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Abstract

Large databases are now available and many works
offer to mine for the information within. Never-
theless, extracting interesting sites from biologi-
cal sequential databases remains a challenging task,
as they are known to occur with errors. Sequen-
tial patterns, by their flexible structure, enable to
overcome this problem. However, those patterns
are usually numerous while many of them are not
relevant. Therefore, in this paper, we propose a
new approach to mine for statistically significant
sequential patterns. It extracts fewer patterns than
more traditional approaches. Experiments show
that such sequential patterns are pertinent for bio-
logical databases.

1 Introduction
Recently, many works have focused on identifiying patterns
that may have a biological function, in sequences of DNA or
proteins. Some approaches aim at finding such motifs among
DNA sequences, but focus on a restricted kind of patterns
called“structured motifs” [Robinet al., 2002], [Zhanget al.,
2007]. Those are made of two “boxes” of nucleotides at a
bounded distance from each other. Structured motifs having
an unexpected frequency given a chosen model are mined.
Those patterns cover many regions of interest in DNA se-
quences. For example, in promoter sequences, the TATA box
is a well-known binding site. However, structured motifs are
too specific to be general and do not extend to other areas of
biological function, such as motifs in protein primary struc-
ture. To this end, alternative structures are needed.

Sequential patterns, first introduced in [Agrawal and
Srikant, 1995], describe frequent rules of behaviour on or-
dered sequences of events. For example, in a database of
DNA sequences, one such rule would be“In 80% of se-
quences the nucleotide T occurs, followed some time later by
A, then T, and then A.”. Therefore, there are gaps of variable
length between two elements of the pattern. But those pat-
terns are usually numerous, making their interpretation dif-
ficult. Consequently, many works reduce the redundancy of
the discovered patterns, for example through condensed rep-
resentations[Mannila and Toivonen, 1996]. However, our

s A T G G A
t A C T G A
u C T T G A

Table 1: An example of DNA database.

aim here is to extract patterns that are not only frequent, but
also may have a role in genetics.

Therefore, in the present work, we mine for frequent se-
quential patterns that occur unexpectedly given a model. Se-
quential patterns are more general and flexible than structured
motifs, therefore we are able to highlight other regions of in-
terest in biological sequences. As databases of DNA or pro-
teins are made of long sequences on a small alphabet[Wang
et al., 2004], many sequential patterns would be outlined by
a basic extraction. Our approach reduces the set of patterns
so as to get fewer but of biological interest.

The rest of the paper is organised as follows: problem defi-
nition is stated in Section2. Our approach and the associated
algorithm is presented in Section3. Experiments are led in
Section4. Related work is recalled in Section5. Conclusions
and further work are found in Section6.

2 Problem definition
In this section, we present the problem of mining for unex-
pected sequential patterns. Let us consider a database of or-
dered transactions over a finite alphabetΣ of items. To each
transaction correspond a sequence identifiant, an order iden-
tifiant and an item. A sequence of items is called asequence
of data. For example, Table1 contains3 sequences of data
on the alphabet{A, T, G, C}. In this context, a subsequence
x = 〈x1...xk〉 is said to beincluded in a sequence of data
s = s1...sℓ if there are integers1 ≤ i1 < ... < ik ≤ ℓ
such thatsi1 = x1, ..., sik

= xk. That is, items are not
necessarily consecutive. In the previous example, the sub-
sequence〈ATG〉 is included in the sequence of datas, but
also in t (even if there is a gap betweenA andT ). How-
ever, it is not included inu. A sequences supportsa sub-
sequencex if x is included ins. The number of sequences
supporting a subsequencex is called thesupportof x and
is denoted bySupp(x). Let minSupp be the minimal sup-
port chosen by the user. Then all subsequencesx such that
Supp(x) ≥ minSupp are calledfrequent. For example, if



we setminSupp = 2, the subsequence〈ATG〉 is frequent.
Mining for sequential patterns aims at discovering all fre-

quent subsequences, given a thresholdminSupp. Let us note
that we have restricted the notion of sequential pattern to the
specific context of sequences of items. Usually, sequential
patterns are more general, as in[Agrawal and Srikant, 1995],
they were introduced on databases of ordered sets of items.
Over the last few years, many algortihms have been devel-
oped to extract sequential patterns from databases of trans-
actions. As the number of potential sequential patterns may
be huge, such algorithms use the anti-monotonic property to
be able to extract them. However, the object of this work
is to mine patterns which besides being frequent, also might
have a biological function. To do so, we fit a model which
captures the global characteristics of the data, and look for
sequential patterns which frequencies are not well explained
by this model. More precisely, we outline sequential patterns
which observed frequencies under the model are significantly
greater than expected. This is done by adding a filtering
step to existing algorithms. We use dynamic programming
to compute expected supports.

3 Unexpected Sequential Patterns
In this section, we describe how frequencies of sequential pat-
terns according to a model are computed and compared to
observed frequencies, so as to extract patterns of interest.

3.1 Sequential Patterns under a Markov
Assumption

A Markov chain or processS1, S2, ... is characterised by the
following property: fori ≥ 2,

Pr
(

Si =si|S
i−1
1 =si−1

1

)

= Pr(Si =si|Si−1 =si−1), (1)

whereSi−1
1 = (S1, ..., Si−1) andsi−1

1 = (s1, ..., si−1). It is
a Markov property of order1 but it can easily be extended to
greater orders. The interest of the Markov model is twofold:
first, it is adapted for many sequences such as DNA or pro-
teins, since it takes a temporal dependency into account, and
second, it involves a small set of parameters thanks to the re-
duced dependence.

We consider a databaseDB of n independant realisations
of a Markov process{St, t > 0} on a finite state spaceΣ =
{

σ1, ..., σ|Σ|

}

. One such realisation is a sequences = s1...sℓ.
We also suppose that the process is time-homogeneous, that
is, for all 1 ≤ i,

Pr(Si =si|Si−1 =si−1) = Pr(S2 =s2|S1 =s1) . (2)

Moreover, we assume that the process has reached a station-
ary distribution,i.e. for i1 < ... < ij andk > 0:

Pr
(

S
ij

i1
= s

ij

i1

)

= Pr
(

S
ij+k

i1+k = s
ij

i1

)

. (3)

Consequently,{St, t > 0} is characterised by a stationary
distributionµ of length |Σ| which kth element denoted by
µk is equal toPr(S1 = σk), and a transition matrixP of
size |Σ| which (j, k)th element denoted byPjk is equal to
Pr(S2 = σk|S1 = σj).

S1 S2 S3 S4

x1 x2 . .
x1 {x2}

c
x2 .

x1 {x2}
c {x2}

c x2

{x1}
c

x1 x2 .
{x1}

c {x1}
c x1 x2

Table 2: Possible configurations forx in S.

We now define what a sequential pattern is, according to
this model. Let us consider a subsequencex = 〈x1...xk〉.
The probability for a sequenceS of lengthℓ to supportx is
denoted bypℓ(x) as it depends on the length of the sequence.
To calculatepℓ(x), we enumerate all sequences in whichx
may appear. To do so, we enumerate all possible occurences
of x according to the first occurence of each of its letter. For
eachσ ∈ Σ, we denote by{σ}c the set{ρ ∈ Σ, ρ 6= σ}. The
character “.” is the set of all possible items{σ, σ ∈ Σ}.

To fix the ideas, let us consider a random sequenceS =
S1...S4 of length4, and a patternx = 〈x1x2〉 of length2.
Let us suppose thatS supportsx. ThenS may be written as
one and only one of the lines of Table2. Let us suppose that
S1 = x1. The first possible configuration is thatS2 = x2

(first line of Table2). Let us note thatx1 andx2 may occur
further on the sequence. The next possible configuration is
S2 6= x2 butS3 = x2 (second line). This configuration do not
overlap on the previous one. The last possibility isS2 6= x2,
S3 6= x2 but S4 = x2 (third line). Let us now suppose that
S1 6= x2 andS2 = x1. We carry on with the enumeration
until the last possible configuration. Thus all possibilities are
counted, without redundancy. This manner of counting is eas-
ily extended to the case of a pattern of lengthk and a sequence
of lengthℓ, whereℓ ≥ k. In order to write it properly we in-
troduce the two following probabilities.

• For 1 ≤ k ≤ |Σ|, qσk
(i) is the probability that the first

occurence ofσk is at theith position of the sequence:

{

qσk
(1) = Pr (S1 = σk) ,

qσk
(i) = Pr (Si = σk, Sm 6= σk, 1 ≤ m < i) ,

for 1 < i ≤ ℓ.

(4)

More precisely, and using the notations defined at the
beginning of this section,



























qσk
(1) = µk,

qσk
(2) =

∑

j 6=k

µjPjk,

qσk
(i) =

∑

j1,...,ji−1 6=k

µj1

i−2
∏

m=1
Pjm,jm+1

Pji−1k,

for 3 ≤ i ≤ ℓ.

(5)

• For 1 ≤ j, k ≤ |Σ|, qσjσk
(i) is the probability thatσk

occurs at theith position afterσj , and not in between.



By stationarity,






qσjσk
(1)=Pr (S2 = σk|S1 = σj) ,

qσjσk
(i)=Pr(Si+1 =σk,Sm 6=σk,1<m≤ i|S1=σj),

for 1 < i ≤ ℓ− 1.

(6)

Therefore, using the notations for the stationary distri-
bution and the transition matrix of the Markov chain,


























qσjσk
(1) = Pjk,

qσjσk
(2) =

∑

r 6=k

PjrPrk,

qσjσk
(i) =

∑

r1,...,ri−1 6=k

Pjr1

i−2
∏

m=1
Prmrm+1

Pri−1k,

for 3 ≤ i ≤ ℓ− 1.

(7)

Let us now describe how to compute these quantities. For the
sake of simplicty, we only present here how to obtain(5) as
we proceed identically for the probabilities of(7). The trans-
pose of any vectorv is denoted byvT . × denotes the cross
product, and for1 ≤ j ≤ |Σ|, Pj. is the jth line of P .

Algorithm 1 : First Occurence
Data: An indexk, a stationary distributionµ, a transition

probabilityP .
Result: {qσk

(i), 1 ≤ i ≤ ℓ}.

Initialisation1

Computeµ2

ComputeP3

qσk
(1)← µk4

ν ← µ5

π ← (P1., ..., Pk−1., 0, Pk+1., ..., P|Σ|.)
T6

for 2 ≤ i ≤ ℓ do7

ν ← ν × π8

qσk
(i)← νk9

end10

First, the stationary distributionµ and the transition matrixP
are computed. This is done by scanning twice the database
DB, resulting in a complexity ofO(2nℓ), if ℓ denotes the
average length of sequences ofDB. The matrixπ of Algo-
rithm 1 is similar toP except for thekth line which is null.
This secures that the stateσk will not be reached until theith

transaction. The complexity of Algorithm 1 isO(ℓ |Σ|2). The
transition probabilitiesqσjσk

are computed in a similar way

for 1 ≤ j, k ≤ |Σ|, with a total complexity ofO(ℓ |Σ|
3
).

Counting all possible occurences, the probability forx to
occur inS is thus:

pℓ(x) =
∑

i1∈I1,i2∈I2,...,ik∈Ik

qx1
(i1)qx1x2

(i2)...qxk−1xk
(ik),

(8)

whereIj = {1, 2, ..., ℓ + j − k − 1− ij−1}. Therefore, the
probability of occurencepℓ(x) of each patternx under the

Markov model can be calculated explicitely. However, a
naive computation would have poor time efficiency. There-
fore, in the next subsection, we describe how to deduce the
support of any pattern given the support of its greater pre-
fix. This property allows to reduce the computation time like
other dynamic programming approaches, such as the well-
known Forward algorithm.

3.2 Recurrence
For x = 〈x1...xk〉, let Qx(i) be the probability that the first
occurence ofx ends at theith position of the sequence. Let
Qx be the vector of lengthℓ − |x| + 1 such thatQx =
(Qx(i))|x|≤i≤ℓ. Then, according to the enumeration we have
presented, the sum of the terms ofQx is pℓ(x). Indeed, the
probability for one pattern to appear at least once in a se-
quence is the sum of the probabilities of its first occurence at
any position.

• k = 1: thenx is reduced to a single letter andQx =
(qx(i))1≤i≤ℓ is obtained as in(5).

• 1 < k ≤ ℓ: then if x− denotes〈x1...xk−1〉, the largest
prefix ofx, then fork ≤ i ≤ ℓ,

Qx(i) =
i−1
∑

j=|x|−1

Qx1...xk−1
(j) qxk−1xk

(i− j). (9)

Thus,(9) allows to use previous calculations. Next, we
describe more precisely how(9) is done. LetMx

−

be
the triangular matrix defined as follows:

Mx
−

=











Qx
−

(|x|) Qx
−

(|x|+1) ··· Qx
−

(ℓ−1)

0 Qx
−

(|x|) ··· Qx
−

(ℓ−2)

0 0 ··· Qx
−

(ℓ−3)

...
...

...
...

0 0 ··· Qx
−

(|x|)











.

(10)

Then,Qx is obtained as

Mx
−

×







qxk−1xk
(1)

qxk−1xk
(2)

...
qxk−1xk

(ℓ−|x|+1)






. (11)

Once the support of its greater suffix has been computed, the
complexity of the calculation of the expected support of a
pattern is reduced, as only its two last items’ positions are
enumerated, whereas the naive implementation would have
considered all. Thus, we compute expected supports accord-
ing to a Markov Model. Let us remark that those supports
could be approximated by simulating sequences according to
the parameters of the model. However, a large number of such
simulations would be required to get accurate results. In or-
der to extract patterns of interest, we now compare expected
frequencies to observed frequencies.

3.3 Statistically Significant Patterns
For the sake of simplicty, we now consider that all sequences
of DB have the same lengthℓ. Our approach may be straight-
forwardly extended to databases of sequences of different



lengths. The support of a patternx in a databaseDB of n
independent sequences of data of lengthℓ is a random vari-
able of binomial distribution. Indeed, for any patternx, and
1 ≤ i ≤ n, letZi

x be the Bernoulli random variable such that:
{

Zi
x = 1 if the ith sequence supports x,

Zi
x = 0 if not,

(12)

that is,Zi
x = 1 with the probabilitypℓ(x). ThenSupp(x)

is the sum of those independant identically distributed (i.i.d.)
random variables of Bernoulli, and

Supp(x)∼Bin(pℓ(x), n). (13)

Therefore,n× pℓ(x) = E (Supp(x)) is the expected support
of x. It is compared to the observed supportSuppobs(x) by
the means of the p-value:

Pr {Bin(pℓ(x), n) ≥ Suppobs(x)} . (14)

The patternx is over-represented if this p-value is less than a
given threshold.

Let us now describe the algorithmUn-SPwhich extracts
unexpected sequential patterns.

Given probabilites of first occurence, a minimum support
minSupp, and a thresholdε for the p-values,Un-SPdoes
a depth-first search of the prefix tree of sequential patterns.
This is done through the function For each patternx, if its
observed support is greater thanminSupp, its support ac-
cording to the model is computed using the support of its
greater prefix. Therefore, we need to store the vectorsQy

for each suffixy of x. However, those vectors are discarded
as we progress further on the tree. Ifpx < ε, x is an un-
expected sequential pattern.Un-SPis described in 2. At the
end of the algorithm, we call for two functionsnew.pref and
new.letter which allow to go to the next branch. In summary,
Un-SPis a classical depth-first algorithm for sequential pat-
tern extraction but outlines only unexpected ones thanks toa
filtering step.

4 Experiments
In this section, we describe our experiments on real biological
datasets. The algorithmUn-SPhas been implemented inR
[Team, 2006]. The R package “Bio3D”[Grantet al., 2006]
has been used to read protein sequences in the FASTA format.
The object of this section is to re-establish well-known results
to demonstrate the pertinence of our approach.

4.1 DNA sequences
In Section1, we have seen that structured motifs are regions
of interest in prokaryotic promoters. However, highlighting
similar regions in eukaryotic promoters is less straightfor-
ward, as they present more diverse structures. Therefore, we
consider a database from the Eukaryotic Promoter Database
[Praz et al., 2002] on the alphabet{A, T, G, C}. It con-
tains186 sequences of plant promoters chromosomal genes
of length52 from position−50 to +1 relative to transcription
start site. Unexpected sequential patterns forminSupp =
90% andε = 1×10−2 are presented in Table3. We recognise
the well-knownTATA box (sequenceTATAAA), which

Algorithm 2 : Un-SP
Data: A database DB, Probabilities of first occurence

qσk
(i),qσjσk

(i) for 1 ≤ i ≤ ℓ, 1 ≤ j, k ≤ |Σ|, a
minimal supportminSupp and a thresholdε

Result: A set of unexpected sequential patternsX

Initialisation1

pref ← “ ”2

i← 13

X ← φ.4

while i ≤ |Σ| do5

x← pref ·Σ[i].6

if Suppobs(x) ≥ minSupp & length(x) ≤ ℓ then7

i← 18

Compute its expected supportn× pℓ(x)9

Compute the associated p-value10

if p-value≤ ε then11

X ← X ∪ {x}12

end13

end14

else ifi < |Σ| then15

i← i + 116

end17

else18

pref ← new.pref(pref)19

i← new.letter(pref)20

end21

end22

return X .23

often lies close to the transcription start site in eukaryotic pro-
moters. Moreover, the set of discovered patterns is strongly
reduced thanks to the constraint on the p-value. Figure1
shows, using a logarithmic scale, the number of sequential
patterns (ε = 1), the number of unexpected sequential pat-
terns forε = 1 × 10−1, 1 × 10−2, 1 × 10−3. For example,
if minSupp = 80%, there are367696 sequential patterns,
but only2082 of p-value less than1 × 10−1, 321 of p-value
less than1 × 10−2, and57 of p-value less than1 × 10−3.
Therefore, we have restricted the set of extracted sequential
patterns to those which present a biological interest. We have
found similar results than existing approaches focusing on
structured motifs, as they are a particular kind of sequential
patterns.

Pattern p-value
〈CATAATAAAATCA〉 0.007
〈CATATATAAAACA〉 0.005
〈CATTATAAAAACA〉 0.002
〈CTATATAAAATCA〉 0.008
〈CTTATAAAAATCA〉 0.004
〈CTTATAAAAACA〉 0.007
〈CCTTATAAATTCA〉 0.001

Table 3:minSupp = 90% andε = 1× 10−2
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Figure 1: Number of sequential patterns extracted.

Pattern p-value
〈CCFH〉 1.74× 10−84

〈CCFHH〉 1.29× 10−112

〈CCH〉 2.03× 10−53

〈CCHH〉 1.18× 10−70

〈CCKH〉 1.40× 10−58

〈CCKHH〉 2.44× 10−71

〈CCLH〉 3.08× 10−75

〈CCLHH〉 1.10× 10−90

〈CCRH〉 5.44× 10−61

〈CCSH〉 6.37× 10−55

〈CFHH〉 3.65× 10−67

Table 4:minSupp = 65% andε = 1× 10−50

4.2 Protein sequences
Let us now consider protein sequences on the alphabet of
20 amino acids.Domainsare defined as parts of protein se-
quences which, roughly, fold in a compact structure and are
associated to a biological function. Many proteins include
different domains. In every domain are found recognisable
motifs. For example, there are different types ofZinc Fin-
ger Motifs, with specific compositions. For the C2H2 type,
the consensus sequence is C-x(2−4)-C-x(3)-[LIVMFYWC]-
x(8)-H-x(3, 5)-H, which means thatCoccurs, then2 to
4 bases laterC again, then3 bases later any of the set
{L, I, V, M, F, Y, W, C}, etc... We consider a dataset of56
sequences of length25 from the domain zf-C2H2 from the
Pfam database[Batemanet al., 2000], and check wether the
consensus sequence is outlined by our approach. Results are
presented in Table4.

We recognise the motif CCHH at line4 of Table4, but also
many parts of the consensus sequence. Therefore, we iden-

tify a well-known motif as the flexible structure of sequential
patterns allows to consider sequences of variable length and
gaps.

5 Related Work
In data mining, mining for unexpected sequential patterns has
recently raisen interest. In[Li et al., 2008], the notion of be-
lief is introduced as a user-defined rule. Unexpected sequen-
tial patterns which contradict those beliefs, are then defined
as unexpected. Experiments are led on a database of weblogs.
However, this approach’s object is to find sequential patterns
which clash with beliefs defined by users, while we are inter-
ested in sequential patterns which are over-represented given
a global model.

A similar problem to ours is studied in[Robinet al., 2002]
and [Zhanget al., 2007]. Indeed, they aim at finding spe-
cific patterns calledstructured motifsof unexpected frequen-
cies in a set of sequences. Structured motifs are formed of
two boxes of consecutive nucleotides separated by a gap. For
example, a structured motif in a DNA sequence would be
ATTG..TAGC, where the two boxesATTG andTAGC
occur (possibly with errors) with two “do-not-care” symbols
in-between. In[Robin et al., 2002], the probability of oc-
curence for one such motif at a given position is approxi-
mated by considering the past up to a fixed order. In[Zhang
et al., 2007], under a Markov assumption, the probability of
occurence is computed by the inclusion-exclusion principle,
but only for structured motifs with a fixed length gap. The
probabilities of occurence are then compared to observed fre-
quencies as the support follows a binomial distribution. How-
ever, these approaches are restricted to structured motifs, and
cannot be applied to other patterns of biological function.

Other works study the problem of finding subsequences of
consecutive letters of unexpected frequency given a model.
In [Prum et al., 1995], expected frequencies are computed
given the exhaustive statistic of the model, and in[Flajolet
et al., 2006], by using generating functions. Let us notice
that this last work also considers words formed of letters with
variable-length gaps between them, called“hidden patterns”
(similar to sequential patterns). In[Nuel, 2008], it is done
by means of a convenient sequence associated to each word.
Normal or Poisson approximations or Large Deviations allow
to extract words for which expected frequencies differ signif-
icantly from observed ones. In[Jaroszewicz, 2008], subse-
quences which observed and predicted frequencies are larger
than a given threshold, are used to update a hidden Markov
model through dynamic programming. No p-value is intro-
duced. However, those works differ from ours not only by
the method used and the type of patterns considered, but also
by the notion of frequency: for a given subsequence, all oc-
curences in the database are counted. For example, in Table
1, the frequency ofA would be1/3, as5 out of15 letters are
A, whereas its support is1, as it appears in3 sequences out of
3. The same notion is used in[Califano, 2000] for identifying
patterns with fixed gaps between their items, which frequency
is greater than a given threshold.

In summary, existing works have identified various patterns
of interest, in various databases. However, we present herean



approach to mine for unexpected sequential patterns under a
probabilistic model assumption, which differs from those by
the type of pattern, frequency, method or model considered.

6 Conclusion
In this paper, we have proposed a method to extract unex-
pected sequential patterns given a Markov Model. Expected
supports have been computed thanks to an adequate enumer-
ation. They have then been compared to observed supports
by means of p-values. Computation time has been reduced
thanks to dynamic programming. We have shown the practi-
cal interest of our approach by outlining patterns of interest in
biological sequences. Future work will consist in extending
our approach to include constraints on the maximal distance
between occurences of items belonging to a same sequential
pattern, such as in[Massegliaet al., 2008].
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