
HAL Id: hal-00379711
https://hal.science/hal-00379711

Submitted on 29 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PeerSum: a Summary Service for P2P Applications
Rabab Hayek, Guillaume Raschia, Patrick Valduriez, Noureddine Mouaddib

To cite this version:
Rabab Hayek, Guillaume Raschia, Patrick Valduriez, Noureddine Mouaddib. PeerSum: a Summary
Service for P2P Applications. Advances in Grid and Pervasive Computing, Second International
Conference(GPC’2007), May 2007, Paris, France. pp.390-410. �hal-00379711�

https://hal.science/hal-00379711
https://hal.archives-ouvertes.fr

1

PeerSum: a Summary Service for P2P Applications
Rabab Hayek, Guillaume Raschia, Patrick Valduriez and Noureddine Mouaddib

Atlas team, INRIA and LINA, University of Nantes, France

Abstract— Sharing huge databases in distributed systems is
inherently difficult. As the amount of stored data increases, data
localization techniques become no longer sufficient. A practical
approach is to rely on compact database summaries rather than
raw database records, whose access is costly in large distributed
systems. In this paper, we propose PeerSum, a new service for
managing summaries over shared data in large P2P and Grid
applications. Our summaries are synthetic, multidimensional
views with two main virtues. First, they can be directly queried
and used to approximately answer a query without exploring the
original data. Second, as semantic indexes, they support locating
relevant nodes based on data content. Our main contribution is
to define a summary model for P2P systems, and the algorithms
for summary management. Our performance evaluation shows
that the cost of query routing is minimized, while incurring a
low cost of summary maintenance.

Index Terms— Distributed systems, Database summarization

I. INTRODUCTION

Research on distributed systems is focusing on supporting
advanced applications which must deal with semantically rich
data (e.g. XML documents, relational tables, etc.), using a
high-level SQL-like query language. As a potential example
of applications, consider the cooperation of scientists who are
willing to share their private data for the duration of a given
experiment. Such cooperation may be efficiently supported
by improving the data localization and data description tech-
niques.

Initially developed for moderate-sized scientific applica-
tions, Grid technology is now evolving to provide database
sharing services, in large virtual organizations. In [13], a
service-based architecture for database access (OGSA-DAI)
has been defined over the Grid. OGSA-DAI extends the
distributed database architecture [27] to provide distribution
transparency using Web services. However, it relies on some
centralized schema and directory management, which is not
an adequate solution for supporting highly dynamic organiza-
tions, with a large number of autonomous members.

Peer-to-Peer (P2P) techniques that focus on scaling up,
dynamicity, autonomy and decentralized control can be very
useful to Grid data management. The complementary nature of
the strengths and weaknesses of the two technologies suggests
that the interests of the two communities are likely to grow
closer over time [15]. For instance, P-Grid [26] and Organic
Grid [2] develop self-organizing and scalable services on top
of P2P systems.

A central issue in the operation of P2P systems as dis-
tributed systems is object locating. Initially, P2P search sys-
tems rely on flooding mechanism and its variations. Though
simple and robust, this approach suffers from high query
execution cost and poor query recall. Many works on P2P

systems have addressed the problem of search efficiency, and
proposed various techniques that can be classified into four
main categories: data indexing (e.g. [1], [24]), data caching
(e.g. [5]), mediation (e.g. [16], [22]) and network clustering
(e.g. [4]). According to this classification, there are hybrid
techniques such as caching data indexes [7], or clustering a
P2P network based on index similarity [10].

So far, data localization has been the main issue addressed
in P2P systems, since their scalability is constrained by the em-
ployment of efficient search techniques. However, nowadays
we are asking the following question: with the ever increasing
amount of information stored each day into data sources, are
these techniques still sufficient to support advanced P2P appli-
cations? To illustrate, in a scientific collaborative application, a
doctor may require information about patients diagnosed with
some disease, without being interested in individual patients
records. Besides, a user in today’s decision-support applica-
tions may prefer an approximate but fast answer, instead of
waiting a long time for an exact one. Therefore, reasoning on
compact data descriptions that can return approximate answers
like “dead Malaria patients are typically children and old” to
queries like “age of dead Malaria patients”, is much more
efficient than retrieving raw records, which may be very costly
to access in highly distributed, massive databases.

In this paper, we propose PeerSum, a new service for
managing summaries over shared data in P2P systems. Our
summaries are synthetic, multidimensional views with two
main virtues. First, they support locating relevant nodes based
on their data descriptions. Second, they provide an intelligible
representation of the underlying data, and allow an approxi-
mate query processing since a query can be processed entirely
in their domain, i.e. outputs are summaries.

This paper makes the following contributions. First, we
define a summary model which deals with the distributed
and autonomous nature of P2P systems. Second, we propose
efficient algorithms for summary management. We validated
our algorithmic solutions through simulation, using the BRITE
topology generator and SimJava. The performance results
show that the cost of query routing is minimized, while
incurring a low cost of summary maintenance.

The rest of this paper is organized as follows. Section 2
gives an overview of the employed summarization technique.
Section 3 states the addressed problem and describes the
architecture of PeerSum summary model. Section 4 describes
PeerSum’s summary management with its algorithms. Section
5 discusses query processing with PeerSum. Section 6 gives
a performance evaluation with a cost model and a simulation
model. Section 7 compares our solution with related work.
Section 8 concludes.

Fig. 1. Fuzzy Linguistic Partition on age

II. SUMMARIZATION PROCESS

In this work, the approach used for data summarization
is based on SaintEtiQ [11]: an online linguistic approach
for summarizing databases. The SAINTETIQ model aims at
apprehending the information disseminated in large data sets in
a synthetic manner. In the following, we define the input data
and describe the summarization process. Then, we formally
define the structure of the produced summaries.

A. Input Data

The summarization process takes as input the original data
to be summarized, and the “Background Knowledge” BK
which guides the process by providing information about the
user perception of the domain. The data to be summarized
come from relational databases. As such, the data are orga-
nized into records, with a schema R(A1, A2, . . . , An). Each
attribute Ai is defined on an attribute domain Di, which may
be numeric or symbolic.

A unique feature of the summarization system is its use of
a Background Knowledge (BK), which relies on Zadeh’s fuzzy
set theory [18] and, more specifically on linguistic variables
[19] and fuzzy partitions [20] to represent data in a concise
form. Consider a medical database which is reduced to a
single Patient relation (Table I)1. Figure 1 shows a linguistic
variable defined on the attribute AGE where descriptor YOUNG
is defined as being plainly satisfactory to describe values
between 23 and 50 and less satisfactory as the age is out
of this range. Thus, linguistic variables come with linguistic
terms (i.e. descriptors) used to characterize domain values and,
by extension, database tuples. For a continuous domain Di, the
linguistic variable is a fuzzy partition of the attribute domain.
For a discrete domain Di (e.g. DISEASE), the BK element is
a fuzzy set of nominal values. In short, the BK supports the
summarization process with means to match attribute domain
values with the summary expression vocabulary.

Id Age Sex BMI Disease

t1 15 female 17 Anorexia
t2 20 male 20 Malaria
t3 18 female 16.5 Anorexia

TABLE I
RAW DATA

B. Process Architecture

A service oriented architecture has been designed for the
summarization process in order to incrementally build data

1BMI: the patient’s body weight divided by the square of its height.

summaries. By “incremental”, we mean that the database
tuples are processed one by one, and a final hierarchy of sum-
maries is obtained by repeating this summarization process for
each tuple in the table at hand. The architecture is organized
into two separate services: online mapping and summarization.

1) Mapping Service: The mapping service takes as input
the original relational records and performs an abstraction
of the data using the BK. Basically, the mapping operation
replaces the original attribute values of every record in the
table by a set of linguistic descriptors defined in the BK. For
instance, with the linguistic variable defined on the attribute
AGE (Figure 1), a value t.AGE = 20 years is mapped
to {0.7/young, 0.3/adult} where 0.7 is a membership grade
that tells how well the label young describes the value 20.
Extending this mapping to all the attributes of a relation
could be seen as locating the overlapping cells in a grid-based
multidimensional space which maps records of the original
table. The fuzzy grid is provided by the BK and corresponds
to the user’s perception of the domain.

In our example, tuples of Table I are mapped into three
distinct grid-cells denoted by c1, c2, and c3 in Table II.
A priori, the fuzzy label underweight provided by the BK
on attribute BMI , perfectly matches (with degree 1) range
[15, 17.5], while the fuzzy label normal perfectly matches
range [19.5, 24] of raw values. The tuple count column gives
the proportion of records that belongs to the cell and 0.3/adult
says that adult fits the data only with a small degree (0.3). It
is computed as the maximum of membership grades of tuple
values to adult in c3.

Id Age BMI tuple count

c1 young underweight 2
c2 0.7/young normal 0.7
c3 0.3/adult normal 0.3

TABLE II
GRID-CELLS MAPPING

The fuzziness in the vocabulary definition of BK permits to
express any single value with more than one fuzzy descriptor
and thus avoid threshold effect thanks to the smooth transition
between different categories. For instance, the tuple t2 of
Table I is mapped to the two grid cells c2 and c3 since the
value of the attribute age is mapped to the two linguistic
terms: young and adult. Hence, the BK leads to the point
where tuples become indistinguishable and then are grouped
into grid-cells such that there are finally many more records
than cells. Every new (coarser) tuple stores a record count
and attribute-dependent measures (min, max, mean, standard
deviation, etc.). It is then called a summary.

2) Summarization Service: The summarization service is
the last and the most sophisticated step of the SAINTETIQ
system. It takes grid-cells as input and outputs a collection of
summaries hierarchically arranged from the most generalized
one (the root) to the most specialized ones (the leaves) [11].
Summaries are clusters of grid-cells, defining hyperrectangles
in the multidimensional space. In the basic process, leaves are
grid-cells themselves and the clustering task is performed on
K cells rather than N tuples (K << N).

Fig. 2. Example of SaintEtiQ hierarchy

From the mapping step, cells are introduced continuously
in the hierarchy with a top-down approach inspired of D.H.
Fisher’s Cobweb [17], a conceptual clustering algorithm. Then,
they are incorporated into best fitting nodes descending the
tree. Three more operators could be applied, depending on
partition’s score, that are create, merge and split nodes. They
allow developing the tree and updating its current state.
Figure 2 represents the summary hierarchy built from the cells
c1, c2 and c3.

3) Scalability Issues: Memory consumption and time com-
plexity are the two main factors that need to be taken care
of in order to guaranty the capacity of the summary system
to handle massive datasets. First, the time complexity of the
SAINTETIQ process is in O(K), where K is the number of
cells to incorporate into a hierarchy of summaries. Besides, an
important feature is that in the summary algorithm, raw data
have to be parsed only once, and this are processed with a
low time cost. Second, the system requires low memory con-
sumption for performing the summary construction algorithm
as well as for storing the produced summaries.

On the other hand, the parallelization of the summary
system is a key feature to ensure a smooth scalability. The
implementation of the system is based on the Message-
Oriented Programming paradigm. Each sub-system is auto-
nomous and collaborates with the others through disconnected
asynchronous method invocations. It is among the least de-
manding approaches in terms of availability and centraliza-
tion. The autonomy of summary components allows for a
distributed computing of the process.

C. Distributed Summary Representation

In this section, we introduce basic definitions related to the
summarization process.

Definition 1 Summary Let E = 〈A1, . . . , An〉 be a n-
dimensional space equipped with a grid that defines basic
n-dimensional areas called cells in E. Let R be a relation
defined on the cartesian product of domains DAi of dimen-
sions Ai in E. Summary z of relation R is the bounding box
of the cluster of cells populated by records of R.

The above definition is constructive since it proposes to
build generalized summaries (hyper-rectangles) from cells that
are specialized ones. In fact, it is equivalent to performing an
addition on cells:

z = c1 + c2 + . . .+ cp

where ci ∈ Lz , the set of p cells (summaries) covered by z.

A summary z is then an intentional description associated
with a set of tuples Rz as its extent and a set of cells Lz that
are populated by records of Rz .

Thus, summaries are areas of E with hyper-rectangle shapes
provided by BK. They are nodes of the summary tree built by
the SAINTETIQ system.

Definition 2 Summary Tree A summary tree is a collection
S of summaries connected by 4, the following partial order:

∀z, z′ ∈ Z, z 4 z′ ⇐⇒ Rz ⊆ Rz′

The above link between two summaries provides a gener-
alization/specialization relationship. And assuming that sum-
maries are hyper-rectangles in a multidimensional space, the
partial ordering defines nested summaries from the larger
one to the single cells. General trends in the data could be
identified in the very first levels of the tree whereas precise
information has to be looked at near the leaves.

For our purpose, we also consider a summary tree as an
indexing structure over distributed data in a P2P system. Thus,
we add a new dimension to the definition of a summary node
z: a peer-extent Pz , which provides the set of peers having
data described by z.

Definition 3 Peer-extent Let z be a summary in a given
hierarchy of summaries S, and P the set of all peers who
participated to the construction of S. The peer-extent Pz of
the summary z is the subset of peers owning, at least, one
record of its extent Rz: Pz = {p ∈ P | Rz ∩Rp 6= ∅}, where
Rp is the view over the database of node p, used to build
summaries.

Due to the above definition, we extend the notion of data-
oriented summary in a given database, to a source-oriented
summary in a given P2P network. In other words, our summary
can be used as a database index (e.g. referring to relevant
tuples), as well as a semantic index in a distributed system
(e.g. referring to relevant nodes).

The summary hierarchy S will be characterized by its
Coverage in the P2P system; that is, the fraction of data
sources described by S. Relative to the hierarchy S, we call
Partner Peer a peer whose data is described by at least a
summary of S.

Definition 4 Partner peers The set of Partner peers PS of
a summary hierarchy S is the union of peer-extents of all
summaries in S: PS = {∪z∈SPz}.

For simplicity, in the following we designate by “summary”
a hierarchy of summaries maintained in a P2P system, unless
otherwise specified.

III. PEERSUM SUMMARY MODEL

In this section, we study the integration of a new summary
service, PEERSUM, into an existing P2P architecture. Here we
work in the context of APPA (Atlas Peer to Peer Archi-
tecture), a P2P data management system which provides high
level services for advanced P2P applications [22]. We first state

the addressed problem, and then we present the architecture
of the PeerSum summary model.

Given a P2P network, we consider the two following
assumptions.
• Each peer p owns some tuples (Rp) in a global, horizon-

tally partitioned relation R.
• Users that are willing to cooperate agree on a Background

Knowledge BK, which represents their common percep-
tion of the domain.

Thus, here we do not address the problem of semantic hetero-
geneity among peers, since it is a separate P2P issue on its
own. Besides, our work mainly targets collaborative database
applications where the participants are supposed to work on
“related” data. In such a context, the number of participants
is also supposed to be limited, and thus the assumption of
a common BK seems not to be a strength constraint. An
example of such BK in a medical collaboration is the System-
atized Nomenclature of Medicine Clinical Terms (SNOMED
CT) [14], which provides a common language that enables a
consistent way of capturing, sharing and aggregating health
data across specialties and sites of care. On the other hand,
our summaries are data structures that respect the original data
schemas [23]. Hence, we can assume that the techniques that
have been proposed to deal with information integration in
P2P systems (e.g. [16], [22]) can be used here to overcome
the heterogeneity of both data and summary representations,
in the context of heterogeneous data.

Let G = (V,E) be the graph corresponding to a P2P
network of size N , where V is the set of nodes (i.e. |V | = N),
and E is the set of links between nodes. Our ultimate goal is
to maintain a global summary that completely describes the
global relation R. However, as stated before, the relation R
is horizontally partitioned and distributed among autonomous
peers. Hence, the problem can be defined as follows. Given
that each peer pi locally maintains a Local Summary LSi, we
aim to construct the global summary GSc such that:

GSc = ∪N
i=1(LSi)

The local summaries are obtained by integrating the summa-
rization process previously defined into each peer’s DataBase
Management System (DBMS). The operator ∪ designates the
summary merging operation which will be discussed later.
Note that GSc is an approximation of the summary which
might be obtained if the global relation R were totally avail-
able and summarized under a central coordination.

Once again, the autonomous and dynamic nature of P2P
networks imposes additional constraints and makes the con-
vergence to GSc quite challenging. It is difficult to build and
to keep this summary consistent relative to the current data
instances it describes. So, the problem can be redefined as
follows.

Given the set of materialized local summaries
{LSi, 1 ≤ i ≤ N}, we require to build/materialize the
set of global summaries {GSj , 1 ≤ j ≤ NG} such that:
• GSj = ∪l

i=1(Si), where Si is a local or global summary.
Here, the latter is defined as being the merging result of,
at least, two summaries (i.e. l ≥ 2).

Fig. 3. Summary Model Architecture

• The set of materialized local/global summaries (each
having its set of partner peers PGSj

), and the set of links
(Es ⊂ E) between nodes belonging to different sets of
partner peers (i.e. links connecting different summaries),
approximate together the virtual summary GSc.

GSc ≈ ({LSi, 1 ≤ i ≤ NL}, {GSj , 1 ≤ j ≤ NG}, Es) (1)

NL is the number of local summaries, i.e. the number of
peers that have not participated to any global summary
GSj . While NG is the number of global summaries built
in the network (i.e. | ∪NG

j=1 (PGSj
)|+NL = N).

• A “good” trade-off should be achieved between the cost
of updating the set of materialized summaries and the
benefits obtained from exploiting these summaries in
query processing.

In APPA, we adopt an incremental mechanism for summary
construction. The “coverage” of a summary S in the network is
defined as being the fraction of peers that own data described
by S. This coverage quantifies the convergence of S to the
complete summary GSc, which is obviously characterized by
a coverage = 1.

The architecture of our summary model is presented in
Figure 3. The incremental aspect of the summary construc-
tion approach is described as follows. Peers that cooperate
are exchanging and merging summaries, in order to build a
Global Summary GSj over their shared data. This summary is
characterized by a continuous evolution in term of coverage,
i.e. the cooperation between two sets of peers, each having
constructed a global summary, results in a higher-coverage
one.

IV. SUMMARY MANAGEMENT IN PEERSUM

APPA has a network-independent architecture so it can be
implemented over different types of P2P networks. APPA
provides three layers of services: P2P network, basic services
and advanced services. PeerSum is integrated at the advanced
layer and defined based on the underlying services. Due to
space limitations, we will only mention the services required
for PeerSum definition.

According to our summary model, PeerSum must address
the following requirements:
• Peers cooperate for exchanging and merging summaries

into a global summary,
• Peers share a common storage in which the global sum-

mary is maintained.

The peer linking and peer communication services of the
APPA’s P2P network layer allow peers to communicate and
exchange messages (through service calls), while cooperating
for a global summary construction. Besides, the update man-
agement service (UMS) [3] of the basic layer and the Key-
based Storage and Retrieval (KSR) service of the P2P network
layer, work together to provide a common storage in which a
global summary is maintained. This common storage increases
the probability that “P2P data” (e.g. metadata, indexes, sum-
maries) produced and used by advanced services are available
even if peers that have produced them are disconnected. The
UMS and KSR services manage data based on keys. A key
is a data identifier which determines which peer should store
the data in the system, e.g. through hashing over all peers in
DHT networks or using super-peers for storage and retrieval
in super-peer networks. All data operations on the common
storage are key-based, i.e. they require a key as parameter.

In the following, we will describe our algorithms for sum-
mary construction and maintenance. First, we work in a static
context where all the participants remain connected. Then, we
address the dynamicity of peers.

A. Summary construction

Starting up with a local summary level (see Figure 3),
we present the algorithm for peer cooperation that allows
constructing a global summary GS. We assume that each
global summary is associated with a Cooperation List (CL)
that provides information about its partner peers. An element
of the cooperation list is composed of two fields. A partner
peer identifier PeerID, and a 2-bit freshness value v that
provides information about the freshness of the descriptions
as well as the availability of the corresponding database.
• value 0 (initial value): the descriptions are fresh relative

to the original data,
• value 1: the descriptions need to be refreshed,
• value 2: the original data are not available. This value will

be used while addressing peer volatility in Section IV-C.
Both the global summary and its cooperation list are consid-
ered as “summary data” and are maintained in the common
storage, using the P2PDM and KSR services.

1) Cooperation request: The algorithm starts at an initiator
peer Pinit who sends a cooperation request message to its
neighbors, to participate to a global summary construction.
This message contains Pinit’s identifier and a given value of
TTL (Time-To-Live). One may think that a large value of TTL
allows to obtain directly a high-coverage summary. However,
due to the autonomous nature of P2P systems, Pinit may keep
waiting for a very long time without having constructed that
global summary. Therefore, we choose to limit the value to
TTL and adopt an incremental construction mechanism, as
discussed in Section III.

2) Cooperation response: A peer p who receives the mes-
sage, performs the following steps. First, if the request has
already been received, it discards the message. Else, it saves
the address of the sender as its parent. Then, its decrements
TTL by one. If the value of TTL remains positive, it sends
the message to its neighbors (except the parent).

After propagating the message, p must wait to receive
the responses of its neighbors. However, since some of the
neighbors may leave the system and never response, the
waiting time must be limited. We compute p’s waiting time
using a cost function based on TTL, and network dependent
parameters.

A cooperation response of a peer p has the following struc-
ture: Coop Resp =〈CS, PeerIDs, GSKeys〉. CS is the current
summary obtained at p, PeerIDs is the list of identifiers of
peers that have responded to p, and GSKeys is the list of keys
of global summaries. If p is a partner peer, that is, p has already
participated to an existing global summary, its Coop Resp
will include the key of the global summary it knows, as well
as the peer identifiers contained in the corresponding CL,
i.e. Coop Resp =〈∅, extractPeerIDs(CL), {GSKey}〉. In that
case, p locates at the boundary of two knowledge scopes of
two different summaries. Hence, it allows merging them into
a higher-coverage one. Otherwise, its response will include
its local summary and its identifier, i.e. Coop Resp =〈p.LS,
{p.ID}, ∅〉.

3) Summary data storage: In the waiting phase, when a
child’s Coop Resp arrives, a parent peer p merges it with
its own response by making the union of PeerIDs and
GSKeys lists, and merging the current summaries. Once the
time expires, p sends the result to its parent. But, if p is the
initiator peer Pinit, it will store the new summary data, i.e. the
new global summary GS and its cooperation list CL, using the
KSR service: GSKey := KSR insert(CS, CL). CL contains each
peer identifier obtained in the final PeerIDs list, associated
with a freshness value v equal to zero. At the end, Pinit sends
the new key (GSKey) to all participant peers, which become
GS’s partner peers.

B. Summary maintenance

An important issue for any indexing technique is to effi-
ciently maintain the indexes against data changes. For a local
summary, it has been demonstrated that the summarization
process guarantees an incremental maintenance (using a push
mode for exchanging data with the DBMS), while performing
with a low complexity. In this section, we propose a strategy
for maintaining the summary data: a global summary GS
which has been obtained by merging the local summaries
of the set of peers PGS , and its associated cooperation list
CL. The objective is to keep GS consistent with the current
instances of the local summaries.

a) Push: Cooperation List Update: Each peer p in PGS

is responsible for refreshing its own element in the cooperation
list CL. The partner p monitors the modification rate issued
on its local summary LS. When LS is considered as enough
modified, the peer p sets its freshness value v to 1, through a
push message. The value 1 indicates that the local summary
version being merged while constructing GS does not corre-
spond any more to the current instance of the database.

An important feature is that the frequency of push messages
depends on modifications issued on local summaries, rather
than on the underlying databases. It has been demonstrated
in [23] that, after a given process time, a summary becomes

very stable. As more tuples are processed, the need to adapt the
hierarchy decreases and hopefully, once all existing attribute
combinations have been processed, incorporating new tuple
consists only in sorting it in a tree. A summary modification
may be detected by observing the appearance/disappearance
of descriptors in the summary intention.

b) Pull: Summary Update: The summary service mon-
itors the fraction of old descriptions in GS, i.e. the number
of ones in CL. We may consider that the peer that has been
delegated to store CL (by the KSR and UMS services) is
in charge of performing this task. Upon each push message
sent to update a freshness value, the fraction of ones in CL is
checked. If it exceeds a threshold value α, the summary update
mechanism will be then triggered. Note that the threshold α
is our parameter by which the freshness degree of GS will be
controlled. In order to update GS, all the partner peers will
be pulled to merge their current local summaries into a GS’s
version. The algorithm is described as follows.

A summary update message Sum Update is propagated
from a partner to another. This message contains a new sum-
mary NewGS (initially empty), and a list of peer identifiers
PeerIDs which initially contains the identifiers of all GS’s
partners (provided by CL). When a partner p receives the
Sum Update message, it first merges NewGS with its local
summary and removes its identifier from PeerIDs. Then, it
sends the message to another partner chosen from PeerIDs. If
p is the last visited peer (i.e. PeerIDs is empty), it updates the
summary data: GS is replaced by the new version NewGS,
and all the freshness values in CL are reset to zero. This
strategy avoids conflicts and guarantees a high availability
of the summary data, since only one update operation is
performed by the last visited partner.

C. Peer dynamicity

In P2P systems, another crucial issue is to maintain the
data indexes against network changes. Besides the freshness
of summary descriptions, the availability of the original data
sources should be also taken into account, given the dynamic
behavior of peers.

1) Peer arrival: When a new peer p joins the system,
it contacts some existing peers to determine the set of its
neighbors. If one of those neighbors is a partner peer, p
becomes a new partner: a new element is added to the
cooperation list with a freshness value v equal to one. Recall
that the value 1 indicates the need of pulling the peer to get
new data descriptions. Furthermore, if p is a neighbor of two
partners of two different summaries, it allows merging them
in a higher-coverage one.

2) Peer departure: When a partner peer p decides to leave
the system, it first sets its freshness value v to two in the
cooperation list, through a push message. This value reminds
the participation of the disconnected peer p to the correspond-
ing global summary, but also indicates the unavailability of
the original data. There are two alternatives to deal with such
a freshness value. First, we can keep the data descriptions
and use it, when a query is approximately answered using the
global summary. A second alternative consists in considering

the data descriptions as expired, since the original data are
not accessible. Thus, a partner departure will accelerate the
summary update initiating. In the rest of this paper, we adopt
the second alternative and consider only a 1-bit freshness value
v: a value 0 to indicate the freshness of data descriptions, and a
value 1 to indicate either their expiration or their unavailability.

However, if peer p failed, it could not notify its partners by
its departure. In that case, its data descriptions will remain in
the global summary until a new summary update is executed.
The update algorithm does not require the participation of a
disconnected peer. The global summary GS is reconstructed,
and descriptions of unavailable data will be then omitted.

V. QUERY PROCESSING

Now, we discuss how a query Q, posed at a peer p, is
processed. Our approach consists in querying at first the
global summary GS available to peer p. As highlighted in the
introduction and all along this paper, summary querying allows
to achieve two distinct tasks depending on the user/application
requirements: peer localization to return the original results,
and approximate answering to return approximate answers.
Summary querying is divided into two phases: 1) query
reformulation and 2) query evaluation.

A. Query Reformulation

First, a selection query Q must be rewritten into a flexible
query Q∗ in order to be handled by the summary querying
process. For instance, consider the following query Q on the
Patient relation in Table I:

SELECT AGE FROM PATIENT WHERE SEX = “FEMALE” AND
BMI < 19 AND DISEASE = “ANOREXIA”

This phase replaces the original value of each selection
predicate by the corresponding descriptors defined in the
Background Knowledge (BK). Therefore, the above query is
transformed to Q∗:

SELECT AGE FROM PATIENT WHERE SEX = “FEMALE” BMI
IN {underweight, normal} AND DISEASE = “ANOREXIA”

Let QS (resp.QS∗) be the Query Scope of query Q
(resp.Q∗) in the P2P system, that is, the set of peers that
should be visited to answer the query. Obviously, the query
extension phase may induce false positives in query results. To
illustrate, a patient having a BMI value of 20 could be returned
as an answer to the query Q∗, while the selection predicate
on the attribute BMI of the original query Q is not satisfied.
However, false negatives cannot occur, which is expressed by
the following inclusion: QS ⊆ QS∗.

In the rest of this paper, we suppose that a user query is
directly formulated using descriptors defined in the BK (i.e.
Q = Q∗). As we discussed in the introduction of this work,
a doctor that participates to a given medical collaboration,
may ask query Q like “the age of female patients diagnosed
with anorexia and having an underweight or normal BMI”.
Thus, we eliminate potential false positives that may result
from query extension.

B. Query Evaluation

This phase deals with matching a set of summaries or-
ganized in a hierarchy S, against the query Q. The query
is transformed into a logical proposition P used to qualify
the link between each summary and the query. Proposition P
is under a conjunctive form in which all descriptors appears
as literals. In consequence, each set of descriptors yields on
corresponding clause. For instance, the above query Q is
transformed to P = (female) AND (underweight OR normal)
AND (anorexia). A valuation function has been defined to
valuate the proposition P in the context of a summary z.
Then, a selection algorithm performs a fast exploration of the
hierarchy and returns the set ZQ of most abstract summaries
that satisfy the query. For more details see [28]. Once ZQ

determined, the evaluation process can achieve two distinct
tasks: 1) Peer localization, and 2) Approximate answering.

1) Peer Localization: Since the extended definition of a
summary z provides a peer-extent, i.e. the set of peers Pz

having data described by its intent (see Definition 4), we can
define the set PQ of relevant peers for the query Q as follows:
PQ = {∪z∈ZQ

Pz}. The query Q is directly propagated to
these relevant peers. However, the efficiency of this query
routing depends on the completeness and the freshness of
summaries, since stale answers may occur in query results. We
define a False Positive as the case in which a peer p belongs to
PQ and there is actually no data in the p source that satisfies
Q (i.e. p /∈ QS). A False Negative is the reverse case in which
a p does not belong to PQ, whereas there exists at least one
tuple in the p data source that satisfies Q (i.e. p ∈ QS).

2) Approximate Answering: A distinctive feature of our
approach is that a query can be processed entirely in the
summary domain. An approximate answer can be provided
from summary descriptions, without having to access original,
distributed database records. The selected summaries ZQ are
aggregated according to their interpretation of proposition
P : summaries that have the same required characteristics on
all predicates (i.e. sex, BMI and disease) form a class. The
aggregation in a given class is a union of descriptors: for
each attribute of the selection list (i.e. age), the querying
process supplies a set of descriptors which characterize sum-
maries that respond to the query through the same interpre-
tation [28]. For example, according to Table I, the output set
obtained for the two classes {female, underweight, anorexia},
and {female, normal, anorexia} is age = {young}. In other
words, all female patients diagnosed with anorexia and having
an underweight or normal BMI are young girls.

VI. PERFORMANCE EVALUATION

In this section, we devise a simple model of the summary
management cost. Then, we evaluate and analyze our model
through simulation.

A. Cost Model

A critical issue in summary management is to trade off
the summary updating cost against the benefits obtained for
queries.

1) Summary Update Cost: Here, our first undertaking is
to optimize the update cost while taking into account query
accuracy. In the next section, we discuss query accuracy which
is measured in terms of the percentage of false positives
and false negatives in query results. The cost of updating
summaries is divided into: usage of peer resources, i.e. time
cost and storage cost, and the traffic overhead generated in the
network.

Time Cost: A unique feature of SAINTETIQ is that the
changes in the database are reflected through an incremental
maintenance of the summary hierarchy. The time complexity
of the summarization process is in O(K) where K is the
number of cells to be incorporated in that hierarchy [23].
For a global summary update, we are concerned with the
complexity of merging summaries. The MERGING method that
has been proposed is based on the SAINTETIQ engine. This
method consists in incorporating the leaves Lz of a given
summary hierarchy S1 into an another S2, using the same
algorithm described by the SAINTETIQ summarization service
(referenced in Section II-B.3). It has been proved that the
complexity CM12 of the MERGING(S1, S2) process is constant
w.r.t the number of tuples [21]. More precisely, CM12 depends
on the maximum number of leaves of S1 to incorporate into
S2. However, the number of leaves in a summary hierarchy is
not an issue because it can be adjusted by the user according
to the desired precision. A detailed Background Knowledge
(BK) will lead to a greater precision in summary description,
with the natural consequence of a larger summary. Moreover,
the hierarchy is constructed in a top-down approach and it is
possible to set the summarization process so that the leaves
have any desired precision.

Storage Cost: We denote by k the average size of a
summary z. In the average-case assumption, there are

∑d
i=0

Bi = (Bd+1 − 1)/(B − 1) nodes in a B-arity tree with d,
the average depth of the hierarchy. Thus the average space
requirement is given by: Cm = k.(Bd+1− 1)/(B− 1). Based
on real tests, k = 512 bytes gives a rough estimation of the
space required for each summary. An important issue is that
the size of the hierarchy is quite related to its stabilization (i.e.
B and d). As more cells are processed, the need to adapt the
hierarchy decreases and incorporating a new cell may consist
only in sorting a tree. Hence, the structure of the hierarchy
remains stable and no additional space is required. On the
other hand, when we merge two hierarchies S1 and S2 having
sizes of Cm1 and Cm2 respectively, the size of the resultant
hierarchy is always in the order of the max (Cm1, Cm2).
However, the size of a summary hierarchy is limited to a
maximum value which corresponds to a maximum number
of leaves that cover all the possible combinations of the BK
descriptors. Thus, storing the global summary at the summary
peer is not a strength constraint.

According to the above discussion, the usage of peer
resources is optimized by the summarization process itself,
and the distribution of summary merging while updating a
global summary. Thus, we restrict now our focus to the traffic
overhead generated in the P2P network.

Network Traffic: Recall that there are two types of
exchanged messages: push and update. Let local summaries

have an average lifetime of L seconds in a given global
summary. Once L expired, the node sends a (push) message
to update its freshness value v in the cooperation list CL.
The update algorithm is then initiated whenever the following
condition is satisfied:

∑
v∈CL v/|CL| ≥ α, where α is a

threshold that represents the ratio of old descriptions tolerated
in the global summary. During update, only one message
is propagated among all partner peers until the new global
summary version is stored at the summary peer SP . Let Frec

be the update frequency. The update cost is:

Cup = 1/L+Frec messages per node per second (2)

In this expression, 1/L represents the number of push
messages which depends either on the modification rate issued
on local summaries or the connection/disconnection rate of
peers in the system. Higher is the rate, lower is the lifetime
L, and thus a large number of push messages are entailed in
the system. Frec represents the number of update messages
which depends on the value of α. This threshold is our
system parameter that provides a trade-off between the cost of
summary updating and query accuracy. If α is large, the update
cost is low since a low frequency of update is required, but
query results may be less accurate due both to false positives
stemming from the descriptions of non existent data, and to
false negatives due to the loss of relevant data descriptions
whereas they are available in the system. If α is small, the
update cost is high but there are few query results that refer
to data no longer in the system, and nearly all available results
are returned by the query.

2) Query cost: We have seen that the use of summaries as
data indexes may improve query processing. When a query
Q is posed at a peer p, first it is matched against the global
summary to determine the set of peers PQ whose descriptions
are considered as answers. Then, Q is directly propagated to
those peers. As a consequence, the number of messages ex-
changed in the system is intended to be significantly reduced.
Furthermore, the cooperation list associated with a global
summary provides information about the relevance of each
database description. Thus, it gives more flexibility in tuning
the trade-off recall ρ / precision π of the query answers. Let
V be the set of peers visited while processing a query. Then
ρ = |QS ∩V |/|QS| and π = |QS ∩V |/|V |, where QS is the
set of all peers that really match the query (i.e. Query Scope).

The trade-off can be tuned by confronting the set PQ with
the cooperation list CL. The set of all partner peers PH in
CL can be divided into two subsets: Pold = {p ∈ PH | p.v =
1}, the set of peers whose descriptions are considered old,
and Pfresh = {p ∈ PH | p.v = 0} the set of peers whose
descriptions are considered fresh according to their current
data instances. Thus, if a query Q is propagated only to the
set V = PQ ∩ Pfresh, then precision is maximum since all
visited peers are certainly matching peers (no false positives),
but recall depends on the fraction of false negatives in query
results that could be returned by the set of excluded peers
PQ\Pfresh. On the contrary, if the query Q is propagated to
the extended set V = PQ ∪ Pold, recall value is maximum
since all matching peers are visited (no false negatives), but

Parameter value
local summary lifetime L skewed distribution, Mean=3h, Me-

dian=1h
number of peers n 16–5000
matching nodes/query hits 10%
freshness threshold α 0.1–0.8

TABLE III
SIMULATION PARAMETERS

precision depends on the fraction of false positives in query
results that are returned by the set of peers Pold.

The above two situations are bounds of a range of strategies
available to propagate the query. In our experiments, we
assume V = PQ, the initial peer set. Thus, for a query Q,
the cost is computed as CQ = 2 · |PQ| number of messages.
Both query and result messages are considered here.

B. Simulation

We evaluated the performance of PeerSum through sim-
ulation, based on the above cost model. First, we describe
the simulation setup. Then we present simulation results
to evaluate various performance dimensions and parameters:
scale up, query accuracy, effect of the freshness threshold α.

1) Simulation setup: We used the SimJava package [9] and
the BRITE universal topology generator to simulate a power
law P2P network, with an average degree of 4. The simulation
parameters are shown in Table III. In large-scale P2P file-
sharing systems, a user connects mainly to download some
data and may then leave the system without any constraint.
As reported in [25], these systems are highly dynamic and
node lifetimes are measured in hours. As such, data indexes
should be mainly maintained against network changes. In
collaborative database applications, however, the P2P system
is supposed to be more stable. Here, the data indexes should
be mainly maintained against data changes, since the shared
data may be submitted to a significant modification rate.

As stated before, our work targets collaborative applications
sharing semantically rich data. In our tests, we have used
synthetic data since it was difficult to obtain/use real, highly
distributed P2P databases. Future works aim to employ our
proposal in the context of astronomical applications, which
seem to be attractive because of the huge amount of infor-
mation stored into the databases. Thus, to provide meaningful
results, we have evaluated the performance of our solutions
in worst contexts where the data are highly updated. We
have considered that local summary lifetimes follow a skewed
distribution with a mean lifetime of 3 hours, and a median
lifetime of 60 minutes. Note that summary lifetimes of hours
means that the underlying data is submitted to a very high
modification rate, since the summaries are supposed to be
more stable than original data (as discussed in Section IV-B).
Besides, such lifetime values allow to predict the performance
of PeerSum in large-scale data sharing P2P systems where the
rate of node departure/arrival dominates the global summary
update initiating. In our tests, we work with moderated-size
P2P networks, i.e. the number of peers varies between 16 and

Fig. 4. Stale answers vs. number of peers

Fig. 5. False negative vs. number of peers

5000. In our query workload, the query rate is 0.00083 queries
per node per second (one query per node per 20 minutes)
as suggested in [6]. Each query is matched by 10% of the
total number of peers. Finally, our system parameter α varies
between 0.1 and 0.8.

2) Update cost: In this set of experiments we quantify the
trade-off between query accuracy and the cost of updating a
global summary. Figure 4 depicts the fraction of stale answers
in query results for different values of the threshold α. Here
we illustrate the worst case. For each partner peer p having a
freshness value equal to 1, if it is selected in the set PQ then
it is considered as false positive. Otherwise, it is considered
as false negative. However, this is not the real case. Though it
has a value equal to 1, the peer p do not incur stale answers
unless its database is changed relative to the posed query Q.
Thus, Figure 4 shows the worst, but very reasonable values.
For instance, the fraction of stale answers is limited to 11%
for a network of 500 peers when the threshold α is set to
0.3 (30% of the peers are tolerated to have old/non existent
descriptions).

As mentioned in Section VI-A.2, if we choose to propagate
the query only to the set V = PQ ∩ Pfresh we eliminate the
possible false positives in query results. However, this may
lead to additional false negatives. Figure 5 shows the fraction
of false negatives in function of the total number of peers.
Here we take into account the probability of the database
modification relative to the query, for a peer having a freshness

Fig. 6. number of messages vs. number of peers

value equal to 1. We see that the fraction of false negatives
is limited to 3% for a network size less than 2000. Moreover,
the real estimation of stale answers shows a reduction by a
factor of 4.5 with respect to the preceded values.

Figure 6 depicts the update cost in function of the total
number of peers, and this for two threshold values. The total
number of messages increases with the number of peers, but
not surprisingly, the number of messages per node remains
almost the same. In the expression of the update cost Cup,
the number of push messages for a given peer is independent
of network size. More interestingly, when the threshold value
decreases (from 0.8 to 0.3) we notice a little cost increasing
of 1.2 on average. For a network of 1000 peers, the update
cost increases from 0.01056 to 0.01296 messages per node per
minute (not shown in figure). However, a small value of the
threshold α allows to reduce significantly the fraction of stale
answers in query results, as seen in Figure 4. Therefore, tuning
our system parameter α do not incur high traffic overhead in
the system, while improving query accuracy.

3) Query cost: In this set of experiments, we compare
our algorithm for query processing against non-index/flooding
algorithms which are very used in real life, due to their
simplicity and the lack of complex state information at each
peer. Our algorithm is based on summary interrogation (SI)
to determine the set of relevant peers PQ. Ideally, all matching
peers are targeted and directly visited. A flooding algorithm
consists in routing the query till a stop condition is satisfied.
Here, we limit the flooding by a value 3 of TTL (Time-To-
Live). The Figure 7 depicts the number of exchanged messages
to process a query Q, in function of the total number of peers.
Our algorithm SI shows the best results that can be expected
from any query processing algorithm, when no stale answers
occur in query results (the ideal case). However, to give a
real performance evaluation, we decide to study our algorithm
in the worst case where the stale answers of Figure 4 occur
in query results (for α = 0.3). Even in that, SI shows
a reduction of the number of messages that becomes more
important with a large size of network. For instance, the query
cost is reduced by a factor of 3 for a network of 2000 peers.

Fig. 7. Query cost vs. number of peers

VII. COMPARISON WITH RELATED WORK

Current works on P2P systems aim to employ content-based
routing strategies, since the content of data can be exploited
to more precisely guide query propagation. These strategies
require gathering information about the content of peer’s data.
However, the limits on network bandwidth and peer storage,
as well as the increasing amount of shared data, call for
effective summarization techniques. These techniques allow
exchanging compact information on peer’s content, rather
than exchanging original data in the network. Existing P2P
systems have used keyword-based approaches to summarize
text documents. For instance, in [1] documents are summarized
by keyword vectors, and each node knows an approximate
number of documents matching a given keyword that can
be retrieved through each outgoing link (i.e. Routing Indices
RIs). Although the search is very bandwidth-efficient, RIs
require flooding in order to be created and updated, so the
method is not suitable for highly dynamic networks. Other
works (e.g. [8]) investigate Vector Space Model (VSM) and
build Inverted Indexes for every keyword to cluster content.
In this model, documents and queries are both represented
by a vector space corresponding to a list of orthogonal term
vectors called Term Vector. The drawback of VSM is its high
cost of vector representations in case of P2P churns. In [12],
a semantic-based content search consists in combining VSM
to Latent Semantic Index (LSI) model to find semantically
relevant documents in a P2P network. This work is based on
hierarchical summary structure over hybrid P2P architecture,
which is closely related to what we are presenting in this
paper. However, instead of representing documents by vector
models, we describe structured data (i.e. relational database)
by synthetic summaries that respect the original data schema.
To the best of our knowledge, none of the summarization tech-
niques used in P2P systems allows for an approximate query
answering. All works have focused on facilitating content-
based query routing, in order to improve search efficiency. We
believe that the novelty of our approach relies on the fact that
our data summaries allow for a semantic-based query routing,
but also for approximately answering the query using their
intentional descriptions.

VIII. CONCLUSION

In this paper, we proposed PeerSum, a new service for
managing data summaries in P2P and Grid systems. PeerSum
supports scaling up in terms of two dimensions: number of
participants and amount of data. This paper made two main
contributions. First, we defined a summary model for P2P
systems, based on the SAINTETIQ process [11]. Second, we
proposed efficient algorithms for summary management in
PeerSum. Our analysis and simulation results showed that
the use of summaries as data indexes reduces the cost of
query routing by an important factor compared to flooding
approaches, without incurring high costs in terms of update
messages exchanged in the network.

REFERENCES

[1] A.Crespo and H.G.Molina. Routing indices for peer-to-peer systems. In
Proc of the 28 tn Conference on Distributed Computing Systems, 2002.

[2] A.J.Chakravarti, G.Baumgartner, and M.Lauria. The organic grid: self-
organizing computation on a peer-to-peer network. IEEE Transactions
on Systems, Man, and Cybernetics, Part A, 35(3):373–384, 2005.

[3] R. Akbarinia, E. Pacitti, and P. Valduriez. Data currency in replicated
dhts. In SIGMOD Conference, pages 211–222, 2007.

[4] A.Oser, F.Naumann, W.Siberski, W.Nejdl, and U.Thaden. Semantic
overlay clusters within super-peer networks. In Proc of the Interna-
tional Workshop on Databases, Information Systems and Peer-to-Peer
Computing in Conjunction with the VLDB, 2003.

[5] A.Rowstron and P.Druschel. Storage management and caching in PAST,
a large–scale, persistent peer-to-peer storage utility. In Proc.SOSP, 2001.

[6] B.Yang and H.G.Molina. Comparing hybrid peer-to-peer systems. In
Proc VLDB, 2001.

[7] C.Wang, L.Xiao, Y.Liu, and P.Zheng. Dicas: An efficient distributed
caching mechanism for p2p systems. IEEE Transactions on Parallel
and Distributed Systems, 2006.

[8] F.Cuenca-Acuna, C.Peery, R.Martin, and T.Nguyen. Planetp: Using
gossiping to build content addressable peer-to-peer information sharing
communities. In HPDC-12, 2003.

[9] F.Howell and R.McNab. Simjava: a discrete event simulation package
for java with the applications in computer systems modeling. In Int.
Conf on Web-based Modelling and Simulation, San Diego CA, Society
for Computer Simulation, 1998.

[10] G.Koloniari, Y.Petrakis, and E.Pitoura. Content–based overlay networks
of xml peers based on multi-level bloom filters. In Proc VLDB, 2003.

[11] G.Raschia and N.Mouaddib. A fuzzy set-based approach to database
summarization. Fuzzy sets and systems 129(2), pages 137–162, 2002.

[12] H.Shen, Y.Shu, and B.Yu. Efficient semantic-based content search in
p2p network. IEEE Transactions on Knowledge and Data Engineering,
16(7), 2004.

[13] http://www.ogsadai.org.uk.
[14] http://www.snomed.org/snomedct.
[15] I.Foster and A.Iamnitchi. On death, taxes, and the convergence of peer-

to-peer and grid computing. In IPTPS, pages 118–128, 2003.
[16] I.Tartinov and et al. The Piazza peer data management project. In

SIGMOD, 2003.
[17] K.Thompson and P.Langley. Concept formation in structured domains.

In Concept formation: Knowledge and experience in unsupervised
learning, pages 127–161. Morgan Kaufmann.

[18] L.A.Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.
[19] L.A.Zadeh. Concept of a linguistic variable and its application to

approximate reasoning-I. Information Systems, 8:199–249, 1975.
[20] L.A.Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets

and Systems, 100:9–34, 1999.
[21] M.Bechchi, G.Raschia, and N.Mouaddib. Merging distributed database

summaries. In ACM Sixteenth Conference on Information and Knowl-
edge Management (CIKM), 2007.

[22] R.Akbarinia, V.Martins, E.Pacitti, and P.Valduriez. Design and imple-
mentation of appa. In Global Data Management (Eds. R. Baldoni, G.
Cortese and F. Davide). IOS press, 2006.

[23] R.Saint-Paul, G.Raschia, and N.Mouaddib. General purpose database
summarization. In Proc VLDB, pages 733–744, 2005.

[24] S.Ratnasamy, P.Francis, M.Handley, R.M.Karp, and S.Shenker. A
scalable content–addressable network. In SIGCOMM, 2001.

[25] S.Saroiu, P.Gummadi, and S.Gribble. A measurement study of peer-
to-peer file sharing systems. In Proc of Multimedia Computing and
Networking (MMCN), 2002.

[26] K. et al. P-grid: a self-organizing structured p2p system. SIGMOD Rec.,
32(3):29–33, 2003.

[27] T.Ozsu and P.Valduriez. Principles of Distributed Database Systems.
Prentice Hall, 1999.

[28] W.A.Voglozin, G.Raschia, L.Ughetto, and N.Mouaddib. Querying the
SAINTETIQ summaries–a first attempt. In Int.Conf.On Flexible Query
Answering Systems (FQAS), 2004.

