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An explicit formula for the Hilbert symbol

of a formal group

Floric Tavares Ribeiro

Abstract

In [Abr97], Abrashkin established the Briickner-Vostokov formula for the
Hilbert symbol of a formal group under the assumption that roots of unity
belong to the base field. The main motivation of this work is to remove this
hypothesis. It is obtained by combining methods of (p,T")-modules and a coho-
mological interpretation of Abrashkin’s technique. To do this, we build (p,T')-
modules adapted to the false Tate curve extension and generalize some related
tools like the Herr complex with explicit formulas for the cup-product and the
Kummer map.
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Introduction

0.1 (¢,I')-modules

Let p be a prime number and K a finite extension of QQ, with residue field k. Fix
K an algebraic closure of K and note Gx = Gal(K/K) the absolute Galois group
of K. Let us furthermore introduce Ko, = U, K ((p») the cyclotomic extension of K
and I'x = Gal(K~/K).

The context of this work is the theory of p-adic representations of the Galois group
of a local field, here Gx. We are particularly interested in Z,-adic representations
of Gk, i.e. Zy-modules of finite type endowed with a linear and continuous action
of GK

In [Fon90], Fontaine introduced the notion of a (¢, 'k )-module over the ring A.
This ring is, when K is absolutely unramified, the set of power series >, a, X"



with a, € Ok, a, p-adicly converging to 0 as n goes to —oo and X a variable on
which ¢ and ' act for v € ' via

P(X)=(1+X)P—1; ~(X)=(1+X)XD 1

where x is the cyclotomic character.

A (¢, T'k)-module over Ak is then a module of finite type over Ax endowed with
commuting semi-linear actions of ¢ and I'k.

Fontaine defined an equivalence of categories between the category of Z,-adic repre-
sentations of Gk and the category of étale (p,I')-modules over A . Cherbonnier
and Colmez showed in [CC98] that any p-adic representation is overconvergent, which
established a first link between the (¢, 'k )-module D(V) of a representation V and
its de Rham module which contains the geometric information on V. Berger then,
in [Ber02]|, showed how to recover the de Rham module D;r(V), the semi-stable
module D (V') or the crystalline module De,ys(V') of Fontaine’s theory from D(V).
For absolutely unramified crystalline representations, Wach furnished in [Wac96]
another powerful construction which permits to recover D,y s(V) in the (¢,T'k)-
module D(V'). This construction was studied in details and made more precise by
Berger ([Ber04]). (¢,'x)-modules are also intimately linked to Iwasawa theory as
was shown in works by Cherbonnier and Colmez ([CC99]), Benois ([Ben00]) or Berger
([Ber03]).

Let us eventually cite another significant result brought by Herr in his PhD thesis
([Her98]) who furnished a three terms complex in the (¢, ' )-module of a represen-
tation, whose homology computes the Galois cohomology of the representation.

0.2 The false Tate curve extension

The construction of (p,T'k)-modules lies on the use of the cyclotomic tower and
shows its fundamental role in the study of p-adic representations. But another
extension appears as particularly significant.

Fix 7 a uniformizer of K and m, a system of p™-th roots of =:

m=m et VneN, 7b_ | =m,.

It is then the behavior in extension K, = U,K(m,) which makes the difference
between a crystalline and a semi-stable representation.
Let us cite moreover the following remarkable result.

Theorem 0.1. (Breuil, Kisin)
The forgetful functor from the category of p-adic crystalline representations of G
to the category of p-adic representations of G _ is fully faithful.

This theorem was conjectured by Breuil in [Bre99] where it was shown under some
conditions on the Hodge-Tate weights of the representation, with the help of objects



very similar to Fontaine’s (¢, ' )-modules. Kisin proved this result unconditionally
in [Kis06]. Other results, in particular by Abrashkin ([Abr97, Abr95]), encourage
us to introduce, like Breuil, (¢, I')-modules where the cyclotomic extension K is
replaced by K. However K /K is not Galois and we only get p-modules (also
studied by Fontaine in [Fon90]).

Let us then consider the Galois closure L of K; which is nothing more than the
compositum of K, and K, a metabelian extension of K, the false Tate curve
extension. What we lose here is the explicit description of the field of norms of this
extension. Note Goo = Gal(L/K). Our first result can then, for A’ = A or A, and
Al = A’GL (where A are A Fontaine rings defined in Paragraph 1.2), be expressed
as:

Theorem 0.2.
The functor

{Z,, — adic representations of Gx} — {étale (¢, Go) — modules over A’ }
V — Dp(V)=(V ®7z, AI)GL

is an equivalence of categories.

In fact we show that the (¢, Goo)-module Dr (V) is nothing but the scalar extension
of the usual (¢, 'k )-module D(V) from Ag to A’;.

0.3 Galois cohomology

We are now able to associate with a representation a (¢, G )-module giving a better
control of the behavior of the representation in the extension K. But we would like
to use tools available in the classical framework, first of all Herr’s complex. Recall
that in the usual case of (p, 'k )-modules, Herr showed in [Her98] that the homology
of the complex

LD(V) — =0

0 D(V) D(V)a D(V)

with maps

v—1

computes the Galois cohomology of the representation V.

f1=<90_1> et fo=(v—-1,1-¢)

Since the group G is now of dimension 2, the corresponding complex loses some
simplicity. Let 7 be a topological generator of the sub-group Gal(L/K) and 7 a
topological generator of Gal(L/K) satisfying 7y~ = 7X(¥) it can be described as:

Theorem 0.3.
Let V' be a Zjy-adic representation of Gx and D its (¢, G )-module. The homology
of the complex

0—>D-">DaD&D—>DODGD —>D—>0



where

p—1 v—1 1—0¢ 0
a=|y-1],8=|7-1 0 1—¢ ,nz(fm)—l, §—7, w—l)
T—1 0 XM -1 §—~

with § = (7X0) — 1)(r — 1)~! € Z,[[r — 1]], identifies canonically and functorially
with the continuous Galois cohomology of V.

In fact, we get explicit isomorphisms. In particular for the first cohomology group,
let (z,y,2) € ker 3, let b be a solution in V@ A’ of

(p—1)b=u,

then the above theorem associates with the class of the triple (z,y, z) the class of

the cocycle:
m

T -1 v —1
: =—(c—1)b+~"
c: oy (c—1)b+~ T—1z+fy—1y

where o, ="
Moreover, like Herr in [HerO1l], we furnish explicit formulas describing the cup-
product in terms of the four terms Herr complex above.

0.4 Explicit formulas for the Hilbert symbol

The Hilbert symbol, for a field K containing the group p,» of p"-th roots of unity
is defined as the pairing

(e s KK X KK
n =\ Tk (a)=1
(G, b)pn _ (P\/B) K(a

where rg : K* — G‘}}) is the reciprocity map.
Since 1858 and Kummer’s work, many explicit formulas have been given for the
Hilbert symbol. Let us cite the one of Coleman ([Col81]): suppose that K = Ky((pn)
where K is a finite unramified extension of @, and (p» a fixed primitive p"-th root
of unity. Note W the ring of integers of Ko. If F' € 1+ (p,X) C W[[X]], then
F({p» —1) is a principal unit in K and all of them are obtained in that way. Extend
the absolute Frobenius ¢ from W to W[[X]] by putting ¢(X) = (1+ X )P —1. Denote
for F' € W[[X]]

F(X)P

8 L)

€ WIX]].
Then for F € 1+ (p, X),
Z(F) = (1 - i) log F(X).

Coleman’s formula can then be written as:



Theorem 0.4. (Coleman)
Let F,G € 1+ (p,X) C W[[X]], then

(F(Cpr — 1), G(Cpr — 1))pn = C}[)f;,c}n

where
1 1
F =T —_— log ' — - Z(F)dl ® .
[F, G, rKO/QPOReSXgo”(X) <.,§,”(G)d og p.i”( )dlog G )

Let us furthermore cite the Briickner-Vostokov formula: suppose now that p # 2,
let (,» € K, let W be the ring of integers of Ky, the maximal unramified extension
of K/Qp. Extend the Frobenius ¢ from W to W[[Y]][1/Y] via ¢(Y) = YP. Fix
moreover 7 a uniformizer of K.

Theorem 0.5. (Briickner-Vostokov)
Let F,G € (W[[Y]][1/Y])*, then
(F(m), G(m)pr = G "

where

1 1
[F,Gln = Trgy g, © Res;/spni_l (X(G)dlogF - EX(F)dlog G’“’)

with s € WI[Y]] such that s(mw) = (pn.

The purpose of the second part of this work is to show a generalization of this formula
to the case of formal groups.

Remark that there are other types of formulas, in particular the one of Sen ([Sen80]),
generalized to formal groups by Benois in [Ben97].

We refer interested readers to Vostokov’s [Vos00] which provides a comprehensive
background on explicit formulas for the Hilbert symbol.

0.5 An explicit formula for formal groups

Let G be a connected smooth formal group of dimension d and of finite height A
over the ring of Witt vectors W = W (k) with coefficients in a finite field k. Let K
be the fraction field of W and K a finite extension of K containing the p™-torsion
G[pM] of G. Define then the Hilbert symbol of G to be the pairing

(Ve K* x Gmg) — G[p"]
(z,B)em = rr(@)(B1) —c A

where 7 : K* — G%P is the reciprocity map and 3 satisfies

pMidep = 3.



Fix a basis of logarithms of G under the form of a vectorial logarithm Ig € Ko[[X]]?
where X = (X7,..., Xy) such that one has the formal identity

lG'(X +a Y) = l(;(X) + lg(Y).

!
Complete I with almost-logarithms mg € Ko[[X]]"~¢ in a basis ( G) of the
me

Dieudonné module of G.

Fontaine defined in [Fon77] (see also [Col92] for an explicit description) a pairing
between the Dieudonné module and the Tate module of G

T(G) =lim G[p"].

Honda showed in [Hon70] the existence of a formal power series of the form A =
> n>1 Fn™ with F, € Mg(W) such that

(1 - ;‘) 0 16(X) € My(W[X])).

Let us introduce moreover the approximated period matrix. Fix (o', ... 7oh) a basis
of T(G) where o' = (0!,),>1 such that pidgo, = o’ ;. Approach (o' = (0}),,...,0o")
by a basis (o},,...,0f,) of G[pM]. Then for all 4, choose 64, € F(YW][Y]]) such
that 6%,(m) = 0%,. The matrix Vy is then

Vy — leg(é}w) leg(é}](/[) ‘
pMma(o},) ... pMme(oh))

It is an approximation of the period matrix V.
Now we can state the reciprocity law which generalizes the Briickner-Vostokov law
and which constitutes the goal of the second part of this work:

Theorem 0.6.
Let o € (W[[Y]][&])* and B8 € G(YW([Y]]). Coordinates of the Hilbert symbol
(a(m), B(m))G.m in the basis (0}, ...,0%,) are
1-Aol d (4ol
(Trwyz, © Resy )Vy ! <<( p)() Gw)) diogr(Y') — f(a)ﬁ <pmeﬂ(>ﬁ)>> :

This formula was shown by Abrashkin in [Abr97] under the assumption that K
contains p-th roots of unity. Vostokov and Demchenko proved it in [VD00] without
any condition on K for formal groups of dimension 1.



0.6 The strategy

The main idea of the proof is due to Benois who carried it out in [Ben00] to show
Coleman’s reciprocity law. Let us recall what it consists in.

The Hilbert symbol can be seen as a cup-product via the following commutative
diagram

K* x K* O Lpn

IQXH\L TinVK

HY(K i) % HY(K, ) —= HA(K 52)

where x is Kummer’s map. He first explicitly computed Kummer’s map in terms
of the Herr complex associated with the representation Z,(1), then he used Herr’s
cup-product explicit formulas and he finally computed the image of the couple he
obtained via the isomorphism invg.

For a formal group, the situation is rather similar, we get the diagram

(7)G,M

K* x G(mg) GlpM]

HXHG\L TinVK

HY (K, pyr) % H' (5, GlpM]) = H2(K, e © GlpM)

with
Gl = z/pM2)",

and H*(K, pr ® GlpM)) ~ H*(K,Z/p"Z(1)) ®z,m7 G[p"].

Formulas for the Kummer map and the cup-product are shown in the section on
(¢, I')-modules. The computation of the explicit formula for the map g : G(mg) —
H'(K,G[p™]) constitutes the technical axis of this work.

Abrashkin made use of the Witt symbol, and to conclude via the field of norms
of extension K, /K, he used the compatibility of the reciprocity map between the
field of norms of an extension and the basis field. Some of his intermediate results
([Abr97, Propositions 3.7 and 3.8]) can be directly translated in the language of
(¢, Goo)-modules. Indeed, we want to compute a triple (z,y, z) in the first homology
group of the Herr generalized complex associated with the representation G[p™].
Abrashkin’s results permit to obtain x, the vanishing of y and the belonging of z to
W(mg) (where E is a Fontaine ring, cf. 1.2 below). However we need to know z
modulo XW(mg) and then we have to carry Abrashkin’s computations to the higher
order.

0.7 Organization of the paper

This work splits in two parts. In the first one, we introduce (¢, G )-modules and
give the associated Herr complex with explicit formulas between its homology and



the cohomology of the representation. Then we provide explicit formulas for the
cup-product and the Kummer map in terms of the Herr complex.

The second part is devoted to the proof of the Briickner-Vostokov formula for formal
groups. The main difficulty lie in the fact that the period matrix does not live in the
right place: we introduce an approximated period matrix and show that it enjoys
similar properties as the original matrix modulo suitable rings. Then, we carry out
the computation of the Hilbert symbol in terms of the Herr complex.

Acknowledgements This work is based on my PhD thesis under the supervision of
Denis Benois. I wish to thank him for the precious ideas he shared with me and
the time and energy he offered me. I am also very grateful to Laurent Berger. He
carefully read an earlier version of this paper, some of his remarks allowed me to

improve it.

1 (¢, [')-modules and cohomology

1.1 Notation

Let p be a prime.

Let us recall (cf. [Ser68]) that if K is a perfect field of characteristic p, one can
endow the space KN of sequences of elements in K with a structure of a local ring
of characteristic 0 absolutely unramified and with residue field K. It is called the
ring of Witt vectors over K and is denoted by W(K). Recall moreover that this
construction permits to define a multiplicative section of the canonical surjection

W(K) — K,

called the Teichmiiller representative and denoted by [ |. If R is a (unitary or not)
subring of K, we still denote by W (R) the Witt vectors with coefficients in R. It is
then a subring of W (K).

Fix K a finite extension of @, with residue field k.

Denote W = W (k) the ring of Witt vectors over k. Then Ko = W ®z, Q, identifies
with the maximal unramified sub-extension of Q, in K.

Fix K an algebraic closure of K and denote

Gx = Gal(K/K)

the absolute Galois group of K and C, the p-adic completion of K. Endow C, with
the p-adic valuation v, normalized by

vp(p) = 1.



Recall that the action of Gk on K extends by continuity to C,.
Let us fix € = ({p»)n>0 a coherent system of p"-th roots of unity, i.e. an = (pn—1 for
all n, (1 =1 and ¢, # 1. Then

Koo := U K(Cpr)

neN

is the cyclotomic extension of K. Denote G, = Gal(K/K.) its absolute Galois
group and 'y = Gal(K/K) the quotient.

Let us fix as well m a uniformizer of K and p = (mpn)n>0 a coherent system of p"-th
roots of . Denote

K= | E(mp).
n>0

The extension K, /K is not Galois, so put

L= U K (G, mpr)

n>0

its Galois closure. It is the compositum of K, and K. Denote G = Gal(K /L) its
absolute Galois group and G = Gal(L/K) the quotient. The cyclotomic character

X : Gk — Z, factorizes through G (even through I'k) ; it is also true for the map
Y G — 7y defined by

Vge Gk g(mpn) = anﬁ;bn(g).

Moreover, the group G identifies with the semi-direct product Z, x I'. So G is
topologically generated by two elements, v and 7 satisfying:

yry Tl = x()
Let us fix v and choose 7 such that ¢ (7) = 1, i.e. with

(p) = pe.

We adopt the convention that complexes have their first term in degree —1 if this
term is 0, and otherwise in degree 0.

Remark The group G is a p-adic Lie group so that the extension L/K is arith-
metically profinite (cf [Win83, Ven03]).

1.2 The field E, the ring A and some of their subrings.

We refer to [Fon90] for results of this section. However we adopt Colmez’ notation.

Rings R, W(FracR) and Og; of [Fon90] become E*, A and A.

10



Define E as the inverse limit

E =1lim C,

n
where transition maps are exponentiation to the power p. An element of E is then
a sequence = = (™), oy satisfying
(Y = 2 v e N,

Endow E with the addition

rT+y=s where 3(") = lim ($(n+m) + y(”+m))pm
m—+0o0

and the product

n).

2.y = t where t( = z(™ y(

These operations make E into a field of characteristic p, algebraically closed and
complete for the valuation

vg(z) = vp(m(o)).
The ring of integers of E, denoted by E*, identifies then with the inverse limit
lim Oc,. It is a local ring whose maximal ideal, denoted by mg identifies with

lim mc, and whose residue field is isomorphic to k.

The field E, as well as its ring of integers E*, still has a natural action of Gx which
is continuous with respect to the vg-adic topology. Define the Frobenius
p  x—aP

which acts continuously, commutes with the action of Gx and stabilizes Et.

Let A = W(E) be the ring of Witt vectors on E and At = W (E™).
Any element of A (respectively A1) can be written uniquely as

> 0"

neN

where (2 )nen is a sequence of elements in B (respectively in ET).
The topology on A comes from the product topology on W(E) — EN. This topology
is compatible with the ring structure on A. Tt is weaker than the p-adic topology.
Let us remark that the sequences € and p introduced below define elements in Et.
Denote

X=[]—-1landY = [p].

These are elements of A+ and even of W (mg). They are topologically nilpotent. We
also have a basis of neighborhoods of 0 in A:

{pnA + XmA+}(n7m)€N2 and {pnA + YmA+}(”vm)€N2'

11



Let W[[X,Y]] denote the subring of A* consisting in sequences in X and Y ; it is
stable under the action of G which is given by:

g1+ X) =1+ X)X and ¢(Y) =Y (1 4+ X)¥

and the one of ¢:
o(X)=(1+4+X)P—1and p(Y)=YP.

Remark
The specialization morphism for polynomials

W[Xl,XQ] - A+
Xl, X2 g X, Y

is injective. However, the one for formal power series

WX, Xo]] — At
X1, Xo — X,V

is not a priori.

Let Ag, denote the p-adic completion of Z,[[X]][+], it consists in the set

Aq, - {ZanX”r\mez’ on €Ty and an 0}'

——00
ne”L

It is a local p-adic, complete subring of A, with residue field F,((e — 1)). Define A

the p-adic completion of the maximal unramified extension of Ag, in A. Its residue
field is then the separable closure of Fy((¢ — 1)) in E. Denote this field by E. It is a
dense subfield of E.

1.3 Rings of p-adic periods.
1.3.1 Bgr and some of its subrings

We refer to [Fon94] for further details on these rings.
The map

9. A+ — O,
' anopn[rn] = anopnrg))

is surjective, with kernel Wl(E+) which is a principal ideal of AT generated, for
instance, by w = X/ }(X). Denote

By =lim(AT ®Q,)/(W'(E¥) @ Q)"

n

12



the completion of At ® Qp with respect to the Wl(Eﬂ—adic topology. The action
of Gk on A extends by continuity to B;R. Yet it is not the case of the Frobenius
 which is not continuous with respect to the Wl(E+)—adic topology. The sequence

logle] = S (— 1)1

n>1 "
converges in BjR towards an element denoted by ¢. Define then
Bar = Bjpl1/1].
It is the fraction field of BJR. It is still endowed with an action of Gk for which

G
Bjx =K

and with a compatible, decreasing, exhaustive filtration

Fil* Byp = t" B},

Define now the ring A5 to be the p-adic completion of the divided powers envelop
of A* with respect to W (ET). It consists in the sequences

w™ ~

E an—r such that a, € A" and a,, — 0 p-adically.
n!

n>0

This ring is naturally a subring of Byr. Moreover, the sequence defining ¢ still
converges in A..ys and we set

B s = Acrys © Qp and Bepys = By, [1/t] = Acrys[1/1].

crys
112}
P
converges in Byp towards a limit denoted by log[p] (with the implicit convention
logp = 0). Define then

Moreover, if one chooses p = (po,p1,...) € E with po = p, then the series log

By = Bcrys [lOg [ﬁ] ] .

It is still a subring of Byg.

All these rings, endowed with their p-adic topology, come with a continuous action
of Gk, the filtration induced by the one on Byr, and a Frobenius ¢ extending by
continuity the one on A™. Note that

BSK = Ky and BSF = K.

crys

13



1.3.2 A classification of Gg-representations

We call a Z,-adic representation of G any finitely generated Z,-module with a
linear, continuous action of G and a p-adic representation of Gk any finite dimen-
sional Q,-vector space with a linear, continuous action of Gk . A Zy-adic represen-
tation is then turned into a p-adic representation by tensorizing by Q,.

Let V be a p-adic representation of G . Note

Dgr(V) = (V®q, BdR)GK
Du(V) = (V &g, Ba)®
DcryS(V) = (V XQ, BcryS)GK

Dar(V) (respectively Dy (V'), Derys(V)) is a K (respectively Ky, Ky)-vector space
of dimension lower or equal to the dimension of V' on Q,. The representation V' is
said to be de Rham (respectively semi-stable, crystalline) when these dimensions are
equal.

One immediately sees that crystalline representations are semi-stable and semi-stable
representations are de Rham.

We say as well that a Z,-adic representation V', free over Z,, is de Rham, semi-stable
or crystalline when so is the p-adic representation V' ®z, Q,.

Example The false Tate curve
Let us define the false Tate curve (or Tate’s representation) by

Virate = Zpe1 + Zpea

with the action of Gg:

gle1) = x(g)e1
g(e2) = ¥(g)er + ez

for all g € G, where x is the cyclotomic character and v is defined in Paragraph
1.1. This representation is an archetypic semi-stable representation and will be an
important reference. We will confront our approach with it, in particular modified
(¢, T')-modules. For the moment, just note that the action of G on Vpg, factorizes
through G .

The name ”false Tate curve” comes from the similarity of this module with the Tate
module of an elliptic curve with split multiplicative reduction at p.

1.4 Fontaine’s theory

Let R be a topological ring with a linear, continuous action of some group I' and a
continuous Frobenius ¢ commuting with the action of I. Call a (¢,I")-module on R
any finitely generated R-module M with commuting semi-linear actions of I' and (.
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A (¢,T')-module on R is moreover said étale if the image of ¢ generates M as an
R-module:
Ro(M) = M.

1.4.1 The classical case

Let us recall the theory of (¢,I')-modules introduced by Fontaine in [Fon90).

Set A = ACKe,
Define the functors

D:V i D(V) = (A®g, V)K=
from the category of Zy,-adic representations of Gi to the one of (¢, I'k)-modules
on Ay and

V:M—V(M)=(A®a, M)*!
from the category of étale (¢, I'i)-modules on A to the one of Z,-adic representa-
tions of Gx. The following theorem was shown by Fontaine ([Fon90]):

Theorem 1.1.
Natural maps
ARa, D(V) = A®z, V
A®z, V(M) — A®a, M
are isomorphisms. In particular, D and V are quasi-inverse equivalences of categories

between the category of Zy-adic representations of Gx and the one of étale (¢, 'k )-
modules on Ag.

Example The (p,I'x)-module of the false Tate curve admits a basis of the form
(I®e,b®e; +1®ey) where b € Ay satisfies (7 — 1)b = —1. However Vg is not
potentially crystalline, and then, by a theorem of Wach (cf. [Wac96]), not of finite
height, which means b ¢ A} = A At

We want to build a (¢, I')-module which furnishes more information (which will then
be redundant but easier to use) on the behavior of the associated representation in
the extension K /K or in its Galois closure L/K. For this, we want I' = G .

1.4.2 The metabelian case

Suppose A’ = A or A’ = A. Then, A’ is a complete p-adic valuation ring, stable
under both G and ¢. Its residue field E' = E or E is separably closed.

Set A}, = A’Cr ; if B} = E/“C. Then A/ is a complete p-adic valuation ring with
residue field E’ .
For any Z,-adic representation V' of G, define

Di(V) = (A @z, V)°r
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and for any (¢, Go)-module D, étale over A,
! _ ! =1

Denote these functors by Dy, and Vz, when A’ = A and by Dy, and Vj, when A’ = A.
Remark that D} (V) and D(V) ®a, A} are (¢, Gs)-modules over A’ the latter
being étale. The following theorem shows that they are indeed isomorphic and
assures that D’ is a good equivalent for D in the metabelian case.

Theorem 1.2.
1. The natural map
t: D(V)®a, AL — DL(V)

is an isomorphism of (p, G )-modules étale over A} .

2. Functors D', and V] are quasi-inverse equivalences of categories between the
category of Zy-adic representations of G i and the one of étale (¢, G )-modules
on A’ .

Proof: First, remark that, because of Theorem 1.1., and after extending scalars, the
natural map

D(V) RAx Al -V ®Zp A’

is an isomorphism.
Taking Galois invariants, we get an isomorphism

D(V) @a, AL = (D(V) @a, A)F "5V @z, A = DL(V)
as desired.

We immediately deduce that the functor D from the category of Z,-adic represen-
tations of Gk to the one of étale (¢, Goo)-modules over A’ is exact and faithful.
In fact, this result and the expression of the quasi-inverse of D’ (seen as an equiv-
alence of categories on its essential image) suffice for our use of (p, G )-modules.
This quasi-inverse is obtained with the help of the comparison isomorphism after
extending scalars:

Di(V)@a, A"~ D(V)®@a, A~V @z, A
so that
Vi(DL(V)) =V

and V] is the quasi-inverse of D’ .

Fontaine’s computation (cf. [Fon90, Proposition 1.2.6.]) still applies here and per-
mits to compute the essential image which is still the category of étale (¢, Goo)-
modules over A,. It consists in proving that any p-torsion étale (¢, Goo)-module,
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which is then an E’-vector space, has a o-invariant basis, by showing that for any
matrix (a;;) € GLy(E’), the system

P _ E
l'j = ;1]

admits p? solutions in E'?, generating E'?. The general case is deduced by dévissage
and passing to the limit. ]

Corollary 1.1.
The functor

{étale(p,T' k) — modules over A} — {étale(p, Goo) — modules over A’}
D — D ®AK AIL

is an equivalence of categories.

Example The (¢, G )-module associated with the false Tate curve admits a triv-
ial basis (1 ® e1,1 ® ez). This module is then of finite height over A’ . It would be
interesting to know whether this remains true or not for any semi-stable representa-
tion.

When A’ = A, it follows from a result of Kisin ([Kis06, Lemma 2.1.10]). He builds
the p-module associated with the extension K :

(V ®Zp Ay)Gal(F/Kﬂ)

where Ay is the p-adic completion of the maximal unramified extension of W/[[Y]][+]

in A. He shows that semi-stable representations are of finite height in this framework,
which means that the W[[Y]]-module

(V ®Zp W[[YHm")Gal(f/Kﬂ)’

with W[[Y]]"" = Ay (A", has the same rank as V.

1.4.3 Remark: the field of norms of L/K

As previously remarked, the extension L/K is arithmetically profinite ; consider then
its field of norms Er, /i which can be explicitly described. Indeed if kf, is the residue
field of L, then there exists z € E such that Ep /k identifies with k. ((2)) C E.
We would then like to reproduce the classical construction of (¢, I')-modules by
substituting Bk to the field of norms of the cyclotomic extension K, /K. However,
we then have to build a characteristic 0 lift (in A) of Ej g stable under both actions
of Gix and ¢, that we are not able to do. This problem is linked to the fact that
we cannot make explicit a norm coherent sequence of uniformizers in the tower

K(Cp”vﬂp")'
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1.5 Galois Cohomology
1.5.1 Statement of the theorem

First recall the classical case. Let D(V) be the étale (¢, ' )-module over Ak
associated with a Zy,-adic representation V. Fix v a topological generator of I'r.
Herr introduced in [Her98] the complex

LD(V) — =0

0 D(V) D(V)a D(V)

with maps
-1
f1=<(’0 )andf2=(7—1,1—90)-
v—1

He showed that the homology of this complex canonically and functorially identifies
with the Galois cohomology of the representation V.

This identification was explicitly given in [CC99] and [Ben00] for the first cohomology
group by associating with the class of a pair (z,y) of elements in D(V) satisfying
(v — 1)z = (¢ — 1)y the class of the cocycle

n

-1
v—1

o— —(c—1)b+ y

where b € V ®z, A is a solution of (¢ — 1)b =z and o|p,, =" for some n € Z,.
We will show that there still exists such a complex in the metabelian case. However,
in order to take into account that G, has now two generators, we will modify it a
little.

Let M be a given étale (¢, Goo)-module over A’ . Associate with M the four terms
complex Cy - (M):

0 M- MO MOM-—sMoModM—">M—>=0

where
p—1 vy—=1 1-9p 0

o= ’y—l ,ﬁ: T—1 0 ]-_SD ,U:(TX(W)_L 6_77 90_1>
r—1 0 -1 -~

with § = (7X(0) — 1)(7 — 1)7! € Z,[[r — 1]] defined as follows: set

u :u.(u—l)...(u—n—i-l)EZ for all u € Z, and all n € N.
n n! P ’

Then:
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for 77" converges to 1 in G, and thus 7 — 1 is topologically nilpotent in Z,[[Goo]].

So . Tme__ll - <sz)) (r— 1)L,

n>1
The purpose of this paragraph is to show

Theorem 1.3.
Let V' be a Zy-adic representation of G .

i) The homology of the complex Cy, ., +(Dr(V')) canonically and functorially iden-
tifies with the continuous Galois cohomology of V.

i) Explicitly, let (z,y,2) € Z1(Cypr-(Dr(V))), let b be a solution in V @ A’ of

(SO_ 1)b:l‘,

then the identification above associates with the class of the triple (x,y, z) the
class of the cocycle:
m_1 A" =1

-
: =—(c—-—1)b+~"
c: oy (c—1)b+~ —ct ’y—ly

where o\, =~"T™.
oo

1.5.2 Proof of Theorem 1.3. i)

The functor F'* which associates with a Zj-adic representation V' the homology of
the complex Cy~ (Dr(V)) is a cohomological functor coinciding in degree 0 with
the continuous Galois cohomology of V:

HO(C%%T(DL(V)) = DL(V)SO:L’Y:LTZI = VGK-

The proof consists then in showing that it is effaceable. In order to do that, we
would like to work with a category with sufficiently many injectives and to see V'
as a submodule of an explicit injective, its induced module, which is known to be
cohomologically trivial. But the category of Z,-adic representations of G g doesn’t
admit induced modules. We will then work modulo p" for a fixed r, and even in
the category of direct limits of p”-torsion representations and then deduce the result
by passing to the limit. We have then to show that the homology of the complex
associated with an induced module concentrates in degree 0, which shows a fortiori
the effaceability of F'*. We will yet write this in an explicit manner, which will
let us get the second part of the theorem, and, in the next paragraph, an explicit
description of the cup-product in terms of the Herr complex.

Let Mg, pr—tor be the category of discrete p"-torsion G g-modules, it is also the
category of direct limits of finite p"-torsion G x-modules or also the one of discrete
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Z/p"Z[|Gk]]-modules. Let us remark that the functor Dy, extends to an equivalence
of categories from this category to the one of direct limits of p”-torsion étale (¢, G )-
modules over A’ .

Note finally that this category is stable under passing to the induced module:

Lemma 1.1.
Let V' be an object of Mg, ,—tor, define the induced module associated with V' by:

Indg, (V) := Feont(Gk, V)

the set of all continuous maps from G to V.
Endow Indg, (V') with the discrete topology and the action of G :
Gg xIndg, (V) — Indg.(V)
g-n = [z n(zg)l
Then Indg, (V) is an object of Mg, pr—tor and V' canonically injects in Indg, (V).

Proof: The first part of the lemma is well-known. See [TRO8] for details. The
injection of V' in its induced module is given by sending v € V on 7, € Indg, (V)
such that

Vg € Gk mu(g) = g(v).
O
Let F* denote the composed functor H*(C,, (D1 (—))). The snake lemma gives for
any short exact sequence in Mg, pr—tor

0—-V-=sV'SV =0
a long exact sequence
0— FO(V) — FO(V”) — FO(V’) — Fl(V) — Fl(V") —

which shows that F'® is a cohomological functor.
Let us show that it coincides with the long exact cohomology sequence when V' =
Indg, (V). We use the following result:

Proposition 1.1.
Let U = Indg, (V) be an induced module in the category Mg, pr—tor, then

FY(U) = H'(K,U) =0 for all i > 0.

Let us first deduce Point i) of the theorem from this result. The commutative

diagram
0 FO(Indg, (V)) FO(V') FY(V) 0
0— HYK,V) — H%(K,Indg, (V)) —= H(K,V') —= HY(K,V) —=0

20



shows that HY(K,V) ~ F1(V).

And in higher dimension vanishing of F'(Indg, (V)) and H*(K,Indg, (V)) prove
both that F¥(V') = FFY(V) and H¥(K,V') = H*'(K,V). Thus, by induction,
F{(V) = H'(K,V) holds for all i € N and for any module V in Mg, pr—tor-

Proof of the proposition:

The Galois cohomology part is a classical result (cf. [Ser68, Ser94] or [TROS§]).
For the second part, we will use

Lemma 1.2.
For any V' € Mg pr—tor, there is a short exact sequence:

—1
0 —Indg_ (V) — Dr(Indg, (V) ~—> Dy (Indg, (V)) —= 0.
Moreover, for any a € Zy, there is a short exact sequence:
0 — Indr,, (V) — Indg_ (V) =+ Indg_ (V) — 0.
Finally, there is a short exact sequence:

-1
0 VGx Indr, (V) = Indr, (V) —0.

Proof of the lemma: Consider the short exact sequence

-1
0 Zy Al A 0

and tensorize it with Indg, (V). The existence of a continuous section of ¢ — 1 (cf.
[Sch06]) permits, taking Galois invariants, to get a long exact sequence beginning
with

0 —> Indg, (V)6 —> Dr(Indg, (V) = Dy (Indg, (V) —= H'(L,Indg, (V)

The kernel is given by Indg, (V)9 = Indg (V).
It remains to show the nullity of H!(Gp,Indg, (V)). Remark (cf.[Ser94, Chapitre I,
Proposition 8):

HY(Gp,Indg, (V)) = lim HY (G, Indg, (V)

where the direct limit is taken over the set of all finite Galois sub-extensions M of
L/K. Indeed, the sub-Galois groups G of Gk form, for inclusion, a projective
system with limit

lim Gy = (") Gur = Gr.

and this system is compatible with the inductive system formed by the Gj/-modules
by restriction Indg, (V') whose limit is the Gr-module by restriction Indg, (V).
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To prove the lemma, it suffices then to show for any finite Galois extension M /K
included in L the vanishing of H(G s, Indg, (V).
But, G being open in G, we have the finite decomposition

Gk= |J 9Gu
geGal(M/K)

from which we deduce that, as a Gjr-module, Indg, (V') admits a decomposition as
a direct sum

Indg, (V)= B  FeorlgGu, V)~ € Indg,, (V).
geGal(M/K) Gal(M/K)

So that

H' (G, Indg (V) ~ € H'(Gu,Indg,, (V)
Gal(M/K)

and any of the H' (G, Indg,, (V) is zero, because of the first part of the proposition.
On the other hand, 7 topologically generates Gal(L/K), so that the complex
Indg_ (V) == Indg_ (V)
computes the cohomology H®(Gal(L/K«),Indg_(V)). We get the kernel
Indg (V)GE/ K0) ~ Indp (V).

The vanishing of H(Gal(L/Kx),Indg_ (V)) follows from the same arguments as
for H'(Gp,Indg, (V)) above.

Finally, the complex
Indr, (V) 2= Indp,, (V)

computes the cohomology H*(I'k,Indr, (V')). The surjectivity of v — 1 still comes
from the nullity of H! (I, Indr, (V) which is proved as before. O

From the surjectivity of (¢ — 1) on Dy (U), we immediately deduce that F3(U) = 0.
We also get the kernel of #:

Ker n = {(z,y,2); 2,y € Dr(U) and z € (1 — ) ((7* = D)(@) + (6 = 1) (¥)}-
Let x,y € D1 (U) and fix 2/, ¢y’ € D (U) such that
(1=¢)@)=zand (1-9)(y) =y ;
proving that F2(U) = 0 consists then in proving

Vu € Indg (V), (z,y, (77 = 1)(@) + (6 =9)(y) +u® 1) € Im B.
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But (7X(7) — 1) is surjective on Indg_ (V), thus it suffices to consider 3(0,z' +’,y')
with ' chosen so that (7X(V) —1)(v/) = u.

Let (u,v,w) € Ker(f), i.e. satisfying:

(v=—Du=(p-1pv
(t—Du=(p— 1w
(PO) = 1) = (3 - B

Fix xo € Dr(U) such that (¢ — 1)zg = u. Then the first two relations show that
vo:=v — (7 — 1)xg and wy :=w — (7 — 1)z
lie in the kernel of ¢ — 1 thus in Indg_ (V'), and satisfy furthermore:
(X — 1)y = (7 — &)wo.
Choose now 7 € Indg,__ (V) such that (7 — 1)n = wg. Then
(PO =Dy =)= (y = 8)(r = )y = (7 = 1wy
so that vg — (v — 1)n € Indp, (V') and then there exists € € Indp, (V') such that
(y=Ve=vo—(v—=1)n

so that

(v =1)(n+e) =wo
and

(1 —1)(n+e) = wo.

Define then x := zg + 7 + € and let us verify a(z) = (u,v,w):

=Dz = (p—Dazo+(¢—1n+e) = (p—1zo
(y=Dz = (y=Dzo+(y-1n+e) = v—w+v = v
(t—Dx = (T-Daxo+(T—-1)(n+e) = w—wo+wy =

which proves the proposition. O

1.5.3 Explicit Formulas

Proof of Theorem 1.3. ii)
In order to make the isomorphism explicit, it suffices to do a diagram chasing fol-
lowing the snake lemma: let

(x,y, Z) € Zl(C%%T(DL(V)))a

then through the injection Dr (V) — Dp(Indg, (V)), we can see

(,9,2) € Z'(Cpy.r(Dr(Indg, (V))))-

23



From the nullity of H*(Cy,.-(Dr(Indg, (V)))) we deduce the existence of a V' €
Dy (Indg, (V)) such that

a(t)) = (z,y,2).
Consider now & € Dy, (Indg, (V)/V) the reduction of ¥’ modulo Dy (V), then

V' € H(Cypr(Dr(Indg, (V) /V))) = (Indg, (V) /V)9%.

Thus, if b € Indg, (V) lifts ¥/, the image of (x,y, z) in H'(K,V) is the class of the
cocycle

c:0 ce = (0 —1)b.

But we can choose b = b — b since
(=1 -b)=2—-—2=0

so that b’ — b € Indg,. (V) and then &' — b lifts &/. So if

_n_m
O'|Goo—’)/7'7

write

mo_ 1 n_ 1
r = (e =D D) =~ D)+ ("7 D = oDty T

which concludes the proof of the theorem.
Let us finally show how to pass to the limit in order to get the result for a repre-
sentation which is not necessarily torsion. Let V' be a Zj-adic representation of Gk.
For all r > 1,

Vi=VQZL/Hp'L

is a p"-torsion representation such that
V= lgn V.
Then we know that the continuous cohomology of V' can be expressed as the limit:
Vi>0, H(K,V) = lim HY(K,V,) = lim FY(V,).

It suffices then to show
Vi >0, F(V) = lim F*(V}).

Let H! (respectively B!, Z!) denote the homology group H'(Cy-(Dr(V;))) (re-
spectively BY(Cy .- (DL (V2))), Z(Cip+(Dr(V;)))). The maps in the Herr complex
are Zp-linear so that in the category of Z,-modules there is an exact sequence

0— B —Z' - H —0
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from which is obtained the exact sequence
0 — lim B! — lim Z! — lim H® — lim* B¢
where lim! is the first derived functor of the functor lim. But for all r,

By ~ B'(Cop,r(DL(V))) @ Z/p"Z

so that the transition maps in the projective system (B!) are surjective, and then
this system satisfies Mittag-Leffler conditions. Thus

lim'B! =0

shows that the homology of the inverse limit is equal to the inverse limit of the
homology, as desired.

The explicit formula for H? The isomorphism from H?(Cy  (Dr(V))) to
H?(K,V) can as well be made explicit:

Proposition 1.2.

The identification of Theorem 1.3. between the homology of C, . -(Dr(V')) and the
Galois cohomology of V associates with a triple (a,b,c) € Z*(Cy~.-(Dr(V))) the
class of the 2-cocycle:

T 1 (62 — 1
T—1 o6 1y=-1

(g,h) — sg — sgn + gsp +7™ 5 te

where g, ="'7™, b, =7"*7"? and s is a map Gk — A’ ®V such that

n—1 m_1
So:¢<7 a+'y”7— b>
v—1

T—1

m

where o\, =~"7™ and ¢ is a continuous section of ¢ — 1.
oo

Proof: The proof is, mutatis mutandis, the same as the above one and can be found
in [TROS].

Remark
In the classical Herr complex case, with the class of a is associated the class of the

2-cocycle:

smi (1 v =1
where (p — 1)a = a, 4 is a fixed lift of v in G and g1 = ¥ h, go = "2h’ with
h,h' € Gk and ni,ng € Zy,.
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1.6 The cup-product
1.6.1 Explicit formulas for the cup-product

In [Her01], Herr gave explicit formulas for the cup-product in terms of the com-
plex associated with the representation. The following theorem gives the formulas
obtained in the metabelian case:

Theorem 1.4.
Let V and V' be two Zy-adic representations of G, then the cup-product induces
maps:

1. Let (a) € H)(Cy . +(Dr(V))) and (a') € H(Cyy+(Dr(V"))),

(a) U (a') =(a® a') S HO(C@,%T(DL(V ® V’))),

2. let (x,y,z2) € Hl(C’%%T(DL(V))) and (d') € HO(C’%%T(DL(V’))),

(2,y,2)U(d) = (z®d,y®d,z@d) € H (Cp,-(DL(Va V")),
3. let () € HY(Cipr r(D1 (V) and (', ) € HY(Cprr (DL (V),
(a)U(@,y,7)=(a@2,a®y,a®?) € H(Cpr(DL(V @ V')

4. let (z,y,2) € HY(Cyp~+(DL(V))) and (z',y,2") € HY(Cyp - (DL(V'))),
(z,y,2) U (2',y,2") € H*(Cyp~+(Dr(V ®V'))) can be written as:

Y@y —z@py , 2077 —zR¢ , 20 Vy —yey + 3, )

where

5= 2 ()2

n>1 1

1.6.2 Proof of Theorem 1.4.

The only non trivial identity is the last one. We will use the construction of the pre-
vious paragraph and we can then suppose that V and V' are objects of Ma,. pr—tor-
We will use the exact sequences

00—V —Indg, (V)= V"—0

and
0— FOV) — F(Indg, (V)) — FO(V") = F}(V) — 0

and the cup-product property da Ub = d(a Ub).
More precisely, fix (z,y,2) and (2/,9/,2’) as in the theorem. Then there exists an
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element a € Dr(Indg, (V)) satisfying a(a) = (x,y,2) and @ € (Indg, (V)/V)C%.
Then (z,y,2) U (2/,y/,2') is equal to

ala)U(2',y,2) = d@er,aey,a®?) = fla®r,a®y,a®?)
= (v =D(aer) - (¢ - D(axy),
(T=D(a®a) —(p-1(a® 2,
(

- Daey) - (y -0 )

Now we use the formal identity
(c—1)(a®b)=(c—1)a®ob+a® (c —1)b.

The first term can be written as

(y-Daws — (p-laxy
= (y-Daey' +a®(y—1)' - (¢—-1)a®y —a® (¢ - 1)y
=y’ +a@((y-1)2' = (¢-1)y) -2y
= y®7x/7$®y/.
From a similar computation, we get for the second one
(r—1N@e) - (p-1)(a®7)
= (r-Da@m +a@ (-1’ —(p—1)a®7 —a®(p—1)7
2078 +ax@ (-2 —(p—1)2)—z®7
= 2@y —r®7.

Let us finally write the computation of the third term.
Iterating the identity

(c—1)(a®b)=(c—1)a®ob+a® (c —1)b,

we get by induction:

n

(c—1)"(a®b) = (Z) (0 —1)Fa® (o —1)" "

k=0

First:
(TX) —1Da@y = (XD —1)a@ XNy + a0 (X — 1)y = 620 7XNy +a® (v —8)2’
and

(v-Da@2=(r-1a0y +a@(y-1)7 =y@y2' +a® (y - 1)
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It remains to compute d(a ® 2’). Recall that

) 1 x(7) )
= — 1 n—
5 T—1 n§>:1 < n >(T )
So
5(a®zl) = <X 7))(7__1)71—1(&@2/)
n>1 n
n—1
- (x(*v)) (n ; 1) (r = Dra®rh(r — 1)1k
n>1 " k=0
n k )
n>1 k=1
Which gives the result. 0

1.7 Kummer’s map

In this paragraph, we suppose p is odd and A’ = A.
The purpose is to compute, in terms of the Herr complex, Kummer’s map

Kk K* — HYK,Z,(1)).
More precisely, let
Fvye (WIvllgl)

we will compute a triple (x,y,z2) € Zl(C%%T(AL(l))) corresponding to the image
koO(F(Y)) of
O(F(Y))=F(n) e K.

Remark that there exist d € Z and G(Y') € (W|[Y]])” such that
F(Y)=YIG(Y).

In fact G(Y) can be written as the product of a pth root of unity (which doesn’t
play any role) and a series in 1+ (p) C W[[Y]].

Denote
a=0(F(Y)) e K.
Choose
a=(ag,a1,...,0p,...) EE

such that ag = . Then 3

o ~

— cET

e
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thus

[ _ x+
WEA

and for all 0 € Gk, there exists (o) € Z, such that
o(a) = ag¥(?),
The map o — %) is in fact a cocycle computing x(c). So
o([a]) = [a](1 + X)¥=(?) where k(a) = e¥ € HY(K,Z,(1)).
[a]

On the other hand, the series logm converges in Bg.ys and even in Filchrys,
namely F[(]) e At and 9( 4] ) =1.

F)
For all h € G,

(h—1)log 49 — . (h)t where = log(1 + X).

F(Y)
Define -
b=log & /t € Fil®Byye
Then
Yao(h) = (h—1)(b) Vh € G,
Let X —
fY)=2(F) = e SF)) € WIY]]
then

Choose by € A a solution of

(p—1)by = —f<XY)-

Let X1 = ¢ }(X) = [5%] —1,and w = % € A* then

(¢ —w)(b1X1) = —f(Y).

But reducing modulo p this identity yields to an equation of the form

TP — T = —f(Y)

and then by successive approximations modulo p™, and because ET is integrally
closed, b X1 € AT. But X% € FiloBcrys7 namely the series

7_2 "“L—Z n+1ﬂ”1

n>0 n>0
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converges in FﬂlAc,,ys, and thus

1 t 1 0
Z == Z; € Fil Bcrys-
So 1
by = (blxl).fl € Fil’Bepys.
Moreover, (¢ — 1)by = —@ admits a solution by in A™, so that if we set
) ) _ %
=—-"=-—-"—F"-cA
TTX 2 L

and choose a solution b € A of (p—1)b=x, then b € FilOBCTyS.
So b+ b € Fil’ Bys and

(0= D+ = (5~ 5 — ).

And we have the following lemma:

Lemma 1.3.
Solutions of the equation

in FilOBcrys lie in Q, + Filchrys and are invariant under the action of G,.

Proof of the lemma: Consider

then letting ' = tu, Equation (1.1) becomes

G-

but the sequences (;finf(Y) and (72)1?71 f(Y) converge to 0 in Be,s and

0 () -5

k r
(X =1= 3 S

) r!
1<r<pk )

but
k
€p Acrys
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SO

© k xn . pk(n—l)A
P n+1 n+1 Y
k n
converges to 0 uniformly in n in Bg.s. The same holds for (%) (nX—JFJ . So we
get a solution — >, -, (%)nu of Equation (1.2) in (Fil®B.,s)¢" thus a solution of

Equation (1.1) in (Fil' Berys)9%. And the fact that

(FﬂOBcryS)cpzl =Q

proves the lemma. O
So b+ b € (Fil®Bgys), thus, for all h € G,

(h = 1)(=b) = (h — 1)b = ¥a(h).

We conclude that there exist a unique z € Az(1) and y € Ap(1) unique modulo
(v — 1)Zy(1) such that x(«) is the image in H'(K,Z,(1)) of the triple
(2,y,2) € Z'(Cprr(AL(1)))
where 2 = —(% + 3)f(Y) ® e. Namely, we know that there exists such a triple
¥ —xe(p—1)AL(1)

which shows the existence, and = being fixed, the unicity modulo «(Z,) (where « is
the first map in the Herr complex C, , (M), cf. section 1.5).
We get the more precise result:

Proposition 1.3.
Let F(Y) € (W[[Y]][+]) . Then the image of F(r) by Kummer’s map corresponds

to the class of a triple
1 1
(<1 (5 +5) me) o

with y,z € W[[X,Y]]. This triple is congruent modulo XYW |[[X,Y]] to

<_f(XY) - f(QY) 0, YdlogF(Y)> Qe

where djog stands for the logarithmic derivative.

Proof: We have to show the congruences.
Remark that

, <1 ® 5) _ x(y)®e
X Y(7)X + x(v)(xz(v)—l)Xz + X3y(X)
_ ()1( Szl Xv(X)) ®c
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so that
(v -1z e XYWI[X,Y](1)

where ¢ is topologically nilpotent thus ¢ — 1 is invertible. Then it comes
y € Zy(1) + XYW[IX, Y])(1).

Moreover, let 4 lift v in G, we still have

(Y= Db ®e) =val(?)

where, because of ii) of Theorem 1.3. on the one hand, and Lemma 1.3. above on
the other hand,

F-1b®e+b®e) =va(7) +(F—1)(b®e) =y € Fil' Beys(1)

which shows that
y € XYW([X,Y)(1).

We proceed as well for z:

(11 = (F X)) = 3 E po vy = Xy p(v) mod (xv)2.

Remark moreover

so that
(T=1)f(Y)=X(1—9) (YdigF(Y)) mod (XY)?

and thus
(T—Dz=(¢—1)YdieeF(Y)®e) mod XYW([[X,Y]](1)

which shows
z2€YdiooF(Y)®e+Zy(1) + XYW[X,Y]](1). (1.3)

And if 7 lifts 7 in G,

~ FY(1+X
(F = 1)(b+b) = o () —log EXLEXD) 1y (213 € Fill By,
F(Y)
so that FOY(1L+ X))
- . + 1
= () + (7= Db € log L e+ Fil By
which, combined with (1.3), proves the desired result. ]
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2 Formal Groups

In this section, we will prove the Briickner-Vostokov explicit formula for formal
groups. In [Abr97], Abrashkin proved this formula under the condition that the pM-
th roots of unity belong to the base field, which turns out not to be necessary. To
prove this formula without this assumption, we will explicitly compute the Kummer
map linked to the Hilbert symbol of a formal group in terms of its (¢, I')-module,
then compute the cup-product with the usual Kummer map and the image of this
cup-product through the reciprocity isomorphism, which gives the desired formula.

2.1 Notation and backgrounds on formal groups

Consider G a connected smooth formal group over W = W (k), the ring of Witt
vectors with coefficients in the finite field k. Denote by Ky the fraction field of W
and K a totally ramified extension of K. Under these hypotheses, one can associate
(cf. [Fon77]) with G a formal group law which determines G. Let us recall what it

1S.

2.1.1 Formal group laws

Fix p an odd prime and d > 0 a number. Write X = (X1,...,Xy), Y = (Y1,...,Yy)
and Z = (Z1,...,23).

Definition 2.1.
A (commutative) formal group law F of dimension d on a commutative ring R is the
data of a d-uple of formal power series

F(X,Y) = (F(X1,...,Xg,Y1,..., Ya)hi<i<a € (R[X, Y]))?
satisfying
1. F(X,0) = F(0,X) = X,
2. F(X,F(Y,Z)) =F(F(X,Y),Z),
3. F(X,Y) = F(Y,X).
For a given formal group law F, there exists a d-uple f € (R[[X]])¢ such that
F(X,f(X)) =F(f(X),X)=0

so that on a given area where F and f converge (for instance de, when R is a
local ring with maximal ideal mp, complete for the mg-adict opology), F defines a
commutative group structure, with identity element 0, the inverse of x being f(x).
We then denote the group law by

x+ry:=F(xy).
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Let G be another formal group law over R of dimension d’. Then a morphism from
F to G is a d’-uple of formal series h(X) € (R[[X]])¥ with no constant term such
that

h(F(X,Y)) = G(h(X), h(Y)).

A morphism h is an isomorphism if d = d’ and if there exists g(X) € (R[[X]])¢ with
no constant term satisfying

hog(X)=goh(X)=X

or equivalently if dh(0) € GL4(R). Call h a strict isomorphism when the normal-
ization dh(0) = I holds, i.e., if for all 1 <i < d, h;(X) = X; mod deg 2.

When R is an algebra over QQ, then any formal group F admits a unique strict
isomorphism, denoted by logy from F to the additive formal group law F, : (X,Y) —
X 4+ Y. Call this isomorphism the vectorial logarithm of F.

Coordinate maps of logr form a basis of the logarithms of F, the morphisms from F
to the additive group on R.

2.1.2 p-adic periods

Let us recall the notation of the first part: K is a finite extension of Q, with residue
field k and Ky = W(k)[%] Fix M € N.

Definition 2.2.
If the isogeny pidg : G — G is finite and flat over W of degree p", then G is said to
be of finite height and h is called the height of G.

Let G be a formal group over W of dimension d and finite height h. Define
G[p"] = ker(p"idg : G — G)
the sub-formal group of p™-torsion points of G and denote
T(G) = lim Gp"|(K)
the Tate module of G. Suppose moreover that
G )(K) = Gp")(K),

that is, suppose p™-torsion points of G lie in K.

Then T(G) is a free Z,-module of rank h and G[pM](K) = G[p™](K) is isomorphic
as a Z,-adic representation of Gk to (Z/pMZ)".

The space of pseudo-logarithms of G' (on Kj) is the quotient

{F e K[X]] | FX+¢ Y) = F(X) = F(Y) € O [ X, Y]] @ Qp} /Oro[X]] ® Q-
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Denote it by H!(G). It is a Ko-vector space of dimension h. The space of logarithms
of G is
UG) ={F € Ko[[X]] | FX +¢ Y) = F(X) + F(Y)}.

It is naturally a sub-Ko-vector space of H(G) of dimension d. Moreover, H'(G)
admits the filtration

Fil'(HY(@)) = HY(G), Fil'(HY(@)) =Q(G), Fi*(H'(G)) = 0.
With its filtration, and the Frobenius:
¢ F(X) — F?(XP),

HY(G) is called the Dieudonné module of G.
In [Fon77], Fontaine showed there exists a pairing

HY(G) xT(G) — B}

crys

explicitly described by Colmez in [Col92].

It is defined as follows: let F' € H'(G), and 0 = (0s)s>0 € T(G) ; choose for all s a lift
65 € W(mg)? of oy, i.e. satisfying 6(65) = 0s. Then the sequence p*F(é5) converges
to an element [ dF in Bf.,s independent of the choice of lifts 65 and F. Moreover,
this pairing is compatible with actions of Galois and ¢ and with filtrations: if F is
a logarithm, then [ dF € Fil'BJ, .

This pairing permits to identify H'(G) with Homg «, (T(G), B, ) with the filtration

crys

induced by the one of B;Cys. In order to work at an entire level, let us introduce a

lattice of H'(G), the W-module

D7, ys(G) = Homg, (T(G), Acrys)

crys

endowed with the filtration and the Frobenius ¢ induced by those on Ag.,s. The
functor Dy, is a contravariant version of the crystalline functor of Fontaine’s theory.

The filtration is of length 1 and we denote

DY(@) = D},,s(G) = Homg,, (T(G), Acrys)

crys
and

DY(G) = Fil' D}, ((G) = Homg,, (T(G), Fil' Acrys).

crys
Then D(G) is a direct factor of D(G) of rank d. Fix then a basis {l1,...,l3} of
DY(G) completed into a basis

{ll,...,ld,Tnl,...,Tnh_d}

of D°(@).
For all 1 <i <d, ¢(l;) takes values in

@(FﬂlAcrys>d C (pAcrys)d
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s, %(li) takes values in D°(G). Moreover, [Fon77] and [FL82] show on the one hand
that ¢ is topologically nilpotent on D°(G) (because G is connected) and on the other
hand that the filtered module D°(G) satisfies

D°(G) = pD"(G) + %DI(G).
So, define ¢ the endomorphism of D° by
o(l;) = f(lz) V1<i<d, and
s(m;) = o(m)V1<i<h-—d,

then its matrix £ € GL,(W).
Let 1="(l1,...,l,) and m = ‘(mq,...,my_y), then

So, we can write a block decomposition
A B
£l =
¥

1= A7(1) + Bip(mn) and m = C%(l) + Dy(m).

so that

But ¢ is topologically nilpotent on D%(G), and we can write

l:ZFuL(l), m:ZF;L(D (2.4)
u>1 p u>1 p
where
Fi=A, F,=BpC), F,=B| [] ¢"D)]¢" 1C) foru>2,
1<k<u—2
and

F{=C, F5=Dp(C), F,=( [[ ¢"(D)¢" (0.
0<k<u—2

Define a Z,-linear operator

A= ZFuLp“

u>1

on Ky[[X]]%. The vectorial formal power series

X)) =X+y An;fnx)

m>1
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gives then the vectorial logarithm of a formal group F' from which we can recover
the formal group law F by:

F(X,Y) =13 (la(X) +1a(Y)).

In [Hon70], Honda introduced the type of a logarithm. A logarithm log is of type
u € Mag(W)[[¢]] if u is special, i.e. u = ply mod ¢ and if

u(log) =0 mod p.

We remark that ply — A is special and that, by construction, I 4 is of type ply — A.
Moreover, 1 is also of type pI; — A because of Equation (2.4).

Furthermore, Honda showed in [Hon70, Theorem 2| that two formal groups with
vectorial logarithms of the same type are isomorphic over W. Thus, we can replace
the study of the formal group G by the one of F', which is easier because we know
an explicit expression of its logarithms, which gives us a control on denominators.

2.2 Properties of the formal group F

In this section, the reader can refer to [Abr97] from which we recall principal con-
structions.

Let us first describe the Dieudonné module of F'.
We already know a basis of the logarithms, the coordinate power series of the vec-
torial series

A™(X)
pm

X)) =X+y

m2>1

Complete it into a basis of H!(F) by putting

DESED AR

u>1

Let 0 = (05)s>0 € T(F'). For all s > 0, choose a lift 65 € W(mE)d of os, that is, with
0(6s) = 0s. Then the following lemma says that the sequence p*idpo, converges in
W(mg)? towards an element j(o) independent of the choice of lifts:

Lemma 2.1.
1. The series | 4 defines a continuous one-to-one homomorphism of G g-modules

la : F(W(m]:])) - Agrys ®Zp QP'
Moreover, the restriction of [ 4 to F(W'(mg)) takes values in (Fil' Agys)?.

2. The endomorphism pidr of F(W (mg)) is topologically nilpotent. The conver-
gence of pidp to zero is uniform on F(W?!(mg)).

37



3. The map j : T(F) — W'(mg)? is well defined and provides a continuous
one-to-one homomorphism of Gg-modules j : T(F) — F(W'(mg)).

Proof: Point 1. is Lemma 1.5.1 of [Abr97].
Point 2. follows from the fact that W' (mg) = wW(mg) with w = X/ 1(X) €
W(mg) + pA* and that the series corresponding to pidp can be written as

pidpX = pX + higher degrees.

Let us recall briefly the proof of Point 3.:
For all s > 0,
e(psidpés) = 0y — 0

so that p*idpos € F(W?'(mg)). On the other hand, for all s > 0,
pidposi1 = 6; mod F(W(mg))

thus
p*Midposi1 = pfidpds mod piidp (F(W'(mg)))
And Point 2. provides the convergence of the sequence (p*idpos)s.
The fact that the convergence is given without compatibility condition on the lifts

shows the independence of the limit with respect to the choice of these lifts. Namely,
let (65)s>0 and (6})s>0 be two given lifts of (0s)s>0, then for any lift (67)s>0 where

N/ ~ N
Vs >0, 6, = 05 Or O,

we still have the convergence of (p®idpo!)s, from which we deduce that the limits
are the same.
The remainder is straightforward. 0]

Composing the vectorial logarithm [ 4 with j gives a Gi-equivariant injection that
we will denote by 1 from T(F) into (Fil' A.ys)?. This map satisfies then for any o
in T(F):
1(0) = l4(lim p’idpos) = lim p®l4(6s).
S§—00 S§—0Q

Put now

m:ZF/w,

u>1 p

then ( ! ) provides a basis of D°(F) with 1 a basis of D*(F). The map
m
1) h
m ° T<F) - AC’I"yS
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then factorizes through

la
( > : F(Wl(mf«])) - Agrys'
ma

This map is the period pairing. Recall (cf. [Abr97], Remark 1.7.5) that this map
takes values in AT[[XP~/p]]. It is also a consequence of Wach’s computation for
potentially crystalline representations (cf. [Wac96]).

Fix now a basis (o,...,0") of T(F). We can then introduce the period matrix
v (MO0 XD ) MR 0 ) 0 G (FracA* (X7 )
m(o!) ... m(o") h h '

It satisfies

fog 0 Vy_gy
0 Ih-ap

Remark that the inverse of V is then the change of basis matrix from the basis
(o',...,0") to a basis of

Derys(T(F)) = (T(F) ®z, Acrys) %o,

the covariant version of the crystalline module of Fontaine’s theory associated with
T(F).

Let u € T(F)®Acrys, and U be the coordinate vector of v in the basis (o, ..., oh)V_1
of Depys(T'(F)), then we can compute the coordinates of

‘We know that

pId 0 Idf 0 pId 0
V) = P Y= 2%
o) ( 0 Ihd) ( 0 Ip_ap 0 Ipq

so that
-7 0
V—l _ V—lg—l b d
(V) 0 I,
and coordinates of ¢(y) in the basis (o',...,0")V~! are then

4
Pl R I
0 Inh—ap

A
Keeping this in mind, the following lemma shows that (p

acts as the Frobe-
In_q
nius on Deyys(T(F)).
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Lemma 2.2.
The following equality holds:

Proof: Compute:

A%

La) + Byp(ma) = )+ > Be F’(p A(ZA)

(
p u>1

for BpF! = F,11 for all u > 1. And:

(lA)+D<p(mA):C (la) + > Dy F/“Og ) _m

u>1

C

SRS

since DpF,;, = F,_; for all u > 1. UJ
Abrashkin also computed the cokernel of injection j (cf. [Abr97, Proposition 2.1.]):

Proposition 2.1.
There is an equality

(A =p)ola(F(W(mg))) = (A —p) o la(F(W'(mg)))

and the following sequence is exact:

Remark Beware that if z € F(W(mg)),

e(la)(z) = p(la(z))

and then
A(la)(z) = Ala(z))

hold if p(x) = «P (e.g. when z is a Teichmiiller representative) but not in general
! On the left side, ¢ and A act on W{[[X]], whereas they act on A.rys on the right
side.

Abrashkin showed furthermore (cf. [Abr97, Lemma 1.6.2.])

Lemma 2.3.
F(mg) is uniquely p-divisible.
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This provides a continuous one-to-one G g-equivariant morphism
§ : F(mg) — F(W(mg))APela=0

defined as follows: let € F(mp), then because of the lemma, for all s > 0 there
exists a unique x5 € F(mg) such that

p’idpzs = .

Thus the sequence (p*idr[z;])s converges to an element §(x) in F'(W(mg)).
¢ is a morphism since

0(z +ry) = limp*idp(zs +F ys] = lim p®idp([zs] + £ [ys] +F us)

with us € pW(mg) where the convergence of p*idr towards zero is uniform.
Moreover, for Aol 4 coincides with A(l4) on Teichmiiller representatives, we get the
last point:

(A—=p)ola(d(z)) = (A-p)la)((z)) = 0.

Finally, remark

Namely, for all s > 0,
0(p°idplas]) = p*idpb([zs]) = 0([x]).

2.3 The ring Gy, and some subrings.
2.3.1 Introducing the objects

Fix e the absolute ramification index of K.
In [Ber02], Berger introduced for s > r > 0 the ring A[Sm], the p-adic completion of
the ring

At

Yre/o-D)' p

p ysep/(p—1) ]

Let us then introduce for a > b > 0, the ring

- Y(le p
— AT
g =4 |5 55|

which for integers a and b admits the description

~ 1 > >
g[b al = Z anY" | an € At |::| , aevp(an) +n >0 forn >0 ‘
7 nez p bevy(an) +n >0 forn <0

Note that the expression } 7 a,Y™ for an element of Gy, o) is not unique. The ring
Olb,q) 1s naturally, for a > o > 8 > b a subring of A[a(p_l)/pﬁ(p_l)/p]. We even have
inclusions

Afa(p-1)/pbp-1)/p] C ba] C Ala(p-1)/p,8(p—1)/p)-
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Endow then Gy, ;) with the induced topology, which is well defined since inclusions

A[Tl,sl] - A[T27

s2]

for r1 <19 < s9 < 87 are continuous.
This topology then admits as a basis of neighborhoods of zero

{{ > an <Y:>n + D bn (%)n;ambn € A+} +pkg[b,a]}

n>N n>N

N,keN

For a1 > as > by > by > 0 we still have continuous injections

g[al»bl] - g[a2:b2]'

Denote then for a > b > 0 by Gy, 4 the p-adic completion of (J,,+, Gpp,q- For integers
a and b, it admits the description:

. aevp(an) +n >0 for n > 0 and
Gpa = Zanyn;an c At [} , aevp(an) +n oo,
’ p n—roo
nez bevy(an) +n >0 forn <0

Because of the inclusion

Ug[b»a]r—) U Ala(p-1)/p,8(p—1)/p]
a>a a>a,B>b

we endow G, o with the topology induced by the p-adic toplogy of the p-adic com-

pletion of U g g2 Alao—1)/p.8(-1)/s]-
Let us also introduce for b > 0,

Gpoet = () G = A || 75] | € A

Yeb
a>b

which is for b integer
Gib,oo] = Z anY ™ an € AT, bevy(an) +n >0 for n <0
n<0
Remark that the Frobenius
©g Z a, Yo" 1 Z anyben _ Z SO(Q’n)y'paen + Z @(an)ypben
n<0 n>0 n<0 n>0

defines a one-to-one morphism from Gy, ) (vespectively Gy o) into Gpyp e (respec-
tively Q[pbma[).
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Introduce for integers a and b the subring of Gy, 4

Gy = WD || |

> f >
_ {Zanyn; a, € Ko, aevp(an) +n >0 forn>0 }

nez bevp(a,) +n >0 forn <0

and Gy, o[ the subring of Gy, . admitting the description

aevp(a,) +n >0 for n > 0 and
Gy [pa] = Z anY" ; an € Ko, aevp(an)+ n o too,
nez bevp(an) +n >0 forn <0
Finally, for b > 0,
p
gY,[b,oo[ = ﬂ gY,[b,a] = W[[YH HY@IJH

a>b

= ZanY";an € Ko, bevy(a,) +n >0
n<0

Contrary to the above situation, the expression ) ., a,Y™ is unique as it is shown
in the following

Lemma 2.4.
1. IH g[bﬂ] [%}, one has g[()’a} [%} ﬂg[b’oo[ [%] = A+.

2. An element of Gy 4 or Gy q can uniquely be written as ), a,Y™ with
an € K.

3. Fora > a > (3 > b, and ) designating | or |, one has

1
9v,18,0] u () Gb.a) = Gv.jpa)-

Proof: The first point can be shown in Berger’s rings A[&T], in fact in the ring

A[sm[ [%] + A[Oﬂ [ﬂ Any element of this ring is of the form > _p"( — %7)

with z,, € At [W] and y, € At [%] Such an element is zero when
l k A A
Py P =Y Y p"yn € Aggooi [ Apn-
neN neN

The condition is that for all N € N,

> 70l =Y ) € pV AL
n<N
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That is

P T;Vp"afn cAT+pVAT {Yrepl/p(p—l)]

and then

n A+ o N-lXx+ b }
;Vp T € AT HPTTA [Yrep/(p—l) ’

and similarly

Z pnyn e At +pN—l/seA+
n<N

Thus the limit p! YonenP'Tn = V& Y nenP"Yn lies in plA+ﬂYkA+ = plYFAT,

hence
WESSNEE

neN neN

ysep/ (1)
, .

as claimed.

Because of the first point, it is enough to prove the second one for }° _ja,Y" and
Y ns0 @Y ™. It is to prove that such a series converges to zero if and only if all the
an actually are zero. In the first case, it is a series converging in A and the natural
map Gy, 3 00] — A is a continuous one-to-one morphism. Successive approximations
modulo p" and modulo Y* then provide the result. On the other side, Gy [0,) 18

naturally a subring of the separable completion of A [ﬂ for the Y-adic topology.

The result then follows from successive reductions modulo Y*.

We use similar techniques to show the last point. Again, because of the first one,
it suffices to prove both Gy, g o [%] NGp,oof = Gy, oo a0d Gy [0,a] [ﬂ NG =
Gy [0,0)- First consider then z =3 _ja,Y" € igyﬁ[ﬂm[ with fevy(an) +n+ A >0
for all n. We suppose furthermore that z belongs to Gy o[, that is, it can be written
as > e bnsr with b, € A*. The identity

Z anY” - Z b Yebn

n<0 neN

makes sense in ;%g[ﬁaoo[’ thus in A. Denote by ng the highest integer, supposing it
exists, satisfying bevy(an,) + no < 0. We can then suppose that the identity above

Z apY" = Z banTT;n.

n<ng neN

is of the form

Multiplying by Y?t¢¥»(an0) and reducing modulo p*»(%n0) yields then to

Up(ano)
Z a, Yn—i—bevp(ano) — Z b pnyeb(vp(ano) n) mod pvp(ano)

TLTLO
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but the right term is entire (it belongs to A*) and not the left one, whence a
contradiction.
Now, consider as before an identity of the form

yean
n __

OURCED i

n>0 neN

and denote by ng the lowest integer satisfying aevy(an,)+mno < 0. It can be reduced
to an identity of the form

n Y@(ITL
ZanY :an —.

n>ng neN p
Multiplying by p~?»(@0) and reducing modulo Y01 yields to

19—1;1[,(L17L())anOY'noE Z bnp—vp(ano)—nyean mod ynotl
0<n< =0

and the contradiction comes from the inequality

o
n < & < _Up(ano)

hence the right term is divisible by p, and not the left one.
The case of Gy;0,a] (19[0,a] = Gv;[0,q| follows from a similar argument. 0

Remark As said before, periods of formal groups lie in the ring
AF(IXP/pl) = AF[[YP?/p]] = Gio .

We can also recover some well known rings by

AT = G
Bl,, = %l
b>0

2.3.2 Some topological precisions

Lemma 2.5.
1. Finite sums

N fyea\n p \® .
Zoan( P > +bn<ﬁ> ;anabneA ,NEN

form a dense subset of Gy, o). The same holds for the sub-algebra

N ea\ M n _
g[bﬂ}ﬂAI:;]:{Zan(Yp > +an<%> ;an,bneA+,NeN}.
n=0

neN
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2. The topology of Gy, ) is weaker than the p-adic topology.
3. Gp,q) Is Hausdorff and complete.
4. The ring Gy, ) is local with maximal ideal

m[b,a] = {Zan (Y;a> + bn (%)n;an,bn c AJF} =+ W(m]:])

n>1

and residue k.
5. Any element of mp, , is topologically nilpotent.
6. Powers of the ideal

b= {0 () o ) i e

n>1

form a basis of neighborhoods of 0 consisting in ideals of Gy, ).

7. The ring Gy, [ is local with maximal ideal my, o) the p-adic completion of

U mpa

a>a
and with residue field k.
8. Any element of mp, o[ is topologically nilpotent.
Proof: Let us introduce the notation

- (5 () + () e

n>N n>N

Recall that a basis of neighborhoods of zero in Gy, ) is given by

{Qiﬁﬂ + pkg[bﬂ}}

N,keN

This shows the first two points. The fact that Gy 4 is Hausdorft follows from that

A[Sﬂ is (cf. [Ber02]).

The following shows that the topology on Gy ) is metrizable, and one can immedi-

ately see from the form of neighborhoods of zero that any series with a general term

going to 0 converges. This shows that Gy 4 is complete.

We will prove Points 4., 5. et 6. simultaneously: we first show mp, o is an ideal, then

that any element of my, ., has a power belonging to m[lb al and we make powers of

m[lbﬂ} explicit, which allows to conclude.
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Let

S () ()

n<0 n>0

we say that x is the element of G 4 associated with the sequence (an)nez € (A*)
Let y be the element associated with another sequence (b, ),cz, then write the prod-
uct of two elements x and y of Gy, 4

ey (M) e ()

n<0 n>0

is associated with the sequence

STV R b+ asgbian) + Y arbpok  ifn >0

Cn = k>0 7nk’=O (25>
Z Ye(afb)k(akbn_k 4 an—kbk) + Z a_kbpyk if n <0.
k>0 k=0

This yields to

co = Z yela=binlg p_, (2.6)

nez

and shows that my, ;) is an ideal.
Suppose z € mp, ). Because of the previous computation, one can define for all k € N
a sequence (¢ k)nez such that z¥ is associated with (¢nk)nez. The fact that there
exists a k such that 2* € m[lb’a} is equivalent to that the rest ¢y € E* of co,k modulo
p has a valuation greater or equal to a — b. But because of Equality (2.6),

vg(Co,k) > min(a — b, kvg(ap))

which shows z* € m[lb’ al for k large enough.

Let us show now that mf“b ] consists in elements associated with sequences (an)nez
such that
Vn € Z, vg(ay) > 9271;(”)

where

satisfying the induction relation

giyn—=1+a-b if —k-1<n<0
gty =4 gFn+1)+a-b H0<n<k+1 (2.7)

0 otherwise
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or equivalently

k- .
1 gipyn+1) ifn<0
Gap (W) =13 % . (2.8)
’ Jap(n—1) ifn>0
Remark also that gf » is even and decreasing on N.
Let then z € mfb ] be associated with a sequence (ay)ncz satisfying the previous
induction relation, let y € mf“b’a} be associated with (by)nez and xy € ml[‘;)';l] be

associated with (¢,,)nez which we compute as before.

Equations (2.5) show the relation for n > 0 (case n < 0 provides the same computa-
tion):

(a —b)r+ gsjb(n +7), forr >0,

(a—b)r+gk,(=r),  forr>0,

g§7b(r), for 0 <r < n,

ghp(n) +a—b

VE (6n) > inf

which gives because géf p is even and decreasing

(a—b)r+ gf’b(n +7), forr >0,
vp(En) > inf { gk, (n—1)
gf:’b(n) +a-—0

(a—b)r—i—gg’b(n—l-r):(a—b)(r+{ .

is strictly increasing in 7 and

(k—|n+r|+1)+J>

(a=b)+ghy(n+1) > gitt(n)
because of (2.7). Likewise,
gap(n) +a—b>gitt(n—1) > gkt (n)
and finally, according to (2.8),
k k
ga,b(n - 1) = gajl;l(n)'
The minimum is then equal to gsgl(n), which lets us conclude on the description of
k b
Mo,a)°
Point 6. follows from this description, and proves 5. and 4.
At last, 7. is a consequence of 8., which is left to show. Remark that any element
T € mp 4 can be written as

T =20+ PpT1; To € Mo, T1 € Gpq|

for some o > a. We have to show

prPaiat — 0.
kn——+o0
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When k goes to infinity, it is clear. For the case where n goes to infinity, remark
that the convergence of zf to 0 in Gp ) implies for n large enough that zf; belongs
to pN G + g;fjo [ for a > o/ > a, from which we conclude. O

Remark The preceding lemma makes Gjp ) into a complete valuation ring with
the valuation given by

where
ky, = sup{k € N, 2" € m]fb,a)}.

The following lemma provides a link between algebras gp; ,) and Fontaine’s rings.

Lemma 2.6.
1. Gjop) injects continuously in Acyys.

2. Frobenius ¢ of A.rys and g coincide on Q[OW].
3. Any non zero element of Gy (o, Is invertible in Gy, 1 1] ®z, Qp.
4. The series defining t/X converges in Glo,p] Where it is invertible.

Proof: The first point consists in showing that % € Agpys for all n and converges
to 0. Let E be an Eisenstein polynomial for 7, it is of degree e and E.(Y") generates
WL(ET) so that Agys is the p-adic completion of A+[E=00"

n!
Y;:n belongs to this ring and p-adically converges to 0.

| and it is obvious that

The second point is an immediate consequence of the first one.

- N
Now let = € Gy[g ], then there exists a sequence (ay)nen € (AJr [%D such that

T = ZanY”

neN
with
Vn € N ; epvp(an) +n > 0.
Then,

VneN; e(p— 1vp(an) +n > n
p

and for all z non zero, e(p — 1)vy(an) + n goes to 400 when n — +o0, it reaches
its minimum K a finite number of times and we fix ng the greater integer with
K =e(p — 1)vp(an,) + no, so that
e(p— Dvp(an/an,) +n—np >0 if n < ny (2.9)
e(p— Dvp(an/an,) +n—mng >0 if n > ng (2.10)

and
n
Vn > ng ; e(p — vp(an/an,) +n —np > P K
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hence it comes
lim inf e(p — Dvp(an/an,) +n —ng
n—oo n— no

which, combined with (2.10), shows the existence of some 0 < A < 1 such that

1
277
p

e(p — Dvp(an/an,) +n —no > A(n —no)

h
ence p—l
‘T

. —1
This shows that for a = = > p — 1,

vp(an/an,) +mn —ng > 0.

a
- y"n—no S m[07a} .

a
n>ng O

Inequality (2.9) shows furthermore

no—1 a
iyn—no c m[p—l,oo[
n=0 Ano
and finally
a
YT e mp, ).
n#no tno
Then,

T=an Y™ (1+€); e€mp_y g

is invertible in Gy[,_1,q) ®z, Qp C Gy, jp—1,p-1] ¥z, Qp-
Remark finally

X=[—1U+po=YPC Nyt pv; uveAt

so that
XPh=vePy 4+ pv ;W0 e AT

from which we deduce that for s prime to p,

XP's—1 XP(s=1) xp'—1
prs - s pr
P pek Bt —k
r YPer p-1
- XP (s—1) pruk
= P
p"—1 kpr:l r
" YPpek p-1
- XP (s—1) pkuk
k=0 p
where u; € At. But
pr—1
>r
p—1 7
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so that for all n > 1,

X"/ € Gpoyy
and ;;:%11 —r goes to +00 with 7 — oo, which shows that X" ! /n converges p-adically
to 0 in Gjgp) and completes the proof of the lemma. [

2.4 The Hilbert symbol of a formal group
2.4.1 The pairing associated with the Hilbert symbol

In this paragraph we express the Hilbert symbol of F' in terms of the Herr complex
attached to F[pM].
Let us recall that the Hilbert symbol of a formal group is defined as the pairing;:

K* x F(mg) — F[p"]
(@ , B) = (o, B)rm =r(a)(B1) —F B

where 31 € F(mc,) satisfies pMidpB; = B and r : K* — Gf}? is the reciprocity map
of local class field theory.
In fact, we will be interested in the pairing

F(mK) X GK — F[pM]
B, 9 = Byglrm=96—FMh

where 31 € F(mc,) satisfies pMidp By = 8. Then
(B,r(a)]rm = (o, B) k-
Put
R(F') = {(:)i>0 € F(mc,) such that 29 € F(mg) and (pidr)z;y1 = z; Vi > 0}
then the Hilbert symbol is a mod p reduction of the pairing

R(F) x Gx — T(F)
(z , 9 = (@grr) =(92i—F )i

with ((x, glr(r))m = (w0, glF,m for any x = (2;) € R(F).
We can see this pairing as the connection map

F(mg) — H'(K,T(F))
in the long exact sequence associated with the short exact one:
0 — T(F) — lim F(mc,) — F(mc,) — 0

where the transition maps in the inverse limit are pidrp and the last map is the
projection on the first component. The ring R(F) is then the preimage of F(mg)

51



by surjection lim F'(mc,) — F(mc,).
Let now € F(mg) be such that 0([z]) € F(mg). Then for all g € G,

(9= 1)d(x) € F(W! (mg))AP!1=0 ~ T(F)

where § is the map defined at the end of Paragraph 2.2. The following diagram is
commutative

F(W(mE))%ip)olAzo x G — F(Wl(mﬁ))(Afp)olA:()

(SxidT

F(mE)K X GK J
LXidl
R(F) x Gg T(F)

where ((z) = (0 0 §(p~*idr(x)))s = (O([p~*idp(x))])s and F(mg)x (respectively
F(W(mg)) k) stands for the set of x € F(mg) (respectively F'(W (mg))) with 0([z]) €
K (respectively f(x) € K) and where the first pairing is simply

(u,9) = (g — 1u.

Fix now a € F(mg) and a lift £ of @ in F'(mg) which then satisfies

0(¢]) = .

We get the equality
J((e(6), 9lr(ry) = (g — 1)d(§)

for all g € Gk.
Choose now 3 € F(YW][[Y]]) such that

0(8) = a =0([¢]).
Then for all h € G,
(h=1)(8(8) £ B) = (L&), hlr(r))-
Moreover, §(¢) —p 8 € F(W'(mg)) thus
LaA(3(€) = B) € (Fil' Acyys)

and

ma(5(6) —r B) =Y F, 0" (1a(0(§) —F B))

u>1 p
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converges in A"~ Put now

o1 [ 1a(6(€) —F B) h
A=V (w(a(f) —p ﬂ)) € Aerys:

These are the coordinates of an element A in Depys(T(F)) ® Aerys in the basis
(o',...,0"). And, for all h € G,

(h=1A = (&), kg + (R —1)V7) ( ;ﬁf;gg_z%) . (2.11)

2.4.2 The approximated period matrix

Let us now explicitly compute the Hilbert symbol of F, i.e. the image of ¢(£) in
H' (K, F[pM]) which coincides with the one of a.. For that, we have to give a triple
in the first homology group of the Herr complex of F[p"] corresponding to a cocycle
representing the image of ¢(£). Recall that if such a triple is written as (z,y, z), then
the associated cocycle is

T -1 -1

— 1) (— n
9= (9= 1(=b) +9" ——72+ po

where g, = "7 and b € F[pM] ® A is a solution of

(p—1)b==x.

In particular, the image of h € G, through this cocycle is (h — 1)(—b). Let us start
with finding b € T'(F) @ A such that

Vh e G, (h—1)b=—(u(&), Mgy mod pM.

Equality (2.11) incites to build b as an approximation of —A. In fact, we will build
x by approximating (¢ — 1)(—\), whose coordinates in the basis (o', ..., 0") are

- ((;‘} -1 omm) |
0

Indeed, Lemma 2.2. shows that the action of Frobenius ¢ is written in the basis

(o!,...,oMVY~L
A
> 0
0 Inhgq

Because (o' = (0})y,...,0") is the fixed basis of T'(F), (0};,...,0%) is a basis of

F[p™] and we further fix 6},,...,06%, elements in F(YW][Y]]) such that for all 4,

0(0)y) = Oy () = oy
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Define then the matrix

Vy — pMiaey,) .. pMia(eh))
pMmA(é}w) pMmA(éfM)

whose coefficients belong to Acys, and more precisely to W{[Y]] HY:H = Gy,j0,p]-

From Lemma 2.6., Vy is invertible in Gy, 11| ® Qp.

Lemma 2.7.
1. XV;l has coefficients in Gyg ;) + %m[ Lo C g[% . and thus
p—1’ p—1’

-1

<PQ(XV}71) € Gp/(p-1),p]-

. —1 . . 1 . 1
2. The matrix Vy,~ has coefficients in o o=—59(1,p), then in o757 9y,1,5) and

pM

-1 _ yy—1
W=V mod S il

)

3. The principal part Vg,_l of V;l has p-entire coefficients and its derivative

%Vi(/_l) has coefficients in pM A..
4. The matrix XVX(/_l) has coefficients in AT + pMA.

Proof: We use the strategy of Paragraph 3.4. in [Abr97]. Let us recall that Abrashkin
there showed

Miu6h,) e (EW(Y)YW[[YH +E7rg)pWHYH HY;H)n

PMmaGly) € (YWHY]HY;pWHYHH’f”)h_n

and

) - M) € ¥ (B mg) + 0L & [T

m(of) - pMma(dly) € pM (W(mEHY;pA*HY;pH)h_n.

Let VP be the matrix of the group dual to F. It satisfies the relation:
WPy =11,

And one can then write

WP Vy =t mod p" (Eﬁ(Y)W (mg) + B 4+ HYP]D
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in particular,

yer - [[yer
YD Yy =tI, mod pM (YGW(mE) + —AT H ”) :
p p

Remark, because of Lemma 2.6., that the element ¢/ X converges in Q[B o and

X =wle? — 1] = E,(Y)Y/? 1y . v e g¥,

[proo[,
so that
YD Yy = (1, — pMu)
with
E.(Y) yep 1 Yep2,2p
iy e p—1
u € ; W(mE) + pt g[07p} C Wm[p—l7p] -+ » g[piyp}
1 1
C Yoo Mteel © M)
thus

1 1
V;l — E (ZpMnun> tVD c Zg[%l,p]

neN

and then we deduce the first point ; and even

1 1 pM
VY = V mod Wm[ﬁ,p]
or v
1 p
1
VY < Zg[O,p] + ve/(p—1) m[ﬁ’l’]'
Recall

t=E.(Y)o Y X)u ; o ¢ 90,4

and remark that because E; is an Eisenstein polynomial, E.(Y) and Y¢ are associ-

ated in Gjj o[ ; finally, with the above computation, we deduce that ¢ and yep/(p=1)

are associated in g[l,p}. Then
M 1

p
1) T Yegrn/o-n ™Ml © e el

1
-1
Yy’ € YaroD

So, Yler/(P=1)] V;l has coefficients in Gy, 1,1 [ﬂ ﬂg[l’p] = Gy,[1,p because of

Lemma 2.4..

Let us further deduce that V}(/_l) has p-entire coefficients. It is to show that any

element

n 1
T %Q"Y € YT/ D1 9Y14)
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satisfies a,, € W for all n < 0. But that means that

yler/(p—D1, — Z a,Y™Her/ (=11 ¢ Gy 1
neL

D]

and thus if v,(a,) <1, the following inequality holds

n+ep/(p—1)>ep

hence )
(p—2)ep -

p—1 0

n =

and V}(:l) has p-entire coefficients.
For the third point, let us recall the argument of Lemma 4.5.4 in [Abr97]. Write

d (-1 —n( d -1
A = (o )

and because differentials of [ 4 and m 4 have coefficients in W, one gets

Sy € pM A (WIYT)

so that
d

-1
WVX(/ ) € gY7[p717p71[ ®ZP Qp ﬂ

and the same argument as above permits to conclude (we get then the inequality
n > 0P > (),
Finally, the proof of Point 4. is the same as the one of Proposition 3.7, Point d)

1
Yo/ 1]

in [Abr97]. Let us write it in the following way: we know on the one hand that
V)(;l) and then also X V}(fl) has p-entire coeflicients, so they have coefficients in

Glp—1,00] [%} and that U = X(V;l _ Vl(/—l)) has coefficients in G, [%] On the
other hand, Lemma 2.7. tells

XVt € My (o) + 2™ G (p-1) 000)

Remark

p

A X P
Go vt = A" || 7ems )| = A7+ pon o<

Thus we can write
Xyt = My +pM M,

with M having coefficients in Gy ) and Mp in mgu/@_l)m[ c A. So
xVEY —pMMy = My —U

has coefficients in Gp,_1 | [+] NGo.p—1| [ﬂ = AT, as desired. 0

56



Remark that if 2 € F(W(mg)) it can be written as
x = [xo] +Fu

with u € F(pW (mg)), and thus

(;‘ - 1) olalz) = <;‘ — 1) o La([wo]) + (? - 1) ola(u)

A
= [xo] + <p — 1> oly(u) € W(mE)d
since [ 4(u) € pW(mg)9. In particular

(2 -1) otad)  Wmg)"

v <(3§ ~1)e lA(ﬂ)) c Ah,

0

so that

2.4.3 An explicit computation of the Hilbert symbol

We come now to the proposition that explicitly gives the desired triple. The basic
ingredient is Proposition 3.8 of [Abr97] which provides the x coordinate of the triple
and allows us to prove that y is zero. However, in order to get z, we have to carry
Abrashkin’s computations to the higher order. Indeed, we already know that z
belongs to W (mg), but we need to specify its value modulo XW (mg).

Let us recall the results we are going to use

Proposition 2.2. (A _ 1) o L4(8)

Let U be the principal part of Vl(;l) < P A ) and & = (o',...,0"U.
0

Then

1. U e (W) N A
2. Let be T(F)® A be a solution of (p — 1)b = & then for any g € Gk,

(9—1b= (B(r),glrmr mod p™ A + W (mg).

Proof:
The first point can be shown like Point 3. of Lemma 2.7. above.
The second point can be viewed as a reformulation of Proposition 3.8 of [Abr97].
Let us give another proof.
Let us recall from Lemma 2.7. that
M

-1 _ yy—1
W=V mod Sy Ml
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so that there is § € wpﬁi]ﬁ@_l)m[l’p} such that

Xyt =XVt 4+ X6
Write § = 61 + 2 with §; € pM_lYe(pLQp_l)/(p_l)g[o,p} and 02 € Ye(pflij\)/{/(p—l)m[l,oo[‘
Let us recall that we write Vy, 1= Vl(/_l) + U so that

XV — 6y = XV 4 X6y — XU

has coefficients in Gp,_1 o [+] NGop—1| [ﬂ = A+,

Then, if B is a matrix with coefficients in A such that
A
_ 2 —1)ol
(p—1)B = <V§ b_ 52) (p > °lalB)) (2.12)
0
write as in Paragraph 1.7,

(o —w)(Xi8) = (X0 - x83) <(Z‘ - 12) ° wﬁ))

has coefficients in AT so that, by successive approximations modulo p* and since
ET is integrally closed, we get

1 -~
Be ZA* C Fil® Bepys.

Still write

1 [ 1a(é(€) —F B) 10 h
A=Y <mA<6<5> . m) € (FilAer)

We compute

(p=1)(B=A) = (0 —U) ((? - 12)0 lA(ﬁ))

0
converges to an element Ay € Y G, satisfying

(p = 1)(A1) =9}

A _
Since 8] = 63 ((p 1) ° lA(ﬁ)) has coefficients in Y'Gy ], the series — > 0" (0)

A

4-1)ol er—ep/ (o
Likewise 6, = U ((p ) ° A(ﬁ)) has coefficients in YW[[Y]]—FWGK[OJ,]
so that the series — 3" _n¢"(dy) converges to an element Ay with coefficients in
YWY + Y2 00Gy o ) satisfying

(p — 1)(A2) = &,

58



Finally,
(p—1)(B-—A—-A1+Ay)=0

with B — A — Ay + Ay having coefficients in FilOBcrys. And the fact that

(FﬂOBcryS)<p:1 = Qp
shows
B—A—A1+ Ay EQP.
Then, for g € Gk, (9 —1) (B—A— A; + Ay) =0 so that

(-1 (B) = (g-1)A+A1-Ay)

oy [y [(4C© —r B oA
(9-1B) = (s 1>(v (mA(é(g)_Fﬁ)»ﬂg 1) (A1 - )

(g-1)B) = (g-1Hv )y (:éffé%ii%%)

g ((,fjlfféfg)__’wfg))) o= 1)(A1 - A)

Now, we remark that

1(0') — gl(o") € pM <Eﬂ(Y)W(mE> * Ef,y)p“ HYpp”)n

- < (w20 7]

so that gV enjoys the same approximation properties as Vy, hence (g—1)V~! has coef-

. . M . _ l 5 _
ficients in o=y M- Thus coefficients of (g—1)v g (m“:((d((gg) _Z@)) +

(9 —1) (A1 — Ap) lie in Mpﬁi%m[lm[ + %gw. Let us recall finally that

- La(6(8) —F B)
V-1
g=1) <<mA<a<5> —r )
are the coordinates of (¢(§), glgr(r) in the basis (o1, ..., o) of T(F), and thus it is
congruent to the coordinates of (3(r), glrx modulo pMZ,. We get
p" Y
(g—1)(B) — (t(§), 9lr(r) € Ve 1)/o=1) Mool F Eg[o,p]'

Recall now that coefficients of B lie in

1o 1
A C v it el

p—1’
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Gathering all information, we deduce the existence of u; € mm[lm[ and
Uy € %Q[O’p] such that

(g—1)(B) = (&), glr(r) — P w1 = ug

has coefficients in

1

Y A+
Ve 9t ol 15900 = YAT C W(mg)

so that (¢g—1) (B) is congruent to coordinates of (3(), g] » modulo pMA—I—W(mE).
To finish the proof, just recall Equality (2.12): there is d2 € %m[lm[ C
pMA such that

0

(- 1B = (W - 5,) ((;‘ 1) zw))

And surjectivity of ¢ — 1 on A permits to conclude. O

Remark It is possible to get rid of A..ys in the proof by studying the action of

(v = 1) on G [3].
We will use this result in the following specified form.

Proposition 2.3.
Let g € F(YW][Y]]) and a = 6(5) = B(w) € F(mg). Put

then there exists
2€ D (T(F))NT(F)® W(mE)

unique modulo p™ such that the class of the triple (x,0, z) corresponds to the image
of a by the Kummer map F(mg) — HY (K, F[pM]).
Moreover, z is congruent to

2.4.4 Proof of Proposition 2.3.

We use Proposition 2.2., and remark that
T—2zeT(F)QYWIY]] C (¢ —1)(T(F) YWI[Y]).
So, if b € T(F) ® A satisfies (¢ — 1)b = z, then for any g € Gk,

(9—1)b= (o, g]par mod pMA + W (mg).
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Thus for any h € G,
(h—1)b=(a,h]py mod pMT(F)

for (h —1)b € ker(p — 1) = T(F).
We deduce that there exist y, z € Dr(T(F)) unique modulo p™ such that the class
of the triple (z,%,z) corresponds to the image of o in H'(K, F[p™]) ; indeed let
(21,91, 21) be such a triple, and by € T(F) ® A a solution of (¢ — 1)by = x; then for
all h € Gy,

(h—1)(by —b) =0  mod pM,

thus, by —b e Dr(F[p™)]),
which shows that the class of
(z,y1+ (v = 1)(b—b1), 21+ (1 = 1)(b— b1))

corresponds to the same class as (z1,y1,21) and, if x is fixed, this triple is unique.
Let us now determine y: let 4 lift v then

F=1D(=b) +y = (0,3 rm = (5 = 1)(=b) mod p" A + W (mp)

hence, for (7 — 1)(—b) € T(F),
y € T(F) @ W(mg) NT(F) = {0}.

Likewise, let 7 lift 7 then

(F = 1)(=b) + 2 = (a, 7lpym = (F — 1)(=b) mod pMA + W (mg)
hence z € T(F) @ W(mg).
Thus z belongs to T(F) © W (mg) and satisfies

(r—1z = (p—1)z

This uniquely determines z since ¢ — 1 is injective on T'(F)) ® W{(mg). In order to
specify z, we need the following lemma:

Lemma 2.8.
1. For all U € W[[Y]], the following congruence holds

dUu

-1 _ -1
(r=wy U =xyYy s

mod X W (mg) +p™A.

2. There exists u € mp,/(,_1),] such that

_ o i, 0
<PQ(XVY1) = (SOQ(X)Vylg ! +pMU) <p0d I )
h—d
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Proof of the lemma: For Point 2., we first specify (7 — 1)V§/_1). Remark that if
f(Y) is a series in W{{Y}} N A,

-1y =3 B oy
n>1
Thus for V( b,
(T_l)v( Y= diV; K (X;/)Z dci; +7§ X;'/) d(i:”v(il)
We then have to estimate @ " V( Y. Lemma 2.7. shows
nl dY"
%v— PVt

where W € W[[Y]] and the principal part of Vy 1/W7V; !is entire. Thus, on the one

hand

d | (-1)
7 R ) &)

and on the other hand one can write

d" 1 S Mk
dyn V; = Zp 'wn,k
k=1

2 -~

where the w,, j, are sums of terms of the form
—1757 —1757 e —1
Vo WiiVy Whooo . Wy iVs o,

where the Wm e WI[Y]] are derivatives of W.
Recall that VY has coefficients in — (Q[OJ) + pM m[l/(p_l),p]), then

— — — 1 1
—1 -1 —1 M-
Vy Wi iVy Wi . Wy iVy™ € M)y <Xk+1g[07p} +pM (Xk+1m[1/(p1),p])> :
Suppose 1 < k <n — 1. Since

vp(n!) < [n/(p - 1)] =7,

there exists u € Z, such that

n—k—2
2X

mr (XY)" k+
=Y"X —

n! p

p

Since p > 2 and k > 1,

ank 2 Xp*1

62



Thus,
(xXy)~! _
P nl Wk € Mog) + M p-1) -

Let now k = 1, write

dn— 1 i
=W e S WV = (n = VWV
and

Xyt Xyt =, X"P
( ) pr'n,,l — ( n) VY1W/VY1 —

n yp—1y,—17177y)—1
oy YrXPTIYC WY

has coefficients in my —i—pM*lm[l/(p,l),p] as before.
Let k = n, one has obviously

W = IV Wy 1 V5 Woa o W, Vi
where for all 1 < i < n, ﬁ//m = W, so that

(XY)" M

|
n Mn M—1
MM wnn € 9N (Glog) + My 1))

Finally, for k = n — 1, since vp(n!) <n/(p—1) <n -1,

Xy)n _

oy Wpp—1 €Y" (g[O,p] +pM_1g[1/(p—1),p]) .

The same argument as 1. then shows that for all n > 2,

(XY)" d

(=1) M X
o dY”V € XW(mg)+p" A

hence
(1= W € XW(mg) + pMA.

Point 2. then follows from the equality
(r =W U = ((r = W) U+ V(= 1)U

and the congruence
dU

Now, let us carry on computations of Lemma 2.7.:

X
XV;I = T(Ih —|—pM_1u1)tVD
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p—1’

coincide, the following holds in Gy, /(

with u; € mei o And since VP has coefficients in Glop] C Acrys where g and ¢

p—l),p] :

og (XVy') = g <X> (In + pMpg(v1)) ¢g ('VP)

t
X (i, 0
= ¥g () (Ih—i-pM(pg(’Ul))ptVDgl pd
t 0 Ih—d
X (i o0
T () (I + 2™ pg(v1)) (I — pMo)ptvy e~ [ 77
t 0 Ip_g4
1y
= (X)) (Wl +pMa) [ 7 0
0 Inhgq

where ¥ = (¢g(v1) — v — pMpg(v1)v) vte
Let us clarify these computations:

1
v, U1 € Em[l/(p—l)m]’

so that
1
pg(v1) € /=11
Thus 1
pMupg(v1) € Em[p/(pfl)m}
and finally,

1

M

g (v1) = v =pTeg(v1)v € M) -
Hence, since V;l € %g[l,p]a

. 1
pv € Yepr/(p—1) Mp/(p—1),p]-

Finally since
pg(X) € pXGjo)

and

X e Yep/(p_l)g[p/(p—l)m[
we deduce the result. O
Remark that p (X). d

2
XYo—|=1""2Y—
4 ( dY) p Lav °¥

and

d [ 1a(8)

dYy <mA(ﬂ) € Mpp/(p-1).p]



so that we compute modulo pMm[p/(p_l),p]:

L d (1. (X)) y1 d oy (pla O 14(B)
w0 (XYVchzY (wm)) = Wy 1(0 Ihd>¢<mA<ﬁ>>

This yields to

(-1 d [ 1a(B)

(’”(XYVY av (w(ﬁ)))

_ d (1a(B) (1) _y,-1) 4 [ La(B)
v (myldy (mi B )) (Xy (A v) £ (mf; (ﬁ)))

A g
- g () (s 07 ) (10

with u € M/ (p—1),p] Write u = w1 + ug with u; € %_lg[07p}, thus pMul € Xm[o’p]

and ug € M,/ (p—1),00[- In addition, Vx(fl) - V;l € Gjo,p @ Qp hence

oo d (1
e (XY (0w (mf;((ﬁﬁ)))) € XGlop ® Qp.

Write moreover

(X)) ,a d [(FolaB)) (-1 d (2 ola(B)
TYVYICTY (P ) = XYV dY<pmA(5)

where

and

o(X) d [Aola) - h

and it can then be written as My + My with Mj in Xm[O,p] and My in pMA.
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Eventually,

(1 d [ 1a(B) (-1 d (2 ola(B)
(XYV dY( (ﬁ)» Xyvy o ( a(8) )_pMMO

belongs to My (X Gjg ) ®Qp) for some My € A. Then, since XG0 ®QpﬂA = XA,
we deduce that

(-1)_d [ La(B) 1) d [Aola(B) - <
(XYVY dY( (ﬁ)>> Wy (pmAw) ) mod XAT +p7A

which lets us prove the proposition with the computation modulo X At 4 pM A

A
(-1 d [ 1a(B) _ (-1) d (*—1) o la(B)
XY = XY p
- )< k4 dY( A(B) Wy 0
= (r—1)z
and the fact that the equation (¢ —1)Z = a@ € XAt + pM A admits a solution
Z e XAt +pMA. O
2.5 The explicit formula

2.5.1 Statement of the theorem

We come now to the proof of the main theorem, the explicit formula for the Hilbert
symbol of a formal group.

Theorem 2.1.
Let € F(YW][Y]]) and o € (W[[Y]][+])*. Denote
a(Y)P
(1 — > loga(Y log 2 (V7) e WIY]).

Then the Hilbert symbol (a(m), 3(m))F,am has coefficients in the basis (0]1\/[ ,oﬁ/[):
_ 1-— ol d A ol
(Trwz, o Resy)Vy* (( ( 2} A(ﬁ)> dogad(Y) ~ Z () <pmA?B<)ﬁ>>> |

2.5.2 Proof of Theorem 2.1.

S

We use the fact that if n € HY(K,Z/p™Z) and r(z) € G2 is the image by the
reciprocity isomorphism x € K then

invg (Ox Un) = n(r(zx)).
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From Proposition 1.3., da(mr) corresponds to a triple (z,y,z) congruent modulo
XYWIX, Y]] to

X 2

We compute its cup-product with the image

<S(Y) 0, YdlogS(Y)> Re.

(:E', 0, z')

in H'(K, F[pM]) of 6(3) given by Proposition 2.3. where we recall that

o VD (( ~D) uw))

and

(1 d [ 1a(B) )
7= = XYV, 1 e ( (ﬁ)) mod XW(mE)

We get the triple (a, b, c) where:

a=yVy! <(j;l - 1)00 lA(ﬂ)) € W(mg)

because Proposition 1.3. says that y € XYW/[[X, Y]] and Lemma 2.7. that XYV&U
has coefficients in W (mg) + p™ A. Moreover,

=—y®7z+z< )Z =D e (- )R € W(mg)

n>1

because y, z, 2/ € W(mg). Finally,
b=2®712 —2® 2

and

z@7a’ = (v~ )log(S(Y)/t 4 1) 7 (vw (“3‘ e W)» @

On the one hand

(1= 1)(log(S(Y))/t + 1) = Ydiog F(Y) mod XYWI[[X,Y]]

A
_ = —1)ol
and on the other hand, Lemma 2.8. says 7 <V§/ b <( p )Oo A(ﬁ))) is congruent

modulo XY W[[X,Y]] to

P ((;} D zm)) B ((;‘ D u(a)) |
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Thus, since XY VS has coefficients in W(mg) +pMA,

A _ 1o
@71 = YVX(;I) <(P 1)0 lA(ﬁ)) diogS(Y) mod W (mg).

Finally,
—z® 2 = (—S(;(/) - 8(2 )> Z®e
and since
1 d
S = XYVX(/ 1)W (;ﬁ@)) mod X W (mg),

we get the congruence

' (-1 d [ 1a(B) _
—r® ez =Ys(Y)Vy v (mA(5)> mod W (mg).

The triple (a,b, c) is eventually congruent modulo W (mg) to

<0, y Yy ( (%‘ - 1)0 o m(ﬂ)) dogS(Y) + % (é"j%) ;log gg?fg) ® 6,0) .

The theorem follows then from the lemma:

Lemma 2.9.
Let C = Cy~-(AL(1)) be the complex computing Galois cohomology of Z,,(1).

1 Let f(Y) = >, -ov% € M, (A) be the principal part of a series Vi(/_l)g(Y)
with g(Y) having coefficients in W{[Y]]. Then there exists a triple (x1, z2,0)
with coefficients in € W (mg) such that

(z1,22 + f(Y) ®¢,0) € B(C).
In other words its image in H*(K,Z,(1)) is zero.
2. Let (z,y,z) € Z*(C) with z,y,z € W(mg)(1) then

(z,y,2) € B*(C).

3. Let w € W then
(0,w®e,0) € Z2(C)

and its image through the reciprocity isomorphism is Tryy /7, (w).
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Proof of the Lemma: Put

= ! + L cA
T yn (@ x) 1) 2yn - oL
Then 1 1 1
(= Dw, = W+§(7_1)W (2.13)
and
N € ) _ x(v)e
Yr(1+X)™—-1) Yn ((1 + X)~x(nn — 1)
= 5! < .
5 (=)
The Taylor expansion
—1
57 = x(y) - XN =V 0y -y
where g(7 — 1) is a power series in 7 — 1 yields to the relation
1
(W—I)wn®5:g(7—1)(7—1)ﬁ. (2.14)

From Lemma 2.8., we know (7 —1)V(=YU for U € W[[Y]] has coefficients in T (mg).
Relation (2.13) then shows that

(r=1))  apw, = f(Y) mod W(mpg)
n>0
and Relation (2.14) that

(v—=1) Z apwy, =0 mod W(mg)
n>0

which proves that the coboundary image of triple (>, ., anwy,0,0) in H 2(C) has
the desired form, hence 1.
To show 2. we have to solve for z,y,z € W(mg)(1) the system

r = (y=Du+(1-¢
y = (t—Du+(1—-p)w
= (™ 1w+ (6 —y)w

Consider therefore v, w € W(mg)(1) solutions of

x = (p—1w
y = (p=Duw
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which exist, and are unique since ¢ —1 is bijective on W (mg)(1). Then, by combining
these equations with the ones of the system, we get

(p = D) = Do+ (6 = )w) =~ — Da— (= 7)y = (v~ 1=

But since z and (7X) — 1)v + (§ — y)w are elements of W (mg)(1) where (¢ — 1) is
injective, the equality
2= (X — 1o+ (6 — y)w

holds ; (z,y, z) is then a coboundary, the image of (0, v, w).
Finally, for Point 3., remark that

(0,w®e,0) = (0,0,1®¢) U (w,0,0).

Proposition 1.3. says (0,0,1 ® ¢) is the image through the Kummer map of 7 a
uniformizer of K. (To see this, take F'(Y) = Y.) In addition (0, w®e,0) corresponds
from Theorem 1.3. to the character n of G defined in the following way: choose
b € A such that (¢ — 1)b = w, then

Vg € G, n(g) = (1 — g)b.

Remark that since w € W, we can choose b € W™ and that the image through
the Kummer map of a uniformizer is the Frobenius Frobg, thus the image through
reciprocity isomorphism of (0,w ® ¢,0) is

(1 —Frobg)b=(1-p/®)b=1+¢p+---+E Huw = Try,z,w

where fx = f(K/Qp), which proves the lemma. O
We prove then the theorem by remarking, from the congruence shown above, that
the triple (a,b,c) can be written as a sum of a triple (0,¢(Y"),0) where g is the
negative part of a vector series in Y and then is zero in H?(K,Z/pM7Z), of a triple
with coefficients in W (mg)(1), then also a coboundary because of the lemma above
and finally a triple (0, w ® &,0) where w is the constant term of the vector series

1 [ [(B=1)ola(B) d [148) \ 1, a(Y)P
YVY 1 (( 0 ) dlogOl(Y) + diY <mA(ﬂ)> Z;10g a(Yp)>

hence the residue of

A_1)o a(Y)P
()4 ()227)

The only term with a non zero contribution is then the residue, and that contribution

is, according to the lemma, given by the trace, which completes the proof. 0]
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