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IMAGE RESTORATION USING A KNN-VARIANT OF THE MEAN-SHIFT

Cesario Vincenzo Angelino, Eric Debreuve, Michel Barlaud

Laboratory I3S, University of Nice-Sophia Antipolis/CNRS, France

ABSTRACT

The image restoration problem is addressed in the variational
framework. The focus was set on denoising. The statistics of
natural images are consistent with the Markov random field
principles. Therefore, a restoration process should preserve
the correlation between adjacent pixels. The proposed ap-
proach minimizes the conditional entropy of a pixel knowing
its neighborhood. The conditional aspect helps preserving lo-
cal image structures such as edges and textures. The statistical
properties of the degraded image are estimated using a novel,
adaptive weighted k-th nearest neighbor (kNN) strategy. The
derived gradient descent procedure is mainly based on mean-
shift computations in this framework.

Index Terms— Image restoration, joint conditional en-
tropy, k-th nearest neighbors, mean-shift

1. INTRODUCTION

The goal of image restoration is to recover an image that
has been degraded by some stochastic process. Research
focus was set on removing additive, independent, random
noise, however more general degradations phenomenons can
be modeled, such as blurring, non-independent noise, and so
on. The literature of image restoration is vast and methods
have been proposed in frameworks such as linear and non-
linear filtering in either the spatial domain or transformed
domains. Nonlinear filtering approaches typically lead to
algorithms based on partial differential equations, e.g. in the
variational framework [1]. However, these methods rely on
local, weighted clique-like constraints. In other words, these
constraints apply within pixel neighborhoods. Even if they
are designed to preserve edges, the imposed coherence be-
tween the pixels of a neighborhood inevitably results in some
smoothness within image patches. On the opposite, nonlo-
cal methods make use of long range, high order coherences
to infer (statistical) properties of the degraded image and
perform an adaptively constrained restoration [2, 3]. These
approaches are supported by studies on the statistics and
topology of spaces of natural images [4, 5] which confirm
that patches of natural images tends to fill space unevenly,
forming manifolds of lower dimensions. Such subspaces
correspond to correlations that exist not within patches but
between patches and that should be take into account in a

restoration process in order to preserve the image structures.
In this context, the idea is to consider the intensity or color
of a pixel jointly with, or conditionally with respect to, the
intensities or colors of its neighbors. An interesting approach
for denoising consists in minimizing the conditional entropy
of a pixel intensity or color knowing its neighborhood [2].

In this paper, the same philosophy is followed while a
number of theoretical and practical obstacles encountered
in [2] are naturally overcome using a novel adaptive strat-
egy in the k-th nearest neighbor (kNN) framework. These
obstacles are mostly due to the use of Parzen windowing to
estimate the joint probability density function (PDF), (i) esti-
mation which is stated to be required in [2].

(ii) As acknowledged by the authors, the high-dimensional
and scattered nature of the samples (the N x [N-image patches
seen as IN2-vectors) requires to use a wide Parzen window,
which oversmoothes the PDF and, consequently, biases the
entropy estimation.

The difficulties (i) and (ii) disappear in the kNN framework
since entropy can be estimated directly from the samples (i.e.,
without explicit PDF estimation) in a simple manner which
naturally accounts for the local sample density.

2. NEIGHBORHOOD CONSTRAINED DENOISING

Let us model an image as a random field X. Let 7" be the
set of pixels of the image and N; be a neighborhood of pixel
t € T. We define a random vector Y (t) = {X(t)}en,,
corresponding to the set of intensities at the neighbors of pixel
t. We also define a random vector Z(t) = (X(¢),Y(¢)) to
denote image regions or patches, i.e., pixels combined with
their neighborhoods.

Image restoration is an inverse problem, that can be
formulated as a functional minimization problem. As dis-
cussed in section 1, natural images exhibit correlation be-
tween patches, thus we consider the conditional entropy
functional, i.e., the uncertainty of the random pixel X when
its neighborhood is given, as suitable measure for denoising
applications.

Indeed, when noise is added, some of the information car-
ried by the neighborhood is lost, so the uncertainty of a pixel
knowing its neighborhood is greater in the average. This is
formally stated by the following proposition:



Proposition 1. Let X be a random variable and Y a random
vector representing its neighborhood. Let X be the sum of X
with a white gaussian noise N independent from X. Let Y be
the neighborhood vector constructed from X. Then

h(X[Y) > h(X|Y). ¢))

Proof. By definition we have h(X|Y) = h(X) — I(X;Y)
and h(X|Y) = h(X) — I(X;Y) where I(-; ) denote the mu-
tual information. First note that h(X) is greater than h(X)
since the addition of two independent random variables in-
creases the entropy [6]. X — Y — Y forms a Markov chain,
since Y and X are conditionally independent given Y. Thus,
the data processing inequality [6] reads

I(X;Y) > I[(X;Y). )

Since Y — X — X forms a Markov chain itself (since the
noise is white and gaussian), than we obtain

I(Y; X) > I(Y; X). 3)

By combining Eq. (2) and Eq. (3) we have I(X;Y) >
I(X;Y). O

Proposition 1 gives information theoretic basis for mini-
mize the conditional entropy. Thus, the recovered image ide-
ally satisfies

X* = arg m)én h(X[Y =y;) (€))
Entropy functional can be approximated by the Ahmad-Lin
estimator [7]

1
MX[Y =y;) = 1T > log pla; i), ®
=
where L
p(slyi) = o] Z K(s — zpm), (6)
Yi tm €Ty,

is the kernel estimate of the PDF, with the symmetric kernel
K(-). The set T}, in Eq. (6) is the set of index pixels which
have the same neighborhood y;. In order to solve the opti-
mization problem (4) a steepest descent algorithm is used. It
can be shown that the energy derivative of (5) is

Oh(X|Y =y;) 1 Vp(z) 0z

with L1 vi( )
ij — X
x(@:) = — C®
LT 2

The term x(-) of Eq. (8) is difficult to estimate, however if the
kernel K (-) has a narrow window size, only sample very close
to the actual estimation point will contribute to the pdf. Un-
der this assumption the conditional pdfis p(s|y;) ~ N4/|T,

k)

where NV, is the number of pixels equal to s. Thus by substi-
tuting and observing that VK (-) is an odd function, we ob-
serve that y(z;) is negligible for almost every value assumed
by z;. In the following we will not consider this term. Thus
the energy derivative is a mean-shift [8] term on the high di-
mensional joint pdf of Z, multiplied by a projection term.

Density estimation requires the sample sequence { X; }ien
to be drawn from the same distribution, i.e., it requires the
stationarity of the signal. As it is well-known, image signals
are piecewise stationary, thus closer pixel are supposed to
better represent the distribution of the current pixel. As a
consequence, we ‘apply’ a label to the actual sample patch
Z; by adding to its N2-vector representation the spatial coor-
dinates of its center, i.e., the coordinates of the current pixel
x;. Formally, the PDF of Z(t), t € T, is replaced with the
PDF of {Z(t),t},t € T. For simplicity, in the following
we denote with Z the (N? + 2)-dimensional vector of this
augmented feature space.

3. MEAN SHIFT ESTIMATION

In order to minimize the energy (4) via a steepest descent al-
gorithm, the term (7), has to be estimated. Since no assump-
tions are made on the underlying PDF, we rely on nonpara-
metric techniques to obtain density estimates, in particular we
refer to kernel estimation.

In the multi-dimensional density estimation literature a lot
of estimators have been proposed. These estimators can be
classified on the behavior of the kernel size h. In particular,
(i) Parzen Estimator: it is the most popular and simple kernel
estimator in which h is constant,and (ii) Balloon Estimator:
the kernel size depends on the estimation point z. The kNN
estimator [8] is a particular case of balloon estimator.

3.1. Parzen Method and its limitations

The Parzen method makes no assumption about the actual
PDF and is therefore qualified as nonparametric. The mean-
shift in the Parzen Window approach can be expressed, using
an Epanechnikov kernel, as [8]

Vp(z) d+2 1
p(zi) — h? k(z,h)

Z (Zj — Zi), (9)

2;€Sh(24)

where d is the dimension of Z, Sj,(z;) is the support of the
Parzen kernel centered at point z; and of size h, k being the
number of observation falling into Sy (X). The choice of the
kernel window size h is critical [9]. If h is too large, the es-
timate will suffer from too little resolution, otherwise if h is
too small, the estimate will suffer from too much statistical
variability.

As the dimension of the data space increases, the space sam-
pling gets sparser (problem known as the curse of dimension-
ality). Therefore, less samples fall into the Parzen window
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Fig. 1. RMSE in function of the numbers of nearest neighbors
for different levels of noise.

centered on each sample, making the PDF estimation less re-
liable. Dilating the Parzen window does not solve this prob-
lem since it leads to over-smoothing the PDF. This is due to
the fixed window size: the method cannot adapt to the local
sample density.

3.2. kNN Framework and adaptive weighting

In the Parzen-window approach, the PDF at sample s is re-
lated to the number of samples falling into a window of fixed
size centered on the sample. The kNN method is the dual
approach: the density is related to the size of the window
necessary to include the k nearest neighbors of the sample.
Thus, this estimator tries to incorporate larger bandwidths in
the tails of the distributions, where data are scarce. The choice
of k appears to be much less critical than the choice of A in
the Parzen method [10]. In kNN framework, the mean-shift
vector is given by [8]

> ozi— (10)

Vp(z;) d+21
= —7
Pl k ZjESp,C

p(z:)

where pj; is the distance to the k-th nearest neighbor. The
integral of the KNN PDF estimator is not equal to one (hence,
the kernel is not a density) and the discontinuous nature of the
bandwidth function manifests directly into discontinuities in
the resulting estimate. Furthermore, the estimator has severe
bias problems, particularly in the tails [11] although it seems
to perform well in higher dimension [12].

However, as near the distribution modes there is an high
density of samples, the window size associate to the k-th
nearest neighbor could be too small. In this case the estimate
will be sensible to the statistical variation in the distribution.
To avoid this problem we would increase the number of near-
est neighbors, to have an appropriate window size near the
modes. However this choice would produce a window too
large in the tails of the distribution. Thus very far samples
would contribute to the estimation, producing severe bias
problems.

We propose, as an alternative solution, to weight the
contribution of the samples. Intuitively, the weights must
be a function of distance between the actual sample and the

Fig. 2. Comparison of restored images. (In lexicographic
order) Noisy image, UINTA restored, kNN restored (k = 10)
and kNN restored (k = 40).

ith nearest neighbor, i.e., samples with smaller distance are
weighted more heavily than ones with larger distance

1 o 2
w=or- g (i) w

where o represents the ’effective’ kernel shape in the lowest
density location, i.e., when pg(z;) = pi*®®. This adaptive
weighted KNN (AWKNN) approach solves the bias problem of
the kNN estimator. In this case the mean shift term is replaced

by

Vp(z) d+2 1
p(zi)

S owilzj—z).  (12)

2 k
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4. ALGORITHM AND EXPERIMENTAL RESULTS

The method proposed minimizes the conditional entropy (5)
using a gradient descent. The derivative (7) is estimated in
the adaptive weighted kNN framework, as explained in sec-
tion 3.2. In this case the term Vp/p is expressed by Eq. (12).
Thus the steepest descent algorithm is performed with the fol-
lowing evolution equation

T LU 3 Sk N (C
pk ZjGSpk v

where v is the step size and w; are the weight coefficients of
Eq. (11), normalized to have sum equal to 1.

At each iteration the mean-shift vector (12) in the high di-
mensional space Z is calculated. The high dimensional space



is given by considering jointly the intensity of the current
pixel and that of its neighborhood, and by adding the two
spatial features as explained in section 2. The pixel value z;
is then updated by means of Eq. (13).

The k nearest neighbors are provided by the Approximate
Nearest Neighbor Searching (ANN) library (available at
http://www.cs.umd.edu/ mount /ANN/).

In order to measure the performance of our algorithm we
degraded the Lena image (256x256) adding a gaussian noise
with standard deviation 0 = 10. The original image has in-
tensity ranging from O to 100. We consider a 9 x 9 neighbor-
hoods, and we add spatial features to the original radiometric
data [10, 13], as explained in section 2. These spatial features
allow us to reduce the effect of the non stationarity of the sig-
nal in the estimation process, by preferring regions closer to
the estimation point. The dimension of the data d is therefore
equal to 83, and we have to search the k nearest neighbors in
such a high dimensional space.

Figure 2 shows a comparison of the restored images. Fig-
ure 1 shows the Root Mean Square Error (RMSE) curves in
function of the number of nearest neighbors & for different
levels of noise. Varying the parameter £ within a signifi-
cant range does not provide any significant changes in the
results. In Table 1, the optimal values of the RMSE and the
Structure SIMilarity Index (SSIM) [14] are shown. On this
experiment our algorithm provides results comparable with
or slightly better than UINTA when k£ € [10;50]. In terms
of speed, our algorithm is much faster than UINTA, due to
the AWKNN framework. Indeed, UINTA have to update the
Parzen window size at each iteration. To do this a time con-
suming cross validation optimization is performed. On the
contrary our method simply adapts the PDF changes during
the minimization process. For instance, the cpu time with
Matlab for the UINTA algorithm is almost 4500 sec. Our al-
gorithm, with k£ = 10, takes only 600 sec. We did some more
experiments on Lena with different noise levels (see Table 2).

RMSE | SSIM RMSE | SSIM
k=3 5.51 0.918 || UINTA 4.65 0.890
k=10 | 4.01 0.910 k=40 4.50 0.889
k=20 | 4.14 0.905 k=50 4.64 0.882
k=30 | 435 0.895 k=100 5.12 0.832

Table 1. RMSE and SSIM values for different values of k,
and for UINTA.

UINTA NL means kNN
o RMSE | SSIM || RMSE | SSIM || RMSE | SSIM
10 6.24 0.906 5.20 0.922 6.03 0.890
15 7.50 0.869 6.59 0.879 7.02 0.869
20 8.60 0.831 7.95 0.833 8.18 0.817
25 9.81 0.787 9.13 0.786 9.19 0.787

Table 2. Comparison between UINTA, Non Local Means [3],
and the proposed method for different noise levels on Lena.
Each result was obtained with the optimal parameters for the
corresponding algorithm.

5. CONCLUSION

This paper presented a restoration method in the variational
framework based on the minimization of the conditional
entropy using the kNN framework. In particular a novel,
AWKNN strategy, which solve the bias problems of kNN
estimators, has been proposed. The simulations indicated
slightly better results in RMSE and SSIM measures with
respect to the UINTA algorithm and a marked gain in cpu
speed. Results are even more promising considering that no
regularization is applied.

As future work, the method could be regularized. In terms
of application, a similar approach could apply to image in-
painting.
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