
HAL Id: hal-00379421
https://hal.science/hal-00379421

Submitted on 28 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building Meaningful Timed Plant Models for
Verification Purposes

Matthieu Perin, Jean-Marc Faure

To cite this version:
Matthieu Perin, Jean-Marc Faure. Building Meaningful Timed Plant Models for Verification Purposes.
13th IFAC Symposium on Information Control Problems in Manufacturing (INCOM 2009), Jun 2009,
Moscow, Russia. paper 420. �hal-00379421�

https://hal.science/hal-00379421
https://hal.archives-ouvertes.fr

Building Meaningful Timed Plant Models
for Verification Purposes

Matthieu Perin ∗,∗∗ Jean-Marc Faure ∗,∗∗∗

∗ Laboratoire Universitaire de Recherche en Production Automatisée,
École Normale Supérieure de Cachan, F-94230 Cachan

(e-mail: {perin, faure}@lurpa.ens-cachan.fr)

∗∗Dassault Systemes, Delmia R&D services,
F-78140 Vélizy-Villacoublay

(e-mail : matthieu.perin@3ds.com)

∗∗∗ Institut Supérieur de Mécanique de Paris,
F-93400 Saint-Ouen

(e-mail: jean-marc.faure@supmeca.fr)

Abstract:
This paper presents a method to build a formal model of a plant, in the form of a network of
timed automata, to be used for model-based verification of controllers. To ensure re-usability, this
model is built by instantiation of generic components models. When the instantiated components
models are assembled, spurious evolutions leading to states which do not represent the real
behavior of the plant, can occur, owing to the rich semantics of the modeling formalism. Then
a modeling strategy is proposed in order to discard these evolutions so as to reduce the state
space of the plant model to the only meaningful states. The method is exemplified and discussed
on a small case study.

Keywords: Plant modeling, Timed models, UPPAAL, Concurrent evolutions.

1. INTRODUCTION

Model checking is a promising formal verification method
to design more dependable controllers. This paper fo-
cuses only on timed model-checking of controllers, i.e. for-
mal verification of time-dependant formal properties. Two
main approaches have been defined to check properties of
a controller (Frey and Litz [2000]):

• Non-model-based model-checking.
• Model-based model-checking.

In the first approach, properties are checked on a formal
model of the controller in isolation; in the second one
(figure 1), they are checked on a model of the closed loop
system which encompasses both the controller and the
controlled system, termed plant. This work considers only
the model-based approach, which in particular permits to
verify some liveness properties that cannot be proved with
the other approach (Machado et al. [2006]), and focuses
on plant model construction.

To ease re-usability, the plant model can be built by
assembling instances of generic components models which
represent the behaviors of typical plant components, like
electric and pneumatic actuators, sensors. The state space
of the whole plant model is then obtained by composition
of the state spaces of these components instances. The first
aim of this paper is to show that, when this approach is
used without any care, the overall state space of the plant

Fig. 1. Model-based model-checking principle

model can include meaningless states, i.e. states which do
not represent real behaviors of the plant. To prevent from
erroneous proof results, the evolutions that lead to these
meaningless states must be forbidden. Proposing modeling

rules to forbid these spurious evolutions is the second aim
of this work.

Hence, this paper presents a method to build, from generic
components models, a plant model that includes only
states representing real behaviors of the physical plant.
The semantics of the communicating timed automata, the
formal frame that underlies the selected model-checker,
is recalled in the next section. Section 3 presents some
generic components models and shows how these models
are used to construct a plant model. The issue of spurious
evolutions is illustrated and formalized in section 4 while
section 5 proposes modeling rules to avoid these evolutions.

2. COMMUNICATING TIMED AUTOMATA
SEMANTICS

One of the most used formalisms to describe the evolutions
of timed discrete event systems is the formalism of timed
automata proposed by Alur [1994]. In this work, the
UPPAAL model-checker, whose formalism is based on the
networks of timed automata, will be used as a widely
recognized toolbox over timed systems design, simulation
and verification. The reader can view Larsen et al. [1997]
and Behrmann et al. [2002] for more details on UPPAAL.

In order to explain in section 4 why the semantic possi-
bilities of the used formalism may give rise to spurious
evolutions in a plant model, the semantics of timed au-
tomata and of network of timed automata are reminded
below.

2.1 Timed automaton formalism

Definition of a timed automaton: A timed automa-
ton is a tuple (L, l0, C,A,E, I), where:
• L is a set of locations.
• l0 ∈ L is the initial location.
• C is the set of clocks.
• A is a set of actions.
• E ⊆ L×A×N(C)×2C×L is a set of edges between

two locations l,l’∈L, with an action a ∈ A, a guard
g ∈ N(C) and a set of clocks to be reset r ⊆ C.

• I:L→ N(C) assigns invariants to locations.

N(C) is the notation for the set of conjunctions over simple
conditions of the form x # c or x - y # c, where x, y ∈ C,
c ∈ N and #∈ {<,≤,=,≥, >}.
The semantics of a timed automaton is given below,
according to the following definitions:

• v : C → R+ is a clock valuation.
• V is the set of clock valuations.
• v0(x) = 0 for all x ∈ C.
• v |= I(l) means that v satisfies the invariant of

location l.

Timed automaton semantics: Let (L,L0, C,A,E, I)
be a timed automaton, the semantics is defined as a
labeled transition system 〈S, S0,→〉 where S ⊆ L × V
is the set of states, s0 = (l0, v0) is the initial state, and
→⊆ S × {R+ ∪A} × S is the set of transition relations
such that :

(l, v) d→ (l, v + d) if ∀d′,
0 ≤ d′ ≤ d ⇒ v + d′ |= I(l) (1)

(l, v) a→ (l′, v′) if ∃ e = (l, a, g, r, l′) ∈ E,
v |= g, v′ = [r 7→ 0]v, and v′ |= I(l′) (2)

Where, for d ∈ R+, v + d maps each clock x ∈ C to
v(x) + d, and [r 7→ 0]v stands for the clock valuation
mapping each clock of r to 0 and agrees with v over C\r
where \ stands for the set difference.

Hence, two evolutions of a timed automaton are possible:
an increase of the clocks so that the active location does
not change, or the firing of an edge with a new active
location.

2.2 Network of timed automata formalism

A network of timed automata is a set of n timed automata
with common actions and clocks, each one defined as Ai =
(Li, l0i , C,A,Ei, Ii) with i ∈ N and 1 ≤ i ≤ n; interactions
between these automata are limited to shared variables
and communication channels. The following precisions are
added:

• l̄ = (l1, l2, . . . , ln) is defined as the active location
vector.

• l̄0 = (l01, l
0
2, . . . , l

0
n) is defined as the initial location

vector.
• I(l̄) =

∧
i Ii(li) is defined as the common invariant

function.
• l̄[li 7→ l′i] stands for the change of the ith value of vector
l̄ from li to l′i.

• τ ∈ A is an action on shared variables.
• χ!, χ? ∈ A are actions (emission and reception) over

the communication channel χ.

Network of timed automata semantics: Let {Ai },
with i ∈ N and 1 ≤ i ≤ n, be a network of n
timed automata. The semantics is defined as a transition
system 〈S, S0,→〉 where S = (L1, L2, . . . , Ln) × V is
the set of states, s0 = (l̄0, v0) is the initial state, and
→⊆ S × S is the set of transition relations such that:

(l̄, v)→ (l̄, v + d) if ∀d′ :

0 ≤ d′ ≤ d ⇒ v + d′ |= I(l̄) (3)

(l̄, v)→ (l̄[li 7→ l′i], v
′) if ∃ li

τgr−→ l′i,

v |= g, v′ = [r 7→ 0]v, and v′ |= I(l̄′) (4)

(l̄, v)→ (l̄[li 7→ l′i, lj 7→ l′j], v
′) if∃ li

χ!giri−→ l′i and lj
χ?gjrj−→ l′j ,

v |= (gi ∧ gj), v′ = [ri ∪ rj 7→ 0]v, and v′ |= I(l̄′) (5)

Then there are three possible evolutions for a network of
automata: the active locations remain the same and the
clocks values are increasing, one edge of one automaton is
fired or two edges of two automata are firing simultane-
ously using a communication channel (also called synchro-
nization channel).

Figure 2 is an example of a network of timed automata. It
shows two automata linked by the communication channel
COM, and sharing one clock t. The two initial locations
are double circled locations Loc A and Loc 1. At the initial
state (initial locations active and t=0), this network can
evolve according to any of the three semantics:

semantics (3) makes the clock increase within the limi-
tation imposed by the invariant, such as t<=2, written
in bold style near Loc 1.

semantics (4) makes the edge from Loc A to Loc B fire,
because the guard of this edge is always true.

semantics (5) makes the edges from Loc A to Loc C and
from Loc 1 to Loc 3 fire using communication channel
COM, the emitting action uses symbol ”!”, symbol ”?”
standing for the receiving action.

Fig. 2. Network of 2 timed automata.

2.3 Specific UPPAAL semantics

The main addition to the network of timed automata
formalism made in UPPAAL is the notion of ”urgency”
which is used in two ways: a specification of locations
as urgent or committed and a specification of urgent
communication channels for synchronization.

• Urgent locations (U-decorated locations) have the
following specific behavior: when at least one of such
locations is active, all the clocks of the network are
frozen. This can bring the network to a deadlock
state. No invariant over clocks is allowed in an urgent
location.
• Committed locations (C-decorated locations) bring a

much stronger behavior than urgent locations. They
have a similar effect on clocks by freezing them, and
add another behavior: when at least one of the active
locations is committed, the next edge fired must start
from a committed location. This can also bring the
network to a deadlock state, and no clock invariant is
allowed in such locations.
• Urgent communication channels are synchronizations

with time priority. If a transition involving urgent
channel synchronization can be fired, all the clocks
of the network are frozen. No clock guard is allowed
with urgent synchronization.

Taking into account the following additional definitions,
the semantics of these three specific behaviors can be
defined by referring to the above limitations applied to
semantics (3), (4) and (5):

• Lu ⊆ L is the subset of urgent locations.
• Lc ⊆ L , Lc

⋂
Lu = ∅ is the subset of committed

locations.
• Au ⊆ A is the subset of actions related to an urgent

communication channel.

Urgent location behavior: if ∃ lk ∈ l̄, lk ∈ Lu, then
semantics (3) is forbidden.

Committed location behavior: if ∃ lk ∈ l̄, lk ∈ Lc,
then semantics (3) is forbidden and semantics (4) and
(5) are limited to li, lj ∈ Lc.

Urgent channel behavior: if, among the fireable edges,
there exist two edges linked through a communication

channel χ -as defined in semantic (5)- so that χ!, χ? ∈
Au then semantics (3) is forbidden and only semantics
(4) and (5) are possible.

If the network of Figure 2 is an UPPAAL model and COM
is declared as an urgent communication channel, then the
only possible evolutions are the firing of the edge from
Loc A to Loc B -because guard true does not need a clock
increase to be validated- and the simultaneous firing of
edges from Loc A to Loc C and from Loc 1 to Loc 3.

3. PLANT MODELING

To build the formal model of the plant, instantiation
of formal generic models of plant components, such as
actuators and sensors, was chosen. The benefits of this
approach -modification ease and re-usability- are well-
known.

Thus, the plant model will be composed of instances of
generic component models, all these models being fault-
free, i.e. they do not include faulty behaviors such as
unexpected stops or untimely movements.

This section aims at presenting some generic models of
typical plant components, as well as instances of these
models for a small case study. The last sub-section ad-
dresses communications between the components models
within the plant model and between these models and the
controller model.

3.1 Generic components models description

Figure 3 shows the generic model of a pneumatic actuator
plugged to a 5/3 normally closed preactuator where G IN
(respectively G OUT) stands for Go In (resp. Go Out) and
is the order of the ingoing (resp. outgoing) movement of
the rod. Integer X represents the length of the rod which is
out. It is modified by D X or -D X every time step during
the movement. The limit values X max and X min are
standing for the physical limits of the rod movement. The
left (respectively right) location is modeling the ingoing
(resp. outgoing) movement of the rod and the central
location is modeling the rod motionlessness. As the initial
state of the actuator is supposed motionless, the initial
location of the model is the central one.

Fig. 3. Generic model of a pneumatic actuator plugged to
a 5/3 normally closed preactuator where:
- G IN and G OUT are read (inputs of the model),
- X is written and read.

In order to reduce the number of models, all the sensors
related to an actuator will be modeled by an unique
model called a sensor pack model. In this model, each
location represents a position which can be obtained from
sensors values. Figure 4 represents a model of a pack of
sensors composed of three logic sensors, so capable of
detecting five positions of the rod of a pneumatic actuator.

The three signals issued from this sensor pack model are
IN, OUT and MID for middle (outputs of the model),
then the five positions are: IN, between IN and MID,
MID, between MID and OUT and OUT. The model is
sensitive to the value of integer X, which models a physical
variable: the length of a rod which is out. X IN max is a
configuration value standing for the maximum value of X
needed to detect position IN. X MID min, X MID max
and X OUT min are also configuration values used to
settle the detection limits of middle and out positions. A
particular location is added for initialization purpose: as
no assumptions have been made over the value of X, the
initialization of the model has to allow every possibilities.
The committed status of this location ensures that the
initialization of the model will be done before any standard
evolution of the other models, exception made of the
initialization of other models that will also use committed
locations as initial ones.

Fig. 4. Generic model of a 3-sensor pack where:
- X is read (input of the model),
- IN, MID and OUT are written.

3.2 Example

Construction of a plant model from generic components
models will be exemplified on the case study of figure 5
that represents a synthetic view of the layout of a pneu-
matic manipulator composed by two pneumatic actuators
coupled with their respective sensors and a sucker to grab
pieces.

The formal model of this pneumatic manipulator includes:

• One instance of a generic 5/3 pneumatic actuator
model (figure 3), named H Act, for modeling the hor-
izontal actuator, where X, G OUT and G IN are in-
stantiated respectively by H, H G IN and H G OUT
and where X min, X max and D X are settled to 0,
20 and 2, respectively.
• One instance of a generic 5/3 pneumatic actuator

model (figure 3), named V Act, for modeling the
vertical actuator, where X, G OUT and G IN are in-
stantiated respectively by V, V G IN and V G OUT

and where X min, X max and D X are settled to 0,
10 and 1, respectively.

• One instance of a generic 3-sensor pack model (figure
4), named H Sen, for modeling the set of sensors
detecting the passage of the horizontal rod, where X,
OUT, MID and IN are instantiated respectively by
H, H IN, H MID and H OUT and where X IN max,
X MID min, X MID max and X OUT min are set-
tled to 2, 9, 11 and 18, respectively.

• One instance of a generic 2-sensor pack model, not
described in this paper but similar to the 3-sensor
generic model with also one initial location but only
three locations standing for the possible sensors val-
ues and named V Sen, for modeling the set of sensors
detecting the passage of the vertical rod, where X,
OUT and IN are instantiated respectively by V, V IN
and V OUT and where X IN max and X OUT min
are settled to 1 and 9, respectively.

Fig. 5. Subpart of a plant: a pneumatic manipulator.

3.3 Communications between models

Therefore, the plant is modeled as a set of communicating
timed automata which are obtained by instantiation of
generic components models. The controller must also be
modeled in this formalism, e.g. from a controller model
in a standardized language, as presented in Mader and
Wupper [1999], or from generic control blocks, as explained
in Vyatkin and Hanisch [2000]. Whatever the solution
selected to build the controller model, communication
mode between timed automata is to be defined.

In this work, communications between two or several timed
automata, which represent parts of the plant model or of
the controller model, are implemented by using exclusively
shared variables. To avoid multiple assignments, each
shared variable must be assigned by one and only one
model; multiple readings are possible, however. In the
model of the above example, for instance, variable H is
assigned only by the H Act model but is read by both this
model and H Sen; in a similar way, variable H GO IN is
assigned only by the controller model, is read by H Act and
may be read by other models of plant components which
ensure operator’s safety when the horizontal cylinder is
moving.

4. PLANT MODEL EVOLUTIONS

The aim of this section is to show that spurious evolutions,
which lead to meaningless states, can occur in the plant
model. This issue will be exemplified on the previous
example, and then generalized.

4.1 Issue illustration on the example model

The following simple scenario will be used to pinpoint the
issue: the rod of the horizontal actuator is in its rightmost
position (rod retracted) and this actuator receives from
the controller the command to move to the middle position
(variable H G OUT is set by the controller and will remain
true until variable H MID becomes true).

At the beginning of this scenario, the active location
of H Sen is its upper location (H IN true, H MID and
H OUT false) and that of H Act its initial one; H equals
0. When H G OUT becomes true, the active location
of H Act becomes the right location, which models the
outgoing movement of the rod; then the clock t increases
to 1 and the loop edge of H Act is fired, setting the value
of H to 2 and resetting t. The state described on figure 6
(a) is then reached.

Here, two concurrent evolutions are possible according to
the selected semantics:

• If semantics (3) is selected, clock t increases to 1
and then permits another evolution of H Act (the
invariant must be satisfied), using the loop edge
that models the end of one outgoing movement step;
during this evolution, the value of H becomes 4.
The active location of H Sen remains the same. This
evolution is represented in figure 6 (b), where the
dotted edge represents the fired edge.
• If semantics (4) is selected (figure 6 (c)), H Sen

evolves. The dotted edge is fired, which means that
the sensor has detected that the rod is no more in its
rightmost position (H IN is reset). Clock t remains
equal to 0 and H Act does not evolve.

No evolution on the basis of semantics (5) is possible
because communications between timed automata are
based on shared variables and not on communication
channels, as pointed out in the previous section.

This discussion shows clearly that the evolution with
semantics (3) leads to a meaningless state that does not
represent correctly the physical behavior of the plant
composents: the model of the actuator assigns H value
to 4 while the sensor model always yields the information
H IN true. This evolution is spurious. On the opposite,
when semantics (4) is used, the sensor model evolves at the
right time. This evolution corresponds to the real behavior
and then is meaningful.

4.2 Generalization

The issue that was exemplified above is the general issue
of concurrent evolutions in a network of timed automata.
In such a network, none of the three semantics has priority
over the other ones indeed. Then, edges can be concurrent
with respect to only one semantics or to different ones. The
first case is not really an issue, because it models often a

Fig. 6. Possible evolutions of H Act and H Sen, where the
active locations are blacked.

real concurrency problem, like concurrent access to shared
resources. On the other hand, the second case can lead
to modeling flaws. Networks designers often think indeed
that the time is spent -semantics (3)- after that all other
possible evolutions have been made -semantics (4) & (5)-.
This is not true and leads to spurious evolutions and state
spaces that include meaningless states, especially when
physical systems evolutions with different time scales, like
the movement of an actuator rod and the detection of a
sensor, are to be modeled.

5. MODIFICATION PROPOSED

5.1 Instantaneous and timed evolutions

In order to solve the problem that was emphasized in the
previous section, it matters to come back to the plant
modeling process. The designer has to model the behavior
of a physical system by means of a formalism for timed
discrete event systems which owns particular semantics.
Whatever the semantics choice, all evolutions of the formal
model must represent real evolutions of the plant.

These later ones can be separated in two sets, according
to a time consumption criterion:

• Instantaneous evolutions are evolutions which have
no duration, in the designer’s viewpoint, such as the
detection of a part by a sensor,

• Timed evolutions are evolutions which consume time,
such as the movement of a rod.

In what follows, it will be assumed that any edge of the
network of timed automata models either an instantaneous
evolution or a timed evolution, but not both. If this is not
the case, the edge must be split.

Extensions to standard formalism of timed automata are
proposed in Barbuti and Tesei [2004] to model the first
kind of evolution and to prioritize them over timed evo-

lutions. This valuable contribution was not retained for
this work whose objective is not to extend an existing
semantics, but to use all possibilities of the UPPAAL
semantics to provide a solution avoiding concurrency be-
tween the two kinds of evolutions by always giving priority
to instantaneous evolutions over timed evolutions. This
solution is presented below.

5.2 Prioritizing instantaneous evolutions

UPPAAL proposes three ways to model urgency (subsec-
tion 2.3) but in this paper only urgent communication
channels were kept to model instantaneous evolutions.
Models of plant components contain indeed often edges
that start from the same location but correspond to instan-
taneous and timed evolutions (see for instance the edges
starting from the right or left locations in the actuator
model); in that case, it is absolutely impossible to give
priority to one evolution by defining urgent or committed
locations.

An urgent communication channel describes synchroniza-
tion between at least two automata. To modify as little as
possible the plant model, the solution proposed is:

• to introduce an automaton, termed prioritizing au-
tomaton (figure 7), with only one location and one
loop edge labeled by an urgent communication chan-
nel. The evolution of this automaton has priority over
all other evolutions, provided that synchronization
with another automaton with the same communica-
tion channel is possible.
• to add to each edge which models an instantaneous

evolution an urgent synchronization with the priori-
tizing automaton.

With these modifications, clocks values cannot increase
(semantics (3)) when instantaneous evolutions are possi-
ble;there is no more concurrency between instantaneous
and timed evolutions.

Fig. 7. Prioritizing automaton with urgent communication
channel FAST.

5.3 Application to the example

Once the prioritizing automaton introduced and the two
models H Act and H Sen modified (figure 8 (a)), only one
evolution can occur when H reaches the value 2: instan-
taneous evolution of H Sen (figure 8 (b)). The spurious
evolution which was discussed in 4.1 is no more possible,
because semantics (5) has priority over semantics (3) owing
to the FAST urgent communication channel.

6. CONCLUSION

Instantiation of generic component models is an effective
method to build plant models. This paper has shown that
unexpected and erroneous behaviors -spurious evolutions
and meaningless states- can appear in a so built plant
model, when timed systems are dealt with, however.

Fig. 8. Evolution of the modified example.

A simple solution based on urgent communication channel
has been proposed to remove these erroneous behaviors.
Further works are aiming at automating the plant model
construction from a library of generic components models
and at proposing sound abstractions to improve verifica-
tion scalability.

REFERENCES

R. Alur. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

R. Barbuti and L. Tesei. Timed automata with urgent
transitions. Acta Inf., 40(5):317–347, 2004.

G. Behrmann, J. Bengtsson, A. David, K. Larsen, P. Pet-
tersson, and W. Yi. UPPAAL implementation secrets.
In Proc. of 7th International Symposium on Formal
Techniques in Real-Time and Fault Tolerant Systems
(FTRTFT), Oldenburg, Germany, September 2002.

G. Frey and L. Litz. Formal methods in PLC program-
ming. In Proc. of IEEE conference on Systems, Man and
Cybernetics, pages 2431–2436, Nashville, USA, October
2000.

K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a
nutshell. Journal on Software Tools for Technology
Transfer, 1(1–2):134–152, 1997.

J. Machado, B. Denis, J.-J. Lesage, J.-M. Faure., and
J. Ferreira Da Silva. Logic controllers dependability
verification using a plant model. In Proc. of 3rd IFAC
Workshop on Discrete-Event System Design (DESDes),
pages 37–42, Rydzyna, Poland, September 2006.

A. Mader and H. Wupper. Timed automaton models
for simple programmable logic controllers. In Proc.
of 11th Euromicro Conference on Real-Time Systems,
pages 114–122, York, England, June 1999.

V. Vyatkin and H.-M. Hanisch. Practice of modeling
and verification of distributed controllers using signal
net systems. In Proc. of International Workshop on
Concurrency, Specification and Programming (CS&P),
Berlin, Germany, October 2000.

