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ABSTRACT

In this paper we address the image restoration problem in the

variational framework. Classical approaches minimize the Lp

norm of the residual and rely on parametric assumptions on

the noise statistical model. We relax this parametric hypothe-

sis and we formulate the problem on the basis of nonparamet-

ric density estimates. The proposed approach minimizes the

residual differential entropy. Experimental results with non

gaussian distributions show the interest of such a nonpara-

metric approach. Images quality is evaluated by means of the

PSNR measure and SSIM index, more adapted to the human

visual system.

Index Terms— deconvolution, variational methods, en-

tropy, nonparametric estimation

1. INTRODUCTION

Image restoration attempts to reconstruct or recover an image

that has been degraded by using a priori knowledge of the

degradation phenomenon. We focus on variational methods,

that have an important role in modern image research.

Most methods rely on the standard model y = m∗x0 +n,

where degradations are modeled as being the result of convo-

lution together with an additive noise term, so the expression

image deconvolution (or deblurring) is used frequently to sig-

nify linear image restoration [1]. Here m represents a known

space-invariant blur kernel (point spread function, PSF), x0

is an ideal version of the observed image y and n is (usually

Gaussian) noise.

The objective of restoration is to obtain an estimate x̂(u)
as close as possible to the original image, by means of a cer-

tain criterion. Defining with r = y − m ∗ x̂ the residual

image, a common approach to the deconvolution problem is

to find a solution that minimizes a function ϕ(·) of the resid-

ual. If ϕ(·) is the square function, we obtain a least square

(LS) solution of the problem. In classical statistics, Maxi-

mum Likelihood (ML) is the most commonly used method for

parameter estimation. Its application to image restoration is

based on the knowledge of the random properties of noise, so

that its probability density function (pdf) is exactly known. In

the case of additive Gaussian noise, the ML-method is equiv-

alent to the LS method. As it is well known, LS estimation

is sensitive to outliers, or deviations, from the assumed sta-

tistical model. In the literature other more robust estimators

have been proposed, like M-estimators [2], involving non-

quadratic and possibly non-convex energy functions. How-

ever, these methods rely on parametric assumptions on the

noise statistics, which may be inappropriate in some applica-

tions due to the contribution of multiple error source, such as

radiometric noise (Poisson), readout noise (Gaussian), quan-

tization noise (Uniform) and ”geometric” noise, the latter due

to the non-exact knowledge of the PSF. Therefore density es-

timation using a nonparametric approach is a promising tech-

nique. We propose to minimize a functional of the residual

distribution, in particular the differential entropy of the resid-

ual. We use entropy because it provides a measure of the

dispersion of the residual, in particular low entropy implies

that the random variable is confined to a small effective vol-

ume and high entropy indicates that the random variable is

widely dispersed [3]. Moreover, entropy criterion is robust to

the presence of outliers in the samples. Nonparametric meth-

ods and information measures have been recently used in the

segmentation context [4, 5].

Experimental results with non gaussian distributions show

the interest of such a nonparametric approach. The quality of

restored images is evaluated by the largely used PSNR mea-

sure and also by means of the Structure Similarity (SSIM)

measure [6], more adapted to the human visual system (HVS).

This paper is organized as follows. In section 2 the pro-

posed algorithm is presented and in section 3 some experi-

mental results are shown. Finally, discussion and future works

are proposed in the last section.

2. ENERGY

Image deblurring is an inverse problem, that can be formu-

lated as a functional minimization problem. Let Ω denote

a rectangular domain in R2, on which the image function

x : u ∈ Ω → Rd is defined, d being the image dimensional-



ity. Ideally, the recovered image x̂ satisfies

x̂ = arg min
x

∫
Ω

Φ(y − m ∗ x) du, (1)

where Φ(·) is a metric representing data-fidelity. In the case

of Gaussian noise, a quadratic function is used.

However, parametric assumptions on the underlying noise den-

sity function are not always suitable, due to the multiple source

of noise. We define as energy to be minimized a continuous

version of the Ahmad-Lin [7] entropy estimator (HA−L(r)),
defined as:

E(x) = |Ω| HA−L(r)

= −
∫

Ω

log(px(r(u))) du . (2)

In order to solve the optimization problem arg minx E(x) a

steepest descent method is used. The energy derivative has

been analytically calculated and it is shown in section 2.1.

2.1. Derivative of E

The residual pdf is estimate by using a nonparametric contin-

uous version Parzen estimator, with symmetric kernel K(·),

px(s) =
1

|Ω|

∫
Ω

K(s − r(u)) du . (3)

Note that px(s) is the residual pdf associated to the current

estimate image x. Therefore changes in x provides changes

in px(s), hence changes in the residual entropy (energy).

By taking the Gâteaux derivative of eq.(2) it can be shown

(demonstration has been omitted for brevity) that the gradient

of E(x) at v ∈ Ω is equal to

∇E(x)(v) =

∫
Ω

m(v − w) k(w) dw, (4)

with

k(w) =
∇px(r(w))

px(r(w))
+ χ(w) (5)

and

χ(w) = − 1

|Ω|

∫
Ω

∇K(r(u) − r(w))

px(r(u))
du . (6)

The first term in (5) is the normalized gradient of the

residual pdf and it is proportional to the local mean-shift [8]:

∇px(X)

px(X)
=

d + 2

h2
Mh(X), (7)

where

Mh(X) =
1

k

∑
Xi∈Sh(X)

(Xi − X) (8)

is the sample mean shift of the observations in the small re-

gion Sh(X) centered at X (Sh(X) = {Y : ‖Y − X‖2 ≤

h2}). The integral in (6) is difficult to estimate, however if

the Parzen kernel K(·) has a narrow bandwidth, only sam-

ples very close to the actual estimation point will contribute

to the pdf. Under this assumption the residual pdf is approxi-

matively px(α) ≈ N(α)/|Ω|, where N(α) is the measure of

Ωα = {u ∈ Ω : r(u) = α}. The set {Ωα}α∈r(Ω) form a

partition of Ω. Thus we have,

χ(w) ≈ −
∫

r(Ω)

dα

∫
Ωα

∇K(α − r(w))

N(α)
du

= −
∫

r(Ω)

∇K(α − r(w)) dα . (9)

Since ∇K(·) is an odd function, χ(w) is zero if r(w) is such

that the support of ∇K(α−r(w)) is contained by the support

of r(·) and assumes nonzero values in a ring near the bound-

ary of the latter. In grayscale images (d = 1), the integral

(9) can be expressed in closed form and χ(w) has the same

sign of the mean shift term but has a smaller magnitude. In

the multidimensional case χ(w) conserves the same behavior,

therefore it is possible to neglect it.

Thus the steepest descent algorithm is performed with the fol-

lowing evolution equation:

x(n+1) = x(n) − ν
d + 2

h2
m ⋆ Mh(X), (10)

where ν is the step size. The choice of h is explained in sec-

tion 3.

2.2. Lower Bound

In this section we provide a lower bound (LB) to the energy

in eq.(2), in order to check how our algorithm works on min-

imizing residual entropy (see Fig.1).

The residual can be viewed the sum of two random variables,

namely, R = N + X̃ . The first one is the noise, and the sec-

ond one is the projection of the error by means of the operator

m(·), i.e., x̃ = m ∗ (x0 − x).

Proposition 2.1. The residual entropy h(R) is lower bounded

by the noise entropy h(N).

Proof. Let us consider the mutual information between R and

X̃ ,

I(R; X̃) = h(R) − h(R|X̃)

= h(R) − h(N |X̃) .

Since the noise N is independent from X̃ , h(N |X̃) = h(N),
and by the non negativity property of mutual information we

obtain

h(R) ≥ h(N) . (11)

As it is well known, mutual information is a measure of

the amount of information that one random variable contains
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Fig. 1. Residual Entropy as function of noise entropy. Initial

residual entropy (blue), Final residual entropy (green), Theo-

retical lower bound (red).

about another random variable [3]. The closer x is to the orig-

inal image x0, the less information on X̃ is carried by the

residual. Therefore entropy minimization can be interpreted

as the process which use the information carried by the resid-

ual to recover x0, until there is no more information, i.e., the

residual entropy reaches the lower bound.
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Fig. 2. Algorithm performances for uniform noise as function

of noise entropy. (a) Initial (blue) and Final (red) PSNR; (b)

Initial (blue) and Final (red) SSIM.

3. EXPERIMENTAL RESULTS

In this section, some results from the algorithm proposed are

shown. In order to measure the performance of our algorithm

we blurred the Lena image (512x512 pixel) by convolving it

with a 13x13 Gaussian PSF with standard deviation
√

3, and

adding noise with different distributions, such as Gaussian,

Uniform, Gaussian mixture, Gaussian-Uniform mixture and

different entropy magnitude. Residual entropy minimization

is carried out via the gradient descent algorithm described in

section 2.1. At each iteration the mean-shift kernel size h is

proportional to the standard deviation of the residual, since

this choice generally assures a good compromise between ro-

bustness and accuracy [9].

Fig.1 shows in blue the initial residual entropy in green the

value attained when the algorithm converges and in red the

theoretical LB. We considered Gaussian noise in Fig.1a and

Uniform noise in Fig.1b. In the gaussian case the proposed

algorithm achieves the lower bound of entropy. However, in

the uniform case as well the final entropy is quite close to the

LB with a maximum relative difference of 0.02%.

Fig.2 shows the PSNR and SSIM measures between the origi-

nal image x0 and the degraded image y (blue) and the restored

image x̂ (red) in function of the noise entropy for uniform dis-

tribution. PSNR measure and the related mean square error

(MSE) are the simplest and most widely used quality met-

rics in image processing, with clear physical meanings, but

they are not very well matched to perceived visual quality

[6]. HVS is highly adapted for extracting structural informa-

tion, and SSIM, which compares local patterns of pixel inten-

sities, is more suitable for image quality assessment. Fig.(3)

shows the restored images from different algorithms as Lucy-

Richardson [10, 11] and Truncated SVD [12], with uniform

noise (entropy 2 bits). The truncation parameter of TSVD is

found with a generalized cross validation [12]. Our method

has roughly the same PSNR of the TSVD restored image,

however the latter has a more pronounced grain effect. This is

well catched by the SSIM measure, for which our method is

considered of higher quality. SSIM indicates better results

also in the experiment of Fig.4, where a gaussian mixture

noise has been used, even if the PSNR is lower than the one

provided by the TSVD restoration.

A full set of comparisons is shown in Table1 for different

noise distributions and entropy values. The proposed algo-

rithm always outperforms the other techniques except that in

the two aforementioned cases for the PSNR value.

Noise Algorithm PSNR SSIM

(dB) ∈ [0, 1]

Gaussian Lucy-Richardson 25.31 0.881

1 bit Truncated SVD 29.59 0.908

Proposed method 29.65 0.922

Gaussian Lucy-Richardson 25.29 0.880

2 bits Truncated SVD 29.15 0.890

Proposed method 29.16 0.895

Uniform Lucy-Richardson 25.31 0.881

1 bit Truncated SVD 29.53 0.906

Proposed method 29.59 0.918

Uniform Lucy-Richardson 25.28 0.878

2 bits Truncated SVD 29.04 0.882

Proposed method 29.03 0.900

Gaussian Lucy-Richardson 25.31 0.879

Mixture Truncated SVD 28.93 0.876

1.85 bits Proposed method 25.94 0.899

G + U Lucy-Richardson 25.32 0.881

Mixture Truncated SVD 29.66 0.913

0.7 bits Proposed method 29.80 0.926

Table 1. Quality measures comparison of Lena restored im-

ages with different algorithm.



(a) Degraded image (b) Lucy-Richardson

(c) Truncated SVD [12] (d) Proposed method

Fig. 3. Comparison of deconvoluted images. Uniform

noise, entropy 2 bits. (a) The blurred noisy image (PSNR

= 25.30[dB], SSIM = 0.837)

(a) Degraded image (b) Lucy-Richardson

(c) Truncated SVD [12] (d) Proposed method

Fig. 4. Comparison of deconvoluted images. Gaussian Mix-

ture noise, entropy 1.85 bits. (a) The blurred noisy image

(PSNR = 25.33[dB], SSIM = 0.837)

4. DISCUSSION

This paper presented a deconvolution method in the varia-

tional framework based on the residual entropy minimiza-

tion. The simulations indicated robust performance for dif-

ferent noise distribution probabilities, showing in many cases

slightly better results w.r.t. some popular deblurring tech-

niques. Results are even more promising considering that,

contrarily to what happens in other techniques like Truncated

SVD, no regularization is applied. As future work, a possible

regularization method is being taken into account that makes

use of the Kullback-Leibler divergence between the residual

distribution and the noise model, under the hypothesis that

some a priori knowledge is available on the noise.

A further remarkable property of this algorithm is its possible

extension to the case of multispectral images.
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