
HAL Id: hal-00379718
https://hal.science/hal-00379718v1

Submitted on 29 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Summary Management in Unstructured P2P Systems
Rabab Hayek, Guillaume Raschia, Patrick Valduriez, Noureddine Mouaddib

To cite this version:
Rabab Hayek, Guillaume Raschia, Patrick Valduriez, Noureddine Mouaddib. Summary Management
in Unstructured P2P Systems. Revue des Sciences et Technologies de l’Information - Série ISI : In-
génierie des Systèmes d’Information, 2008, Numéro spécial Networking and Information Systems,
pp.83-106. �hal-00379718�

https://hal.science/hal-00379718v1
https://hal.archives-ouvertes.fr

Summary Management in Unstructured
P2P Systems

Rabab Hayek* — Guillaume Raschia* — Patrick Valduriez** —
Noureddine Mouaddib*

Atlas Team (INRIA - LINA), University of Nantes
2 rue de la Houssiniere – B.P. 92208, 44300 Nantes, France
* surname.name@univ-nantes.fr
** Patrick.Valduriez@inria.fr

ABSTRACT. In this paper, we propose managing data summaries in unstructured P2P systems.
Our summaries are intelligible views with two main virtues. First, they can be directly queried
and used to approximately answer a query. Second, as semantic indexes, they support locating
relevant nodes based on data content. The performance evaluation of our proposal shows that
the cost of query routing is minimized, while incurring a low cost of summary maintenance.

RÉSUMÉ. Dans ce travail, nous proposons de maintenir des résumés de données dans les sys-
tèmes P2P non structurés. Nos résumés sont des vues intelligibles ayant un double avantage
en traitement de requête. Ils peuvent soit répondre d’une manière approximative à une requête,
soit guider sa propagation vers les pairs pertinents en se basant sur le contenu des données.
L’évaluation de performance de notre proposition a montré que le coût de requêtes est large-
ment réduit, sans induire des côuts élevés de maintenance de résumés.

KEYWORDS: P2P Systems, DB Summarization

MOTS-CLÉS : Systèmes pair-à-pair, Résumés des bases de données

RSTI - ISI – 13/2008, pages 83 à 107

84 RSTI - ISI – 13/2008

1. Introduction

Today’s information systems are facing two main problems. First, they host a large
number of data sources that are highly distributed, autonomous, and dynamic. Second,
modern applications generate huge amount of information stored into the connected
data sources, which become more and more voluminous. These applications require
efficient and flexible querying facilities to access semantically rich data. Therefore,
information systems need to scale up in terms of both number of participants and
amount of shared data, without losing the ability to handle complex queries.

While distributed systems such as database, integration and parallel systems have
reached their maturity and only supported a limited number of users, P2P systems
allow data sharing on a world wide scale with many advantages like decentralization,
self-organization, autonomy, etc. Initially developed for file-sharing applications, P2P
technology is now evolving to support more advanced applications. Such applica-
tions must deal with high-level semantics of shared data by the use of advanced query
languages and access methods. As a potential example of applications, consider the
cooperation of scientists who are willing to share their private data for the duration of
a given experiment. However, a major problem in the operation of P2P systems as dis-
tributed systems is object locating. Unstructured P2P search systems rely on flooding
mechanism and its variations. Though simple and robust, this approach suffers from
high query execution cost and poor query recall. Initial works have led to structured
P2P systems (e.g. (Stoica et al., 2001)), which are based on Distributed-Hash-Table
functionalities. These systems achieve the goal of improving search efficiency, but
they compromise peer autonomy and may restrict query expressiveness.

So far, data localization has been the main issue addressed in P2P data sharing
systems, whose scalability is constrained by the employment of efficient search tech-
niques. But, nowadays we are asking the following question: with the ever increasing
amount of information stored each day into data sources, are these techniques still
sufficient to support advanced P2P applications? To illustrate, in a scientific collab-
orative application, a doctor may require information about patients diagnosed with
some disease, without being interested in individual patient records. A user in such
collaborative or decision-support applications may prefer an approximate but fast an-
swer, instead of waiting a long time for an exact one. Therefore, reasoning on compact
data descriptions that can return approximate answers like “dead Malaria patients are
typically children and old” to queries like “age of dead Malaria patients”, is much
more efficient than retrieving raw records, which may be very costly to access in
highly distributed, massive databases.

This work aims at managing summaries over shared data in P2P systems. Data
summaries are synthetic, multidimensional views with two main virtues. First, they
provide an intelligible representation of the underlying data such that an approximate
query can be processed entirely in their domain; that is, inputs and outputs are sum-
maries. Second, as indexing structures, they support locating relevant nodes based
on their data descriptions. This paper makes the following contributions. First, we

Summary management in P2P systems 85

define an efficient algorithm for partitioning an unstructured P2P network into do-
mains, in order to optimally distribute summaries in the network. Then, we propose
distributed algorithms for managing data summaries in a given domain. We validated
our proposal through simulation, using the BRITE topology generator and SimJava.
The performance results show that the cost of query routing is minimized, while in-
curring a low cost of summary maintenance. The rest of this paper is organized as
follows. Section 2 describes our summary model for P2P systems. Section 3 presents
the algorithm for network organization, while section 4 presents the algorithm for
summary management. Section 5 discusses query processing in the context of sum-
maries. Section 6 gives a performance evaluation with a cost model and a simulation
model. Section 7 compares our solution with related work. Section 8 concludes.

2. Summary model for P2P systems

In this section, we first present our summary model architecture. Second, we de-
scribe the summarization process that allows generating summaries of a relational
database. Then, we formally define the notion of data summary in a P2P network.

2.1. Model architecture

Data indexes are maintained in P2P systems using one of the following approaches.
A centralized approach maintains a global index over all the data shared in the net-
work, and thus provides a centralized-search facility. A hybrid decentralized approach
distributes indexes among some specialized nodes (e.g. supernodes), while a pure de-
centralized approach distributes indexes among all the participants in the network
(e.g. structured DHTs, Routing Indices). Each of these approaches provides a differ-
ent trade-off between the cost of maintaining the indexes and the benefits obtained
for queries. In our work, we have adopted the second approach since it exploits peer
heterogeneity, which is a central key to allow P2P systems scaling up without compro-
mising their decentralized nature (Saroiu et al., 2002). Let us examine the architecture
of our summary model which is presented in Figure 1. The network is organized into
domains, where a domain is defined as being the set of a supernode and its associated
leaf nodes. In a given domain, peers cooperate to maintain a global summary over
their shared data. The set of global materialized summaries and links between the
corresponding domains, provide a virtual complete summary, which ideally describes
all the data shared in the network. Obviously, an important issue here is how the net-
work is organized into domains, i.e. how the superpeers are selected and other peers
are grouped around them in a fully decentralized manner. This issue will be discussed
in Section 3. However, we first give a brief description of the summarization process
that generates summaries of relational databases.

86 RSTI - ISI – 13/2008

Figure 1. Model architecture for hierarchical P2P networks

2.2. Summarization process

A summarization process is integrated to each peer’s DataBase Management Sys-
tem (DBMS) to allow constructing the local summary level of Figure 1. Our approach
is based on SAINTETIQ (Raschia et al., 2002), an online linguistic approach for sum-
marizing databases. The SAINTETIQ system takes tabular data as input and produces
multi-resolution summaries of records through a two-step process: online mapping
and summarization. For illustration, consider a relational database which is reduced
to a single Patient relation (Table 1).

Table 1. Raw data
Id Age BMI Disease

t1 15 17 Anorexia

t2 20 20 Malaria

t3 18 16.5 Anorexia

Table 2. Grid-cells mapping
Id Age BMI tuple count

c1 young underweight 2

c2 0.7/young normal 0.7

c3 0.3/adult normal 0.3

2.2.1. Mapping service

The SAINTETIQ system relies on Zadeh’s fuzzy set theory (Zadeh, 1965) and,
more specifically on linguistic variables (Zadeh, 1975) and fuzzy partitions (Zadeh,
1999) to represent data in a concise form. The fuzzy set theory is used to translate
records according to a Background Knowledge (BK) provided by the user. The Back-
ground Knowledge BK is a priori built over the attributes that are considered relevant
to the summarization process. In the above relation, the selected attributes are AGE
and BMI 1. Basically, the mapping operation replaces the original values of every
record in the table by a set of linguistic descriptors defined in the BK. For instance,

1. Body Mass Index (BMI): patient’s body weight divided by the square of the height.

Summary management in P2P systems 87

with a linguistic variable on the attribute AGE (Figure 2), a value t.AGE = 20 years is
mapped to {0.3/adult, 0.7/young} where 0.3 is a membership grade that tells how well
the label adult describes the value 20. Extending this mapping to all the attributes of
a relation could be seen as locating the overlapping cells in a grid-based multidimen-
sional space that map records of the original table. The fuzzy grid is provided by BK
and corresponds to the user’s perception of the domain.

Figure 2. Fuzzy linguistic partition on age

Thus, tuples of Table 1 are mapped into three distinct grid-cells denoted by c1,
c2 and c3 in Table 2. A priori, the fuzzy label underweight provided by the BK on
attribute BMI, perfectly matches (with degree 1) range [15, 17.5], while the fuzzy label
normal perfectly matches range [19.5, 24] of raw values. Besides, tuple count column
gives the proportion of records that belongs to the cell and 0.3/adult says that adult fits
the data only with a small degree (0.3). It is computed as the maximum of membership
grades of tuple values to adult in c3. The fuzziness in the vocabulary definition of BK
permits to express any single value with more than one fuzzy descriptor and thus
avoid threshold effect thanks to the smooth transition between different categories.
Besides, BK leads to the point where tuples become indistinguishable and then are
grouped into grid-cells such that there are finally many more records than cells. Every
new (coarser) tuple stores a record count and attribute-dependent measures (min, max,
mean, standard deviation, etc.). It is then called a summary.

2.2.2. Summarization service

The summarization service is the last and the most sophisticated step of the SAIN-
TETIQ system. It takes grid-cells as input and outputs a collection of summaries
hierarchically arranged from the most generalized one (the root) to the most special-
ized ones (the leaves) (Raschia et al., 2002). Summaries are clusters of grid-cells,
defining hyperrectangles in the multidimensional space. In the basic process, leaves
are grid-cells themselves and the clustering task is performed on K cells rather than
N tuples (K << N).

From the mapping step, cells are introduced continuously in the hierarchy with
a top-down approach inspired of D.H. Fisher’s Cobweb (Thompson et al., 1991), a
conceptual clustering algorithm. Then, they are incorporated into best fitting nodes
descending the tree. Three more operators could be apply, depending on partition’s
score, that are create, merge and split nodes. They allow developing the tree and
updating its current state. Figure 3 represents the summary hierarchy built from the
cells c1, c2 and c3.

88 RSTI - ISI – 13/2008

Figure 3. Example of SaintEtiQ hierarchy

2.2.3. Scalability issues

Memory consumption and time complexity are the two main factors that need to
be taken care of in order to guaranty the capacity of the summary system to handle
massive datasets. First, the time complexity of the SAINTETIQ process is in O(K),
where K is the number of cells to incorporate into a hierarchy of summaries. Here
we note that, the number of cells that are produced by the mapping service depends
only on the granularity and the fuzziness of the BK definition. A fine-grained and
overlapping BK will produce much more cells than a coarse and crisp one. Besides,
an important feature is that in the summary algorithm, raw data have to be parsed
only once, and this are processed with a low time cost. Second, the system requires
low memory consumption for performing the summary construction algorithm as well
as for storing the produced summaries. On the other hand, the parallelization of the
summary system is a key feature to ensure smooth scalability. The implementation of
the summarization system is based on the Message-Oriented Programming paradigm.
Each sub-system is autonomous and collaborates with the others through disconnected
asynchronous method invocations. It is among the least demanding approaches in
terms of availability and centralization. Thus, the autonomy of summary components
allows for a distributed computing of the summary process.

2.3. Distributed summary representation

In this section, we introduce basic definitions related to the summarization process.

Definition 1 Summary Let E = 〈A1, . . . , An〉 be a n-dimensional space equipped
with a grid that defines basic n-dimensional areas called cells in E. Let R be a
relation defined on the cartesian product of domains DAi

of dimensions Ai in E.
Summary z of relation R is the bounding box of the cluster of cells populated by
records of R.

The above definition is constructive since it proposes to build generalized sum-
maries (hyper-rectangles) from cells that are specialized ones. In fact, it is equivalent
to performing an addition on cells: z = c1 + c2 + . . .+ cp, where ci ∈ Lz , the set of

Summary management in P2P systems 89

p cells (summaries) covered by z. A summary z is then an intentional description as-
sociated with a set of tuples Rz as its extent and a set of cells Lz that are populated by
records of Rz . Thus, summaries are areas of E with hyper-rectangle shapes provided
by BK. They are nodes of the summary tree built by the SAINTETIQ system.

Definition 2 Summary Tree A summary tree is a collection S of summaries con-
nected by 4, the following partial order: ∀z, z′ ∈ Z, z 4 z′ ⇐⇒ Rz ⊆ Rz′ .

The above link between two summaries provides a generalization/specialization
relationship. And assuming that summaries are hyper-rectangles in a multidimen-
sional space, the partial ordering defines nested summaries from the larger one to the
single cells. General trends in the data could be identified in the very first levels of the
tree whereas precise information has to be looked at near the leaves. For our purpose,
we also consider a summary tree as an indexing structure over distributed data in a
P2P system. Thus, we add a new dimension to the definition of a summary z, which
provides the set of peers having data described by z.

Definition 3 Peer-extent Let z be a summary in a given hierarchy of summaries S,
and P the set of all peers who participated to the construction of S. The peer-extent
Pz of the summary z is the subset of peers owning, at least, one record of its extent
Rz: Pz = {p ∈ P | Rz ∩Rp 6= ∅} , where Rp is the view over the database of node
p, used to build summaries.

Due to the above definition, we extend the notion of data-oriented summary in
a given database, to a source-oriented summary in a given P2P network. In other
words, our summary can be used as a database index (e.g. referring to relevant tuples),
as well as a semantic index in a distributed system (e.g. referring to relevant nodes).
The summary hierarchy S will be characterized by its Coverage in the P2P system;
that is, the number of data sources described by S. Relative to the hierarchy S, we
call Partner Peer a peer whose data is described by at least a summary node of S.

Definition 4 Partner peers The set of Partner peers PS of a summary hierarchy S is
the union of peer-extents of all summaries in S: PS = {∪z∈SPz} .

For simplicity, in the following we designate by “summary” a hierarchy of sum-
maries maintained in a P2P system, unless otherwise specified.

3. Network self-organization

Intuitively, the term “self-organization” describes the ability of a P2P network to
organize its participants into a cooperative framework, without the need of external in-
tervention or control. For our purposes, we understand self-organization as the capa-
bility of partitioning the network into domains, to optimally distribute data summaries,
without using global information or restricting peer autonomy.

90 RSTI - ISI – 13/2008

3.1. Rationale

(Ganesan et al., 2005) have addressed the problem of maintaining distributed
indexes in a P2P network. Nodes are partitioned into independent domains, and nodes
within a domain build a global index over their shared data. However, the authors have
assumed that there exists a fixed number of domains k, and a node is assigned to one
of these domains at random. As a first issue, they have studied the optimal number
of domains in order to minimize the total cost of queries and index maintenance. It
has been shown that this number is a function of the the total number of nodes in the
network.

In our work, we do not suppose that nodes are assigned to domains at random.
Instead, we are interested in how domains are created and nodes are assigned to them.
Here, we present a primitive function that enables to partition the network around
high-connectivity nodes. A number of recent studies (Saroiu et al., 2002), (Ripeanu et
al., 2002) have shown that the existing complex networks have common characteris-
tics, including power law degree distributions, small diameter, etc. In these networks,
called power-law networks, most nodes have few links and a tiny number of hubs
have a large number of links. More specifically, the fraction of nodes with k links is
proportional to k−β , where β is called the exponent of the distribution.

Our solution for network organization is completely decentralized, and mainly
exploits the power-law distribution of node degrees. It does not rely on any global
information, however, it uses local information by considering that a node has only
to know about the entities and the connectedness of its neighbors. The key idea is
that random walks in power-law networks naturally gravitate toward the high-degree
nodes. A random walk is a technique proposed by (Lv et al., 2002) to replace flood-
ing. At each step, a query message is forwarded to a randomly chosen neighbor until
sufficient responses to the query are found. Although it makes better utilization of
the P2P network than flooding, a random walk is essentially a blind search in that it
does not take into account any indication of how likely it is the chosen node will have
responses for the query. (Adamic et al., 2001) addressed this problem and showed that
a better scaling is achieved by intentionally choosing high degree nodes. We will refer
to this routing technique as “selective walk”.

In our work, we aim to identify the superpeers, which will be referred later as
summary peers, in a power law network with an exponent β and maximum degree
kmax. Summary peers are defined as being high degree peers, which will serve as
centers of summary-attraction. Using a selective walk which naturally and rapidly
gravitates toward high degree nodes, a peer p finds the nearest summary peer SP to
which it sends a duplicate of its local summary LS. The set of peers that discover
the same summary peer SP are grouped around it and form a domain. These peers
become partners relative to a global summary GS obtained by merging their local
summaries. In (Sarshar et al., 2004), any node with degree k is considered as a high-
degree node if k ≥ kmax/2. However, kmax scales like O(N1/β) (Aiello et al., 2000)
and is a global information. In the next section, we propose an IS_SUMPEER function

Summary management in P2P systems 91

that is executed locally at each peer to decide whether it is a summary peer or not,
using minimum local information.

3.2. Algorithm

For our purpose, we have extracted a general model of a high-degree node in a
power law network. Thus, the IS_SUMPEER function consists in matching this model
with each node of the network. Algorithm 1 shows the steps involved in making this
matching. First, we check if the current peer p is among the highest-degree peers in
its neighborhood. In other words, we check if the degree k of peer p is greater than the
median value of the set of its neighbor’s degrees (i.e. |subset_inf | � |subset_sup|).
Then, we verify if the local maximum degree kmax in p’s neighborhood does not ex-
ceed 2 ·k. Finally, we examine if k is larger than the mean value of neighbor’s degrees
by a constant ct. This condition makes a difference in the matching result when the
neighbor’s degrees follow an asymmetric distribution with a positive skew, i.e. there
are a small number of very large degrees. In that case, the mean value is greater than
the median. The constant ct permits to tune the selectivity of the matching function.
Larger is ct, less is the total number of summary peers. Indeed, peer p is considered
as a summary peer if the above three conditions are satisfied simultaneously.

Algorithm 1 Is_SumPeer
1: function Is_SumPeer(k, NL)
2: k is the degree of the current peer p, and NL is the Neighboring List that contains the

identifiers of p’s neighbors and their degrees.
3: subset_inf := pi ∀ 1 ≤ i ≤ |NL| such that ki < k
4: subset_sup := pi ∀ 1 ≤ i ≤ |NL| such that ki > k
5: kmax := max (ki), ∀ 1 ≤ i ≤ |NL|
6: kmean := mean (ki), ∀ 1 ≤ i ≤ |NL|
7: if (|subset_inf | > |subset_sup|) and (k > kmax/2) and (k > ct · kmean) then
8: Is_SumPeer := true
9: else Is_SumPeer := false

10: end if
11: end function

Using the Brite topology generator 2, we simulate N -node P2P networks whose
node degrees follow a power law distribution with a mean value of 4. Figure 4 shows
the number of summary peers in function of the total number of peers N . We see that
this number is proportional to

√
n for network sizes smaller than 1024, and is propor-

tional to n for larger networks. Since our domains are formed around the summary
peers, thus figure 4 gives directly the number d of domains obtained in the network.

The shown results are similar to those found in (Ganesan et al., 2005). It has been
proved, theoretically and by simulation, that the optimal number of domains required

2. http://www.cs.bu.edu/brite/

92 RSTI - ISI – 13/2008

to distribute a global index, is in O(
√
n) for total-lookup queries and in O(n) for

partial-lookup queries. A total-lookup query requires all results that are available in
the system, whereas a partial-lookup query requires any m results, for some constant
m. We believe that a total-lookup query is very difficult and costly in large P2P net-
works, and all queries are processed as being partial-lookup queries. Therefore, we
conclude that using a local degree-based function, we can organize the network into an
optimal number of domains: for total-lookup queries in small-sized networks, and for
partial-lookup queries in larger-sized networks. Certainly, this work is not complete
and requires further examination and discussion. But, it may be considered as the
initial phase of other works like (Ganesan et al., 2005). In other terms, it constitutes
the beforehand organization of a P2P network, which is then associated with efficient
mechanisms for maintaining such organization against dynamicity.

Figure 4. Number of summary peers vs. number of peers

4. Summary management

In this section, we present our algorithms for summary construction and mainte-
nance in a given domain. First, we work in a static context. Then we address the
volatility of peers and propose appropriate solutions.

4.1. Summary construction

We assume that each global summary is associated with a Cooperation List (CL)
that provides information about its partner peers. An element of CL is composed of
a partner identifier PeerID, and a 2-bit value v that provides information about the
description freshness as well as the availability of the corresponding database:

– value 0 (initial value): the descriptions are fresh relative to the original data,
– value 1: the descriptions need to be refreshed,

Summary management in P2P systems 93

– value 2: the original data are not available.

Algorithm 2 shows the messages exchanged between peers in order to build a global
summary GS. A summary peer SP broadcasts a SUMPEER message that contains its
identifier, to indicate its ability to host summaries. Since SP is supposed to have high
connectivity, a small value of TTL (Time-To-Live) is sufficient to cover a large num-
ber of peers (e.g. TTL = 2). The message contains also a hop value h, initialized to
0, which is used to compute the distances between SP and the visited peers. A peer p
who received a first SUMPEER message, maintains information about the correspond-
ing summary peer SP (i.e. Line 13). Then, p sends to SP a LOCALSUM message that
contains its local summary LS, and thus becomes a partner peer in the SP ’s domain.
Upon receiving this last message, SP merges LS to its current global summary GS,
and adds a new element in the cooperation list.

However, a peer p who is already a partner may receive a new SUMPEER message.
In that case, only if the new summary peer is nearer than the old one (based on latency),
it chooses to drop its old partnership through a DROP message (i.e. Line 11), and p
proceeds to participate to a new domain. We now suppose that a peer p does not
belong to any domain, and wants to participate to a global summary construction.
Using a selective walk, it can rapidly find a summary peer SP (i.e. FIND message).
The information about SP , which is maintained at each of its partners, makes the
selective walk even shorter. Once a partner or a summary peer is reached, the FIND
message is stopped (i.e. Line 27).

Note that peers exchange summaries that are produced using local Background
Knowledges (BKs). In our work, we consider the two following assumptions. First,
each peer p owns some tuples in a global, horizontally partitioned relation R. Second,
users that are willing to cooperate agree on a Background Knowledge BK, which
represents their common perception of the domain. Thus, here we do not address the
problem of semantic heterogeneity among peers, since it is a separate P2P issue on its
own. Besides, our work mainly targets collaborative database applications where the
participants are supposed to work on “related” data. In such a context, the number of
participants is also supposed to be limited, and thus the assumption of a common BK
seems not to be a strength constraint. An example of suchBK in a medical collabora-
tion is the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) 3,
which provides a common language that enables a consistent way of capturing, shar-
ing and aggregating health data across specialties and sites of care. On the other hand,
our summaries are data structures that respect the original data schemas (Saint-Paul et
al., 2005). Hence, we can assume that the techniques that have been proposed to deal
with information integration in P2P systems (e.g. (Tartinov et al., 2003), (Akbarinia et
al., 2006)) can be used here to overcome the heterogeneity of both data and summary
representations.

3. http://www.snomed.org/snomedctn

94 RSTI - ISI – 13/2008

Algorithm 2 Global Summary Construction
1: // Definition of different types of messages
2: SUMPEER=〈sender〉 〈id, h, TTL〉; FIND=〈sender〉 〈h, TTL〉
3: LOCALSUM=〈sender〉 〈LS〉; DROP=〈sender〉 〈〉
4: // Treatment of messages
5: Switch msg.type
6: // Receiving information about a summary peer
7: Case (SumPeer):
8: msg.h++; msg.TTL−−

9: if (this.SumPeer=null) or (this.SumPeer.h>msg.h) then
10: if (this.IsPartner) then
11: Send DROP message to this.SumPeer.id
12: end if
13: this.SumPeer:= 〈msg.id,msg.h〉
14: LOCALSUM:= new msg (this.LS); Send LOCALSUM to msg.sender
15: IsPartner:= True
16: end if
17: if msg.TTL > 0 then
18: Send msg to all neighbors
19: end if
20: end Case
21: // Searching for a summary peer
22: Case (Find):
23: msg.TTL−−; msg.h++

24: if (this.Is_SumPeer) then
25: PEERSUM:= new msg (this.id, msg.h, 1); Send PEERSUM to msg.sender
26: else
27: if (this.SumPeer 6= null) then
28: PEERSUM:= new msg (this.SumPeer.id, (msg.h + this.SumPeer.h), 1)
29: Send PEERSUM to msg.sender
30: else
31: if (msg.TTL > 0) then
32: p′:= highest degree peer in N(p); Send msg to p′

33: end if
34: end if
35: end if
36: end Case
37: // arrival of a new partner
38: Case (LocalSum):
39: CoopList.add (msg.sender, 0); GlobalSum:= merge (GlobalSum, msg.LS)
40: end Case
41: // departure of a partner
42: Case (Drop):
43: CoopList.remove (msg.sender)
44: end Case

Summary management in P2P systems 95

4.2. Summary maintenance

A critical issue for any indexing structure is to maintain the index, relative to the
current data instances, without incurring high costs. For a local summary, it has been
demonstrated that the summarization process guarantees an incremental maintenance,
using a push mode for exchanging data with the DBMS, while performing with a low
complexity (Saint-Paul et al., 2005). In this section, we propose a strategy for main-
taining a global summary in a given domain, based on both push and pull techniques,
in order to minimize the number of messages exchanged in the system. The algorithm
is divided into two phases: data modification and summary reconciliation.

4.2.1. Push: data modification

Let GS be a global summary and PGS the set of its partner peers. Each peer in
PGS is responsible for refreshing its own element in the GS’s cooperation list. A
partner peer p observes the modification rate issued on its local summary LS. When
LS is considered as enough modified, the peer p sets its freshness value v to 1, through
a push message to the corresponding summary peer SP . The value 1 indicates that the
local summary version being merged while constructing GS does not correspond any
more to the current instance of the database. An important feature is that the frequency
of push messages depends on modifications issued on local summaries, rather than
on the underlying databases. It has been demonstrated in (Saint-Paul et al., 2005)
that, after a given process time, a summary hierarchy becomes very stable. As more
tuples are processed, the need to adapt the hierarchy decreases and hopefully, once all
existing attribute combinations have been processed, incorporating new tuple consists
only in sorting it in a tree. A summary modification can be detected by observing the
appearance/disappearance of descriptors in summary intentions.

4.2.2. Pull: summary reconciliation

The summary peer SP , in its turn, observes the fraction of old descriptions (i.e.
number of ones) in the cooperation list. Whenever this fraction exceeds a threshold
value (i.e. our system parameter), the global summary GS must be refreshed. In that
case, SP pulls all the partner peers to merge their current local summaries into the new
version ofGS, which will be then under reconstruction. The algorithm is described as
follows. SP initiates a reconciliation message that contains a new summary NewGS
(initially empty). The message is propagated from a partner to another (started at
SP). When a partner p receives this message, it first merges NewGS with its local
summary. Then, it sends the message to another partner (chosen from the cooperation
list CL). If p is the last visited peer, it sends the message to SP who will store the
new version of the gobal summary. All the freshness values in CL are reset to zero.
This strategy distributes the charge of summary merging on all partners, instead of
imposing on SP to receive all local summaries and to make the merging calculations
alone. Furthermore, this strategy guarantees a high availability of the global summary,
since only one update operation is performed at the end by SP .

96 RSTI - ISI – 13/2008

4.3. Peer dynamicity

In large P2P systems, a peer connects mainly to download some data and may leave
the system without any constraint. Therefore, the shared data can be submitted with a
low modification rate, while the rate of node arrival/departure is very important. We
now study the effect of this peer dynamicity on our summary management algorithms.

4.3.1. Partner peer arrival/departure

In unstructured P2P systems, when a new peer p joins the system, it contacts some
existing peers to determine the set of its neighbors. If one of these neighbors is a part-
ner peer, p sends its local summary LS to the corresponding summary peer SP , and
thus becomes a new partner in the SP ’s domain. SP adds a new element to the coop-
eration list with a freshness value v equal to one. Recall that the value 1 indicates the
need of pulling peer p to get new data descriptions. When a partner peer p decides to
leave the system, it first sets its freshness value v to two in the cooperation list, through
a push message. This value reminds the participation of the disconnected peer p to the
corresponding global summary, but also indicates the unavailability of the original
data. There are two alternatives to deal with such a freshness value. First, we can
keep the data descriptions and use it, when a query is approximately answered using
the global summary. A second alternative consists in considering the data descriptions
as expired, since the original data are not accessible. Thus, a partner departure will
accelerate the summary reconciliation. In the rest of this work, we adopt the second al-
ternative and consider only a 1-bit freshness value v: value 0 to indicate the freshness
of data descriptions, and value 1 to indicate either their expiration or their unavailabil-
ity. However, if peer p failed, it could not notify its summary peer by its departure.
In that case, its data descriptions will remain in the global summary until a new sum-
mary reconciliation is executed. The reconciliation algorithm does not require the
participation of a disconnected peer. The global summary GS is reconstructed, and
descriptions of unavailable data will be then omitted.

4.3.2. Summary peer arrival/departure

In Section 3, we have presented our IS_SUMPEER function that is executed at each
peer to decide whether it is a summary peer or not. This function is based on node
connectivity, and thus variations of node degrees may incur modifications in the func-
tion results. Therefore, we suppose that a peer executes periodically the IS_SUMPEER
function. However, we believe that the results of the IS_SUMPEER function do not
change frequently. In fact, connections in P2P systems tend to be formed preferen-
tially because peers tend to discover high-degree nodes in the network overlay (Saroiu
et al., 2002). Besides, although the nodes join and leave the network with a high
rate, the total number of nodes does not significantly change and almost remains the
same. Thus, the cases in which a summary peer becomes an ordinary peer, or a node is
submitted to a significant degree variation rarely occur. However, when a new highly-
available peer attracts many peer connections and becomes a summary peer, it simply
diffuses this information as described in section 4.1, and a new domain starts to appear

Summary management in P2P systems 97

around it. When a summary peer SP decides to leave the system, it sends a release
message to all its partners. Upon receiving such a message, a partner p makes a selec-
tive walk to find a new summary peer. However, if SP failed, it could not notify its
partners. A partner p who has tried to send push or query messages to SP will detect
its departure and thus search for a new one.

5. Query processing

In this section, we describe how a query Q, posed at a peer p, is processed. Peer
p first sends Q to the summary peer SP of its domain. SP proceeds then to query
the available global summary GS. Summary querying allows to achieve two distinct
tasks depending on the user/application requirements: peer localization to return the
original results, and approximate answering to return approximate answers. Summary
querying is divided into two phases: 1) query reformulation and 2) query evaluation.

5.1. Query reformulation

First, a selection query Q must be rewritten into a flexible query Q∗ in order to be
handled by the summary querying process. For instance, consider the following query
Q on the Patient relation in Table 1: SELECT AGE FROM PATIENT WHERE BMI < 19
AND DISEASE = “ANOREXIA”. This phase replaces the original value of each selec-
tion predicate by the corresponding descriptors defined in the Background Knowledge
(BK). Therefore, the above query is transformed to Q∗: SELECT AGE FROM PATIENT
WHERE BMI IN UNDERWEIGHT,NORMAL AND DISEASE = “ANOREXIA”. Let QS
(resp.QS∗) be the Query Scope of query Q (resp.Q∗) in the domain, that is, the set of
peers that should be visited to answer the query. Obviously, the query extension phase
may induce false positives in query results. To illustrate, a patient having a BMI value
of 20 could be returned as an answer to the query Q∗, while the selection predicate
on the attribute BMI of the original query Q is not satisfied. However, false negatives
cannot occur, which is expressed by the following inclusion: QS ⊆ QS∗. In the rest
of this paper, we suppose that a user query is directly formulated using descriptors
defined in the BK (i.e. Q = Q∗). Thus, we eliminate potential false positives that may
result from query extension.

5.2. Query evaluation

This phase deals with matching a set of summaries organized in a hierarchy S,
against the query Q. The query is transformed into a logical proposition P used
to qualify the link between each summary and the query. Proposition P is under a
conjunctive form in which all descriptors appears as literals. In consequence, each
set of descriptors yields on corresponding clause. For instance, the above query Q is
transformed to P = (underweight OR normal) AND (anorexia). A valuation function

98 RSTI - ISI – 13/2008

has been defined to valuate the proposition P in the context of a summary z. Then,
a selection algorithm performs a fast exploration of the hierarchy and returns the set
ZQ of most abstract summaries that satisfy the query. For more details see (Voglozin
et al., 2004). Once ZQ determined, the evaluation process can achieve two distinct
tasks: 1) Peer localization, and 2) Approximate answering.

5.2.1. Peer localization

Since the extended definition of a summary node z provides a peer-extent, i.e. the
set of peers Pz having data described by its intent (see Definition 3), we can define the
set of relevant peers PQ as follows: PQ = {∪z∈ZQ

Pz}. The query Q is directly prop-
agated to these relevant peers. However, the efficiency of this query routing depends
on the completeness and the freshness of summaries, since stale answers may occur
in query results. We define a False Positive as the case in which a peer p belongs to
PQ and there is actually no data in the p source that satisfies Q (i.e. p /∈ QS). A False
Negative is the reverse case in which p does not belong to PQ, whereas there exists at
least one tuple in its data source that satisfies Q (i.e. p ∈ QS).

5.2.2. Approximate answering

A distinctive feature of our approach is that a query can be processed entirely
in the summary domain. An approximate answer can be provided from summary
descriptions, without having to access original, distributed database records. The se-
lected summaries ZQ are aggregated according to their interpretation of proposition
P : summaries that have the same required characteristics on all predicates (i.e. BMI
and disease) form a class. The aggregation in a given class is a union of descriptors:
for each attribute of the selection list (i.e. age), the querying process supplies a set of
descriptors which characterize summaries that respond to the query through the same
interpretation (Voglozin et al., 2004). For example, according to Table 2, the output
set obtained for the two classes {underweight, anorexia}, and {normal, anorexia} is
age = {young}. In other words, all patients diagnosed with anorexia and having an
underweight or normal BMI are young patients. In the case where exact answers are
required, suppose now that processing a query Q in a given domain di returns Ci re-
sults, while the user requires Ct results. Obviously, when Ci is less than Ct, the query
should be propagated to other domains. To this end, we adopt the following variation
of the flooding mechanism.

Let Pi the subset of peers that have answered the queryQ in the domain di: |Pi| =
(1− FP) · |PQ|, where FP is the fraction of false positives in query results. The
query hit in the domain is given by: (|Pi| / |di|). As shown by many studies, the
existing P2P networks have small-world features (Iamnitchi et al., 2002). In such a
context, users tend to work in groups. A group of users, although not always located
in geographical proximity, tends to use the same set of resources (i.e. group locality
property). Thus, we assume that the probability of finding answers to query Q in the
neighborhood of a relevant peer in Pi, is very high since results are supposed to be
nearby. This probability is also high in the neighborhood of the originator peer p

Summary management in P2P systems 99

since some of its neighbors may be interested in the same data, and thus have cached
answers to similar queries. Such assumptions are even more relevant in the context
of interest-based clustered networks. Therefore, the summary peer SPi of domain di
sends a flooding request to each peer in Pi as well as to peer p. Upon receiving this
request, each of those peers sends the query to its neighbors that do not belong to its
domain, with a limited value of TTL. Once a new domain is reached or TTL becomes
zero, the query is stopped. Besides, the summary peer SP sends the request to the set
of summary peers it knows in the system. This will accelerate covering a large number
of domains. In each visited domain, the query is processed as described above. When
the number of query results becomes sufficient, or the network is entirely covered, the
query routing is terminated.

6. Performance evaluation

In this section, we devise a simple model of the summary management cost. Then,
we evaluate and analyze our model through simulation.

6.1. Cost model

A critical issue in summary management is to trade off the summary updating cost
against the benefits obtained for queries.

6.1.1. Summary update cost

Here, our first undertaking is to optimize the update cost while taking into account
query accuracy. In the next section, we discuss query accuracy which is measured
in terms of the percentage of false positives and false negatives in query results. The
cost of updating summaries is divided into: usage of peer resources, i.e. time cost and
storage cost, and the traffic overhead generated in the network.

6.1.1.1. Time cost

A unique feature of SAINTETIQ is that the changes in the database are reflected
through an incremental maintenance of the summary hierarchy. The time complexity
of the summarization process is inO(n) where n is the number of tuples to be incorpo-
rated in that hierarchy (Saint-Paul et al., 2005). For a global summary update, we are
concerned with the complexity of merging summaries. The MERGING method that
has been proposed is based on the SAINTETIQ engine. This method consists in in-
corporating the leaves of a given summary hierarchy S1 into an another S2, using the
same algorithm described by the SAINTETIQ summarization service (referenced in
Section 2.2.3). It has been proved that the complexity CM12 of the MERGING(S1, S2)
process is constant w.r.t the number of tuples. More precisely, CM12 depends on the
maximum number of leaves of S1 to incorporate into S2. However, the number of
leaves in a summary hierarchy is not an issue because it can be adjusted by the user

100 RSTI - ISI – 13/2008

according to the desired precision. A detailed Background Knowledge (BK) will lead
to a greater precision in summary description, with the natural consequence of a larger
summary. Moreover, the hierarchy is constructed in a top-down approach and it is pos-
sible to set the summarization process so that the leaves have any desired precision.

6.1.1.2. Storage cost

We denote by k the average size of a summary z. In the average-case assump-
tion, there are

∑d
i=0 B

i = (Bd+1 − 1)/(B − 1) nodes in a B-arity tree with d,
the average depth of the hierarchy. Thus the average space requirement is given by:
Cm = k.(Bd+1 − 1)/(B − 1). Based on real tests, k = 512 bytes gives a rough
estimation of the space required for each summary. An important issue is that the size
of the hierarchy is quite related to its stabilization (i.e. B and d). As more cells are
processed, the need to adapt the hierarchy decreases and incorporating a new cell may
consist only in sorting a tree. Hence, the structure of the hierarchy remains stable and
no additional space is required. On the other hand, when we merge two hierarchies
S1 and S2 having sizes of Cm1 and Cm2 respectively, the size of the resultant hierar-
chy is always in the order of the max (Cm1, Cm2). However, the size of a summary
hierarchy is limited to a maximum value which corresponds to a maximum number of
leaves that cover all the possible combinations of the BK descriptors. Thus, storing
the global summary at the summary peer is not a strength constraint. According to
the above discussion, the usage of peer resources is optimized by the summarization
process itself, and the distribution of summary merging operation. Thus, we restrict
our focus to the traffic overhead generated in the network.

6.1.1.3. Network traffic

Recall that there are two types of exchanged messages: push and reconciliation.
Let local summaries have an average lifetime of L seconds in a given global summary.
Once L expired, the node sends a (push) message to update its freshness value v in
the cooperation list CL. The reconciliation algorithm is then initiated whenever the
following condition is satisfied:

∑
v∈CL v/|CL| ≥ α, where α is a threshold that

represents the ratio of old descriptions tolerated in the global summary. During recon-
ciliation, only one message is propagated among all partner peers until the new global
summary version is stored at the summary peer SP . Let Frec be the reconciliation
frequency. The update cost is: Cup = 1/L + Frec messages per node per second. In
this expression, 1/L represents the number of push messages which depends either on
the modification rate issued on local summaries or the connection/disconnection rate
of peers in the system. Higher is the rate, lower is the lifetime L, and thus a large
number of push messages are entailed in the system. Frec represents the number of
reconciliation messages which depends on the value of α. This threshold is our system
parameter that provides a trade-off between the cost of summary updating and query
accuracy. If α is large, the update cost is low since a low frequency of reconciliation is
required, but query results may be less accurate due both to false positives stemming
from the descriptions of non existent data, and to false negatives due to the loss of
relevant data descriptions whereas they are available in the system. If α is small, the

Summary management in P2P systems 101

update cost is high but there are few query results that refer to data no longer in the
system, and nearly all available results are returned by the query.

6.1.2. Query cost

When a queryQ is posed at a peer p, it is first matched against the global summary
available at the summary peer SP of its domain, to determine the set of relevant peers
PQ. Then, Q is directly propagated to those peers. The query cost in a domain d is
given by: Cd = (1+|PQ|+(1−FP)·|PQ|) messages, where (1−FP)·|PQ| represents
the query responses messages (i.e. query hit in the domain). Here we note that, the
cooperation list CL associated with a global summary provides information about the
relevance of each database description. Thus, it gives more flexibility in tuning the
recall/precision trade-off of the query answers in domain d. The set of all partner
peers PH in CL can be divided into two subsets: Pold = {p ∈ PH | p.v = 1}, the set
of peers whose descriptions are considered old, and Pfresh = {p ∈ PH | p.v = 0}
the set of peers whose descriptions are considered fresh according to their current
data instances. Thus, if a query Q is propagated only to the set V = PQ ∩ Pfresh,
then precision is maximum since all visited peers are certainly matching peers (no
false positives), but recall depends on the fraction of false negatives in query results
that could be returned by the set of excluded peers PQ\Pfresh. On the contrary,
if the query Q is propagated to the extended set V = PQ ∪ Pold, the recall value
is maximum since all matching peers are visited (no false negatives), but precision
depends on the fraction of false positives in query results that are returned by the set
of peers Pold. Now we consider that the selectivity of query Q is very high, such that
each relevant peer has only one result tuple. Thus, when a user requires Ct tuples, we
have to visit Ct relevant peers. The cost of inter-domain query flooding is given by:
Cf = ((1−FP) · |PQ|+2) ·

∑TTL
i=1 ki messages, where k is the average degree value

in an unstructured P2P system (e.g. average degree of 3.5, similar to Gnutella-type
graphs). Remember that, the set of relevant peers who have answered the query (i.e.
(1− FP) · |PQ|), the originator and the summary peers participate to query flooding.
In this expression, we consider that a summary peer has on average k long-range links.
As a consequence, the total cost of a query is:

CQ = Cd · Ct

(1−FP)·|PQ| + Cf · (1− Ct

(1−FP)·|PQ|) [1]

In this expression, the term Ct/((1− FP) · |PQ|) represents the number of domains
that should be visited. For example, when Ct = ((1 − FP) · |PQ|), one domain is
sufficient and no query flooding is required.

6.2. Simulation

We evaluated the performance of our solutions through simulation, based on the
above cost model. First, we describe the simulation setup. Then we present simulation
results to evaluate various performance dimensions and parameters: scale up, query
accuracy, effect of the freshness threshold α.

102 RSTI - ISI – 13/2008

Table 3. Simulation parameters
Parameter value

local summary lifetime L skewed distribution, Mean=3h, Median=1h
number of peers n 16–5000

number of queries q 200
matching nodes/query hits 10%

freshness threshold α 0.1–0.8

6.2.1. Simulation setup

We used the SimJava package (Howell et al., 1998) and the BRITE universal topol-
ogy generator to simulate a power law P2P network, with an average degree of 4. The
simulation parameters are shown in Table 6.2.1. In our tests, we consider that local
summary lifetimes are quite related to the node lifetimes, since the rate of node con-
nection/disconnection is supposed to be greater than the modification rate issued on
local summaries, and this for two reasons. First, in large P2P systems, we mainly
deal with selection queries to locate and download required data. Thus, the original
data are submitted to a low modification rate. Second, our summaries are even more
stable than the original data (as we discussed before). Thus, the volatility of peers is,
in reality, the main reason for a global summary reconciliation. Under this assump-
tion, we consider that local summary lifetimes, like node lifetimes, follow a skewed
distribution with a mean lifetime of 3 hours, and a median lifetime of 60 minutes. Our
workload has 200 queries. The query rate is 0.00083 queries per node per second (one
query per node per 20 minutes) as suggested in (Yang et al., 2001). Each query is
matched by 10% of the total number of peers. Finally, Our system parameter α that
decides of the reconciliation frequency varies between 0.1 and 0.8.

6.2.2. Update cost

In this set of experiments, we quantify the trade-off between query accuracy and
the cost of updating a global summary in a given domain. Figure 5(a) depicts the
fraction of stale answers in query results for different values of the threshold α. Here,
we illustrate the worst case. For each partner peer p having a freshness value equal
to 1, if it is selected in the set PQ then it is considered as false positive. Otherwise,
it is considered as false negative. However, this is not the real case. Though it has a
freshness value equal to 1, the peer p does not incur stale answers unless its database
is changed relative to the posed query Q. Thus, Figure 5(a) shows the worst, but very
reasonable values. For instance, the fraction of stale answers is limited to 11% for a
network of 500 peers when the threshold α is set to 0.3 (30% of the peers are tolerated
to have old/non existent descriptions). Moreover, simulation results (not presented
here due to space limitations) have shown that the maximum domain sizes obtained in
our self-organized network are approximatively less than 25% of the total number of
peers. Thus, in Figure 5(a), the fraction of stale answers measured for a domain size
of 256 peers, corresponds to a network of size 1024.

Summary management in P2P systems 103

(a) Stale answers vs. domain size (b) False negative vs. domain size

Figure 5. Stale Answers

As mentioned in Section 6.1.2, if we choose to propagate the query only to the set
V = PQ ∩Pfresh we eliminate the possible false positives in query results. However,
this may lead to additional false negatives. Figure 5(b) shows the fraction of false
negatives in function of the domain size. Here we take into account the probability
of the database modification relative to the query, for a peer having a freshness value
equal to 1. We see that the fraction of false negatives is limited to 3% for a domain
size less than 2000 (i.e. network size less than 8000). The real estimation of stale
answers shows a reduction by a factor of 4.5 with respect to the preceded values.
Figure 6(a) depicts the update cost in function of the domain size, and this for two
threshold values. The total number of messages increases with the domain size, but
not surprisingly, the number of messages per node remains almost the same. In the
expression of Cup, the number of push messages for a given peer is independent of
domain size. More interestingly, when the threshold value decreases (from 0.8 to
0.3) we notice a little cost increasing of 1.2 on average. For a domain of 1000 peers,
the update cost increases from 0.01056 to 0.01296 messages per node per minute
(not shown in figure). However, a small value of the threshold α allows to reduce
significantly the fraction of stale answers in query results, as seen in Figure 5(a). We
conclude therefore that tuning our system parameter, i.e. the threshold α, do not incur
additional traffic overhead, while improving query accuracy.

6.2.3. Query cost

In this set of experiments, we compare our algorithm for query processing against
centralized-index and pure non-index/flooding algorithms. A centralized-index ap-
proach is very efficient since a single message allows locating relevant data. However,
a central index is vulnerable to attack and it is difficult to keep it up-to-date. Flooding
algorithms are very used in real life, due to their simplicity and the lack of complex
state information at each peer. A pure flooding algorithm consists in broadcasting the

104 RSTI - ISI – 13/2008

query in the network till a stop condition is satisfied, which may lead to a very high
query execution cost. Here, we limit the flooding by a value 3 of TTL. According
to Table 6.2.1, the query hit is 10% of the total number of peers. For our query pro-
cessing approach, which is mainly based on summary querying (SQ), we consider
that each visited domain provides 10% of the number of relevant peers (i.e. 1% of the
network size). In other words, we should visit 10 domains for each query Q. From
equation 6.1.2, we obtain: CQ = (10 ·Cd + 9 ·Cf) messages. Figure 6(b) depicts the
number of exchanged messages to process a query Q, in function of the total number
of peers. The centralized-index algorithm shows the best results that can be expected
from any query processing algorithm, when the index is complete and consistent, i.e.
the index covers the totality of data available in the system, and there are no stale an-
swers in query results. In that case, the query cost is: CQ = 1+2·((0.1)·n) messages,
which includes the query message sent to the index, the query messages sent to the
relevant peers and the query response messages returned to the originator peer p. In
Figure 6(b), we observe that our algorithm SQ shows good results by significantly re-
ducing the number of exchanged messages, in comparison with a pure query flooding
algorithm. For instance, the query cost is reduced by a factor of 3.5 for a network of
2000 peers, and this reduction becomes more important with a larger-sized network.
We note that in our tests, we have considered the worst case of our algorithm, in which
the fraction of stale answers of Figure 5(a) occurs in query results (for α = 0.3).

(a) Update cost vs. domain size (b) Query cost vs. number of peers

Figure 6. Update and Query Cost

7. Related work

Current works on P2P systems aim to employ content-based routing strategies,
since the content of data can be exploited to more precisely guide query propaga-
tion. These strategies require gathering information about the content of peer’s data.
However, the limits on network bandwidth and peer storage, as well as the increasing
amount of shared data, call for effective summarization techniques. These techniques

Summary management in P2P systems 105

allow exchanging compact information on peer’s content, rather than exchanging orig-
inal data in the network. Existing P2P systems have used keyword-based approaches
to summarize text documents. For instance, in (Crespo et al., 2002) documents are
summarized by keyword vectors, and each node knows an approximate number of
documents matching a given keyword that can be retrieved through each outgoing
link (i.e. Routing Indices RIs). Although the search is very bandwidth-efficient, RIs
require flooding in order to be created and updated, so the method is not suitable for
highly dynamic networks. Other works (e.g. (Acuna et al., 2003)) investigate Vector
Space Model (VSM) and build Inverted Indexes for every keyword to cluster content.
In this model, documents and queries are both represented by a vector space corre-
sponding to a list of orthogonal term vectors called Term Vector. The drawback of
VSM is its high cost of vector representations in case of P2P churns. In (Shen et
al., 2004), a semantic-based content search consists in combining VSM to Latent Se-
mantic Index (LSI) model to find semantically relevant documents in a P2P network.
This work is based on hierarchical summary structure over hybrid P2P architecture,
which is closely related to what we are presenting in this paper. However, instead of
representing documents by vector models, we describe structured data (i.e. relational
database) by synthetic summaries that respect the original data schema. To the best of
our knowledge, none of the P2P summarization techniques allows for an approximate
query answering. All works have focused on facilitating content-based query routing,
in order to improve search efficiency. We believe that the novelty of our approach
relies on the fact that our data summaries allow for a semantic-based query routing,
but also for approximately answering the query using their intentional descriptions.

8. Conclusion

We proposed a model for summary management in unstructured P2P systems. The
innovation of this proposal consists in combining the P2P and database summarization
paradigms, in order to support data sharing on a world wide scale. The database
summarization approach that we proposed allows for data localization as well as for
data description. We made two main contributions. First, we defined a new function
for organizing the network into domains, in order to distribute summaries built over the
shared data. Second, we proposed efficient algorithms for summary management in a
given domain. Our performance evaluation showed that the cost of query routing in the
context of summaries is significantly reduced in comparison with flooding algorithms,
without incurring high costs of summary maintenance.

9. References

Acuna F., Peery C., Martin R., Nguyen T., “ PlanetP: Using Gossiping to Build Content Ad-
dressable Peer-to-Peer Information Sharing Communities”, HPDC-12, 2003.

Adamic L., et al, “ Search in power law networks”, Physical Review E, 2001.

106 RSTI - ISI – 13/2008

Aiello W., Chung F., Lu L., “ A random graph model for massive graphs”, Proc of the thirty-
second annual ACM symposium on Theory of computing (STOC), 2000.

Akbarinia R., Martins V., Pacitti E., Valduriez P., “ Design and implementation of APPA”,
Global Data Management (Eds. R. Baldoni, G. Cortese and F. Davide), IOS press, 2006.

Crespo A., Molina H., “ Routing indices for peer-to-peer systems”, Proc. of the 28 tn Confer-
ence on Distributed Computing Systems, July, 2002.

Ganesan P., Sun Q., Molina H., “ Adlib: a self-tuning index for dynamic peer-to-peer systems”,
Int. Conference on Data Engineering (ICDE), 2005.

Howell F., McNab R., “ SimJava: a discrete event simulation package for java with the applica-
tions in computer systems modeling”, Int. Conf on Web-based Modelling and Simulation,
San Diego CA, Society for Computer Simulation, 1998.

Iamnitchi A., Ripeanu M., Foster I., “ Locating Data in (Small-World?) Peer-to-Peer Scientific
Collaborations”, IPTPS, p. 232-241, 2002.

Lv Q., Cao P., Cohen E., Li K., Shenker S., “ Search and replication in unstructured peer-to-peer
networks”, ICS: international conference on Supercomputing, 2002.

Raschia G., Mouaddib N., “ A fuzzy set-based approach to database summarization”, Fuzzy
sets and systems, vol. 129, n˚ 2, p. 137-162, 2002.

Ripeanu M., Foster I., Iamnitchi A., “ Mapping the gnutella network”, IEEE Internet Computing
Journal, 2002.

Saint-Paul R., Raschia G., Mouaddib N., “ General purpose database summarization”, VLDB,
2005.

Saroiu S., Gummadi P., Gribble S., “ A Measurement Study of Peer-to-Peer File Sharing Sys-
tems”, Proc of Multimedia Computing and Networking (MMCN), 2002.

Sarshar N., Boykin P., Roychowdhury V., “ Percolation Search in Power Law Networks: Mak-
ing Unstructured Peer-to-Peer Networks Scalable”, P2P: International Conference on Peer-
to-Peer Computing, 2004.

Shen H., Shu Y., Yu B., “ Efficient Semantic-Based Content Search in P2P Network”, IEEE
Transactions on Knowledge and Data Engineering, 2004.

Stoica I., Morris R., Karger D., Kaashoek M., Balakrishnan H., “ Chord: A scalabale peer-to-
peer lookup service for internet applications”, Proc ACM SIGCOMM, 2001.

Tartinov I., et al, “ The Piazza peer data management project”, SIGMOD, 2003.

Thompson K., Langley P., “ Concept Formation in Structured Domains”, Concept formation:
Knowledge and experience in unsupervised learning, Morgan Kaufmann, p. 127-161, 1991.

Voglozin W., Raschia G., Ughetto L., Mouaddib N., “ Querying the SAINTETIQ Summaries–A
First Attempt”, Int.Conf.On Flexible Query Answering Systems (FQAS), 2004.

Yang B., Molina H., “ Comparing hybrid peer-to-peer systems”, Proc VLDB, 2001.

Zadeh L., “ Fuzzy Sets”, Information and Control, vol. 8, p. 338-353, 1965.

Zadeh L., “ Concept of a linguistic variable and its application to approximate reasoning-I”,
Information Systems, vol. 8, p. 199-249, 1975.

Zadeh L., “ Fuzzy sets as a basis for a theory of possibility”, Fuzzy Sets and Systems, vol. 100,
p. 9-34, 1999.

ANNEXE POUR LE SERVICE FABRICATION
A FOURNIR PAR LES AUTEURS AVEC UN EXEMPLAIRE PAPIER
DE LEUR ARTICLE ET LE COPYRIGHT SIGNE PAR COURRIER

LE FICHIER PDF CORRESPONDANT SERA ENVOYE PAR E-MAIL

1. ARTICLE POUR LA REVUE :

RSTI - ISI – 13/2008

2. AUTEURS :

Rabab Hayek* — Guillaume Raschia* — Patrick Valduriez** —
Noureddine Mouaddib*

3. TITRE DE L’ARTICLE :

Summary Management in Unstructured P2P Systems

4. TITRE ABRÉGÉ POUR LE HAUT DE PAGE MOINS DE 40 SIGNES :

Summary management in P2P systems

5. DATE DE CETTE VERSION :

November 5, 2008

6. COORDONNÉES DES AUTEURS :

– adresse postale :
Atlas Team (INRIA - LINA), University of Nantes
2 rue de la Houssiniere – B.P. 92208, 44300 Nantes, France
* surname.name@univ-nantes.fr
** Patrick.Valduriez@inria.fr

– téléphone : 00 00 00 00 00
– télécopie : 00 00 00 00 00
– e-mail : The Publisher

7. LOGICIEL UTILISÉ POUR LA PRÉPARATION DE CET ARTICLE :

LATEX, avec le fichier de style article-hermes.cls,
version 1.23 du 17/11/2005.

8. FORMULAIRE DE COPYRIGHT :

Retourner le formulaire de copyright signé par les auteurs, téléchargé sur :
http://www.revuesonline.com

SERVICE ÉDITORIAL – HERMES-LAVOISIER
14 rue de Provigny, F-94236 Cachan cedex

Tél. : 01-47-40-67-67
E-mail : revues@lavoisier.fr

Serveur web : http://www.revuesonline.com

	Introduction
	Summary model for P2P systems
	Model architecture
	Summarization process
	Mapping service
	Summarization service
	Scalability issues

	Distributed summary representation

	Network self-organization
	Rationale
	Algorithm

	Summary management
	Summary construction
	Summary maintenance
	Push: data modification
	Pull: summary reconciliation

	Peer dynamicity
	Partner peer arrival/departure
	Summary peer arrival/departure

	Query processing
	Query reformulation
	Query evaluation
	Peer localization
	Approximate answering

	Performance evaluation
	Cost model
	Summary update cost
	Query cost

	Simulation
	Simulation setup
	Update cost
	Query cost

	Related work
	Conclusion
	References

