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 variational setting for periodic solutions of nonlinear neutral delay equation to the almost periodic settings. We obtain results on the structure of the set of the a.p. solutions, results of existence of a.p. solutions, results of existence of a.p. solutions, and also a density result for the forced equations.

x (t -r) + D 1 F (x(t -r), x(t -2r)) + D 2 F (x(t), x(t -r)) = b(t)

Introduction

The aim of this paper is the study of a.p. (almost periodic) solutions of neutral delay equations of the following form :

         D 1 L(x(t -
r), x(t -2r), x (t -r), x (t -2r), t -r) +D 2 L(x(t), x(t -r), x (t), x (t -r), t) = d dt [D 3 L(x(t -r), x(t -2r), x (t -r), x (t -2r), t -r) +D 4 L(x(t), x(t -r), x (t), x (t -r), t)]

(1. [START_REF] Alexeev | Commande optimale, French Edition[END_REF] where L : (R n ) 4 × R -→ R is a differentiable function; D j denotes the partial differential with respect to the j th vector variable, and r ∈ (0, ∞) is fixed. We will consider the almost periodicity in the sense of Bohr [START_REF] Corduneau | Almost Periodic Functions, Second English Edition[END_REF], and in the sense of Besicovitch [START_REF] Besicovitch | Almost periodic functions[END_REF]. A special case of (1.1) is the following forced neutral delay equation.

         D 1 K(x(t -r), x(t -2r), x (t -r), x (t -2r)) +D 2 K(x(t), x(t -r), x (t), x (t -r)) -d dt [D 3 K(x(t -r), x(t -2r), x (t -r), x (t -2r)) +D 4 K(x(t), x(t -r), x (t), x (t -r))] = b(t) (1.2)
where K : (R n ) 4 → R is a differentiable function, and b : R → R n is an a.p. forcing term. To see (1.2) as a special case of (1.1) it suffices to take L(x 1 , x 2 , x 3 , x 4 , t) := K(x 1 , x 2 , x 3 , x 4 ) -x 1 .b(t + r)

where the point denotes the usual inner product in R n .

Another special case of (1.1) is the following forced second-order neutral delay equation :

Where b : R n -→ R and F : (R n ) 2 -→ R. To see that this last equation is a special case of (1.1) it suffices to take L(x 1 , x 2 , x 3 , x 4 , t) := 1 2 x 3 2 -F (x 1 , x 2 )+x 1 .b(t+r), where the norm is the usual Euclidian norm of R n . In their work [START_REF] Shu | Multiple periodic solutions for a class of second-order nonlinear neutral delay equations[END_REF], Shu and Xu study the periodic solutions of this last equation by using a variational method. We want to extend such a view point to the study of the a.p. solutions.

And so our approach to the study of the a.p. solutions of (1.1) consists to search critical points of a functional Φ defined on suitable Banach spaces of a.p functions by : Φ(x) := lim

T →+∞ 1 2T T -T
L(x(t), x(t -r), x (t), x (t -r), t)dt (1.3) At this time we give some historical elements. Recall that the work [START_REF] Elsgolc | Qualitative Methods in Mathematical Analysis, Translation of Mathematical Monograph[END_REF] of Elsgolc treats the calculus of variations with a retarded argument on a bounded real interval. This work was followed by these ones of Hughes [START_REF] Hughes | Variational and Optimal Control Problems with Delayed Argument[END_REF] and Sabbagh [START_REF] Sabbagh | Variational Problems with Lags[END_REF].

Since the variational problems can be seen as optimal control problems, recall also the existence of the theory of the Periodic Optimal Control with retarded argument as developped by Colonius in [START_REF] Colonius | Periodic optimal control[END_REF]. For instance, we consider a periodic Optimal Control problem with a criterion of the form 1 T T 0 g(x(t), u(t), t)dt and with an equation of motion of the form x (t) = f (x(t), x(t -r), u(t), t), where x(t) is the state variable and u(t) the control variable. In the special case where f (x(t), x(t -r), u(t), t) = f 1 (x(t), x(t -r), t) + u(t), the previous Optimal Control problem can be transformed into a calculus of variations problem with the criterion (1.3). Note that the Euler-Lagrange equation of such a variational problem is a special case of (1.1).

1 T T 0 g(x(t), f 1 (x(t), x(t -r), t) -x (t), t)dt, which is a special case of
On another hand, Calculus of Variations in Mean Time was developped to study the a.p. solutions of some (non retarded) differential equations [START_REF] Blot | Calculus of Variations in Mean and Convex Lagrangians[END_REF][START_REF] Blot | Une approche variationnelle des orbites quasi-périodiques des systèmes hamiltoniens[END_REF][START_REF] Blot | Calculus of Variations in Mean and Convex Lagrangians, II[END_REF][START_REF] Blot | Une approche hilbertienne pour les trajectoires presque-péridiques[END_REF][START_REF] Blot | Almost periodic solutions of forced second order Hamiltonian systems[END_REF][START_REF] Blot | Oscillations presque-périodiques forcées d'équations d'Euler-lagrange[END_REF]. Here, we extend this approach to treat equation like (1.1). Now we describe the contents of this paper. In Section 2, we precise the notations about the function spaces used later. In Section 3 we etablish a variational formalism suitable to the Bohr-ap solutions; we give a variational principle and a result on the structure of the set of the a.p. solutions of (1.1) in the convex case. In Section 4, we etablish a variational formalism suitable to the Besicovitch-ap solutions, we give a variational principle, results of existence, and a result of density for the almost periodically forced equations.

Notations

AP 0 (R n ) is the space of the Bohr almost periodic (Bohr-ap for short) functions from R in R n ; endowed with the supremum . ∞ , it is a Banach space [START_REF] Corduneau | Almost Periodic Functions, Second English Edition[END_REF].

AP 1 (R n ) := x ∈ C 1 (R, R n ) ∩ AP 0 (R n ) : x ∈ AP 0 (R n ) ; endowed with the norm x C 1 := x ∞ + x ∞ , it is a Banach space. When k ∈ N * ∪ {∞}, AP k (R n ) := x ∈ C k (R, R n ) : ∀j ≤ k, d j x dt j ∈ AP 0 (R n ) When x ∈ AP 0 (R n ), its mean value M {x(t)} t := lim T →+∞ 1 2T T -T x(t)dt exists in R n .
The Fourier-Bohr coefficients of x ∈ AP 0 (R n ) are the complex vectors a(x; λ) := lim

T →+∞ 1 2T T -T e -iλt x(t)dt and Λ(x) := {λ ∈ R : a(x, λ) = 0} . When p ∈ [1, ∞) , B p (R n ) is the completion of AP 0 (R n ) (in L p loc (R, R n )) with respect to the norm u p := M {|u| p } 1 p . When p = 2, B 2 (R n
) is a Hilbert spaces and its norm . 2 is associated to the inner product (u | v) := M {u.v} [START_REF] Besicovitch | Almost periodic functions[END_REF]. The elements of these spaces B p (R n ) are called Besicovitch almost periodic (Besicovitchap for short) functions.

Recall the useful following fact : [START_REF] Blot | Une approche hilbertienne pour les trajectoires presque-péridiques[END_REF][START_REF] Blot | Oscillations presque-périodiques forcées d'équations d'Euler-lagrange[END_REF].

if (u m ) m is a sequence in AP 0 (R n ) and if u ∈ L p loc (R, R n ) (Lebesgue space), which satisfy M { u m -u p } 1 p = lim sup T →∞ 1 2T T -T u m -u p dt 1 p → 0 (m → 0) then u ∈ B p (R n ) and we have u m -u p → 0 (m → 0). We use the generalized derivative ∇u ∈ B 2 (R n ) of u ∈ B 2 (R n ) (when it exists) defined by ∇u -1 s (u(. + s) -u) 2 → 0 (s → 0), and we define B 1,2 (R n ) := u ∈ B 2 (R n ) : ∇u ∈ B 2 (R n ) ; endowed with the inner product u | v := (u | v) + (∇u | ∇v), B 1,2 (R n ) is a Hilbert space,
If E and F are two finite-dimentional normed spaces, AP U (E × R, F ) stands for the space of the functions f : E × R -→ F, (x, t) -→ f (x, t), which are almost periodic in t uniformly with respect to x in the classical sense given in [START_REF] Yoshizawa | Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions[END_REF].

To make the writing less heavy, we sometimes use the notations u(t) := (u(t), u(t -r), ∇u(t), ∇u(t -r))

when u ∈ B 1,2 (R n ), and

x(t) := (x(t), x(t -r), x (t), x (t -r))

when x ∈ AP 1 (R n ).

A variational setting for the Bohr-ap functions

We consider the following condition :

     L ∈ AP U ((R n ) 4 × R, R), and, for all (X, t) ∈ (R n ) 4 × R, the partial differential D X L(X, t) exists, and 
D X L ∈ AP U ((R n ) 4 × R, L((R n ) 4 , R)). (3.1) Lemma 3.1. Under [4] the functional Φ : AP 1 (R n ) -→ R defined by (1.3) is of class C 1 , and for all x, h ∈ AP 1 (R n ) we have DΦ(x).h = M{D 1 L(x(t), t).h(t) + D 2 L(x(t), t).h(t -r) +D 3 L(x(t), t).h (t) + D 4 L(x(t), t).h (t -r)} t .
Proof. We introduce the linear operator T :

AP 1 (R n ) -→ (AP 0 (R n )) 4 by setting T (x)(t) := x(t).
The four components of T are continuous linear operators that implies the continuity of T , and therefore T is of class C 1 , and for all x, h ∈ AP 1 (R n ) we have DT (x).h = T (h).

Under (3.1), the Nemytski operator [START_REF] Blot | Almost-Periodic oscillations of Monotone Second-Order Systems[END_REF], and we have, for all

N L : (AP 0 (R n )) 4 -→ AP 0 (R n ), defined by N L (X)(t) := L(X(t), t), is of class C 1 , cf. Lemma 7 in
X, H ∈ AP 0 (R n ) 4 , (DN L (X).H)(t) = D X L(X(t), t).H(t).
The linear functional M :

AP 0 (R n ) -→ R is continuous, therefore it is of class C 1 and we have, for all φ, ψ ∈ AP 0 (R n ), DM {φ} .ψ = M {ψ}. And so Φ = M • N L • T is of class C 1 . Furthermore, we have DΦ(x).h = DM(N L • T (x)) • DN L (T (x)) • DT (x).h = M {DN L (T (x)).T (h)} = M {D X L(x(t), t).h(t)} t
and expressing D X L in terms of D j L we obtain the annonced formula.

Note that in the case without delay, when L is autonomous, i.e. L(X, t) = L(X), in [START_REF] Blot | Une approche variationnelle des orbites quasi-périodiques des systèmes hamiltoniens[END_REF] it is established that the functional

x -→ M {L(x, x )} is of class C 1 when L is of class C 1 .
In [START_REF] Cieutat | Solutions presque-périodiques d'équations d'évolution et de systèmes non linéaires[END_REF] we can find a proof of the differentiability of the Nemytskii operator on AP 0 (R n ) which is different to this one of [START_REF] Blot | Une approche variationnelle des orbites quasi-périodiques des systèmes hamiltoniens[END_REF].

Theorem 3.2 (Variational Principle). Under (3.1), for x ∈ AP 1 (R n ), the two following assertations are equivalent. (i) DΦ(x) = 0, i.e. x is a critical point of Φ in AP 1 (R n ). (ii)
x is a Bohr-ap solution of the equation (1.1).

Proof. First we assume (i). Since the mean value is translation invariant, we have

M {D 2 L(x(t), t).h(t -r)} t = M {D 2 L(x(t + r), t + r).h(t)} t
and M{D 4 L(x(t), t).h (t -r)} t = M{D 4 L(x(t + r), t + r).h (t)} t , and so by using Lemma 3.1 we obtain, for all h ∈ AP 1 (R n ),

0 = M{(D 1 L(x(t), t) + D 2 L(x(t + r), t + r)).h(t)} t + M{(D 3 L(x(t), t) + D 4 L(x(t + r), t + r)).h (t)} t .
Setting q(t) := D 1 L(x(t), t)+D 2 L(x(t+r), t+r), denoting by q k (t) its coordinates for k = 1, . . . , n, setting p(t) := D 3 L(x(t), t) + D 4 L(x(t + r), t + r), and denoting by q k (t) its coordinates for k = 1, . . . , n, we deduce from the previous equality that, for all φ ∈ AP ∞ (R) we have M {q k (t).φ(t)} t = -M{p k (t).φ (t)} t . Then by reasoning like in the proof of Theorem 1 in [START_REF] Blot | Calculus of Variations in Mean and Convex Lagrangians[END_REF], we obtain that Dp k = q k in the sens of the ap distributions of Schwartz [START_REF] Schwartz | Théorie des distributions[END_REF], and by using the proposition of the Fourier-Bohr series we obtain that p k is C 1 and that p k = q k in the ordinary sense. From this, we obtain that p(. -r) is C 1 and that p (t -r) = q(t -r) which is exactly (ii).

Conversely by using he formula M{l.y } = -M{l .y} for all l ∈ AP 1 (L(R n , R)) and y ∈ AP 1 (R n ), and by translating the time, we obtain from (ii) for all h ∈ AP 1 (R n ) the following relation

0 = M{(D 1 L(x(t), t) + D 2 L(x(t + r), t + r)).h(t) +(D 3 L(x(t), t) + D 4 L(x(t + r), t + r)).h (t)} t = M{D 1 L(x(t), t)h(t) + D 2 L(x(t), t)).h(t -r) +D 3 L(x(t), t)h (t) + D 4 L(x(t), t).h (t -r)} t = DΦ(x).h,
and so we have (i). This Theorem 3.2 is an extension to the non autonomous case in presence of a delay of Theorem 1 in [START_REF] Blot | Calculus of Variations in Mean and Convex Lagrangians[END_REF]. Now we use Theorem 3.2 to provide some results on the structure of the set of the Bohr-ap solutions of (1.1) in the case where L is autonomous and convex. Theorem 3.3 (Structure Result). We assume that L ∈ C 1 ((R n ) 4 , R), and that L is convex. Then the following assertation hold.

(i) The set of the Bohr-ap solutions of (1.1) is a closed convex subset of

AP 1 (R n ). (ii) If x 1 is a T 1 -periodic non constant solution of (1.1), if x 2 is a T 2 -periodic
non constant solution of (1.1), and if T 1 /T 2 is no rational, then (1-θ)x 1 + θx 2 is a Bohr-ap non periodic solution of (1.1) for all θ ∈ (0, 1). (iii) If x is a Bohr-ap solution of (1.1), then M{x} is a constant solution of (1.1). (iv) If x is a Bohr-ap solution of (1.1), if T ∈ (0, ∞) is such that a(x, 2π T ) = 0, then there exists a non constant T -periodic solution of (1.1).

Proof. Since L is convex, the functional Φ of (1.3) is also convex on AP 1 (R n ). Since L is autonomous and of class C 1 , L satisfies (3.1), and so Φ is of class C 1 . Therefore we have {x : Φ(x) = inf Φ} = {x : DΦ(x) = 0} which is closed and convex, and (i) becomes a consequence of Theorem 3.2. The assertation (ii) is a straightfoward conseconce of (i).

We introduce C T,ν (x)(t) := 1 ν ν-1 k=0 x(t + kT ), when x is a Bohr-ap solution of (1.1), for all ν ∈ N * . By using a Theorem of Besicovitch, [START_REF] Besicovitch | Almost periodic functions[END_REF] p.144, there exists a Tperiodic continuous function, denoted by x T , such that lim ν→∞ C T,ν (x) -x T ∞ = 0. We easily verify that lim ν→∞ C T,ν (x) -x T C 1 = 0. Since L is autonomous, t → x(t + kT ) is a Bohr-ap solution of (1.1). Since C T,ν (x) is a convex combinaison of Bohr-ap solutions of (1.1), C T,ν (x) is a Bohr-ap solution of (1.1), and x T also by using the closedness of the set of Bohr-ap solutions. And so x T is a T -periodic solution of (1.1). By using a straightforward calculation we see that a(C T,ν (x), 2π T ) = a(x, 2π T ) and consequently a(x T , 2π T ) = a(x, 2π T ). When a(x, 2π T ) = 0 then x T is not constant that proves (iv). To prove (iii) it suffices to choose T 1 ∈ (0, ∞) such that 2π T 1 (Z -{0}) ∩ Λ(x) = 0, and then all the Fourier-Bohr coefficients of x T 1 are zero except (perhaps) the mean value of x T 1 which is equal to M{x}.

The assertions (i) and (ii) are extensions of the Theorems 3 and 4 in [START_REF] Blot | Calculus of Variations in Mean and Convex Lagrangians[END_REF]; the assertions (iii) et (iv) are extension to neutral delay equations of Theorem 2 in [START_REF] Blot | Calculus of Variations in Mean and Convex Lagrangians, II[END_REF].

The space (AP 1 (R n ), . C 1 ) does not possess good topological properties like to be a reflexive space. It is why in the following section we extend our variational formalism to the Hilbert space B 1,2 (R n ). 

∃α ∈ (0, ∞), ∃a ∈ [0, ∞) , ∀t ∈ R, ∀z, w ∈ E, |g(z, t) -g(w, t)| ≤ a. |z -w| α Let p, q ∈ [1, ∞) be such that p = αq.
Then the two following assertations hold.

(i) If u ∈ B p (E) then t → g(u(t), t) ∈ B q (F ). (ii) The Nemytskii operator on g, N g : B p (E) → B q (F ) defined by N g u(t) := g(u(t), t), satisfies N g u -N g v q ≤ a. u -v α p
for all u, v ∈ B p (E).

Proof. We set b(t) := g(0, t), and so we have b ∈ AP 0 (R) and the Hölder assumption

implies |g(x, t)| ≤ a. |z| α + b(t) for all z ∈ E, t ∈ R. If u ∈ B p (E) then we have |g(u(t), t)| ≤ a. |u(t)|
α + b(t) for all t ∈ R, and since b is continuous we have b ∈ L q loc (R, R) (the Lebesgue space), and since (|u(t)| α ) q = |u(t)| p we have

|u| α ∈ L q loc (R, R) Since u ∈ B p (E)
there exists a sequence (u j ) j in AP 0 (E) such that lim j→∞ u -u j p = 0. By using Theorem 2.7 in [START_REF] Yoshizawa | Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions[END_REF] p. 16, setting ϕ j (t) := g(u j (t), t), we have ϕ j ∈ AP 0 (F ), and a straightforward calculation gives us the following inequality :

M{|g(u(t), t) -ϕ j (t)| q } 1 q ≤ a.M{|u -u j | p } 1 q = a u -u j α p ,
and consequently we obtain lim j→∞ M{|g(u(t), t) -ϕ j (t)| p } 1 q = 0 that implies : t → g(u(t), t) ∈ B q (F ), and so (i) is proven; moreover the last previous inequality becomes this one of (ii) when we replace ϕ j (t) by g(v(t), t).

This lemma is an extension to the non autonomous case of Theorem 1 in [START_REF] Blot | Oscillations presque-périodiques forcées d'équations d'Euler-lagrange[END_REF].

Lemma 4.2. Let f ∈ AP U (E ×R, F ) be a function such that the partial differential

D 1 f (z, t) exists for all (z, t) ∈ E × R and such that D 1 f ∈ AP U (E × R, L(E, F )).
We assume the following condition fulfilled.

(C) There exist a 1 ∈ [0, ∞), such that, for all z, w ∈ E, and for all t ∈ R,

|D 1 f (z, t) -D 1 f (w, t)| ≤ a 1 . |z -w| .
Then the Nemytskii operator

N f : B 2 (E) → B 1 (F ), defined by N f (u)(t) := f (u(t), t), is of class C 1 and, for all u, h ∈ B 2 (E) we have (DN f (u).h)(t) = D 1 f (u(t), t).h(t).
Proof. First step : We show that there exist

a 0 ∈ [0, ∞), b ∈ B 1 (E), such that, for all (z, t) ∈ E × R, |f (z, t)| ≤ a 0 |z| 2 + b(t). |D 1 f (z, t) -D 1 f (0, t)| ≤ a 1 . |z| ⇒ |D 1 f (z, t)| ≤ |D 1 f (z, t) -D 1 f (0, t)| + |D 1 f (0, t)| ≤ a 1 . |z| + |D 1 f (0, t)| .
By using the mean value theorem, [START_REF] Alexeev | Commande optimale, French Edition[END_REF] p. 144, we have for all (z, t)

∈ E × R, |f (z, t)| ≤ |f (z, t) -f (0, t)| + |f (0, t)| ≤ sup ξ∈]0,z[ |D 1 f (ξ, t)| . |z -0| + |f (0, t)| ≤ sup ξ∈]0,z[ (a 1 . |ξ| + |D 1 f (0, t)|). |z| + |f (0, t)| = (a 1 . |z| + |D 1 f (0, t)|). |z| + |f (0, t)| = a 1 . |z| 2 + |D 1 f (0, t)| . |z| + |f (0, t)| ≤ a 1 . |z| 2 + 1 2 |D 1 f (0, t)| 2 + 1 2 |z| 2 + |f (0, t)| = (a 1 + 1 2 ). |z| 2 + 1 2 |D 1 f (0, t)| 2 + |f (0, t)| . Setting b(t) := 1 2 |D 1 f (0, t)| 2 +|f (0, t)|, and 
a 0 := a 1 + 1 2 . Since f ∈ AP U (E ×R, F ), and D 1 f ∈ AP U (E × R, L(E, F )), we have b ∈ AP 0 (E) ⊂ B 1 (E). Second step : We show that t → f (u(t), t) ∈ B 1 (F ) when u ∈ B 2 (E). Let u ∈ B 2 (E). Then the inequality |f (u(t), t)| ≤ a 0 |u(t)| 2 + b(t) implies that t → f (u(t), t) ∈ L 1 loc (R, F ). By using Lemma 4.1 with p = 2, q = 2, α = 1, and g = D 1 f we have t → D 1 f (u(t), t) ∈ B 2 (L(E, F )). Let (u m ) m be a sequence in AP 0 (E) such that u -u m 2 → 0 (m → ∞)
. By using the mean value theorem, [START_REF] Alexeev | Commande optimale, French Edition[END_REF] p. 144, we have, for all t ∈ R,

|f (u m (t), t) -f (u(t), t) -D 1 f (u(t), t).(u m (t) -u(t))| ≤ ( sup ξ∈]u(t),um(t)[ |D 1 f (ξ, t) -D 1 f (u(t), t)|). |(u m (t) -u(t))| ≤ a 1 . sup ξ∈]u(t),um(t)[ |ξ -u(t)| . |u m (t) -u(t)| ≤ a 1 . |u m (t) -u(t)| 2 ,
and consequently we obtain

M{|f (u m (t), t) -f (u(t), t) -D 1 f (u(t), t).(u m (t) -u(t))|} t ≤ a 1 . u m -u 2 2 Since t → D 1 f (u(t), t) ∈ B 2 (L(E, F )) and since u m -u ∈ B 2 (E), we have t → D 1 f (u(t), t).(u m (t) -u(t)) ∈ B 1 (F ).
By using Theorem 2.7 in [START_REF] Yoshizawa | Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions[END_REF] p. 16, we have

t → f (u m (t), t) ∈ AP 0 (F ) ⊂ B 1 (F ),
and so, by setting

ψ m (t) := f (u m (t), t) -D 1 f (u m (t), t).(u m (t) -u(t))
we have ψ m ∈ B 1 (F ). The last previous inequality implies

lim n→∞ M{|f (u(t), t) -ψ m (t)|} t = 0,
and therefore we have t → f (u (t) , t) ∈ B 1 (F ). Third step : We show that, for all u ∈ B 2 (E), the opertor L(u) : B 2 → B 1 (R), defined by (L(u).h)(t) := D 1 f (u(t), t).h(t), is linear continuous. We have yet seen that t → D 1 f (u(t), t).h(t) ∈ B 1 (F ). The linearity of L(u) is easy to verify. By using a Cauchy-Schwartz-Buniakovski inequality we have

M{|D 1 f (u(t), t).h(t)|} t ≤ M{|D 1 f (u(t), t)| . |h(t)|} t ≤ M{|D 1 f (u(t), t)| 2 } 1 2 .M{|h| 2 } 1 2
that proves the continuity of L(u).

Fourth step : We show the differentiability of N f . Let u ∈ B 2 (E) and h ∈ B 2 (E). By using the mean value inequality, [START_REF] Alexeev | Commande optimale, French Edition[END_REF] p. 144, we have for all t ∈ R,

|f (u(t) + h(t), t) -f (u(t), t) -D 1 f (u(t), t).h(t)| ≤ sup ξ∈]u(t),u(t)+h(t)[ |D 1 f (ξ, t) -D 1 f (u(t), t)| . |h(t)| ≤ a 1 h 2 ,
and by using the monotonicity of M we obtain

M{|f (u(t) + h(t), t) -f (u(t), t) -D 1 f (u(t), t).h(t)|} t ≤ a 1 h 2 2 , i.e. N f (u + h) -N f (u) -L(u).h 1 ≤ a 1 h 2 2 that implies that N f is differentiable at u and that DN f (u) = L(u). Fifth step : We show that N f is of class C 1 . Let u, v ∈ B 2 (E). By using (C), for all h ∈ B 2 (E), such that h 2 ≤ 1, for all t ∈ R we have : |(D 1 f (u(t), t) -D 1 f (v(t), t)).h(t)| ≤ |D 1 f (u(t), t) -D 1 f (v(t), t)| . |h(t)| ≤ a 1 . |u(t) -v(t)| . |h(t)|
That implies, by using the Cauchy-Schwartz-Buniakovski inequality, the following majorization :

M{|(D 1 f (u(t), t) -D 1 f (v(t), t)).h(t)|} t ≤ a 1 M{|u(t) -v(t)| . |h(t)|} t ≤ a 1 u -v 2 . h 2 ≤ a 1 u -v 2 .
Therefore we have

DN f (u) -DN f (v) L ≤ a 1 u -v 2 that implies the continuity of DN f .
Note that Lemma is an extension to the non autonomous case of Theorem 2 in [START_REF] Blot | Oscillations presque-périodiques forcées d'équations d'Euler-lagrange[END_REF].

Theorem 4.3 (Variational Principle). Let L : (R n ) 4 × R → R, (X, t) = (x 1 , x 1 , x 1 , x 1 , t) → L(X, t) = L(x 1 , x 1 , x 1 , x 1 , t),
be a function and let r ∈ (0, ∞). We assume the following conditions fulfilled. 4 and for all t ∈ R where L X is the partial differential with respect to X ∈ (R n ) 4 (4.2)

     L ∈ AP U ((R n ) 4 × R, R), the partial differentials D k L(x 1 , x 1 , x 1 , x 1 , t) exist for all (x 1 , x 1 , x 1 , x 1 , t) ∈ (R n ) 4 × R and for k = 1, . . . , 4, and D k L ∈ AP U ((R n ) 4 × R, L(R n , R)). (4.1)      There exists a 1 ∈ [0, ∞) such that |L X (X, t) -L X (Y, t)| ≤ a 1 |X -Y | for all X, Y ∈ (R n )
Then the functional J : B 1,2 (R n ) → R, defined by Proof. We consider the operator L :

J(u) = M{L(u(t), u(t -
B 1,2 (R n ) → B 2 (R n ) 4 ≡ B 2 ((R n ) 4
), defined by (L(u))(t) := (u(t), u(t -r), ∇u(t), ∇u(t -r)). L is clearly linear continuous, therofre L is of class C 1 and we have DL(u).h = L(h).

We consider the Nemytskii operator

N L : B 2 ((R n ) 4 ) → B 1 (R), (N L (u))(t) := L(u(t), t).
By using Lemma 4.2, N L is of class C 1 and, for all U, H ∈ B 1,2 ((R n ) 4 ) we have

(DN L (U ).H)(t) = L X ((U (t), t).H(t) = 4 k=1 D k L(u 1 (t), u 2 (t), u 3 (t), u 4 (t), t).h k (t).
The mean value M : B 1 (R) → R is linear continuous, therefore it is of class C 1 , and DM{φ}.ψ = M{ψ} for all φ, ψ ∈ B 1 (R).

Consequently J = M • N L • L is of class C 1 as a composition of three mappings of class C 1 . Let u ∈ B 1,2 (R n ). If (i) is true then, for all h ∈ B 1,2 (R n ), we have 0 = DJ(u).h = DM{N L • L(u)} • DN L (L(u)) • DL(u).h = M{DN L (L(u)).L(h)} = M{D 1 L(u(t), t).h(t) + D 2 L(u(t), t).h(t -r) +D 3 L(u(t), t).∇h(t) + D 4 L(u(t), t).∇h(t -r)} t = M{(D 1 L(u(t), t) + D 2 L(u(t + r), t + r)).h(t)} t +M{(D 3 L(u(t), t) + D 4 L(u(t + r), t + r)).∇h(t)} t
and then we obtain (ii) by using Proposition 10 in [START_REF] Blot | Oscillations presque-périodiques forcées d'équations d'Euler-lagrange[END_REF].

Conversely, if (ii) is true then t → D 3 N L (u(t), t) + D 4 N L (u(t + r), t + r) ∈ B 1,2 (R n ),
and for all h ∈ AP 1 (R n ) we have :

M{(D 1 L(u(t), t) + D 2 L(u(t + r), t + r)).h(t)} t -M{∇(D 3 L(u(t), t) + D 4 L(u(t + r), t + r)).h(t)} t = 0
therefore by using Proposition 9 in [START_REF] Blot | Oscillations presque-périodiques forcées d'équations d'Euler-lagrange[END_REF] we obtain :

0 = M{(D 1 L(u(t), t) + D 2 L(u(t + r), t + r)).h(t) +(D 3 L(u(t), t) + D 4 L(u(t + r), t + r)).h (t)} t = M{(D 1 L(u(t), t).h(t) + D 2 L(u(t), t)).h(t -r) +(D 3 L(u(t), t)h (t) + D 4 L(u(t), t)).h (t -r)} t = DJ(u).h. Since AP 1 (R n ) is dense in B 1,2 (R n ), we have DJ(u).h = 0 for all h ∈ B 1,2 (R n ), therefore DJ(u) = 0.
Note that the Theorem 4.3 is an extension to the nonautonomous case of Theorem 4 in [START_REF] Blot | Oscillations presque-périodiques forcées d'équations d'Euler-lagrange[END_REF].

Theorem 4.5 (Existence, Uniqueness). Let L : (R n ) 4 ×R → R be a function which satisfies (4.1)(4.2). And which also satisfies the two following conditions :

L(., t) : (R n ) 4 → R is convex for all t ∈ R. (4.3)      There exist j ∈ {1, 2}, k ∈ {3, 4} and c ∈ (0, ∞) such that, for all (x 1 , x 2 , x 3 , x 4 , t) ∈ (R n ) 4 × R, we have : L(x 1 , x 2 , x 3 , x 4 , t) ≥ c(|x j | 2 + |x k | 2 ) (4.4)
Then there exists a function u ∈ B 1,2 (R n ) which is a weak Besicovitch-ap solution of equation (1.1). Moreover, if in addition we assume the following condition fulfilled :

        
There exists i ∈ {1, 2}, l ∈ {3, 4} and c 1 ∈ (0, ∞) such that the funtion M :

(R n ) 4 × R → R, defined by M (x 1 , x 2 , x 3 , x 4 , t) := L(x 1 , x 2 , x 3 , x 4 , t) -c1 2 |x i | 2 -c1 2 |x l | 2 ,
is convex with respect to (x 1 , x 2 , x 3 , x 4 , t) for all t ∈ R, (4.5)

Then the weak Besicovitch-ap solution of (1.1) is unique.

Proof. By using Theorem 4.3, the functional J is of class C 1 and, by using (4.3), J is a convex functional. Assumption (4.4) ensures that, for all u ∈ B 1,2 (R n ), we have J(u) ≥ c(M{|u|

2 } + M{|∇u| 2 }) = c. u 2 1,2 .
Since the mean value is translation invariant consequently J is coercive on B 1,2 (R n ), and so, [START_REF] Brezis | Analyse fonctionnelle. Théorie et applications[END_REF] p.46, there exists u ∈ B 1,2 (R n ) such that J(u) = inf J. Therefore we have DJ(u) = 0 and by using Theorem 4.3, u is a weak Besicovitch-ap solution of (1.1). The existence is proven.

To treat the uniqueness, we note that, under (4.5), the functional I : And so K(u) = b means that u is a weak Besicovitch-ap solution of (1.2). By using the assertion (i), K is bijective. We verify that

K(u) -K(v) * = gradE(u) -gradE(v) 1,2
for all u, v ∈ Dom(K), and by using (4.9) we see that K is an homeomorphism from

Dom(K) on B 2 (R n ). Since AP 2 (R n ) is dense in B 1,2 (R n ), K(AP 2 (R n )) is dense in B 2 (R n
) with respect to the norm . * , and since K(AP 2 (R n )) ⊂ AP 0 (R n ) ⊂ B 2 (R n ), we have proven (ii).

This result is an extension to the neutral delay equations of Theorem 5 in [START_REF] Blot | Oscillations presque-périodiques forcées d'équations d'Euler-lagrange[END_REF].

4 .

 4 A variational setting for the Besicovitch-ap functions E and F are Euclidean finite-dimensional spaces.

Lemma 4 . 1 .

 41 Let g ∈ AP U (E × R, F ) be a function which satisfies the following Hölder condition :

B 1 , 2 ( 2 1, 2 .

 1222 R n ) → R, defined by I(u) := J(u) -c1 2 M{|u| 2 } -c1 2 M{|∇u| 2 }, is convex and since J is of class C 1 , I is also of class C 1 . Note that we have DI(u) = DJ(u) -c 1 u | .. By using the Minty-monotonicity of the differential of a convex functional, for all u, v ∈ B 1,2 (R n ) we have :0 ≤ DI(u) -DI(v), u -v = DJ(u) -DJ(v), u -v -c 1 u -v | u -v ⇒ DJ(u) -DJ(v), u -v ≥ c 1 u -v consequently DE(v) = b # , i.e. gradE(v) = j -1 (b # ) = gradE(u), and by using (4.9) we have u = v. And so (i) is proven. Now we introduce the nonlinear unbounded operatorK : Dom(K) ⊂ B 1,2 (R n ) → B 2 (R n ) defined by (K(u))(t) := D 1 K(u(t -r)) + D 2 K(u(t)) -∇ [D 3 K(u(t -r)) + D 4 K(u(t))] .

  When u ∈ B 1,2 (R n ) satisfies the equation of (ii) in Theorem 4.3, we say that u is a weak Besicovitch-ap solution of (1.1)

	r), ∇u(t), ∇u(t -r), t)} t
	is of class C 1 , and the two following assertations are equivalent.
	(i) DJ(u) = 0, i.e. u is a critical point of J.
	(ii) D 1 L(u(t -r), u(t -2r), ∇u(t -r), ∇u(t -2r), t -r)
	+D 2 L(u(t), u(t -r), ∇u(t), ∇u(t -r), t)
	= ∇[D 3 L(u(t -r), u(t -2r), ∇u(t -r), ∇u(t -2r), t -r)
	+D 4 L(u(t), u(t -r), ∇u(t), ∇u(t -r), t)]
	(equality in B 2 (L(R n , R))).
	Definition 4.4.
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Now if u and v are two weak Besicovitch-ap solutions of (1.1), by using Theorem 4.3 we have DJ (u) = DJ (v) = 0, and consequently c 1 u -v 2 1,2 = 0, therefore u = v. Theorem 4.6 (Existence and Density). Let K ∈ C 2 ((R n ) 4 , R) be a function which satsfies the following conditions :

is convex and non negative on (R n )

The differential DK is Lipschitzian on (R n ) 4 .

(4.8) Then the following conclusions hold :

Proof. We introduce the functionals E and

They are special cases of the functional J of the Theorem 4.3, and consequently they are of class

. By using the F. Riesz isomorphism j :

we can define the gradients gradE(u) := j -1 (DE(u)) and gradE 1 (u) := j -1 (DE 1 (u)). By using the Minty-monotonicity of gradE 1 (due to the convexity of E 1 ) we have, for all u, v

that implie that gradE is strongly monotone and consequently, [START_REF] Deimling | Nonlinear Functional Analysis[END_REF] p.100, the following proprety holds

Therefore we have j -1 (b # ) ∈ B 1,2 (R n ) and by using (4.9), there exists u

and by using Proposition 10 in [START_REF] Blot | Oscillations presque-périodiques forcées d'équations d'Euler-lagrange[END_REF], we obtain that u is a weak Besicovitch-ap solution of (1.2). About the uniqueness, note that if v is a weak Besicovitch-ap solution of (1.2), then we verify that M{DK(v(t)).h(t)} t = M{b(t + r).h(t)} t for all h ∈ B 1,2 (R n ), and