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Finding the bounds of response time of
networked automation systems

by iterative proofs
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Abstract: Response time of modern automation systems is not constant but is featured by a
distribution of values; finding the upper and lower bounds of this distribution is a crucial issue
when designing critical systems. This paper shows how to obtain these bounds by proving timed
properties on a formal model of the system, in the form of communicating timed automata. In
this approach, bounds are obtained by iterative proofs of properties which are expressed by
means of a parametric observer. Comparison of analysis results of formal models to measures
on real automation systems shows the accuracy and interest of this approach.
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1. INTRODUCTION

Response time to an input event is a very significant time
performance of any automation system. For a networked
automation system (NAS), this feature does not own a
constant value but is characterized by a distribution of
values, however. The significance of this time performance
explains why several methods have been developed to
obtain, from a model of the system, either its distribution,
like simulation methods (Pereira et al. (2004)), or the
upper and lower bounds of this distribution, or an over-
(under-) estimation of these bounds, e.g. analytic methods
based on worst-case (best-case) performance estimation
(Hung et al. (2004)) or on network calculus (Georges
et al. (2002)). For NAS that are used in critical systems,
focus is mainly, or even exclusively, put on the bounds
of the distribution; in the rest of this paper, only this
kind of application and then bounds assessment will be
considered.

Timed model-checking is a promising technique to analyse
critical systems, because it performs an exhaustive analysis
of formal models. However, a timed model-checker yields
only Boolean proof results (some properties hold or not)
and is not able, in itself, to provide numerical values. The
aim of this paper is to propose a response time bounds
assessment method that benefits from the exhaustive anal-
ysis possibilities of model-checking. The key idea of this
novel method is to prove iteratively formal properties that
are expressed by using a parametric observer automaton.

The outline of the paper is the following. The class of NAS
which is considered in this work as well as an experimental
facility to measure time performances are presented in
section 2; comparison of measures on real systems to
formal analysis results will allow to validate the proposed
approach indeed. The method to obtain time response
bounds by proving iteratively formal properties is detailed
in section 3. Section 4 addresses the issue of NAS formal

models construction; a strategy to build models which are
tractable by existing timed model-checker while leading to
trustworthy proof results is explained. Last, experimental
results that have been obtained both by measurement and
by the proposed method are compared and discussed.

2. RESPONSE TIME OF AUTOMATION SYSTEMS

2.1 Class of NAS considered

Several industrial Ethernet solutions (Ethernet/IP, Mod-
bus-TCP, Ethernet Powerlink, Profinet, . . . ) can be se-
lected to implement a NAS. This paper considers only the
NAS which rely on the Modbus-TCP protocol, while the
methodology which is presented can be applied to other
kinds of networks as well. More precisely, focus is put on
the automation systems in which logical controllers and
remote input-output modules (RIOMs) communicate to
carry out automation functions; with the protocol selected,
controllers are clients and RIOMs are data servers. Fig. 1
shows an example of such a system that will be used for
defining a case study.

The main features of the physical components of these
systems are:

• Controllers (Programmable Logical Controllers –
PLCs – or industrial computers) are modular. Within
each controller, a calculus processor runs a program
cyclically, while a communication processor performs
a cyclic scanning of some RIOMs, termed IOscanning.
It matters to underline that the cycles of these two
processors are asynchronous, data exchanges being
made by means of a shared memory.

• The network includes Ethernet switches and Ether-
net links and is dedicated only to communications
between the controllers and the RIOMs; there is no
other additional traffic.



• The inputs and outputs from/to the plant are gath-
ered in RIOMs which are directly connected to the
network. One RIOM may be shared by several con-
trollers.

Moreover, it will be assumed that there is no frame loss,
which is a quite reasonable assumption for this kind of
switched industrial Ethernet solution in the concerned
operational conditions.

2.2 Case study

To illustrate the response time bounds assessment method,
the response time to a particular input event of the system
depicted in Fig. 1 will be considered. This NAS includes 2
modular PLCs, 9 RIOMs and 3 Ethernet 8-port switches;
only 5 ports are used for each switch in this system. PLC1
scans the inputs and outputs from remote modules R1,
R2, R3, R4, R5 and R6 whereas PLC2 communicates with
remote modules R4, R5, R6, R7, R8 and R9. Thus both
PLCs share 3 modules (R4, R5 and R6) and one switch
(SW2).

Fig. 1. Case study

Only the response time to an input event on remote
module R4 will be focused on, in this case study. More
precisely, focus is put on the delay between the occurrence
of a given input event on remote module R4 and the
corresponding occurrence of an output event on remote
module R5 that is a consequence of the input event. In
this study, the value of this output event is computed by
PLC1 from the value of the selected input (Fig. 2). PLC2
only reads the values of R4 and R5 inputs.

Fig. 2. Response time definition

The experimental results that will be presented in what
follows - measures on a real NAS in the next sub-section,
as well as results of analysis of a formal model of this
NAS, in section 5 - have been obtained by instantiating
the components of this system with industrial COTS
(components off the shelf) from the Schneider Electric
company. In particular, for each PLC, the duration of
the cycle of the calculus processor spans from 2 to 3 ms;
these values were directly obtained with the programming

software tool PL7pro from the company. The IOscanning
duration ranges from 9.24 to 10.74 ms; these latter two
limits were obtained by using the Wireshark network
protocol analyzer (Combs (2007)).

2.3 Response time measurement

A facility to measure time performances of systems that
can be modeled as DES (Discrete Event Systems) has
been developed at LURPA some years ago. This facility
is named PRISME 1 and is mainly composed of:

• a square wave generator which delivers variable pe-
riod signals whose rising and falling edges may be
seen as events;

• a logical analyzer to collect timing diagrams that
contain both events occurrences order and durations
between occurrences;

• a real-time computer to coordinate events generation
and timing diagrams collection.

To measure the response time of a NAS (Fig. 3), the wave
generator is connected to the considered input and the
logical analyzer collects the timing diagrams of the input
and output from which the response time is defined.

Fig. 3. Response time measurement

As the response time is characterized by a distribution
of values, lots of measures are necessary; this is not an
issue with the PRISME facility because measurement
is automated in that case. Nevertheless, it matters to
avoid synchronization between the input signal and the
IOscanning cycle to prevent from meaningless measures.
Then the frequency of the input signal must be set as
explained in Denis et al. (2007).
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Fig. 4. Histogram of the response time
1 French patent # 01 110 933



Fig. 4 shows the result of 10,000 measures of response time
on the NAS described in the previous subsection. Given
this large number of measures, the minimal and maximal
values of this histogram will be taken as the lower and
upper bounds of this time performance and will serve as
references to validate the method to obtain response time
bounds by iterative proofs which is described in the next
section.

3. USING ITERATIVE PROOFS TO FIND
RESPONSE TIME BOUNDS

3.1 Principle

The reader is reminded that the objective of model-
checking is to prove whether a formal model satisfies (or
not) some properties. This implies that model-checkers
yield only Boolean results (the considered properties hold
or not), and not numerical values. Hence, the method
depicted in Fig. 5 2 was developed to obtain response time
bounds by using model-checking.

Fig. 5. Principle of the iterative method to obtain the
upper bound of the response time

This method relies on Uppaal (Larsen et al. (1997b)), a
widely used timed model-checker. Formal models which
are input into Uppaal are to be represented in the
form of communicating timed automata (Alur and Dill
(1994)) and properties are written with a subset of CTL
(Computational Tree Logic). In our case, formal models
must describe the behavior of NAS in a detailed fashion
and be tractable without state space explosion. This issue
is addressed in section 4.

To ease properties writing, a parametric observer automa-
ton has been introduced; the next subsection explains the
role of this observer. Some guards of this observer depend
on a time parameter τ whose value is modified for each
iteration. The aim of subsection 3.3 is to present the
algorithm that modifies this value and ensures iterations
convergence.

3.2 Observer automaton

Generally speaking, the evolution of this automaton com-
prises three steps: input event emission, waiting for the
corresponding output event, and comparison of the waiting
time, that represents a response time, to a parameter τ .
This is illustrated on Fig. 6 on the basis of the case study.
2 This figure considers the upper bound search; to obtain the lower
bound, only the test is to be changed in τ=Min(rt).

Fig. 6. Observer automaton OBS1

The transition from location Init to location L1 models the
input event emission; the considered input (of RIOM 4
in the case study) is set and the clock is initialized. It
is possible to leave location L1 only when the value of
the considered output (of RIOM 5 in the case study) is
updated (communication channel RIO5 upd between the
observer and the NAS model). If this value is false and the
clock value is smaller than the parameter τ , the observer
waits for the next update (transition from L2 to L1). If
it is true (the output event occurred), location L3 or L4
is reached according to the clock value and provided that
this value is not greater than τ . If the clock value is greater
than τ , location L5 is reached.

It matters to underline that the above description cor-
responds to one and only one evolution of the overall
model which includes this observer and the NAS model.
As a model-checker considers all possible evolutions, two
or three locations may be reached when analyzing a NAS
model. If both locations L3 and L4 are reached for in-
stance, this means that the response time of the NAS is
always lower than or equal to τ , i.e. τ is the upper bound
of the response time.

Once this observer designed, three formal reachability
properties can be stated:

E <> OBS1.L3 (1)

E <> OBS1.L4 (2)

E <> OBS1.L5 (3)

These statements could be translated in natural language
by ”there is at least one evolution to reach location L3
(respectively location L4 and location L5) of automaton
OBS1”.

Then, proof of these three properties allows comparing the
time parameter with the upper and lower bounds of the
response time (Table 1).

Table 1. Proof results meaning

P1 is P2 is P3 is meaning

false false true τ is lower than Min(rt)

false true true τ is equal to Min(rt)

true true true τ is between Min(rt) and Max(rt)

true true false τ is equal to Max(rt)

true false false τ is higher than Max(rt)

where Min(rt) and Max(rt) represent respectively the
lower and upper bounds of the response time.



3.3 Time parameter computation

The time parameter τ must be modified after each proof,
if no bound has been found. To modify this parameter,
two dichotomy research algorithms have been proposed,
depending on the searched bound. Algorithm 1 is used for
the upper bound; the algorithm to find the lower bound
can be easily derived from this description.

Data: L = Linit and H = Hinit
Result: Max(rt) the maximal response time
while H! = L do

τ = L+ int((H − L)/2)
check properties
case P3 is true

L = τ
case P3 is false AND P2 is false

H = τ
case P3 is false AND P2 is true

L = H = τ

Max(rt) = τ

Algorithm 1. Dichotomy search algorithm to find the upper bound
of the response time

In this algorithm, all variables are integers, because only
this type of data can be defined in Uppaal models. τ is
computed as the mean value of two limits L (low limit) and
H (high limit). From their initial values Linit and Hinit, L
and H are modified according to the proof results. When
τ is lower than the upper bound of the response time (P3
is true in Table 1), the next value of L will be the current
value of τ , H remaining unchanged. When τ is strictly
higher than the upper bound of the response time (P3
and P2 are false), the next value of H will be the current
value of τ , L remaining unchanged. The algorithm stops
when P3 is false and P2 is true; the number of iterations
depends on the initial values of the two limits (Linit and
Hinit).

Following this presentation of the overall principle of the
method and of the use of proof results, the next section is
devoted to NAS formal models construction.

4. MODELLING THE AUTOMATION SYSTEM

Building a formal model of a real system requires both to
model accurately all the useful behaviors, so as to obtain
trustworthy proof results, and to design a model that can
be treated by the model-checker, without combinatory
explosion. In the case of NAS, the modelling strategy
which is depicted in Fig. 7 has been set up. The three steps
of this strategy, that might be automated, will be sketched
in this section and are explained with more details in Ruel
et al. (2008).

The aim of the first step is to build a detailed model
of the system in which each timed automaton, named
component model, describes precisely the behavior of one
physical component (calculus processor, communication
processor, . . . ) or of one communication function, and
includes parameters that represent time features (cycle
time, processing time) of this component or function. In
this detailed model, switches and cables are modelled by a
set of independent communication functions, because the

Fig. 7. Modelling strategy

traffic due to the exchanges between PLCs and RIOMs is
far lower than the maximal throughput of the network, as
experimentally shown in previous studies (Marsal (2006)
and Denis et al. (2007)); then, the duration of an exchange
between one PLC and one RIOM does not depend on the
other exchanges.

The structure of a NAS model can be represented by
a graph in which nodes are components models and
edges represent communications between these models.
The second step aims to simplify this structure by keeping
only the components models that introduce delays which
impact directly the considered response time, i.e. which
are on the route of data flowing from the input to the
output; all the other components models are removed. This
simplification step relies on an interpretation abstraction
which is similar to those developed for checking hardware
systems - localisation reduction (Kroening (2006)) - or
hybrid systems (Clarke et al. (2003)).

Therefore, this step yields a simplified model that con-
tains a smaller number of components models; however,
each one of these models is a detailed one that includes
meaningless behaviors, e.g. communications with removed
components. The role of the third step is to remove these
behaviors from the remaining components models.

Fig. 8. Structure of the whole (top) and simplified (bot-
tom) automation system model



To clean up the components models, the following actions
are carried out during the last step:

• all the locations and transitions which correspond
to meaningless behaviors, e.g. treatment of requests
from removed components, are deleted;
• when a transition which belongs to a concurrent

structure in the detailed model is deleted, the maxi-
mal duration of the locations that follow immediately
the remaining transitions of this structure is increased
by the time of the removed concurrent treatment.
This allows to obtain reduced components models
that encompass all real behaviors, e.g. treatment de-
lay due to another concurrent treatment, even if they
include not realistic ones which correspond to a worst-
case modelling, e.g. it is possible that one concurrent
process would always be selected first.

By using this modelling strategy on the case study, the
structure of the whole model can be seen on the top
of Fig. 8 whereas the structure of the simplified one is
depicted on the bottom. To illustrate the modification
of components models (step 3), the detailed and reduced
models of a RIOM are depicted Fig. 9.

Fig. 9. Detailed and reduced models of a RIOM

It can be noted that, in this latter model, only the locations
which correspond to the treatment of a request from PLC1
(L2, L3, L4) are kept, because the PLC2 component model
has been removed. To account for concurrency between
requests from PLC1 and PLC2, the duration of location
L2 is variable from zero to one request treatment time.

5. EXPERIMENTAL RESULTS

5.1 Experiments configurations

Two kinds of data structures may be used to code the state
space of a formal model within Uppaal. Difference bound
matrices (DBM) is the standard state space representation
(Behrmann et al. (2002)). Compact data structure (CDS)
is a representation that reduces memory consumption,

especially for models with many clocks (Larsen et al.
(1997a)), but slows down verification. Only DBM coding
was selected for the experiments. Using CDS leads to
far too long verification times that are not acceptable in
the prospect of an industrial application of the proposed
method.

Uppaal offers also the possibility to prove properties on
an over- or under- approximation of the state space. State
space over-approximation uses convex-hull approximation
of zones (Balarin (1996)); state space under-approximation
is based on bit-state hashing (Wolper and Leroy (1993)).
In the experiments which are described below, only over-
approximation was retained; under-approximation is in-
appropriate for this work. As the objective is to find
the bounds of the response time of a critical system, the
whole state space must be explored indeed; this constraint
excludes the use of under-approximation.

Four experiments were performed on the basis of the case
study described in section 2. Two of them were aiming
at analyzing the whole detailed formal NAS model; the
two other ones used the reduced formal model obtained as
explained in section 4. In both cases (analysis of a detailed
or a reduced model), DBM coding, without approximation
of the state space, and over-approximation were tested
(table 2).

Table 2. Experiments configurations

whole model reduced model

without approximation configuration 1 configuration 3

with approximation configuration 2 configuration 4

5.2 Results comparison

The values of the response time bounds obtained in these
four experiments as well as the computation time of
these bounds are given in Table 3. All these experiments
were made on a computer with 2 GB RAM, a Core 2
duo processor (E6400) and Windows XP professional; the
initial values of the low and high limits of the dichotomy
search algorithm were set respectively at 0.00 ms and 50.00
ms and the resolution (physical value of the time unit) to
10 µs.

Table 3. Results comparison

response time bounds verification time

configuration 1 impossible not enough RAM

configuration 2 9.49 and 23.13 ms 12 min 26 s

configuration 3 9.49 and 23.13 ms 3 min 30 s

configuration 4 9.49 and 23.13 ms 2 s

The first observation that can be made from this table is
that no result was obtained with the first configuration
(whole model and no state space approximation) due to
combinatory explosion. This shows clearly the need for
model reduction or state space approximation techniques.

The three other experiments yielded the same bounds: 9.49
ms and 23.13 ms; none of the techniques that underlie
bounds computation in these experiments can be preferred
from these results. These values which come from models
analysis must be obviously compared to the measures
on the real NAS: 10.65 ms and 22.25 ms (minimal and
maximal values of the histogram Fig. 4). Then the bounds



values computed on formal models are under- (for the
lower bound) and over- (for the upper bound) estimations
of the real values; this is not really surprising, given the
choices made for these three experiments (state space
over-approximation or/and worst-case modelling). The
difference between theoretical results and measures is
not too large (around 10 %) and, moreover, theoretical
results are pessimistic, that is not an issue and even
sometimes required when considering critical systems.
Hence, this comparison validates clearly the proposed
method of bounds computation by iterative proofs.

Focusing now on the computation time, the following
conclusions can be drawn up:

• The modelling strategy which has been proposed
in the previous section is more efficient than the
state space over-approximation proposed by Uppaal,
when NAS models are considered. The computation
time in configuration 3 is about 3.5 times smaller than
that necessary in configuration 2.
• Combining the state space over-approximation and

this strategy (configuration 4) is a very efficient so-
lution. The computation time is divided by approxi-
mately 100 and 370 in comparison to configurations
3 and 2. This solution is the best one and can allow
analysis of larger networked automation systems in
reasonable times.

6. CONCLUSION

This paper has shown how the bounds of a significant
time performance of automation systems: the response
time, can be obtained by proving iteratively formal timed
properties. The main contribution of this work is the
definition of a parametric observer automaton; guards of
this observer depend on a time parameter whose value is it-
eratively modified according to the previous proof results.
This method can be extended to other time performances,
like the difference of response times, by modifying the
observer.

To avoid combinatory explosion when verifying formal
models, a modelling strategy has been proposed. A de-
tailed model of the automation system, composed of com-
municating components models, is first constructed. Then,
the structure of the system model is simplified, in function
of the considered response time, and the components mod-
els which remain in the simplified structure are modified
to account for removed behaviours which can impact the
response time.

Comparison of formal analysis results to measures vali-
dates the approach. The values that are yielded by the
proposed method are close enough pessimistic approxima-
tions of measures and can be then used when designing
critical systems. Moreover, these values are obtained in
quite reasonable times.

Future works are aiming at extending this method, whose
principle is to obtain numerical values from Boolean proofs
results, to analysis of other quantitative properties of
timed or hybrid systems.
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