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Abstract s|AJT|G|G A
t|A|C|T|[G|A
Large databases are now available and many works w| C|T|T|G[A
offer to mine for the information within. Never-
theless, extracting interesting sites from biologi- Table 1: An example of DNA database.
cal sequential databases remains a challenging task,
as they are known to occur with errors. Sequen- ) _
tial patterns, by their flexible structure, enable to aim here is to extract patterns that are not only frequertt, bu
overcome this problem. However, those patterns ~ &lSO may have a role in genetics. ,
are usually numerous while many of them are not Therefore, in the present work, we mine for frequent se-
relevant. Therefore, in this paper, we propose a  duential patterns that occur unexpectedly given a model. Se
new approach to mine for statistically significant quential patterns are more general and flexible than stredtu

sequential patterns. It extracts fewer patterns than motifs,_ the_refor_e we are able to highlight other regiongef i
more traditional approaches. Experiments show  terestin biological sequences. As databases of DNA or pro-

that such sequential patterns are pertinent for bio-  t€ins are made of long sequences on a small alpls¥tg
logical databases. et al, 2004, many sequential patterns would be outlined by

a basic extraction. Our approach reduces the set of patterns
S0 as to get fewer but of biological interest.
1 Introduction The rest of the paper is organised as follows: problem defi-
) o nition is stated in Sectiod. Our approach and the associated
Recently, many works have focused on identifiying patterngigorithm is presented in Sectida Experiments are led in

that may have a biological function, in sequences of DNA orsectiond. Related work is recalled in Sectién Conclusions
proteins. Some approaches aim at finding such motifs amongnd further work are found in Sectign

DNA sequences, but focus on a restricted kind of patterns
called“structured motifs”[Robinet al,, 2004, [Zhanget al,, -
2007. Those are made of two “boxes” of nucle(?tides at a2 Problem definition
bounded distance from each other. Structured motifs havingn this section, we present the problem of mining for unex-
an unexpected frequency given a chosen model are mine@gected sequential patterns. Let us consider a database of or
Those patterns cover many regions of interest in DNA sedered transactions over a finite alphabedf items. To each
guences. For example, in promoter sequences, the TATA boixansaction correspond a sequence identifiant, an order ide
is a well-known binding site. However, structured motifs ar tifiant and an item. A sequence of items is calleskguence
too specific to be general and do not extend to other areas of data For example, Tablé contains3 sequences of data
biological function, such as motifs in protein primary stru  on the alphabefA, 7', G, C}. In this context, a subsequence
ture. To this end, alternative structures are needed. x = (ry...x) is said to bancludedin a sequence of data
Sequential patternpsfirst introduced in[Agrawal and s = s;...s, if there are integergd < i; < ... < ip < /
Srikant, 1995, describe frequent rules of behaviour on or-such thats;, = zi,...,s;, = x,. Thatis, items are not
dered sequences of events. For example, in a database rcessarily consecutive. In the previous example, the sub-
DNA sequences, one such rule would Be 80% of se- sequencé€ATG) is included in the sequence of databut
guences the nucleotide T occurs, followed some time later bglso int (even if there is a gap betweeh andT). How-
A, then T, and then A"Therefore, there are gaps of variable ever, it is not included in:. A sequence supportsa sub-
length between two elements of the pattern. But those pasequence if x is included ins. The number of sequences
terns are usually numerous, making their interpretatién di supporting a subsequengeis called thesupportof « and
ficult. Consequently, many works reduce the redundancy ofs denoted bySupp(x). Let minSupp be the minimal sup-
the discovered patterns, for example through condensed report chosen by the user. Then all subsequencssch that
resentationgMannila and Toivonen, 1996 However, our  Supp(z) > minSupp are calledfrequent For example, if



we setminSupp = 2, the subsequendelTG) is frequent. | Si [ Se | S5 [84i]

Mining for sequential patterns aims at discovering all fre- 1 X9
guent subsequences, given a thresheld Supp. Let us note 1 {x2}° 9 )
that we have restricted the notion of sequential patterheo t 1 {22 [ {22} | 22
specific context of sequences of items. Usually, sequential {a1)° T T3
patterns are more general, agAgrawal and Srikant, 1995 ) [ ) o o
they were introduced on databases of ordered sets of items.
Over the last few years, many algortihms have been devel- Table 2: Possible configurations foin S.

oped to extract sequential patterns from databases of-trans

actions. As the number of potential sequential patterns may

be huge, such algorithms use the anti-monotonic property t0 \ye now define what a sequential pattern is, according to
be able to extract them. However, the object of this workiis model. Let us consider a subsequence: (z1...z;).

is to mine patterns which besides being frequent, also mightne propability for a sequence of length¢ to supportz is
have a biological function. To do so, we fit a model which genoted by, () as it depends on the length of the sequence.
captures the global characteristics of the data, and look forg cajculatep, (z), we enumerate all sequences in which
sequential patterns which frequencies are not well exptain may appear. To do so, we enumerate all possible occurences
by this model. More precisely, we outline sequential paier of ;- according to the first occurence of each of its letter. For
which observed frequencies under the model are significantieach, € ¥, we denote by{o}© the set{p € %, p # o }. The
greater than expected. This is done by adding a filteringharacter “ is the set of all possible iterfis g 2}

step to existing algorithms. We use dynamic programming To fix the ideas, let us consider a random sequefice

fo compute expected supports. Si...S4 of length4, and a patternr = (z124) of length2.
. Let us suppose that supportse. ThenS may be written as
3 Unexpected Sequential Patterns one and only one of the lines of Talle Let us suppose that

In this section, we describe how frequencies of sequerdialp 51 = 1. The first possible configuration is thay =
terns according to a model are computed and compared fdirst line of Table2). Let us note that, andz, may occur

observed frequencies, so as to extract patterns of interest  further on the sequence. The next possible configuration is
So # xo bULS3 = x5 (Second line). This configuration do not

3.1 Sequential Patterns under a Markov overlap on the previous one. The last possibilityis# x,
Assumption Ss # x9 but S, = x4 (third line). Let us now suppose that
S1 # x2 and Sy = z1. We carry on with the enumeration
until the last possible configuration. Thus all possitabtare
counted, without redundancy. This manner of counting is eas
pT(Si =s;|8171 = Szfl) = Pr(S;=s;Si_1=s,_1), (1) ily extended to the case of a pattern of lengind a sequence
of length?, where? > k. In order to write it properly we in-
whereSi™! = (Sy,...,S;_1) andsi ™' = (s1,...,s,_1). Itis  troduce the two following probabilities.
a Markov property of ordet but it can easily be extended to . . i
greater orders. The interest of the Markov model is twofold: ® FOrl <k < [X], ¢,, (i) is the probability that the first
first, it is adapted for many sequences such as DNA or pro-  occurence oy, is at thei'" position of the sequence:
teins, since it takes a temporal dependency into accoudt, an

A Markov chain or procesSs, Ss, ... is characterised by the
following property: fori > 2,

second, it involves a small set of parameters thanks to the re 4o, (1) = Pr (51 = o),
duced dependence. o, (1) = Pr(S; = ok, Sm # ok, 1 <m < i),
We consider a databageB of n independant realisations for 1 <i </

of a Markov proces$sS;,t > 0} on a finite state spacé = (4)
{o1,...,005| }. One such realisation is a sequerce s...s;.
We also suppose that the process is time-homogeneous, that More precisely, and using the notations defined at the

is, forall 1 <4, beginning of this section,
PT(Si:Si|Si,1:Si,1) :PT(S2:52|S:[:51). (2)
) qak(l) = Hk;
Moreover, we assume that the process has reached a station- 40, (2) = > 1 P,
ary distribution,.e. for i; < ... <1i; andk > 0: i#k s
i j ij i i o (1) = 1 P'm jm 1P’i71 )
Pr (SZf = 51']1) =Pr (Szif;i = Szi) 3) s () jl,muzilsﬁku] mlll Jrdmi T
for 3 <</

Consequently{S;,t > 0} is characterised by a stationary (5)

distribution 1 of length |X| which k** element denoted by

uk is equal toPr(S; = o), and a transition matri’ of ) -

size |¥| which (4, k)" element denoted by, is equal to e Forl < j.k < [3], ¢o,0,(i) is the probability thatr,
Pr(Ss = 0%|S1 = o). occurs at the'” position afters;, and not in between.



By stationarity,

Go;o(1)=Pr (82 = 0y| 51 = 0;)
Go;0,(1) = Pr(Sip =0, Sm # 0k, 1 <m <] Sy = 0y),
for 1<i<e-—1.

(6)

Therefore, using the notations for the stationary distri-
bution and the transition matrix of the Markov chain,

qgjffk(l) = ij”

chjcrk (2) = Z PerTk’;
r#k

qo’jo'k(i) = Z
rl,...,ri,ﬁék

for 3<i</—1.

1—2
Pj7'1 H PT'mT'm+1P7'7:71k’
m=1

(7)

Markov model can be calculated explicitely. However, a
naive computation would have poor time efficiency. There-
fore, in the next subsection, we describe how to deduce the
support of any pattern given the support of its greater pre-
fix. This property allows to reduce the computation time like
other dynamic programming approaches, such as the well-
known Forward algorithm.

3.2 Recurrence

Forz = (z1...z1), let Q. (i) be the probability that the first
occurence of: ends at theé*" position of the sequence. Let
Q. be the vector of lengtll — |z| + 1 such thatQ.,
(Qz(#)) 4 <i<¢- Then, according to the enumeration we have
presented, the sum of the terms@®@f is p,(x). Indeed, the
probability for one pattern to appear at least once in a se-
quence is the sum of the probabilities of its first occurerice a
any position.

Let us now describe how to compute these quantities. Forthe ¢ £ = 1: thenz is reduced to a single letter argl, =

sake of simplicty, we only present here how to obtd@has
we proceed identically for the probabilities @f). The trans-
pose of any vectoo is denoted by”. x denotes the cross
product, and forl < j < ||, P; is thej'h line of P.

Algorithm 1: First Occurence

Data: An indexk, a stationary distributiop, a transition
probability P.
Result {¢,,(i),1 <i < {}.

Initialisation

Computeu

ComputeP

qu(l) — Uk

V<

T <— (P1.7 ceey Pkflv, 0, Pk+1,, ceey HZ\.)T

7for2<i</do
8 V< VXT
9 qﬁk(i)Hyk’
10 end

o g b~ W N P

First, the stationary distributiom and the transition matri®

(¢2(7))1<i<e Is Obtained as itf5).

1 < k < ¢: then ifz_ denoteSx;...x;—1), the largest
prefix of z, then fork < i </,

1—1
j=lz|-1
Thus,(9) allows to use previous calculations. Next, we

describe more precisely ho@®) is done. LetM,_ be
the triangular matrix defined as follows:

Qm,(lzl) Qm,(lzl‘f‘l) o Qu (Z_l)
0 Qu_(lz]) - Qu_(£-2)
M. — 0 0 Qe (£-3)
0 0 S Qe ()
(10)
Then,(Q,, is obtained as
kaflmk(l)
kaflmk(Q)
M, X (11)

ETREEE (L=|z|+1)

are computed. This is done by scanning twice the database

DB, resulting in a complexity oD (2n/), if ¢ denotes the
average length of sequencesiof3. The matrixr of Algo-
rithm 1 is similar toP except for thek” line which is null.
This secures that the statg will not be reached until th&”
transaction. The complexity of Algorithm 1@3(¢ |%|*). The
transition probabilitieg,,,, are computed in a similar way
for 1 < j,k < ||, with a total complexity oD (¢ |/*).

Counting all possible occurences, the probability fai0
occur inS'is thus:

>

1€l ,i2€lo,... i El L

pg(l’) = qu(il)quﬂJZ(iQ)'"ql'k—lxk(ik)’

(8)

wherel; = {1,2,....4+j—k—1—1i;_1}. Therefore, the
probability of occurencey,(x) of each patterrc under the

Once the support of its greater suffix has been computed, the
complexity of the calculation of the expected support of a
pattern is reduced, as only its two last items’ positions are
enumerated, whereas the naive implementation would have
considered all. Thus, we compute expected supports accord-
ing to a Markov Model. Let us remark that those supports
could be approximated by simulating sequences according to
the parameters of the model. However, a large number of such
simulations would be required to get accurate results. 4n or
der to extract patterns of interest, we now compare expected
frequencies to observed frequencies.

3.3 Statistically Significant Patterns

For the sake of simplicty, we now consider that all sequences
of DB have the same length Our approach may be straight-
forwardly extended to databases of sequences of different



lengths. The support of a pattenin a databasé) B of n Algorithm 2 : Un-SP
independent sequences of data of lengih a random vari-
able of binomial distribution. Indeed, for any patternand
1 <i < n,letZ: be the Bernoullirandom variable such that:

Data: A database DB, Probabilities of first occurence
Qo (1):G0,0,, (1) fOr 1 <i < £,1 < 5,k <3|, a
minimal supportninSupp and a threshold

{ Zi =1 ifthe ith sequence supports, x Result A set of unexpected sequential patteAs

Zi =0 if not, (12) 1 Initialisation

S : - 2 pref «
that is, Z. = 1 with the probabilityp,(z). ThenSupp(z) 31
is the sum of those independant identically distribuigdi() 4 X — o

random variables of Bernoulli, and o
5 while i < |3| do

Supp(x) ~ Bin(pe(x),n). (13) 6 x «— pref - X[il.
>
Thereforen x py(z) = E (Supp(x)) is the expected support ; " S?fois (#) 2 minSupp & length(x) < £ then
of z. It is compared to the observed supp6tipp.,(z) by 4 Compute its expected suppart< p,(z)
the means of the p-value: 10 Compute the associated p-value
Pri{Bin(pe(z),n) > Suppops(z)} - (4 - If| P )\éalﬁei ¥ t{fzn

The patternc is over-represented if this p-value is less than a3 end
given threshold. 14 end

Let us now describe the algorithbin-SPwhich extracts 15 else ifi < |X|then
unexpected sequential patterns. 16 | i—i+1

Given probabilites of first occurence, a minimum supportz end
minSupp, and a threshold for the p-valuesUn-SPdoes 18 else
a depth-first search of the prefix tree of sequential patterns pref «— new.pref(pref)
This is done through the function For each patternf its 20 1 < new.letter(pref)
observed support is greater thann.Supp, its support ac- 21 end

cording to the model is computed using the support of its, end
greater prefix. Therefore, we need to store the vediyys .3 return X.
for each suffixy of z. However, those vectors are discarded
as we progress further on the tree.plf < ¢, = is an un-
expected sequential patterdn-SPis described in 2. At the
end of the algorithm, we call for two functiomsw.pref and  often lies close to the transcription start site in eukacymto-
new.letter which allow to go to the next branch. In summary, moters. Moreover, the set of discovered patterns is styong|
Un-SPis a classical depth-first algorithm for sequential pat-reduced thanks to the constraint on the p-value. Figure
tern extraction but outlines only unexpected ones thanks to shows, using a logarithmic scale, the number of sequential

filtering step. patterns £ = 1), the number of unexpected sequential pat-
terns fore = 1 x 1071,1 x 1072,1 x 10~3. For example,
4 Experiments if minSupp = 80%, there are367696 sequential patterns,

but only 2082 of p-value less tham x 1071, 321 of p-value
less thanl x 1072, and57 of p-value less than x 1073,
Therefore, we have restricted the set of extracted seqlenti
atterns to those which present a biological interest. We ha
yund similar results than existing approaches focusing on
structured motifs, as they are a particular kind of seqaénti
patterns.

In this section, we describe our experiments on real bicklgi
datasets. The algorithtdn-SPhas been implemented iR
[Team, 2006 The R package “Bio3DfGrantet al., 2004
has been used to read protein sequences in the FASTA form
The object of this section is to re-establish well-knownttss

to demonstrate the pertinence of our approach.

4.1 DNA sequences
In Sectionl, we have seen that structured motifs are regions

of interest in prokaryotic promoters. However, highliglgfi (CATAAF;?E?&ATC@ pd\gaz)lge
similar regions in eukaryotic promoters is less straightfo -
ward, as they present more diverse structures. Therefaere, w (CATATATAAAACA) | 0.005
consider a database from the Eukaryotic Promoter Database (CATTATAAAAACA) | 0.002
[Prazet al, 2004 on the alphabe{A,T,G,C}. It con- (CTATATAAAATCA) | 0.008
tains 186 sequences of plant promoters chromosomal genes (CTTATAAAAATCA) | 0.004
of length52 from position—50 to +1 relative to transcription (CTTATAAAAACA) | 0.007
start site. Unexpected sequential patternsrfonSupp = (CCTTATAAATTCA) | 0.001

90% ands = 1x10~2 are presented in Tab# We recognise ‘ )
the well-knownT AT A box (sequencd AT AAA), which Table 3:minSupp = 90% ande = 1 x 10~



tify a well-known motif as the flexible structure of sequaiti
patterns allows to consider sequences of variable length an

gaps.

5 Related Work

In data mining, mining for unexpected sequential patteass h
recently raisen interest. [ii et al, 2009, the notion of be-

lief is introduced as a user-defined rule. Unexpected sequen
tial patterns which contradict those beliefs, are then éefin

as unexpected. Experiments are led on a database of weblogs.
However, this approach’s object is to find sequential paster
which clash with beliefs defined by users, while we are inter-
ested in sequential patterns which are over-represented gi

P a global model.

T * A similar problem to ours is studied [Robinet al, 2003

’ o and[Zhanget al, 2007. Indeed, they aim at finding spe-
cific patterns calledtructured motifof unexpected frequen-
cies in a set of sequences. Structured motifs are formed of
two boxes of consecutive nucleotides separated by a gap. For
example, a structured motif in a DNA sequence would be
ATTG. TAGC, where the two boxeglTTG andTAGC
occur (possibly with errors) with two “do-not-care” symbol
in-between. InN[Robin et al, 2004, the probability of oc-

1e05

1le04

Number of sequential patterns
1e02 1e03
1 1

1le01
+

1e00

1.00 0.95 0.90 0.85 0.80

minSupp

Figure 1: Number of sequential patterns extracted.

Pattern p-value curence for one such motif at a given position is approxi-
(CCFH) | 1L74x 10 mated by considering the past up to a fixed orde{Zimang
(CCFHH) | 129 x 10112 etal, ZOOH_, under a Markov assumption, the pr_obab[llty_ of
[CCH) 503 x 1073 occurence is computed by _the mcluspn-exclusmn prirgipl
[CCHH) | 118 x 10~ but only_f_or structured motifs with a fixed length gap. The
(CCKH) | 1.40 x 105 probabilities of occurence are then compared to obsereed fr
- — quencies as the support follows a binomial distributionwHo
(CCKHH) | 2.44 % 10775 ever, these approaches are restricted to structured reotifs
(CCLH) | 3.08 x 10790 cannot be applied to other patterns of biological function.
(CCLHH) | 1.10 x 10 Other works study the problem of finding subsequences of
(CORH) |5.44x10~°" consecutive letters of unexpected frequency given a model.
(CCSH) |6.37x10~™ In [Prumet al, 1994, expected frequencies are computed
(CFHH) | 3.65x107% given the exhaustive statistic of the model, andFitajolet

et al, 2004, by using generating functions. Let us notice
that this last work also considers words formed of letteth wi
variable-length gaps between them, calleidlden patterns”
. (similar to sequential patterns). [INuel, 2008, it is done
4.2 Protein sequences by means of a convenient sequence associated to each word.
Let us now consider protein sequences on the alphabet ®formal or Poisson approximations or Large Deviations allow
20 amino acids.Domainsare defined as parts of protein se- to extract words for which expected frequencies differ gign
quences which, roughly, fold in a compact structure and arécantly from observed ones. [daroszewicz, 2048 subse-
associated to a biological function. Many proteins includequences which observed and predicted frequencies are large
different domains. In every domain are found recognisablgéhan a given threshold, are used to update a hidden Markov
motifs. For example, there are different typesZific Fin-  model through dynamic programming. No p-value is intro-
ger Motifs with specific compositions. For the2B82 type, duced. However, those works differ from ours not only by
the consensus sequence is @-x4)-C-x(3)-[LIVMFYWC]- the method used and the type of patterns considered, but also
x(8)-H-x(3,5)-H, which means thatCoccurs, then2 to by the notion of frequency: for a given subsequence, all oc-
4 bases laterC' again, then3 bases later any of the set curences in the database are counted. For example, in Table
{L,I,V,M,F,Y,W,C}, etc... We consider a datasetif 1, the frequency ofA would bel/3, as5 out of 15 letters are
sequences of lengtb from the domain zf-@H2 from the A, whereas its supportis as it appears i sequences out of
Pfam databasEBatemaret al., 2004, and check wether the 3. The same notion is used [i@alifano, 2000for identifying
consensus sequence is outlined by our approach. Results gratterns with fixed gaps between their items, which frequenc
presented in Tablé. is greater than a given threshold.

We recognise the motif CCHH at linkof Table4, but also In summary, existing works have identified various patterns
many parts of the consensus sequence. Therefore, we ideofinterest, in various databases. However, we presengmere

Table 4:minSupp = 65% andes = 1 x 10~°



approach to mine for unexpected sequential patterns under[&luel, 2008 Grgory Nuel. Pattern markov chains: optimal

probabilistic model assumption, which differs from those b
the type of pattern, frequency, method or model considered.

6 Conclusion

In this paper, we have proposed a method to extract unex-

markov chain embedding through deterministic finite au-
tomata.Journal of Applied Probabilityl:226-243, 2008.

[Prazet al, 2009 Vivivane Praz, Rouaida Perier, Claude

Bonnard, and Philipp Bucher. The eukaryotic promoter
database, epd: new entry types and links to gene expres-

pected sequential patterns given a Markov Model. Expected sion data, Nuclear Acids ResearcB0:322—-324, 2002.

supports have been computed thanks to an adequate enum
ation. They have then been compared to observed suppor

fumet al, 1995 B. Prum, F. Rodolphe, and . de Turck-
S heim. Finding words with unexpected frequencies in DNA

by means of p-values. Computation time has been reduced sequencesl. R. Statist. Soc.,57:205-220, 1995.

thanks to dynamic programming. We have shown the practi-
cal interest of our approach by outlining patterns of irdéne
biological sequences. Future work will consist in extegdin

[Robinet al, 2004 Stéphane Robin, Jean-Jacques Daudin,

Hugues Richard, Marie-France Sagot, and Sophie

our approach to include constraints on the maximal distance Schbath. Occurrence probability of structured motifs in
between occurences of items belonging to a same sequential Fandom sequencesJournal of Computational Biology

pattern, such as ilMasseglieet al,, 2009.

9(6):761~774, 2002.

[Team, 2006 R Development Core TeamR: A Language
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