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Fast Approximation of Nonlinearities forimproving inversion algorithms of PNLmixtures and Wiener systems ?
J. Sol�e-Casals a, C. Jutten b;�, D.T. Pham 
aSignal Pro
essing Group, University of Vi
, Sagrada Fam�ilia 7, 08500, Vi
,Catalonia, SpainbLaboratoire des Images et des Signaux (CNRS UMR nÆ5083),INPG, 46 Av�enueF�elix Viallet, 38031 Grenoble Cedex, Fran
e
Laboratoire de Mod�elisation et de Cal
ul (CNRS UMR nÆ5523),IMAG, BP53,38041 Grenoble Cedex 9, Fran
eAbstra
tThis paper proposes a very fast method for blindly approximating a nonlinear map-ping whi
h transforms a sum of random variables. The estimation is surprisinglygood even when the basi
 assumption is not satis�ed. We use the method for provid-ing a good initialization for inverting post-nonlinear mixtures and Wiener systems.Experiments show that the algorithm speed is strongly improved and the asymptoti
performan
e is preserved with a very low extra 
omputational 
ost.Key words: Nonlinear sour
e separation, Nonlinear ICA, Wiener systems

1 Introdu
tionBlind Separation of independent sour
es (BSS) is a basi
 problem in signalpro
essing, whi
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A f1fn g1gn B-- -- -- ---- xnx1 ene1 znz1sns1 yny1... ...... ...Mixing System� - Separating System� -Fig. 1. The mixing-separating system for PNL mixtures.mainly for linear (instantaneous as well as 
onvolutive) mixtures. More re-
ently, a few resear
hers [6,5,7,2,10,8,4,11℄ addressed the problem of sour
eseparation in nonlinear mixtures, whose observations are e = f(s), wheref(:) is an invertible nonlinear mapping. Espe
ially, Taleb and Jutten [8℄ havestudied a spe
ial and realisti
 
ase of nonlinear mixtures, 
alled post nonlinear(PNL) mixtures whi
h are separable. As shown in Fig. 1, this two-stage sys-tem 
onsists of a linear mixing matrix, followed by 
omponentwise nonlineardistortions. It then provides the mixing observations:ei(t) = fi(Xj aijsj(t)); i = 1; : : : ; n (1)where sj(t), j = 1; : : : ; n are the independent sour
es, ei(t) is the i-th obser-vation, aij denotes the entries of the unknown mixing matrix A, and fi is theunknown nonlinear mapping on the 
omponent i.With a suitable parameterization, the problem of blind inversion of Wienersystems (Fig. 2) is equivalent to the sour
e separation problem in PNL mix-tures [9℄. Its output writes ase(t) = f(Xk h(k)s(t� k)) (2)where s(t) is the independent and identi
ally distributed (iid) input, e(t) isthe observation, h(k) denotes the entries of the unknown �lter h and f is theunknown nonlinear mapping, assumed invertible and memoryless.Blind separation or inversion of the above models requires to estimate theinverses of the nonlinear mapping and of the linear part (mixing matrix or�lter). This 
an be done by minimizing the mutual information of the inversionstru
ture output. However, it leads to slow algorithms, sin
e the two parts arein 
as
ade and optimized with the same 
riterion.In this paper, we propose a simple and very fast method for roughly estimatingthe inverse of the nonlinear mapping. This estimation provides a good initial-ization point, whi
h 
an be used for any algorithm, remaining un
hanged theasymptoti
 performan
e, but in
reasing strongly the algorithm speed, with avery small extra 
omputational 
ost. Se
tion 2 explains the prin
iples. Se
tion2



h f(�)-- -s(t) x(t) e(t)Fig. 2. A Wiener system 
onsists of a �lter followed by a distortion3 shows experimentally the robustness and the performan
e of the method,before a short 
on
lusion.2 Prin
iples2.1 The basi
 assumptionIn (1), 
onsider the signal just before the nonlinear mapping. The i-th 
om-ponent, xi(t) = Pj aijsj(t), is a weighted sum of random variables. A

ordingto the Central Limit Theorem, Xi tends toward a Gaussian random variable.The nonlinear mapping fi 
hanges the distribution, and 
onsequently we 
anassume that the random variable Ei = fi(Xi) is far from Gaussian. Then,we propose to estimate the inverse of fi, as the nonlinear mapping gi whi
henfor
es the random variable Zi = gi(Ei) to be Gaussian. Of 
ourse, the Gaus-sian assumption will be satis�ed if the number of sour
es sj is large enough.For a small number of sour
es, the assumption is 
oarse. The robustness ofthe method, with respe
t to this assumption, will be dis
ussed in Se
tion 3.Similarly, in the Wiener systems the �ltered signal, x(t) = Pk h(k)s(t � k),just before the nonlinearity, is a weighted sum of random variables. A

ordingto the Central Limit Theorem, the random variable X, asso
iated to x(t),tends to be a Gaussian random variable. Of 
ourse, the vi
inity to a Gaussianvariable depends on the �lter (espe
ially on its number of taps), but X is
loser to a Gaussian distribution than S. We then propose to approximate theinverse of f(�) by the fun
tion g(�) su
h that g(E) is Gaussian.In the next se
tion, sin
e the two problems are very similar, we drop the indexi for simplifying the notations.2.2 Cumulative density fun
tionThe simplest approa
h for 
omputing gi is based on the property of the 
u-mulative density fun
tion (
df). Consider the random variable E, and denoteits 
df FE(u) = Pr(E < u) where Pr() denotes the probability. The randomvariable U = FE(E) is then uniformly distributed in [0; 1℄. Denoting �(u)3



Fe(�) ��1(�)-- -e(t) z(t) � x(t)Fig. 3. The system for approximating nonlinearitythe Gaussian 
df, whi
h transforms a unit varian
e Gaussian variable into auniform random variable in [0; 1℄, it is 
lear that ��1(U) is a unit varian
eGaussian random variable. Then, a simple approximation of the inverse g ofthe nonlinear mapping f is (see Fig. 3):ĝ = ��1 Æ FE (3)
2.3 Maximization of Shannon entropyLet pZ(u) denote the probability density fun
tion of Z, the Shannon entropyof the unit varian
e random variable Z, de�ned by:H(Z) = Z � log pZ(u)pZ(u)du (4)is maximum if Z is Gaussian [1℄. Then g 
an be estimated so that H(Z) =H(g(E)) is maximum (under the 
onstraint of unit varian
e).
2.4 AlgorithmsUsing the previous results, one 
an propose two algorithms for the roughestimation of the inverse of the nonlinear mapping f . The �rst algorithm isbased on the formula (3). The Matlab 
ode is very simple and very fast. Ase
ond algorithm, based on (4), 
onsists in adjusting a nonlinear mapping g sothat the Shannon's entropy of Z is maximum under the 
onstraint Ez2 = 1.Although the se
ond idea is still quite simple, it leads to an algorithm whi
h ismu
h more 
ompli
ated and longer to 
onverge than the previous one. Hen
e,in the following, we only 
onsider the algorithm based on (3).4
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Fig. 4. Kurtosis of STL (solid line) and STG (dashed line) distributions versus a3 Experimental results3.1 Proto
olIn order to test the robustness of the main assumption of the method (Gaus-sianization of x), we did experiments using sour
e signals whose distributionis the sum of two Lapla
ian (STL) or two Gaussian (STG) distributions. STLsignals are interesting be
ause one 
an obtain positive as well as negative signsof kurtosis by adjusting one or two parameters. As shown in [3℄, the pdf of theSTL signal is:p(x) = b4[exp(�bjx � aj) + exp(�bjx + aj)℄ (5)and its kurtosis is:Kx = 2 6� a4b44 + 4a2b2 + a4b4 (6)Clearly the sign of the kurtosis 
an 
hange a

ording to the value of theparameters a and b:Kx � 0 if 0 < ab � 6 14 and Kx > 0 if ab > 6 14 . We willuse this signal, with b = 1 and a in the range [0:5; 3℄, i.e. the two Lapla
iandistributions only di�er from the mean, (+a or �a). The kurtosis of STLversus a is plotted in �gure 4 (solid line).In order to 
ompare the results with the optimal (Gaussian) signal, we useSTG signals. Ea
h Gaussian distribution only di�ers by its mean (+a or �a).The kurtosis is again a fun
tion of the distan
e 2a between the means of thetwo distributions. It is equal to Kx = �2a4=(1 + a2)2, and is plotted versus a5



Table 1Filters used in the experimentsLow-pass �lters :h1 = [1; 0:5℄h2 = [�0:1;�0:6579;�0:1℄h3 = [1; 0:7;�0:5; 0:2℄Band-pass �lters :h4 = [�0:1; 0:9; 0:1℄h5 = [�0:1; 0; 0:9; 0;�0:1℄h6 = [�0:0082; 0;�0:1793; 0; 0:6579; 0;�0:1793; 0;�0:0082℄High-pass �lters :h7 = [1;�0:8℄h8 = [�0:1; 0:6579;�0:1℄h9 = [�0:1793; 0:6579;�0:1793; 0;�0:0082℄All-pass �lterh10 = [1℄in Fig. 4 (dashed line).Mixing of variables 
an be done a

ording to either linear mixtures A orlinear �ltering h. Ea
h pro
ess (mixing or �ltering) provides a sum of randomvariables whi
h is 
loser to the Gaussian. For simpli
ity and due to the la
kof spa
e, we restri
t the results to linear �ltering a

ording to (2), but similarresults are obtained with (1). In fa
t, a n-tap �lter provides a weighted sum of ndelayed signals, similar to the mixture of n sour
es with the same distribution.In the sour
e separation problem, sour
es will have di�erent distributions, butthe mixtures are still a weighted sum of sour
es and tend toward a Gaussian.Then, the STL or STG signal feeds a Wiener system. Ten di�erent �lters(low-pass, high-pass or band-pass with various orders, see table 1) have beenused for providing �ltered signals with various distributions 1 . In Fig. 5 weplot the kurtosis of s(t) versus the kurtosis of x(t) for 13 inputs s(t) withvarious values of kurtosis and for the ten �lters of Table 1. The �gure shows,as expe
ted, that the kurtosis of the �ltered signal x(t) (whi
h is a weigthedsum of random variables) is moved towards zero whi
h is the kurtosis valueof the Gaussian kurtosis: the more taps the �lter has, the 
loser to zero the1 As explained in the previous paragraph, a study with mixtures of 2 to 6 sour
eswill give very similar results 6
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Fig. 5. Kurtosis of the input signal s versus kurtosis of the �ltered signal x, for theten �lters of Table 1kurtosis of the sum is ; the 
loser to zero the kurtosis of s(t) is, the 
loser tozero the kurtosis of the sum x(t) is. Then, the nonlinear mapping f providese(t) = f(x(t)). We �rst 
he
k, as expe
ted by theory, that the algorithm is
ompletely independent of f sin
e, 8f the fun
tion ��1 Æ FE Æ f transformsthe random variable X to a Gaussian variable Z. In fa
t, the a

ura
y of theestimation only depends on the distribution of X.3.2 ResultsThe a

ura
y index " of the 
ompensation will be simply the empiri
al meansquare error 2 :" = 1T TXt=1[(��1 Æ FE Æ f)(x(t))� x(t)℄2 (7)whi
h measures the divergen
e between ��1ÆFE Æf(x) and the linear fun
tionx.Fig. 6 and 7 show the a

ura
y index versus the kurtosis of the �ltered signalsx(t), for STG and STL 
ases, obtained with the di�erent sour
es and �lters.One 
an remark that the error is minimum when the signal kurtosis is 
loseto zero, i.e. X is 
lose to a Gaussian, and in
reases as the kurtosis movesaway from zero. As expe
ted, the eÆ
a
y of the method is only related on the2 For 
omputing ", x(t) and z(t) = (��1 Æ FE Æ f)(x(t)) have to be normalized7
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Fig. 6. A

ura
y index " for STG distributions versus kurtosis
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Fig. 7. A

ura
y index " for STL distributions versus kurtosisdistribution of X, just before the nonlinearity f : the 
loser to the Gaussian thedistribution is, the 
loser to zero the a

ura
y index " is. In Fig. 8, we showan example of the best (bottom) and the worst (up) 
ompensations obtainedin STL 
ase. The best approximation 
orresponds to a kurtosis very 
lose tozero (Kx = 0:0238) and the worst 
ase to Kx = �1:2631.
3.3 Appli
ation to blind inversion of PNL mixtures and Wiener systemsThis experiment 
onsists of 10 runs with STL sour
es whose kurtosis varies in[�1:7;+6:3℄. The PNL mixtures is 
hara
terized by hard nonlinearities fi(u) =8



Table 2Performan
e of PNL with or without initializationaverage std. min maxPI with init. (dB) 16.1 3.2 10.5 20PI without init. (dB) 15.6 3.6 9.7 20.2CS with init. 12.0 9.4 2 30CS without init. 35.5 18.2 11 780:1u+ tanh(10u), i = 1; 2 and the following mixing matrixA = 0B� 1 0:40:7 1 1CA (8)The kurtoses of the linear mixtures X vary in the range [�1:2;+5:6℄. Thenonlinear part of separating stru
ture is initialized with the method detailedabove, and the linear part is initialized so that outputs are spatially de
or-related, i.e. EyyT = I. With this starting parameters, we used the algo-rithm [8℄. Two performan
e indexes are measured, after normalisation of yi:PI = 10 log(E[s2i ℄=E[(yi� si)2℄), whi
h measures the separation performan
e,and the 
onvergen
e speed, CS, i.e. the iteration number from whi
h PI isover 90% of the asymptoti
 PI. The PIs (without (dashed line) and with(solid line) initialization) versus iterations of one typi
al run are shown in Fig.9. The results (average, standard deviation, minimum and maximum valuesof PI and CS) of the 10 runs are presented in the Table 2.The se
ond set of experiments 
onsists of 25 runs, in whi
h the sour
es are 25random STL signals s(t) with kurtosis in the range [�1:73; 0:79℄ �ltered by theWiener system, 
onsisting of the �lter h = [1; 0:5℄ and the nonlinear mappingf(u) = tan(3u). The kurtosis of x(t), after the linear �lter, is in the range[�1:15; 0; 78℄. The nonlinear part of the separating stru
ture is initialized bythe method proposed in this paper, while the linear �lter w is initialized sothat its output y(t) is temporally de
orrelated. Fig. 10 shows the PI's for onerun versus iterations, obtained with the algorithm [9℄ without (dashed line)and with (solid line) initialization. The table 3 give the averages, standard de-viations, minimum and maximum of PI and CS, with and without algorithminitialization.In the two experiments, one observes that the starting point does not a�e
tthe asymptoti
 performan
e sin
e we use (with or without initialization) thesame algorithm. On the 
ontrary, the starting point leads to a signi�
ant 
on-vergen
e speed improvement, whatever the kurtosis of X is, i.e. even if the9



Table 3Performan
e of blind Wiener system inversion with or without initializationaverage std. min maxPI with init. (dB) 17.5 3.3 10.2 23.9PI without init. (dB) 15.4 3.5 9.6 23.3CS with init. 12.3 15.6 1 44CS without init. 89.7 37.1 34 154
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Fig. 8. Worst (up) and best (bottom) nonlinear fun
tion approximations for STLsignalsapproximation of g is very 
oarse. Moreover, in a few 
ases (with very parti
-ular sour
es, or very strong nonlinear mapping f) where algorithms withoutinitialization fail, algorithms with initialization 
onverge. Finally, if the kurto-sis of X is far from Gaussian, the approximation ĝ will be 
oarse; but providedthat f is strongly nonlinear, the starting 
ondition ĝ Æ f is 
loser to linearitythan f , hen
e better.
4 Con
lusionIn this paper, we propose a very simple and fast method for blindly approx-imating a nonlinear mapping. The method is based on the assumption thatthe input variable of the nonlinear mapping is Gaussian due to mixture or�ltering. The results show the method is robust to this assumption. We thenre
ommend to use this approximation for providing a good starting point inpost nonlinear BSS or Wiener system inversion algorithms: with a very low10
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Fig. 10. PI (in dB) versus iterations for inverting Wiener system without (dashed)or with (solid) initialization

ost and the same SNR (PI), the average number of iterations for a
hieving
onvergen
e is divided by a 
oeÆ
ient 3 to 7.11
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