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Abstract

This work deals with the problem of blind source separation solved by minimization

of mutual information. After having chosen a model for the mixture, we focus on

two methods. One is based on the minimization of an estimation of I, the mutual

information. The other one uses a minimization of an estimation of C, the mutual

information after transforming all the joint entropy terms. We show the differences

between these two approaches by studying statistical properties of the two estima-

tors.

In this paper, we derive the bias of the estimators of the two criteria I and

C. It is shown that under the hypothesis of independence, the estimator of I is

asymptotically unbiased even if the bandwidth is kept fixed, whereas with a fixed
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bandwidth, the estimator of C is not asymptotically unbiased.

Further, the minimization is achieved by a relative gradient descent method and

we show the differences between criteria I and C through the expression of their

relative gradients.

Key words: Mutual information, biased and unbiased estimator, entropy, blind

source separation, post nonlinear mixture.

PACS:

1 Introduction

Clearly, the resolution of the problem of blind source separation (BSS) based

on the sole hypothesis of the independence of sources requires a measure of

dependence. For linear mixtures, several BSS methods are based on mutual in-

formation [15], maximum correlation [5], cumulants [9,7], characteristic func-

tions [10], for most exhaustive references, see the recent books [12,?] . The

estimation of the mutual information however involves estimators of both the

marginal and the joint entropies which in turn requires the estimations of

marginal and joint densities. Especially, joint density estimation in a high di-

mensional space is difficult, because of the “curse of dimension”. Usually, for

overcoming this problem, the estimation of joint entropy and hence that of

joint density, is avoided by expressing the joint entropy of the reconstructed

sources as the sum of the observation joint entropy and of the expected Jaco-

bian of the separating system (see equation 3). For a linear mixture, this trick

leads to algorithms easy to implement, based on minimization of the mutual

information [15,6].

However for post nonlinear (PNL) mixtures, the above method introduced
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some bias in estimating the reduced criterion and therefore, it might be prefer-

able to consider a criterion based directly on the mutual information. The goal

of this paper is to highlight these points. More precisely, we shall describe and

compare two separation criteria. The first criterion is based on a reduction

of the mutual information which avoids the estimation of the joint entropy.

This method has been introduced in Taleb and Jutten [17] and adopted in [2].

The second one is based on the full expression of mutual information and was

introduced recently in [4].

This paper is organized as follows: Section 2 explains the two separation crite-

ria derived from the mutual information. We derive the bias of the main terms

in section 3 and give a graphical illustration of the use of various bandwidths.

In section 4, the comparison of the relative gradient of these estimators further

highlights the difference between the two methods of blind source separation

and we conclude in section 5.

2 Two empirical criteria for separation in PNL mixtures based on

mutual information

2.1 The post nonlinear model

Let us first recall the definition of a post nonlinear mixture: the observed

signals X1, . . . , XK are related to the sources S1, . . . , SK through the relations

Xi = fi(
K∑

k=1

AikSk), i = 1, . . . , K

where Aik denotes the ik-th entry of the mixing matrix A and f1, . . . , fK

are nonlinear functions. It is assumed that there is the same number K of
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S −→ A

−→ f1 −→

...

−→ fK −→

︸ ︷︷ ︸
PNL mixture

X1

...

XK

−→ g1 −→ Z1 −→

...
...

−→ gK −→ ZK −→

B −→ Y

︸ ︷︷ ︸
separation structure

Fig. 1. Mixture and separation structure of a PNL mixture.

sources and observations, the matrix A is invertible and the functions fi are

monotonous, so that the sources can be recovered from the observations, if

one know A and f1, . . . , fK .

The blind source separation problem consists in finding a matrix B and K

applications g1, . . . , gK so that the random variables, i = 1, . . . , K,

Yi =
K∑

k=1

BikZk, where Zk = gk(Xk), (1)

which represent the reconstructed sources, are independent. Indeed, it has

been shown [3] that the independence of the output Y1, . . . , YK, implies Yi =

αiSσ(i) (where σ(i) is a permutation over {1, 2, . . . , K} and α1, . . . , αK are

scale factors), i.e. source separation is achieved with scale and permutation

indeterminacies, as for linear mixtures. The mixture and separation structure

are presented in Figure 1. In the sequel, we denote, S = (S1, . . . , SK)T and

Y = (Y1, . . . , YK)T .

2.2 Theoretical independence criteria

As a measure of dependence, let us consider the mutual information of the

random variables Y1, . . . , YK :
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I(Y1, . . . , YK) =−
∫

log

(
pY1,...,YK

(y1, . . . , yK)
∏K

i=1 pYi
(yi)

)
pY1,...,YK

(y1, . . . , yK)dy1 . . . dyK

=
K∑

i=1

H(Yi)−H(Y1, . . . , YK) (2)

where H denotes the entropy, H(X) = −E[log(pX(X))], pX is the density

function of X.

As already shown in [14], the mutual information is always positive and is

equal to zero if and only if the random variables Y1, . . . , YK are independent.

Thus, I(Y1, . . . , YK) can be used as a criterion for blind source separation.

For a post non linear mixture, Taleb and Jutten [17] suggest to transform the

above mutual information so as to keep only terms with marginal entropy.

They obtain the reduced criterion:

C(Y1, . . . , YK) =
K∑

i=1

H(Yi)−
K∑

i=1

H(Zi)− log | detB|. (3)

Since the mutual information between Z1, . . . , ZK is equal to that between

X1, . . . , XK , it can be seen that,

I(Y1, . . . , YK) = C(Y1, . . . , YK) + I(X1, . . . , XK). (4)

As I(X1, . . . , XK) is a constant, the minimum of C(Y1, . . . , YK) is the same as

the one of I(Y1, . . . , YK).

The above criteria I(Y1, . . . , YK) and C(Y1, . . . , YK) are theoretical criteria,

in practice one has to estimate them. In the sequel, we shall consider such

estimates and show that they lead to different algorithms.

In the following, let us denote X(1), . . . ,X(N) a sample of X = (X1, . . . , XK)T

of size N and for all i = 1, . . . , N and k = 1, . . . , K, Zk(i) = gk(Xk(i)) and
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Yk(i) =
∑K

j=1 BkjZj(i). In addition, K denotes a kernel (a positive function

whose integral is equal to one) and Kh(u) = h−1K(u/h), where h is a band-

width.

2.3 Estimation of the reduced criterion C

Here, only the estimate of the marginal entropy is needed:

Ĉ(Y1, . . . , YK) =
K∑

i=1

Ĥ(Yi)−
K∑

i=1

Ĥ(Zi)− log | detB|. (5)

where marginal entropies and probability density functions (pdf) are estimated

respectively by, for any sample X(1), . . . , X(N) of a random variable X:

Ĥ(X) =
N∑

n=1

log p̂X(X(n))/N (6)

and

p̂X(X(n)) =
N∑

m=1

Kh(X(n)−X(m))/N. (7)

2.4 Estimation of mutual information I

In order to estimate the mutual information (2), we use the empirical mean

and the kernel estimation of density functions:

Let Y(1), . . . ,Y(N) be a sample of Y

Î(Y1, . . . , YK) =
K∑

i=1

Ĥ(Yi)− Ĥ(Y), (8)

where marginal entropies and pdf are estimated according to equations (6)

and (7), and joint entropy end pdf according to:

Ĥ(Y) =
N∑

n=1

log p̂Y( Y(n))/N (9)
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and

p̂Y(Y(n)) =
N∑

m=1

K∏

i=1

Kh(Yi(n)− Yi(m))/N. (10)

The choice of the kernel is discussed below.

2.5 Comments

(1) The estimator of the joint density (10) is expressed using a product of one

dimensional kernel. This can be seen as a restriction since joint density

does not factorize except if marginal variables are independent, but here

this choice improves the bias of the estimator of mutual information (17).

(2) As the estimation of C requires only the estimation of marginal densities,

the sample size does not need to be too large in order to get a small

error. On the opposite, the estimation of I requires an estimation of joint

density of Y1, . . . , YK whose error is difficult to control because the sample

size has to be huge when the number of sources is high. Moreover, we

notice that the computational complexity of Ĉ and Î is O(N2K), where

N is the sample size and K is the number of sources. This cost thus

grows quadratically with N . However, Pham [16] proposed an entropy

estimator based on a discretization of integral, which allows to bring

down the computational cost to O(NK) for Ĉ and O(N3K) for Î. The

cost is then low for Ĉ but grows exponentially with the dimension for Î.

(3) The relation (4) shows that it is equivalent to look for the minimum

of I(Y1, . . . , YK) or of C(Y1, . . . , YK). But the estimators Î and Ĉ do not

satisfy anymore the relation (4). Indeed, the kernel-density estimator does

not satisfy the well-known relation between a density and a transformed

density:
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pg(X)(y) =
pX(g−1(y))

|g′(g−1(y))|

where g is any continuously differentiable invertible function and X is

any random vector admitting a density.

As a result, the minimum of Ĉ does not correspond to the minimum

of Î.

A question worthwhile to consider is how to quantify the differences between

these two methods based on these estimated criteria. This will be answered

thanks to an asymptotic argument analysis.

3 Calculation of the bias

The results presented here are based on the work of Joe [13]. Let us mention

also some related results by Hall and Morton [11]. In [13], the author proposed

an estimator of the entropy and calculated the bias of this estimator. Here, we

will combine and extend these results to obtain the bias of Î and Ĉ, written

in terms of the entropy.

Assumptions A and F are assumed throughtout: (letters A and F refer to the

corresponding assumptions in [13])

A. Tails of the density distributions: S is a bounded set such that the density

distribution p is bounded below on it by a positive constant and

∫

S
p log(p) ≈

∫

RK

p log(p).

As said in [13], this assumption claims that
∫
RK p log(p) <∞ and can be ap-

proximated arbitrarily closely by
∫
S p log(p) for a bounded set S. Thus, this
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is not a stringent restriction and in particular, all bounded densities satisfy

this hypothesis. Therefore, for each expansion (see below), the bounded set

S can be chosen such that
∫
RK\S p log(p) is neglegible in comparison with

the terms of order N−1:this term is thus contained in o(N−1) in equations

(13), (16), (18).

F. K is a symmetric univariate density satisfying
∫
v2K(v)dv = 1.

The other assumptions, more technical, are given by Joe [13, p. 685]. Then, two

different calculations allow to write the bias of Î and Ĉ. Here, the development

of the estimation of entropy given in [13, p. 692] is used.

In the sequel, we will use the following notations for the expectation of joint

and marginal pdf estimates for a random vector R = (R1, . . . , Rn)T :

pR,h(x) =E[p̂R(x)] =
∫ K∏

i=1

Kh(ui)dFR(u) (11)

pRi,h(x) =E[p̂Ri
(x)] =

∫
Kh(ui)dFRi

(ui) (12)

where dFR(u) = pR(u)du and dFRi
(ui) = pRi

(ui)dui.

3.1 Bias of the reduced criterion Ĉ

Using the above notations (11), (12) and extending the result of Joe, the bias

of the reduced criterion Ĉ is:
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E[Ĉ(Y1, . . . , YK)] =
K∑

i=1

(E[Ĥ(Yi)]− E[Ĥ(Zi)])− log |detB|

=−
K∑

i=1

∫

S
log pYi,h(x)dFYi

(x) +
K∑

i=1

∫

S
log pZi,h(x)dFZi

(x)− log |detB|

+N−1TAR(h,K,K, pYi
, pZi

) + o(N−1)

=−
K∑

i=1

(∫

S
log(pYi

(x))dFYi
(x)−

∫

S
log(pZi

(x))dFZi
(x)
)
− log |detB|

−
K∑

i=1

∫

S
(log pYi,h(x)− log pYi

(x))dFYi
(x) +

K∑

i=1

∫

S
(log pZi,h(x)− log pZi

(x))dFZi
(x)

+N−1TAR(h,K,K, pYi
, pZi

) + o(N−1)

=C(Y1, . . . , YK)−BAR(h,K,K, pYi
, pZi

) +N−1TAR(h,K,K, pYi
, pZi

) + o(N−1)

(13)

where the exact expression of TAR is written in appendix B, and

BAR(h,K,K, pYi
, pZi

) =
K∑

i=1

∫

S
(log pYi,h(x)− log pYi

(x))dFYi
(x)−

K∑

i=1

∫

S
(log pZi,h(x)− log pZi

(x))dFZi
(x).

(14)

As N goes to infinity, the last terms N−1TAR(h,K,K, pYi
, pZi

) + o(N−1) van-

ishes and BAR(h,K,K, pYi
, pZi

) (defined by formula (14)) represents the exact

formula of the asymptotic bias of Ĉ when N goes to infinity. In fact, BAR is

a term in h which does not depend on N . Let us give some comments about

this term BAR,

Remark 1.

If all the densities are supposed three times differentiable with continuous

derivatives (for expanding up to the second order), using the following ex-

pansion of pYi,h, pYi,h(x) = pYi
(x)+0.5h2p′′Yi

(x)+o(h2), the bias is expressed

as:

BAR(h,K,K, pYi
, pZi

) = 0.5h2
K∑

i=1

∫

S
(p′′Yi

(x)− p′′Zi
(x))dx+ o(h2) (15)
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Thus the asymptotic bias BAR goes to zero if and only if h tends to zero.

Note that this term in h2 may vanish if the density satisfy certain condition,

but then there will be a term in h3 again not depending on N .

Remark 2.

If the densities are not differentiable on all the space, BAR does not vanish

in general. The equation (15) suggests to study the following terms of order

zero and one of the asymptotic expansion of pYi,h(x),

pYi,h(x)− pYi
(x) =

∫

S
K(u)(pYi

(x− uh)− pYi
(x))du

pYi,h(x)− pYi
(x)

h
=
∫

S
K(u)

pYi
(x− uh)− pYi

(x)

h
du

Thus there exists no limit as soon as the density is not continuous or not

differentiable in x, and it introduces a term which is not possible to control

when h goes to zero.

3.2 Bias of mutual information Î

The same idea can be applied to calculate the bias of Î:

E[Î(Y1, . . . , YK)] =
K∑

i=1

E[Ĥ(Yi)]−E[Ĥ(Y1, . . . , YN)]

=
∫

S
log

(
pY,h(x)∏K

i=1 pYi,h(x)

)
dFY(x) +N−1TBR(h,K,K, pYi

, pY) + o(N−1)

(16)

where the exact definition of TBR is given in appendix A.

We note that, under the assumptions mentioned above,

∫
log

(
pY,h(x)∏K

i=1 pYi,h(x)

)
dFY(x) = 0 if Y1, . . . , YK are independent. (17)
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As a result, when Y1, . . . , YK are independent, Î is asymptotically unbiased

when N tends to infinity even if h is kept fixed.

In addition, by assumption on S,

I(Y1, . . . , YK)−
∫

S
log

(
pY(x)

∏K
i=1 pYi

(x)

)
dFY(x) = o(N−1),

we obtain:

E[Î(Y1, . . . , YK)] = I(Y1, . . . , YK) +
∫

S

{
log

(
pY,h(x)∏K

i=1 pYi,h(x)

)
− log

(
pY(x)

∏K
i=1 pYi

(x)

)}
pY(x)dx

+N−1TBR(h,K,K, pYi
, pY) + o(N−1)

(18)

In this expression, the expression of the bias not depending on N is equal to,

BBR(h,K,K, pYi
, pY) =

∫

S

{
log

(
pY,h(x)∏K

i=1 pYi,h(x)

)
− log

(
pY(x)

∏K
i=1 pYi

(x)

)}
dFY(x)

Then, let us make a comment, if all the densities are supposed three times

differentiable with continuous derivatives, the bias is expressed as:

BBR(h,K,K, pYi
, pY) = 0.5h2

{∫

S
tr p′′

Y
(x)−

K∑

i=1

∫

S
p′′Yi

(x)dx

}
+ o(h2)

where p′′
Y

is the Hessian matrix of pY and tr denotes the trace of a matrix.

When the variables Y1, . . . , YK are dependent, the bias of Î will go to zero

as N tends to infinity and h tends to zero.

Remark 3.

The difference between these two criteria Î and Ĉ in the context of the

PNL mixture is underlined by the terms in the bias due to the nonlinear

terms in the mixture. Indeed, the bias of the reduced criterion Ĉ is char-

acterized by explicit terms coming from the nonlinear part of the mixture:
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∑K
i=1

∫
S(log pZi,h(x)− log pZi

(x))dFZi
(x), whereas the nonlinear terms of the

mixture in the bias of mutual information Î are included in the calculation

of the estimation of densities pY,h and pYi,h. Therefore, the nonlinear terms

of the mixture have not the same influence in these two criteria.

3.3 Graphical illustrations of the bias for different density distributions

In order to illustrate the behaviour of the bias the criteria Î and Ĉ according to

the bandwidth, we compute the two criteria for different size of the bandwidth

and different density distributions. We do not intend to give a proof with these

plots but just an illustration of our theoretical results obtained in section 3.1

and 3.2.

The mixture matrix A is orthogonal and we take only two sources, i.e. K = 2.

The criteria are computed in the exact solution of the problem, i.e. Y1, Y2

are independent and Z1, Z2 satisfy Z = AY. We choose to represent uniform

distribution which is not continuous and Gaussian distribution which is C∞.

In Figure 2 and 3, the plots represent the computation of Ĉ−C or Î−I for 99

samples of size N between 100 and 5000. Figure 2 illustrates the result that

the bias of Ĉ tends to zero only when h tends to zero and N tends to infinity,

whereas the bias of Î tends to zero when N tends to infinity even if h is large.

On Figure 3, we can see that with a C∞ density distribution, the bias of Ĉ

tends to zero even if h is large.
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Fig. 2. Representation of the bias of Ĉ and Î computed for various bandwidths and

samples of uniform distribution, C = −0.3 and I = 0

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

bi
as

 o
f C

 e
st

im
at

or

N

h=1
h=0.5
h=0.1

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

bi
as

 o
f I

 e
st

im
at

or

N

h=1
h=0.5
h=0.1

Fig. 3. Representation of the bias of Ĉ and Î computed for various bandwidths and

samples of Gaussian distribution, C = 0 and I = 0

3.4 Discussions

Both criteria Ĉ and Î provide a solution to the problem of blind source sepa-

ration, but their bias have different properties:

(1) If the variables Y1, . . . , YK are independent, the main difference between

the bias of Ĉ and Î is its limit when N tends to infinity. Indeed, we notice

that when N tends to infinity, the bias of Ĉ tends to zero only if h tends

to zero (with a sufficient low rate), while the bias of Î tends to zero when

N tends to infinity even for fixed h. This suggest to use Î rather than
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Ĉ, so that the convergence does not depend on the choice of h. It also

explains the efficiency of even simple histograms estimates [3] and the

robustness concerning the choice of h in the kernel.

(2) It might happen that for some particular distributions of sources, the

terms in h2 in the asymptotic bias of Ĉ (15) vanish but the bias does

not vanish since there always remains terms in h3, h4. . . which does not

depend on N . This could be of importance for specific applications.

(3) Finally, to solve the problem of blind source separation, it is the behaviour

at the point where the criterion is minimized. Further investigation is

needed in order to compare this behaviour, by studying the gradient of

these two criteria for example.

4 Comparison of the relative gradient:minimization of the criteria

A solution to the problem of blind source separation is obtained by minimizing

the two criteria Î and Ĉ. It is possible to evaluate the exact gradient of the two

criteria and to apply an exact gradient descent on Î and Ĉ . This approach is

different from the methods developped by Taleb and Jutten [17], who apply

a gradient descent on C, and Babaie-Zadeh [3], who uses I. Actually, they

both use an estimation of the gradient calculated with theoretical expression

of I and C. As they use only an estimation of the gradient, their methods

do not consist in minimizing a known objective function but solving estimate

equations, which require estimations of score functions, this will be delopped

page 18.

Let us calculate the relative gradient [8] of the above estimate criteria whose

the main idea consists in updating B and g1, . . . , gK according to:
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



B ←− B + ǫB

gi ←− gi + δi ◦ gi for all i = 1, . . . , K

where ǫ and δ1, . . . , δK denote the relative gradient of the linear and nonlinear

part respectively. The following expression of the relative gradient are obtained

in [1] just by applying Taylor expansion of both estimate criteria Î and Ĉ in

terms of ǫ and δ1, . . . , δK .

4.1 Relative gradient of the reduced criterion C

In the following, Ê denotes the empirical mean, Ê(φ(X)) =
∑N

i=1 φ(Xi)/N ,

where X1, . . . , XN is a sample ofX and φ is any function. The relative gradient

of Ĉ consists of two parts:

• relative gradient of linear part:

ε 7→
K∑

i=1

K∑

k 6=i,k=1

εikÊ[ψ̂Yi
(Yi)Yk] (19)

• relative gradient of non linear part:

For all k, 1 ≤ k ≤ K, δk 7→ Ê

{
δk(Zk)

[
K∑

i=1

Bikψ̂Yi
(Yi)− ψ̂Zk

(Zk)

]}

(20)

where ψ̂Zi
(Zi(j)) = N∂2

ijĤ(Zi).

4.2 Relative gradient of mutual information I

The relative gradient of Î consists of two parts, too:
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• relative gradient of linear part:

ε 7→
K∑

i=1

K∑

k 6=i,k=1

εikÊ{Yiβ̂k(Y)} (21)

• relative gradient of non linear part:

δ1, . . . , δK 7→
K∑

k=1

Ê

{
δk(Zk)

K∑

i=1

β̂i(Y)Bik

}
(22)

where, β̂k(Y(j)) = ψ̂Yk
(Yk(j))− φ̂k(Y(j)), for all k = 1, . . . , K and

• φ̂i(Y(j)) = N∂2
ijĤ(Y)

• ψ̂Yi
(Yi(j)) = N∂2

ijĤ(Yi)

and ∂2
ij denotes the derivative with respect to Yi(j).

4.3 Comments

(1) To compare these two relative gradients, let us subtract the relative gra-

dient of linear part and non linear part, respectively:

• difference of relative gradients of linear part for i 6= k:

Ê{Yiβ̂k(Y)} − Ê[ψ̂Yi
(Yi)Yk] =−Ê{Yiφ̂k(Y)} (23)

• difference of relative gradients of non linear part:

Ê

{
δk(Zk)

K∑

i=1

β̂i(Y)Bik

}
− Ê

{
δk(Zk)

[
K∑

i=1

Bikψ̂Yi
(Yi)− ψ̂Zk

(Zk)

]}

= Ê

{
δk(Zk)

[
K∑

i=1

φ̂i(Y)Bik − ψ̂Zk
(Zk)

]}
(24)

Using the definition of score functions and integrations by part, it can be

seen that when the estimate functions are replaced by the exact functions,

expressions (23) and (24) are equal to zero. Thus, the use of estimate
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leads to the difference between the two relative gradients and then in the

calculation of minima.

(2) The main difference between the approach used by Taleb [17] and Babaie-

Zadeh [3] comes from the use of estimations. In addition, there exist two

different approaches for solving the problem of minimizing an indepen-

dence criterion such as I or C:

strategy differentiate first. (used in [17] and [3])

It consists in calculating the exact relative gradient ∇I or ∇C of I or

C respectively, and then take an estimation of it to solve the estimating

equations ∇̂I = 0 or ∇̂C = 0

strategy estimate first. (used in the present paper)

Our approach consists in first estimating the independence criteria I

and C, denoted Î and Ĉ respectively. The solution of BSS problem is

reached by minimizing Î or Ĉ, using their exact relative gradients. In

this strategy, the use of calculating the bias of Î and Ĉ is obvious.

These two strategies are not equivalent, but the first one is not a

straightforward characteristization of independence and would require

further investigations.

5 Conclusion

The use of mutual information to solve the problem of blind source separation,

leads to implement two different methods. One consists in estimating mutual

information without any assumptions on the mixture. The other consists in

estimating a simple expression of mutual information without the terms with

joint entropy. A statistical study of the bias shows that when the variables
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are independent, the estimator of the full expression of mutual information

is asymptotically unbiased whereas, the estimator of the reduced criterion is

biased when the bandwidth is fixed and does not tend to zero. The comparison

of the relative gradients shows that these two criteria will lead to two different

algorithms for blind source separation. As the solution of blind source separa-

tion is the minimum of the estimator, an interesting further development is to

study more precisely the difference between the minima of these two criteria

using the expression of the relative gradients.

A Expression of the bias of the estimator of mutual information

(I)

All these calculations are deduced by extending the work of Joe [13].

TBR(h,K,K, pYi
, pY)= 0.5(K − 1)−

{
h−1[0.5K02 −K(0)]

K∑

i=1

∫

S
pYi

(x)(pYi,h(x))
−1dx

− h−K [0.5K2 −K(0)K ]
∫

S
pY(x)(pY,h(x))

−1dx
}

+0.5

{
h−1K02

K∑

i=1

∫

S
(p∗Yi,h

(x)− pYi
(x))pYi

(x)(pYi,h(x))
−1)−2dx

−h−KK2

∫

S
(p∗

Y,h(x)− pY(x))(pY,h(x))
−2dx

}

whereK2 = KK
02,K02 =

∫
K2(v)dv, l(u) = K(u)/K02 and p∗

Y,h(x) = h−K
∫ ∏K

i=1 l((xi−

yi)/h)pY(y)dy and p∗Yi,h
(x) = h−1

∫
l((x− y)/h)pYi

(y)dy.
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B Expression of the bias of the estimator of the reduced criterion

C

All these calculations are deduced by extending the work of Joe [13].

TAR(h,K,K, pYi
, pZi

)= h−1[0.5K02 −K(0)]
K∑

i=1

∫

S

{
pYi

(x)(pYi,h(x))
−1 −

∫

S
pZi

(x)(pZi,h(x))
−1
}
dx

+0.5h−1K02

K∑

i=1

∫

S
(p∗Yi,h

(x)− pYi
(x))pYi

(x)(pYi,h(x))
−2dx

−0.5h−1K02

K∑

i=1

∫

S
(p∗Zi,h

(x)− pZi
(x))pZi

(x)(pZi,h(x))
−2dx
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Fourier, Grenoble, 2003. .

[2] S. Achard, D.T. Pham, and C. Jutten. Blind source separation in post nonlinear

mixtures. In Proc. Int. Workshop on Independent Component Analysis and

Blind Signal Separation, ICA2001, pages 295–300, San Diego, California, Dec.

2001. .

[3] M. Babaie-Zadeh. On blind source separation in convolutive and nonlinear

mixtures. PhD thesis, I.N.P.G. - Laboratoire L.I.S., 2002.

[4] M. Babaie-Zadeh, C. Jutten, and K. Nayebi. Minimization-projection (MP)

approach for blind souces separation in different mixing models. In Proc. Int.

Workshop on Independent Component Analysis and Blind Signal Separation,

ICA2003, pages 1083–1088, Nara, Japan, Apr. 2003.

20



[5] F.R. Bach and M. I. Jordan. Kernel independent component analysis. Journal

of Machine Learning Research, 3:1–48, Jul. 2002.

[6] J.F. Cardoso. Blind signal separation : Statistical principles. Proceedings IEEE,

86(10):2009–2025, Oct. 1998.

[7] J.F. Cardoso. High-order contrasts for independent component analysis. Neural

Computation, 11:157–192, 1999.

[8] J.F. Cardoso and B.H. Laheld. Equivariant adaptative source separation. IEEE

Transactions on Signa Processing, 44(12):3017–3029, Dec. 1996.

[9] P. Comon. Independent component analysis, a new concept ? Signal Processing,

3(36):287–314, Apr. 1994.

[10] J. Eriksson, A. Kankainen, and V. Koivunen. Novel characteristic function

based criteria for ICA. In Proc. Int. Workshop on Independent Component

Analysis and Blind Signal Separation, ICA2001, pages 108–113, San Diego,

California, Dec. 2001.

[11] P. Hall and S. C. Morton. On the estimation of entropy. Ann. Inst. Statist.

Math., 45(1):69–88, 1993.

[12] A. Hyvrinen, J. Karhunen, and E. Oja. Independent Component Analysis. New

York: John Wiley & Sons, 2001.

[13] H. Joe. Estimation of entropy and other functionals of a multivariate density.

Ann. Inst. Statist. Math., 41(4):683–697, 1989.

[14] S. Kullback. Information theory and statistics. John Wiley & Sons, 1959.

[15] D.-T. Pham. Blind separation of instantaneous mixture of sources via an

independent component analysis. IEEE Transactions on Signal Processing,

44(11):2768–2779, Nov. 1996.

21



[16] D.-T. Pham. Flexible parametrisation of postnonlinear mixture model in blind

source separation. IEEE Signal Processing Letters, to appear.

[17] A. Taleb and C. Jutten. Sources separation in post-nonlinear mixtures. IEEE

Transactions on Signal Processing, 10(47):2807–2820, Oct. 1999.

22


