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Fast Approximation of Nonlinearities forimproving inversion algorithms of PNLmixtures and Wiener systems ?
J. Sol�e-Casals a, C. Jutten b;�, D.T. Pham aSignal Proessing Group, University of Vi, Sagrada Fam�ilia 7, 08500, Vi,Catalonia, SpainbLaboratoire des Images et des Signaux (CNRS UMR nÆ5083),INPG, 46 Av�enueF�elix Viallet, 38031 Grenoble Cedex, FraneLaboratoire de Mod�elisation et de Calul (CNRS UMR nÆ5523),IMAG, BP53,38041 Grenoble Cedex 9, FraneAbstratThis paper proposes a very fast method for blindly approximating a nonlinear map-ping whih transforms a sum of random variables. The estimation is surprisinglygood even when the basi assumption is not satis�ed. We use the method for provid-ing a good initialization for inverting post-nonlinear mixtures and Wiener systems.Experiments show that the algorithm speed is strongly improved and the asymptotiperformane is preserved with a very low extra omputational ost.Key words: Nonlinear soure separation, Nonlinear ICA, Wiener systems

1 IntrodutionBlind Separation of independent soures (BSS) is a basi problem in signalproessing, whih has been onsidered intensively in the last �fteen years,? This work has been partly funded by the European projet BLInd Soure Sep-aration and appliations (BLISS, IST 1999-14190) and by the Universitat de Viunder the grant R0912.� Corresponding authorEmail addresses: jordi.sole�uvi.es (J. Sol�e-Casals),Christian.Jutten�inpg.fr (C. Jutten), Dinh-Tuan.Pham�imag.fr (D.T.Pham).Preprint submitted to Elsevier Siene 15 Marh 2004



A f1fn g1gn B-- -- -- ---- xnx1 ene1 znz1sns1 yny1... ...... ...Mixing System� - Separating System� -Fig. 1. The mixing-separating system for PNL mixtures.mainly for linear (instantaneous as well as onvolutive) mixtures. More re-ently, a few researhers [6,5,7,2,10,8,4,11℄ addressed the problem of soureseparation in nonlinear mixtures, whose observations are e = f(s), wheref(:) is an invertible nonlinear mapping. Espeially, Taleb and Jutten [8℄ havestudied a speial and realisti ase of nonlinear mixtures, alled post nonlinear(PNL) mixtures whih are separable. As shown in Fig. 1, this two-stage sys-tem onsists of a linear mixing matrix, followed by omponentwise nonlineardistortions. It then provides the mixing observations:ei(t) = fi(Xj aijsj(t)); i = 1; : : : ; n (1)where sj(t), j = 1; : : : ; n are the independent soures, ei(t) is the i-th obser-vation, aij denotes the entries of the unknown mixing matrix A, and fi is theunknown nonlinear mapping on the omponent i.With a suitable parameterization, the problem of blind inversion of Wienersystems (Fig. 2) is equivalent to the soure separation problem in PNL mix-tures [9℄. Its output writes ase(t) = f(Xk h(k)s(t� k)) (2)where s(t) is the independent and identially distributed (iid) input, e(t) isthe observation, h(k) denotes the entries of the unknown �lter h and f is theunknown nonlinear mapping, assumed invertible and memoryless.Blind separation or inversion of the above models requires to estimate theinverses of the nonlinear mapping and of the linear part (mixing matrix or�lter). This an be done by minimizing the mutual information of the inversionstruture output. However, it leads to slow algorithms, sine the two parts arein asade and optimized with the same riterion.In this paper, we propose a simple and very fast method for roughly estimatingthe inverse of the nonlinear mapping. This estimation provides a good initial-ization point, whih an be used for any algorithm, remaining unhanged theasymptoti performane, but inreasing strongly the algorithm speed, with avery small extra omputational ost. Setion 2 explains the priniples. Setion2



h f(�)-- -s(t) x(t) e(t)Fig. 2. A Wiener system onsists of a �lter followed by a distortion3 shows experimentally the robustness and the performane of the method,before a short onlusion.2 Priniples2.1 The basi assumptionIn (1), onsider the signal just before the nonlinear mapping. The i-th om-ponent, xi(t) = Pj aijsj(t), is a weighted sum of random variables. Aordingto the Central Limit Theorem, Xi tends toward a Gaussian random variable.The nonlinear mapping fi hanges the distribution, and onsequently we anassume that the random variable Ei = fi(Xi) is far from Gaussian. Then,we propose to estimate the inverse of fi, as the nonlinear mapping gi whihenfores the random variable Zi = gi(Ei) to be Gaussian. Of ourse, the Gaus-sian assumption will be satis�ed if the number of soures sj is large enough.For a small number of soures, the assumption is oarse. The robustness ofthe method, with respet to this assumption, will be disussed in Setion 3.Similarly, in the Wiener systems the �ltered signal, x(t) = Pk h(k)s(t � k),just before the nonlinearity, is a weighted sum of random variables. Aordingto the Central Limit Theorem, the random variable X, assoiated to x(t),tends to be a Gaussian random variable. Of ourse, the viinity to a Gaussianvariable depends on the �lter (espeially on its number of taps), but X isloser to a Gaussian distribution than S. We then propose to approximate theinverse of f(�) by the funtion g(�) suh that g(E) is Gaussian.In the next setion, sine the two problems are very similar, we drop the indexi for simplifying the notations.2.2 Cumulative density funtionThe simplest approah for omputing gi is based on the property of the u-mulative density funtion (df). Consider the random variable E, and denoteits df FE(u) = Pr(E < u) where Pr() denotes the probability. The randomvariable U = FE(E) is then uniformly distributed in [0; 1℄. Denoting �(u)3



Fe(�) ��1(�)-- -e(t) z(t) � x(t)Fig. 3. The system for approximating nonlinearitythe Gaussian df, whih transforms a unit variane Gaussian variable into auniform random variable in [0; 1℄, it is lear that ��1(U) is a unit varianeGaussian random variable. Then, a simple approximation of the inverse g ofthe nonlinear mapping f is (see Fig. 3):ĝ = ��1 Æ FE (3)
2.3 Maximization of Shannon entropyLet pZ(u) denote the probability density funtion of Z, the Shannon entropyof the unit variane random variable Z, de�ned by:H(Z) = Z � log pZ(u)pZ(u)du (4)is maximum if Z is Gaussian [1℄. Then g an be estimated so that H(Z) =H(g(E)) is maximum (under the onstraint of unit variane).
2.4 AlgorithmsUsing the previous results, one an propose two algorithms for the roughestimation of the inverse of the nonlinear mapping f . The �rst algorithm isbased on the formula (3). The Matlab ode is very simple and very fast. Aseond algorithm, based on (4), onsists in adjusting a nonlinear mapping g sothat the Shannon's entropy of Z is maximum under the onstraint Ez2 = 1.Although the seond idea is still quite simple, it leads to an algorithm whih ismuh more ompliated and longer to onverge than the previous one. Hene,in the following, we only onsider the algorithm based on (3).4
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Fig. 4. Kurtosis of STL (solid line) and STG (dashed line) distributions versus a3 Experimental results3.1 ProtoolIn order to test the robustness of the main assumption of the method (Gaus-sianization of x), we did experiments using soure signals whose distributionis the sum of two Laplaian (STL) or two Gaussian (STG) distributions. STLsignals are interesting beause one an obtain positive as well as negative signsof kurtosis by adjusting one or two parameters. As shown in [3℄, the pdf of theSTL signal is:p(x) = b4[exp(�bjx � aj) + exp(�bjx + aj)℄ (5)and its kurtosis is:Kx = 2 6� a4b44 + 4a2b2 + a4b4 (6)Clearly the sign of the kurtosis an hange aording to the value of theparameters a and b:Kx � 0 if 0 < ab � 6 14 and Kx > 0 if ab > 6 14 . We willuse this signal, with b = 1 and a in the range [0:5; 3℄, i.e. the two Laplaiandistributions only di�er from the mean, (+a or �a). The kurtosis of STLversus a is plotted in �gure 4 (solid line).In order to ompare the results with the optimal (Gaussian) signal, we useSTG signals. Eah Gaussian distribution only di�ers by its mean (+a or �a).The kurtosis is again a funtion of the distane 2a between the means of thetwo distributions. It is equal to Kx = �2a4=(1 + a2)2, and is plotted versus a5



Table 1Filters used in the experimentsLow-pass �lters :h1 = [1; 0:5℄h2 = [�0:1;�0:6579;�0:1℄h3 = [1; 0:7;�0:5; 0:2℄Band-pass �lters :h4 = [�0:1; 0:9; 0:1℄h5 = [�0:1; 0; 0:9; 0;�0:1℄h6 = [�0:0082; 0;�0:1793; 0; 0:6579; 0;�0:1793; 0;�0:0082℄High-pass �lters :h7 = [1;�0:8℄h8 = [�0:1; 0:6579;�0:1℄h9 = [�0:1793; 0:6579;�0:1793; 0;�0:0082℄All-pass �lterh10 = [1℄in Fig. 4 (dashed line).Mixing of variables an be done aording to either linear mixtures A orlinear �ltering h. Eah proess (mixing or �ltering) provides a sum of randomvariables whih is loser to the Gaussian. For simpliity and due to the lakof spae, we restrit the results to linear �ltering aording to (2), but similarresults are obtained with (1). In fat, a n-tap �lter provides a weighted sum of ndelayed signals, similar to the mixture of n soures with the same distribution.In the soure separation problem, soures will have di�erent distributions, butthe mixtures are still a weighted sum of soures and tend toward a Gaussian.Then, the STL or STG signal feeds a Wiener system. Ten di�erent �lters(low-pass, high-pass or band-pass with various orders, see table 1) have beenused for providing �ltered signals with various distributions 1 . In Fig. 5 weplot the kurtosis of s(t) versus the kurtosis of x(t) for 13 inputs s(t) withvarious values of kurtosis and for the ten �lters of Table 1. The �gure shows,as expeted, that the kurtosis of the �ltered signal x(t) (whih is a weigthedsum of random variables) is moved towards zero whih is the kurtosis valueof the Gaussian kurtosis: the more taps the �lter has, the loser to zero the1 As explained in the previous paragraph, a study with mixtures of 2 to 6 soureswill give very similar results 6
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Fig. 5. Kurtosis of the input signal s versus kurtosis of the �ltered signal x, for theten �lters of Table 1kurtosis of the sum is ; the loser to zero the kurtosis of s(t) is, the loser tozero the kurtosis of the sum x(t) is. Then, the nonlinear mapping f providese(t) = f(x(t)). We �rst hek, as expeted by theory, that the algorithm isompletely independent of f sine, 8f the funtion ��1 Æ FE Æ f transformsthe random variable X to a Gaussian variable Z. In fat, the auray of theestimation only depends on the distribution of X.3.2 ResultsThe auray index " of the ompensation will be simply the empirial meansquare error 2 :" = 1T TXt=1[(��1 Æ FE Æ f)(x(t))� x(t)℄2 (7)whih measures the divergene between ��1ÆFE Æf(x) and the linear funtionx.Fig. 6 and 7 show the auray index versus the kurtosis of the �ltered signalsx(t), for STG and STL ases, obtained with the di�erent soures and �lters.One an remark that the error is minimum when the signal kurtosis is loseto zero, i.e. X is lose to a Gaussian, and inreases as the kurtosis movesaway from zero. As expeted, the eÆay of the method is only related on the2 For omputing ", x(t) and z(t) = (��1 Æ FE Æ f)(x(t)) have to be normalized7
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Fig. 6. Auray index " for STG distributions versus kurtosis
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Fig. 7. Auray index " for STL distributions versus kurtosisdistribution of X, just before the nonlinearity f : the loser to the Gaussian thedistribution is, the loser to zero the auray index " is. In Fig. 8, we showan example of the best (bottom) and the worst (up) ompensations obtainedin STL ase. The best approximation orresponds to a kurtosis very lose tozero (Kx = 0:0238) and the worst ase to Kx = �1:2631.
3.3 Appliation to blind inversion of PNL mixtures and Wiener systemsThis experiment onsists of 10 runs with STL soures whose kurtosis varies in[�1:7;+6:3℄. The PNL mixtures is haraterized by hard nonlinearities fi(u) =8



Table 2Performane of PNL with or without initializationaverage std. min maxPI with init. (dB) 16.1 3.2 10.5 20PI without init. (dB) 15.6 3.6 9.7 20.2CS with init. 12.0 9.4 2 30CS without init. 35.5 18.2 11 780:1u+ tanh(10u), i = 1; 2 and the following mixing matrixA = 0B� 1 0:40:7 1 1CA (8)The kurtoses of the linear mixtures X vary in the range [�1:2;+5:6℄. Thenonlinear part of separating struture is initialized with the method detailedabove, and the linear part is initialized so that outputs are spatially deor-related, i.e. EyyT = I. With this starting parameters, we used the algo-rithm [8℄. Two performane indexes are measured, after normalisation of yi:PI = 10 log(E[s2i ℄=E[(yi� si)2℄), whih measures the separation performane,and the onvergene speed, CS, i.e. the iteration number from whih PI isover 90% of the asymptoti PI. The PIs (without (dashed line) and with(solid line) initialization) versus iterations of one typial run are shown in Fig.9. The results (average, standard deviation, minimum and maximum valuesof PI and CS) of the 10 runs are presented in the Table 2.The seond set of experiments onsists of 25 runs, in whih the soures are 25random STL signals s(t) with kurtosis in the range [�1:73; 0:79℄ �ltered by theWiener system, onsisting of the �lter h = [1; 0:5℄ and the nonlinear mappingf(u) = tan(3u). The kurtosis of x(t), after the linear �lter, is in the range[�1:15; 0; 78℄. The nonlinear part of the separating struture is initialized bythe method proposed in this paper, while the linear �lter w is initialized sothat its output y(t) is temporally deorrelated. Fig. 10 shows the PI's for onerun versus iterations, obtained with the algorithm [9℄ without (dashed line)and with (solid line) initialization. The table 3 give the averages, standard de-viations, minimum and maximum of PI and CS, with and without algorithminitialization.In the two experiments, one observes that the starting point does not a�etthe asymptoti performane sine we use (with or without initialization) thesame algorithm. On the ontrary, the starting point leads to a signi�ant on-vergene speed improvement, whatever the kurtosis of X is, i.e. even if the9



Table 3Performane of blind Wiener system inversion with or without initializationaverage std. min maxPI with init. (dB) 17.5 3.3 10.2 23.9PI without init. (dB) 15.4 3.5 9.6 23.3CS with init. 12.3 15.6 1 44CS without init. 89.7 37.1 34 154
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Fig. 8. Worst (up) and best (bottom) nonlinear funtion approximations for STLsignalsapproximation of g is very oarse. Moreover, in a few ases (with very parti-ular soures, or very strong nonlinear mapping f) where algorithms withoutinitialization fail, algorithms with initialization onverge. Finally, if the kurto-sis of X is far from Gaussian, the approximation ĝ will be oarse; but providedthat f is strongly nonlinear, the starting ondition ĝ Æ f is loser to linearitythan f , hene better.
4 ConlusionIn this paper, we propose a very simple and fast method for blindly approx-imating a nonlinear mapping. The method is based on the assumption thatthe input variable of the nonlinear mapping is Gaussian due to mixture or�ltering. The results show the method is robust to this assumption. We thenreommend to use this approximation for providing a good starting point inpost nonlinear BSS or Wiener system inversion algorithms: with a very low10
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Fig. 9. PI (in dB) versus iterations for separating PNL without (dashed) or with(solid) initialization
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Fig. 10. PI (in dB) versus iterations for inverting Wiener system without (dashed)or with (solid) initialization
ost and the same SNR (PI), the average number of iterations for ahievingonvergene is divided by a oeÆient 3 to 7.11
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