of two close data may be two far numbers. Despite of
this potential shortcoming, there have been some range query proposals based on
DHTs.

Instead of using uniform-hashing techniques, Guptaet al [9] employ locality sen-
sitive hashing to ensure that, with high probability, similar ranges are mapped to the
same peer. They propose a family of locality sensitive hash functions, called min-
wise independent permutations. The simulation results show good performance of
the solution. However, there is the problem of load unbalance for large networks.
In [64] the authors extend the CAN protocol using the Hilbertspace-filling curve
and load balancing mechanisms. Nearby ranges map to nearby CAN zones, and

Data Sharing in P2P Systems 27

if a range is split into two sub-ranges, then the zones of the sub-ranges partition
the zone of the primary range. Thus, the one-dimensional space of data items is
mapped to the multi-dimensional CAN zones. Conversely, multi-dimensional data
items are mapped to data points in one-dimensional space through the space-filling
curve in [27]. Such a construction gives the ability to search across multiple at-
tributes.

Some works rely on Skip list data structure which, unlike DHT, does not require
randomizing hash functions and thus can support range queries. SkipNet [63] is a
lexicographic order-preserving DHT that allows data itemswith similar values to
be placed on contiguous peers. It uses names rather than hashed identifiers to order
peers in the overlay network, and each peer is responsible for a range of strings.
This facilitates the execution of range queries. However, it is not efficient because
the number of peers to be visited is linear in the query range.

Other proposals for range queries avoid both DHT and Skip list structures. P-
Grid [10] is based on a randomized binary prefix tree. One limitation is that P-
Grid considers that all nodes in the system have a fixed capacity, and content is
heuristically replicated to fill all the node capacity. However, there is no formal
characterization of either the imbalance ratio guaranteed, or the data-movement cost
incurred.

BATON [40] is a balanced binary search tree with in-level links for efficiency,
fault-tolerance, and load-balancing. VBI-tree [41] proposes a virtual binary overlay
which is an enhancement of BATON, and focuses on employing multi-dimensional
indexes to support more complex range query processing. Common problems to bal-
anced tree overlay structures is that peer joining or leaving can cause a tree structural
change, and the update strategies may get prohibitive undera high churn environ-
ment.

5.1.2 Join Queries

Distributed data among peers could be seen, in some cases, asa set of large relational
tables fragmented horizontally. Running efficient join queries over such massively
dispersed fragments is a challenging task. Two research teams have done some ini-
tial works on P2P join operations.

In [80], the authors describe a three layer architecture of the PIER system and
implement two equi-join algorithms. In their design, a key is constructed from a
“namespace” (relation) and a “resourceID” (primary key by default). Queries are
multicast to all peers in the two namespaces to be joined. Thefirst algorithm is a
version of the symmetric hash join algorithm [WA91]. Each peer in the two names-
paces finds the relevant tuples and hashes them to a new query namespace. The
resource ID in the new namespace is the concatenation of joinattributes. The sec-
ond algorithm, called “fetch matches”, assumes that one of the relations is already
hashed on the join attributes. Each peer in the second namespace finds tuples match-
ing the query and retrieves the corresponding tuples from the first relation. The au-
thors leverage two other techniques, namely the symmetric semi-join rewrite and

28 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

the Bloom filter rewrite, to reduce the high bandwidth overheads of the symmetric
hash join. For an overlay of 10,000 peers, they evaluated the performance of their
algorithms through simulation. The results show good performance of the proposed
algorithms. However, for the cases where the join relationshave a large number of
tuples, this solution is not efficient, especially in terms of communication cost.

In [72], the authors considered multicasting to a large number of peers inefficient.
Thus, they propose using a set of dedicated peers called range guards to monitor
partitions of join attributes. Join queries are therefore sent only to range guards
which decide the peers that should be contacted to execute the query.

5.1.3 Multi-Attributes Queries

There has been some work on multi-attribute P2P queries. TheMulti-Attribute Ad-
dressable Network (MAAN) [59] is built on top of Chord to provide multi-attribute
and range queries. They use a locality preserving hash function to map attribute val-
ues to the Chord identifier space, which is designed with the assumption that the data
distribution could be known beforehand. Multi-attribute range queries are executed
based on single-attribute resolution inO(logn+ n∗ smin) routing hops, wheren is
the number of peers of the DHT andsmin is the minimum range selectivity across
all attributes. The range selectivity is defined to be the ratio of the query range to
the entire attribute domain range. However, the authors notice that there is a query
selectivity breakpoint at which flooding becomes better than their scheme. Another
drawback of MAAN is that it requires a fixed global schema which is known in
advance to all peers. The authors followed up with the RDFPeers system to allow
heterogeneity in peers schemas [58]. Each peer contains RDFbased data items de-
scribed as triples〈sub ject, predicate,ob ject〉. The triples are hashed onto MAAN
peers. The experimental results show improvement in load balance, but no test for
skewed query loads was done.

5.1.4 Fuzzy Queries

Information Need vs Query:In information systems, theinformation needis what
the user (or group of users) desires to know from the stored data, to satisfy some
intended objective (e.g. data analysis, decision making).However, thequeryis what
the user submits to the system in an attempt to get that information need.

Precision vs Accuracy:Let us examine what is the relation betweenprecisequery
statements and theaccuracyof the returned results according to the information
need. Consider the following relational table (Table 2) that maintains some patient
records in a given hospital1.

Suppose now that a doctor requires information about young patients diagnosed
with Malaria (i.e. the information need). In a conventionalSQL query, we must

1 Body Mass Index (BMI): patient’s body weight divided by the square of the height.

Data Sharing in P2P Systems 29

Table 2 Patient Table
Id Age Sex BMI Disease

t1 36 f emale 17 Malaria
t2 23 male 20 Malaria
t3 45 f emale16.5 Anorexia
t4 33 f emale 23 Malaria
t5 55 f emale 21 Rheumatism
t6 19 male 18 Malaria

decide what are the ages of people considered as young. In thecase where such age
values fall into the[21,35] range, the SQL query is written as follows:

Select all From Patient Where age in [21, 35]
and Disease = Malaria

The query above will return two tuples:t2 andt4. Unlike other contexts where
theyoungterm is well defined, such in banking applications where the age of clients
precisely decides of the advantages they may benefit from, this term may not have
a precise definition in biological contexts. For instance, the tuplet6 may bring ad-
ditional information to the doctor, affecting its analysisor decision. From this point
of view, we say that the query results are not accurate, although the query has been
precisely stated. One way to include tuplet6 in the result set is to expand the scope
of the selection predicate in order to encompass more data. Thus, the previous query
is modified as follows:

Select all From Patient Where age in [18, 35]
and Disease = Malaria

Although it selects more tuples, the query still fails to findtuples lying just out-
side the explicit range of the selection predicate (e.g. tuple t1). This is due to the
crisp boundaries of the search range. Furthermore, there isno measure of inclusion,
i.e. there is no way to know which tuples are strongly satisfying the information
need and which are weakly satisfying it. Introducing fuzziness into user queries is
a viable solution for that problem, i.e. introducing some imprecision in query state-
ments may in some cases improve accuracy.

A fuzzy set is a class withunsharpboundaries. The grade of membership of an
object in a fuzzy set is a number in the unit interval or, more generally, a point in a
partially ordered set [51].

The application of gradual predicates, such as theYOUNG predicate presented
in Figure 16, results in associating membership degrees to tuples in aPATIENT re-
lational table. For example, a tuple whose attribute valuet.age is equal to 21 will
be associated with a membership degree of 0.5 according to theYOUNG predicate.
Hence, tuples can “partially” belong to the result set depending on how well they fit
the information need.

In [77], fuzzy techniques have been used in the design of P2P reputation systems
based on collecting and aggregation peers’ opinions. Characterizing peer’s reputa-
tion by either “bad” or “good” based on some defined thresholdis not adequate, as it

30 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

Fig. 16 Gradual predicate on attributeAGE

would characterize in the same way a positive reputation produced by the collection
of only positive opinions by many users and a reputation built with a limited number
of heterogeneous opinions that produce a value immediatelyabove the threshold; the
same reasoning can be applied to negative reputations.

A recent work tends to introduce fuzziness into the BestPeerplatform [94].
In [68], the authors propose FuzzyPeer, a generic P2P systemwhich supports simi-
larity queries. An image retrieval application is implemented as a case study. Fuzzy
queries like “find the top-k images which are similar to a given sample” are very
common in such applications because it is difficult for humans to express precisely
an image’s content in keywords or using precise attribute values. The authors in-
vestigate the problem of resolving similarity queries. Theapproach that consists in
setting a similarity threshold and accepting objects only above this value is rejected.
In fact, choosing the threshold value is not trivial given that the interpretation of
an image depends on the user’s perception of the domain. The approach proposed
in [68] is based on the following observation: if two queriesare similar, the top-k
answers for the first one may contain (with high probability)some of the answers
for the second query. In FuzzyPeer some of the queries are paused (i.e. they are not
propagated further) and stay resident inside a set of peers.We use the termfrozenfor
such queries. The frozen queries are answered by the stream of results that passes
through the peers, and was initiated by the remaining running queries. Then, the au-
thors propose distributed optimization algorithm in orderto improve the scalability
and the throughput of the system.

5.2 Partial Answering

As seen before, a first repercussion of the scale of P2P systems on query processing
is that all queries canpartially search the network. Another issue is that the amount
of available data in P2P systems is dramatically increasing. More specifically, it
becomes difficult to retrieve a few data items within a large structured data set in
current PDMSs. Consider that a user issues the following query Q: select hotels in
Nice where price ¡ 100(euros) and proximity ¡ 8(km). The setRQ of results returned
by the set of relevant peersP′

Q may include a number of hotels that is so far from
the one required by the user. Therefore, rank-aware querieslike top-k and skyline
queries started to emerge in order to provide a partial result subsetR′

Q, with thek

Data Sharing in P2P Systems 31

results having the highest grades of membership to the result setRQ, i.e. R′
Q ⊆ RQ.

Indeed, the user is interested in the most relevant available results, which may be
specified in the query as follows:select hotels with cheap price, and yet close to the
beach. The degree of relevance (score) of the results to the query is determined by
a scoring function.

Ranking results in a distributed manner is difficult becauseranking is global:all
results (matching a query) have to be ranked w.r.t. each other. In a completely dis-
tributed system, the results returned for identical queries should ideally be the same,
which is not an issue in a centralized implementation. In a large-scale P2P system,
the lack of a central location to aggregate global knowledgemakes the problem of
ranking challenging.

5.2.1 Top-k Queries

Given a datasetD and a scoring functionf , a top-k query retrieves thek data items
in D with the highest scores according tof . The scoring function is specified by the
user according to its criteria of interests.

In unstructured P2P systems, one possible approach for processing top-k queries
is to route the query to all peers, retrieve all available answers, score them using the
scoring function, and return to the user thek highest scored answers. However, this
approach is not efficient in terms of response time and communication cost. Top-k is
a popular aspect of IR. As mentioned before, PlanetP [33] supports content ranking
search in Peer IR systems. The top-k query processing algorithm works as follows.
Given a queryQ, the query originator computes a relevance ranking of peerswith
respect toQ, contacts them one by one from top to bottom of ranking and asks them
to return a set of their top-scored document names together with their scores. To
compute the relevance of peers, a global fully replicated index is used that contains
term-to-peer mappings. This algorithm has very good performance in moderate-
scale systems. However, in a large P2P system, keeping up-to-date the replicated
index is a major problem that hurts scalability.

In the context of APPA, a fully distributed solution is proposed to execute top-k
queries in unstructured P2P systems [74]. The solution involves a family of algo-
rithms that are simple but effective. It executes top-k queries in completely dis-
tributed fashion and does not depend on the existence of certain peers. It also ad-
dresses the volatility of peers during query execution and deals with situations where
some peers leave the system before finishing query processing.

In [92], the authors leverage the usage of super-peer networks, and propose an
algorithm for distributed processing of topk queries on the top of Edutella [12]. In
Edutella, a small percentage of nodes are super-peers and are assumed to be highly
available with very good computing capacity. The super-peers are responsible for
top-k query processing and other peers only execute the queries locally and score
their resources. A limitation of this framework is that it assumes a global shared
schema as well as consistent ranking methods employed at peers.

32 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

As for other complex queries, processing top-k queries in DHTs is quite chal-
lenging. A solution is to store all tuples of each relation byusing the same key (e.g.
relation’s name), so that all tuples are stored at the same peer. Then, top-k query
processing can be performed at that central peer using well-known centralized algo-
rithms. However, the central peer becomes a bottleneck and single point of failure.
In the context of APPA, a recent work has proposed a novel solution for Top-k
query processing in DHT systems [75]. The solution is based on the TA algorithm
[FLN03, GKB00, NR99] which is widely used in distributed systems. The solution
is based on a data storage mechanism that stores the shared data in the DHT in a
fully distributed fashion, and avoids skewed distributionof data among peers.

5.2.2 Skyline Queries

Top-k queries are sometimes difficult to define, especially if multiple aspects (i.e.
scoring functions) have to be optimized. It is often not clear how to weight these
aspects in order to obtain a global rank. Given such a multi-preference criteria, the
concept of skyline queries provide a viable solution by finding a set of data points
that are notdominatedby any other points in a given data set. A point dominates
another point if it is no worse in all concerning dimensions and better in at least one
dimension according to user preferences. Objects belonging to skyline are precisely
those objects that could be the best under some monotonic scoring functions. Most
existing studies have focused mainly on centralized systems, and resolving skyline
queries in a distributed environment such as a P2P network isstill an emerging topic.

[73] is the first attempt on progressive processing of skyline queries on a P2P
network such as CAN [82]. The authors present a recursive region partitioning and
a dynamic region encoding method to enforce a partial order over the CAN’s zones,
so that all the participating machines can be correctly pipelined for query execu-
tion. During the query propagation, data spaces are dynamically pruned and query
results are progressively generated. Therefore, users do not have to wait for query
termination to receive partial results, substantially reducing the query response time.
However, this work focuses only onconstrained skyline queries[32] where users are
only interested in finding the skyline points among a subset of data items that satis-
fies multiplehard constraints. Besides, it suffers from workload imbalance caused
by skewed query ranges.

A more recent work [84] has proposed an efficient solution forskyline query
processing in the context of BestPeer. BestPeer [94] is a P2Pplatform that supports
both structured and unstructured overlays. The solution proposed in [84] is called
Skyline Space Partitioning(SSP), and is implemented in the BestPeer’s structured
network, called BATON [40]. It supports processingunconstrainedskyline queries,
which search skyline points in the whole data space. This work deals with the issue
of imbalanced query load.

Data Sharing in P2P Systems 33

5.3 What about Approximate Answering?

To fix the ideas previously presented, and to eliminate any ambiguity, we precise
here that “approximate answering”,

• Is not only about approximating the search space:In Section 5.1, the fact of
relaxing search completeness, due either to the limited coverage of routing pro-
tocols or to the inaccuracy of data indexes, has been referred as“partial lookup” .

• Is not only about introducing flexibility into user’s queries: By flexible queries
we refer to queries that may contain keywords, wildcards, ranges, or include
user’s preferences (e.g. top-k, skyline queries) or user’s perception of the queried
domain (e.g. fuzzy queries). This flexibility certainly supports users with more
facilities to express their interests.

• Is not only about approximating query evaluation techniques: Query evaluation
techniques, which are initially defined in centralized environments, can be only
approximated in the context of P2P systems. Examples are [49] in which the
notion of relaxed skylineis introduced, and [42] in which the well-known TA
algorithm [87] is extended to adapt to P2P scenarios. For more illustration, the
top-k answers returned to a user in a P2P system do not exactly matchthe set
of top-k answers which would be obtained if all data were available and pro-
cessed under a central coordination. This is considered as anatural repercussion
of the nature of P2P networks on any computation method requiring some global
information.

• It is about returning approximate results, represented at adifferent level of ab-
straction: As P2P systems start getting deployed in e-business and scientific
environments, the vast amount of data within P2P databases poses a different
challenge that has not been intensively researched until recently. In collaborative
and decision support applications, a user may prefer anapproximatebut fast an-
swer. Approximate answers do not belong to the original result setRQ. However,
they provide data descriptions̃RQ, which may be queried or used as an alternative
dataset for other operations input, including querying, browsing, or data mining.

Aggregation Queries

Aggregation queries have the potential of finding applications in decision support,
data analysis and data mining. For example, millions of peers across the world may
be cooperating on a grand experiment in astronomy, and astronomers may be inter-
ested in asking decision support queries that require the aggregation of vast amounts
of data covering thousands of peers [17].

Consider a single tableT that is horizontally partitioned and distributed over a
P2P system. An aggregation query can be defined as follows:

Select Agg-Op(col) From T Where selection-condition

TheAgg-Opmay be any aggregation operator such asSUM, COUNT, AVG, MAX , and
MIN . Col may be any numeric column ofT, or even an expression involving multi-

34 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

ple columns, and theselection-conditiondecides which tuples should be involved in
the aggregation. Recently, traditional databases and decision support systems have
witnessed the development of newApproximate Query Processing techniquesAQP
(e.g. [19], [95]) for aggregation queries. These techniques are mainly based on sam-
pling, histograms, and wavelets.

Initial works have aimed to support aggregation queries in P2P systems by intro-
ducing OLAP techniques which employ materialized views over data ([67], [61]).
However, the distribution and management of such views seems to be very difficult
in such dynamic and decentralized environments. A recent work has investigated
the feasibility of online sampling techniques for AQP in P2Psystems [17]. The au-
thors abandon trying to pick uniform random samples, which are nearly impossible
to obtain in P2P systems. Instead, they have proposed to workwith skewed samples
while being able to accurately estimate the skew during sampling process.

Note that aggregation queries are not flexible, i.e. they areprecisely formulated
with specific operators. However, the aggregate values returned to the user provide
information about tendencies within data. For example, thedata cube [35], which is
the most popular data model used for OLAP systems, generalizes theGROUP BY
operation toN dimensions. Pre-computed aggregate values are stored in the cube
cells and then, the OLAP system provides tools to navigate within these cells. This
allows, for example, to examine the total number of sales of agiven product in the
last week of the current year, which have been reported in allcities of France (see
Figure 17).

product

date

city

Fig. 17 Data cube

Fuzzy summaries

As seen before, fuzziness can be introduced into the user interface to allow more
flexibility in query formulation. Fuzzy queries may be interpreted in a quantitative
preference framework, provided that: 1) a membership function gives a similarity
value of tuples to elementary query requirements (the fuzzyor gradual predicates)

Data Sharing in P2P Systems 35

and 2) fuzzy aggregation computes an overall score that allows ranking items in the
result set. However, we believe that it could not be the users’ very first intention
when they deal with such fuzzy queries. The simple fact that they need to define
membership functions to compute attribute-oriented scores is somehow less natural
than explicitly formulating preferences into query [90].

The literature also offers studies of how to express concepts or needs through
constructs such as operators or linguistic variables [52].One of the main challenges
of extending query languages is to enrich query formulationwithout drastically re-
ducing the performance of the query evaluation process. Linguistic summaries, stud-
ied by Yageret al in [96], serve that concern by expressing the content of a setof
data. The new expression is a description of the data using linguistic terms. Many
works, some prior to Yager’s, fall into the domain of linguistic summaries.

Quantified summaries approaches [71, 78] use fuzzy quantifiers in addition to
linguistic terms to describe the data. For instance, in SummarySQL [78], evaluating
“summary most fromPATIENTS where age is young” provides a degree of validity
for the proposition “mostPATIENTS are young”. Linguistic summaries also com-
prise fuzzy rules-based summaries. Such summaries are discovered by searching
associations and relations between attribute values [23] or by exploiting fuzzy func-
tional dependencies [22, 29]. They produce, in the case of gradual rules of Boscet
al [23], propositions such as “the more age is old, the more patient day is high2”. It
is also possible to summarize records by repeatedly generalizing linguistic descrip-
tions. This approach uses techniques from automatic learning and classification. Its
output is a tree of descriptions. Lee and Kim’s “is-a” hierarchies [53] and the Sain-
tEtiQ model [34] are instances of this approach.

At the end of this chapter, we lighten the importance of querying such fuzzy
summaries in centralized as well as in distributed P2P environments. First of all,
these database summaries are a means of significantly reducing the volume of input
for processes that require access to the database. The response time benefits from
the downsizing. However, this response time gain is made clearly at the expense
of a loss of precision in the answer (i.e. this what we are calling approximate an-
swering). This is of no importance when only a rough answer is required. Besides,
imprecision can be sometimes a requirement. This is the casefor instance when
querying a medical database for anonymous, statistical information. Indeed, precise
information can violate medical confidentiality. The loss of precision is also of no
importance when a request only aims at determining the absence of information in a
database. This is the case when one wants to know if a databaseis likely to answer
the query.

Existing techniques have been proposed for querying fuzzy summaries in cen-
tralized environments [65, 91], however, such techniques have not been studied in
P2P environments yet. The next chapter proposes a solution for managing fuzzy
summaries in P2P systems to support DB applications with approximate query fa-
cilities.

2 Patient day: number of days spent in a hospital.

36 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

References

1. http://www.gnutella2.com
2. http://www.gnutella.com
3. http://www.kazaa.com
4. http://www.napster.com
5. http://www.w3.org/2001/sw/
6. A.Crespo, H.G.Molina: Routing indices for peer-to-peersystems. In: Proc. of the 28 tn Con-

ference on Distributed Computing Systems (2002)
7. A.Crespo, H.G.Molina: Semantic overlay networks for p2psystems. Tech. rep., Computer

Science Department, Stanford University (2002)
8. A.Doan, J.Madhavan, R.Dhamankar, P.Domingos, A.Halevy: Learning to match ontologies

on the semantic web. The VLDB Journal12(4), 303–319 (2003)
9. A.Gupta, D.Agrawal, A.El-Abbadi: Approximate range selection queries in peer-to-peer sys-

tems. In: CIDR (2003)
10. et al, K.: P-grid: a self-organizing structured p2p system. SIGMOD Rec.32(3), 29–33 (2003)
11. et al, Q.: Search and replication in unstructured peer-to-peer networks. In: ACM Int. confer-

ence on Supercomputing (2002)
12. et al, W.: Edutella: a p2p networking infrastructure based on rdf. In: WWW’02 (2002)
13. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution tech-

nologies. ACM Comput. Surv.36(4), 335–371 (2004)
14. A.Rowstron, P.Druschel: Pastry: Scalable decentralized object location and routing for large-

scale peer-to-peer systems. In: IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware) (2001)

15. A.Rowstron, P.Druschel: Storage management and caching in PAST, a large–scale, persistent
peer-to-peer storage utility. In: Proc.SOSP (2001)

16. A.Singla, C.Rohrs: Ultrapeers: another step towards gnutella scalability. Tech. rep. (2002)
17. B.Arai, G.Das, D.Gunopulos, V.Kalogeraki: Approximating aggregation queries in peer-to-

peer networks. In: ICDE (2006)
18. Bawa, M., Manku, G.S., Raghavan, P.: Sets: search enhanced by topic segmentation. In:

SIGIR ’03: Proceedings of the 26th annual international ACMSIGIR conference on Research
and development in informaion retrieval, pp. 306–313 (2003)

19. B.Babcock, S.Chaudhuri, G.Das: Dynamic sample selection for approximate query process-
ing. In: SIGMOD (2003)

20. B.Cooper, H-G.Molina: Ad hoc, self-supervising peer-to-peer search networks. ACM Trans.
Inf. Syst.23(2), 169–200 (2005)

21. B.Maniymaran, M.Bertier, A-M.Kermarrec: Build one, get one free: Leveraging the coexis-
tence of multiple p2p overlay networks. In: Proc of the 27th International Conference on
Distributed Computing Systems ICDCS, p. 33. IEEE Computer Society, Washington, DC,
USA (2007)

22. Bosc, P., Dubois, D., Prade, H.: Fuzzy functional dependencies and redundancy elimination.
JASIS49(3), 217–235 (1998)

23. Bosc, P., Pivert, O., Ughetto, L.: On data summaries based on gradual rules. In: Fuzzy Days,
pp. 512–521 (1999)

24. B.Yang, H-G.Molina: Improving search in peer-to-peer networks. In: Proc of the 22 nd Inter-
national Conference on Distributed Computing Systems (ICDCS) (2002)

25. B.Zhao, J.Kubiatowicz, A.Joseph: Tapestry: An infrastructure for fault-tolerant wide-area lo-
cation and routing. Tech. rep., Computer Science Division,U. C.Berkeley (2001)

26. B.Zhao, L.Huang, J.Stribling, S.Rhea, A.Joseph, J.Kubiatowicz: Tapestry: A resilient global-
scale overlay for service deployment. IEEE Journal on Selected Areas in Communications22,
41–53 (2004)

27. C.Schmidt, M.Parashar: Enabling flexible queries with guarantees in p2p systems. IEEE In-
ternet Computing08(3), 19–26 (2004)

Data Sharing in P2P Systems 37

28. C.Tang, Z.Xu, M.Mahalingam: Peersearch: Efficient information retrieval in peer-to-peer net-
works. Tech. Rep. HPL-2002-198, HP Labs (2002)

29. Cubero, J.C., Medina, J.M., Pons, O., Miranda, M.A.V.: Data summarization in relational
databases through fuzzy dependencies. Information Sciences121(3-4), 233–270 (1999)

30. D.Malkhi, M.Naor, D.Ratajczak: Viceroy: a scalable anddynamic emulation of the butterfly.
In: Proc of the twenty-first annual symposium on Principles of distributed computing, pp.
183–192 (2002)

31. D.Milojicic, et al: Peer-to-peer computing. Tech. rep., HP labs (2002)
32. D.Papadias, Y.Tao, G.Fu, B.Seeger: An optimal and progressive algorithm for skyline queries.

In: ACM SIGMOD, pp. 467–478 (2003)
33. F.Cuenca-Acuna, C.Peery, R.Martin, T.Nguyen: Planetp: Using gossiping to build content ad-

dressable peer-to-peer information sharing communities.In: HPDC-12 (2003)
34. G.Raschia, N.Mouaddib: A fuzzy set-based approach to database summarization. Fuzzy sets

and systems 129(2) pp. 137–162 (2002)
35. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F.,

Pirahesh, H.: Data cube: A relational aggregation operatorgeneralizing group-by, cross-tab,
and sub-totals. J. Data Mining and Knowledge Discovery1(1), 29–53 (1997)

36. Gribble, S., Halevy, A., Ives, Z., Rodrig, M., Suciu, D.:What can databases do for peer-to-
peer? In: WebDB Workshop on Databases and the Web (2001)

37. G.Skobeltsyn, T.Luu,̌Zarko, I.P., M.Rajman, K.Aberer: Query-driven indexing for scalable
peer-to-peer text retrieval. Infoscale p. 14 (2007)

38. G.Wiederhold: Mediators in the architecture of future information systems. IEEE Computer
25, 38–49 (1992)

39. Hellerstein, J.M.: Toward network data independence. SIGMOD Rec32, 200–3 (2003)
40. H.Jagadish, B.Ooi, Q.Vu: Baton: A balanced tree structure for peer-to-peer networks. In:

VLDB (2005)
41. H.Jagadish, B.Ooi, Q.Vu, R.Zhang, A.Zhou: Vbi-tree: A peer-to-peer framework for support-

ing multi-dimensional indexing schemes. In: ICDE, p. 34 (2006)
42. I.Chrysakis, D.Plexousakis, I.Chrysakis, D.Plexousakis: Semantic query routing and dis-

tributed top-k query processing in peer-to-peer networks.Tech. rep., Department of Computer
Science, University of Crete (2006)

43. I.Clarke, S.Miller, T.Hong, O.Sandberg, B.Wiley: Protecting free expression online with
freenet. IEEE Internet Computing6(1), 40–49 (2002)

44. I.Stoica, R.Morris, D.Karger, M.F.Kaashoek, H.Balakrishnan: Chord: A scalabale peer-to-peer
lookup service for internet applications. In: Proc ACM SIGCOMM (2001)

45. I.Tartinov,et al: The Piazza peer data management project. In: SIGMOD (2003)
46. Iyer, S., Rowstron, A., Druschel, P.: Squirrel: a decentralized peer-to-peer web cache. In:

PODC ’02: Proceedings of the twenty-first annual symposium on Principles of distributed
computing, pp. 213–222 (2002)

47. J.Kubiatowicz, D.Bindel, Y.Chen, S.Czerwinski, P.Eaton, D.Geels, R.Gummadi, S.Rhea,
H.Weatherspoon, C.Wells, B.Zhao: Oceanstore: an architecture for global-scale persistent
storage. SIGOPS Oper. Syst. Rev.34(5), 190–201 (2000)

48. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent hash-
ing and random trees: distributed caching protocols for relieving hot spots on the world wide
web. In: STOC ’97: Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing, pp. 654–663 (1997)

49. K.Hose, C.Lemke, K.Sattler: Processing relaxed skylines in pdms using distributed data sum-
maries. In: CIKM, pp. 425–434 (2006)

50. L.Adamic,etal: Search in power law networks. Physical Review E64, 46,135–46,143 (2001)
51. L.A.Zadeh: Fuzzy sets. Information and Control8, 338–353 (1965)
52. L.A.Zadeh: Concept of a linguistic variable and its application to approximate reasoning-I.

Information Systems8, 199–249 (1975)
53. Lee, D.H., Kim, M.H.: Database summarization using fuzzy ISA hierarchies. IEEE Trans. on

Systems, Man and Cybernetics-Part B: Cybernetics27, 68–78 (1997)

38 Rabab Hayek and Guillaume Raschia and Patrick Valduriez and Noureddine Mouaddib

54. Lenzerini, M.: Data integration: a theoretical perspective. In: PODS ’02: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pp. 233–246 (2002)

55. Li, Y., Lao, L., Cui, J.H.: Sdc: A distributed clusteringprotocol for peer-to-peer networks. In:
Networking, pp. 1234–1239 (2006)

56. L.Ramaswamy, B.Gedik, L.Liu: A distributed approach tonode clustering in decentralized
peer-to-peer networks. IEEE Transactions on Parallel and Distributed Systems16(9), 814–
829 (2005)

57. Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.: Corpus-based schema matching. In:
ICDE ’05: Proceedings of the 21st International Conferenceon Data Engineering, pp. 57–68
(2005)

58. M.Cai, M.Frank: Rdfpeers: a scalable distributed rdf repository based on a structured peer-to-
peer network. In: WWW, pp. 650–657 (2004)

59. M.Cai, M.Frank, J.Chen, P.Szekely: Maan: A multi-attribute addressable network for grid
information services. In: GRID (2003)

60. M.Castro, M.Costa, A.Rowstron: Should we build gnutella on a structured overlay? SIG-
COMM Comput. Commun. Rev.34(1), 131–136 (2004)

61. M.Espil, A.Vaisman: Aggregate queries in peer-to-peerolap. In: DOLAP (2004)
62. Ng, W., B.Ooi, K-L.Tan, A.Zhou: Peerdb: A p2p-based system for distributed data sharing.

In: ICDE, pp. 633–644 (2003)
63. N.Harvey, M.Jones, S.Saroiu, M.Theimer, A.Wolman: Skipnet: A scalable overlay network

with practical locality properties. In: USENIX Symposium on Internet Technologies and
Systems (2003)

64. O.Sahin A.Gupta, D., A.El-Abbadi.: Query processing over peer-to-peer data sharing systems.
Tech. rep., University of California, Santa Barbara (2002)

65. Paik, H.Y., Mouaddib, N., Benatallah, B., Toumani, F., Hassan, M.: Building and querying
e-catalog networks using p2p and data summarisation techniques. J. Intell. Inf. Syst.26(1),
7–24 (2006)

66. P.Bernstein, F.Giunchiglia, A.Kementsietsidis, J.Mylopoulos, L.Serafini, I.Zaihrayeu: Data
management for peer–to–peer computing: A vision. In: Proc.of the 5th International Work-
shop on the Web and Databases (WebDB) (2002)

67. P.Kalnis, W.Ng, B.Ooi, D.Papadias, K.Tan: An adaptive peer-to-peer network for distributed
caching of olap results. In: SIGMOD (2002)

68. P.Kalnis, W.Ng, B.Ooi, K.Tan: Answering similarity queries in peer-to-peer networks. Inf.
Syst.31(1), 57–72 (2006)

69. P.Maymounkov, D.Mazieres: Kademlia: A peer-to-peer information system based on the xor
metric. In: Int. Workshop on Peer-to-Peer Systems (IPTPS),pp. 53–65 (2002)

70. P.McBrien, A.Poulovassilis: Defining peer-to-peer data integration using both as view rules.
In: DBISP2P, pp. 91–107 (2003)

71. Prade, H., Testemale, C.: Generalizing database relational algebra for the treatment of incom-
plete/uncertain information and vague queries. Inf. Sci.34(2), 115–143 (1984)

72. P.Triantafillou, T.Pitoura: Towards a unifying framework for complex query processing over
structured peer-to-peer data networks. In: DBISP2P, pp. 169–183 (2003)

73. P.Wu, C.Zhang, Y.Feng, B.Zhao, D.Agrawal, A.El-Abbadi: Parallelizing skyline queries for
scalable distribution. In: EDBT, pp. 112–130 (2006)

74. R.Akbarinia, E.Pacitti, P.Valduriez: Reducing network traffic in unstructured p2p systems us-
ing top-k queries. Distrib. Parallel Databases19(2-3), 67–86 (2006)

75. R.Akbarinia, E.Pacitti, P.Valduriez: Processing top-k queries in distributed hash tables. In:
Euro-Par, pp. 489–502 (2007)

76. R.Akbarinia, V.Martins, E.Pacitti, P.Valduriez: Design and implementation of appa. In: Global
Data Management (Eds. R. Baldoni, G. Cortese and F. Davide).IOS press (2006)

77. R.Aringhieri, E.Damiani, S.Vimercati, S.Paraboschi,P.Samarati: Fuzzy techniques for trust
and reputation management in anonymous peer-to-peer systems. Journal of the American
Society for Information Science and Technology57(4) (2006)

Data Sharing in P2P Systems 39

78. Rasmussen, D., Yager, R.R.: SummarySQL - a fuzzy tool fordata mining. Intelligent Data
Analysis1, 49–58 (1997)

79. R.Dingledine, M.Freedman, D.Molnar: The free haven project: distributed anonymous storage
service. In: International workshop on Designing privacy enhancing technologies, pp. 67–95.
Springer-Verlag New York, Inc., New York, NY, USA (2001)

80. R.Huebsch, J.Hellerstein, N.Lanham, B.Thau, L.Shenker, I.Stoica: Querying the internet with
pier. In: VLDB (2003)

81. S.Ratnasamy, M.Handley, R.Karp, S.Shenker: Topologically-aware overlay construction and
server selection. In: Proceedings of IEEE INFOCOM’02 (2002)

82. S.Ratnasamy, P.Francis, M.Handley, R.M.Karp, S.Shenker: A scalable content–addressable
network. In: SIGCOMM (2001)

83. Sripanidkulchai, K., Maggs, B.M., Zhang, H.: Efficient content location using interest-based
locality in peer-to-peer systems. In: INFOCOM (2003)

84. S.Wang, B.Ooi, A.Tung, L.Xu: Efficient skyline query processing on peer-to-peer networks.
In: ICDE (2007)

85. T.Luu, G.Skobeltsyn, F.Klemm, M.Puh,Žarko, I.P., M.Rajman, K.Aberer: Alvisp2p: Scalable
peer-to-peer text retrieval in a structured p2p network. In: Proc VLDB (2008)

86. Tsoumakos, D., Roussopoulos, N.: A comparison of peer-to-peer search methods. In:
Int.Workshop on the Web and Databases (WebDB), pp. 61–66 (2003)

87. U.Guntzer, W.Balke, W.Kieβ ling: Optimizing multi-feature queries for image databases. In:
VLDB (2000)

88. Ullman, J.D.: Information integration using logical views. In: ICDT ’97: Proceedings of the
6th International Conference on Database Theory, pp. 19–40(1997)

89. V.Kalogeraki, D.Gunopulos, D.Yazti: A local search mechanism for peer-to-peer networks.
In: Proc CIKM. USA (2002)

90. Voglozin, A., Raschia, G., Ughetto, L., Mouaddib, N.: Handbook of Research on Fuzzy Infor-
mation Processing in Databases, vol. 1, chap. From User Requirements to Evaluation Strate-
gies of Flexible Queries in Databases, pp. 115–142 (2008)

91. W.A.Voglozin, G.Raschia, L.Ughetto, N.Mouaddib: Querying the SAINT ETIQ summaries–a
first attempt. In: Int.Conf.On Flexible Query Answering Systems (FQAS) (2004)

92. W.Balke, W.Nejdl, W.Siberski, U.Thaden: Progressive distributed top-k retrieval in peer-to-
peer networks. In: ICDE (2005)

93. W.Nejdl, W.Siberski: Design issues and challenges for rdf- and schema-based peer-to-peer
systems. SIGMOD Record32, 2003 (2003)

94. W.Ng, B.Ooi, K.Tan: Bestpeer: A self-configurable peer-to-peer system. In: ICDE (2002)
95. X.Li, Y.J.Kim, R.Govindan, W.Hong: Multidimensional range queries in sensor networks. In:

SENSYS (2003)
96. Yager, R.R.: On linguistic summaries of data. In: Knowledge Discovery in Databases, pp.

347–366. MIT Press (1991)
97. Yang, B., Vinograd, P., Garcia-Molina, H.: Evaluating guess and non-forwarding peer-to-peer

search. In: ICDCS ’04: Proceedings of the 24th International Conference on Distributed Com-
puting Systems (ICDCS’04), pp. 209–218 (2004)

98. Y.Chawathe, S.Ratnasamy, L.Breslau, N.Lanham, S.Shenker: Making gnutella-like p2p sys-
tems scalable. In: In Proc. ACM SIGCOMM (2003)

99. Y.Halevy, G.Ives, D.Suciu, I.Tatarinov: Schema mediation for large-scale semantic data shar-
ing. The VLDB Journal14(1), 68–83 (2005)

