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Abstract

We investigate notions of decidability and definability for the Monadic Second-
Order Logic of labeled tree structures, and links with finite automata using
oracles to test input prefixes.

A general framework is defined allowing to transfer some MSO-properties
from a graph-structure to a labeled tree structure. Transferred properties are
decidability of sentences and existence of a definable model for every satisfiable
formula. A class of finite automata with prefix-oracles is also defined, recogniz-
ing exactly languages defined by MSO-formulas in any labeled tree-structure.

Applying these results, the well-known equality between languages recog-
nized by finite automata, sets of vertices MSO definable in a tree-structure
and sets of pushdown contexts generated by pushdown-automata is extended to
k-iterated pushdown automata.

Key words: Labeled tree structures; MSO definable sets; Automata with
oracle; Iterated pushdown structures.

Introduction

Initiated by the work of Biichi on words, the study of links between automata
and logic has permit to identify structures having a decidable Monadic Second-
Order theory. In particular, Rabin proved in [28] decidability of the MSO-theory
of infinite tree structures in which numerous properties are definable and theories
are interpretable. These works have also led to a logic characterisation of regular
languages: languages recognised by finite automata are exactly sets defined by
MSO-formulas in a tree structure.

The goal of this paper is to extend these works to the study of labelled
tree structures: identify labellings for which tree structure have a decidable
MSO-theory, for which every formula admits a definable model and give an
automata-characterization of the definable sets.

To achieve this goal, we introduce new interesting objects and results. First,
we define a class of word/tree automata with prefix-oracles (i.e., sets of words
over the input alphabet) used to test the already processed prefixes of inputs.
Languages and forest recognized by prefix-oracles automata enjoy nice property,
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in particular, the Rabin’s correspondence between regular forests and models
of MSO-formulas over infinite trees can be extended to these languages: forests
recognized by automata with oracles O, ..., O,, are forests MSO-definable in
tree structures extended by unary relations O, ...,O,,. Remark that this ap-
proach has already been devised in [32] to characterise some proper subclasses
of regular languages by using regular prefix-oracles and to study their definabil-
ity in First-Order Logic over extended word structures. However, the definition
of automata with prefix-oracles does not explicitly appear in this paper since
regular prefix-oracles can be simulated by the direct product of finite automata.
Second, we establish transfer theorems, allowing from a structure, to construct
a tree structure having some similar MSO properties. This approach is common
for the transfer of decidability (for example the transfer of decidability from
a structure to its tree-like structure, (see [31] or [35]), or from a graph to it’s
unfolding (see [10])), but here, in addition to decidability, transferred properties
also applied to sets MSO definable in such structures and classes of automata
recognising them. In addition, our transfer of decidability allows to obtain new
decidability results which are not cover by the ones cited above. Properties are
transferred to a labelled tree structure from its image structure by any mor-
phism. If g : D — D’ is a mapping and 8§ is a relational structure over D, the
image structure p(8) of 8 has D’ as domain and its relations are the images by
w of the relations of 8.

Let t be a labelled tree, and t be the structure associated to t. For any
morphism of monoid p, and under some simple hypothesis on the labelling of ¢,
we obtain the following main results:

o Transfer of decidability: (Theorem 55) if p(t) has a decidable MSO-theory,
then t has a decidable MSO-theory,

o Transfer of the property of Definable Model: (Theorem 57) under a con-
dition on pu, if p(t) satisfies the property of Definable Model (DM), then
t satisfies DM. This property ensures for a structure S that any satisfi-
able formula admits at least one model which is MSO-definable in S (see
Definition 15),

e Theorem of structure: (Theorem 58) under the same condition on g, if
u(t) satisfies DM, then any set is MSO-definable in ¢ iff it is recognised
by a finite automaton using only oracles of the form p~1(D) where D is
MSO-definable in u(t). (Then each oracle tests a property MSO-definable
in p(t), on the image by p of input word prefixes).

Applying these results, we obtain tree structures having a decidable MSO
theory and classes of languages having two equivalent characterizations: as lan-
guages recognized by automata with oracles, and as sets MSO-definable in some
labelled tree structures. We thus extend the two characterizations of regular
languages mentioned above.

But regular languages admit a third characterization, as sets of pushdown
contexts generated by a pushdown system of transitions [21]. Some recent works



deal with “iterated pushdown automaton”, which are automata whose memory is
roughly a stack of stack ... of stack (see for examples [5, 7, 24, 19]), it is then nat-
ural to attempt to define a notion of “regular” sets of k-pushdowns (i.e., stacks
with & level of embedded pushdowns) which generalize the previous equality.
We give equalities between languages of k-pushdowns recognized by automata
with p-oracles, languages MSO-definable in a particular tree structure and sets
of k-pushdown contexts generated by a k-pushdown system of transitions. We
iteratively use the three transfer theorems on a family of structures (Pg)i>1
having a prefix words language Py, for domain. The language Pj, defines an en-
coding of the set k-pds of all k-pushdowns. The structure Py is MSO-equivalent
with the structure PDSy whose domain is k-pds and whose relations are those
induced by the classical instructions on k-pushdowns. This allows to define a
class of languages in Py, that can be expressed in four equivalent ways (Theorem
85):

e as languages recognised by finite automata with prefix-oracle,
e as languages defined by MSO-formulas in the tree structure of domain Py,
e as encodings of sets defined by MSO-formulas in PDSy,

e as encoding of sets of k-pushdowns generated by a store-controlled k-pds
system of transitions.

We show in addition that PDSy satisfies the property of Definable Model.

This paper is organized as follows. Section 1 is devoted to basic definitions
on words, logic, automata and k-pushdowns structures. It is also introduced the
notion of word automata with oracles. In Section 2, we extend to tree automata
the use of oracles. The Rabin’s correspondence between regular forests and
models of MSO-formulas over trees is adapted to these languages. In Section 3,
we develop a game-theoretical approach to prove the three transfer theorems.
We give also a simple application of the transfer theorems. Finally, we give in
Section 4 a definition of k-regular sets of pushdowns.

1. Preliminaries

1.1. Basic definitions

1.1.1. Some notations and conventions

Given a set A, we denote by |A| the cardinal of A. If s is a map from a set
A, then s(4) = {s(a) | a € A}. If V = (V4,...,V,) is a vector of subsets of A
then s(A) = (s(V4),...,s(Vy)). The characteristic function of V in A is a map
XK : A — {0,1}" defined for all z € A, by XK(:E) = (b1,...,by) where Vi, b; =1
iff u € S;.



1.1.2. Words and languages

If Ais aset, A* denotes the set of words (finite sequences) over A, and ¢ the
empty word. For u,v € A*, the length of u is denoted |u| and we write v < u if
v is prefix of u. A set P C A* is a prefix closed language if Yu € P, Vv € A* if
v < u then v € P.

1.1.3. Free group

Given a finite alphabet A | let us associate to each a € A the inverse symbol
a which does not belong to A. We denote by A the set of inverse letters of A
and define A = AU A. For every u = a, ---a, € A*, the inverse word of u is
U = by ---by where Vi € [1,n]:

if a; € A then b; = @;, and if a; = a € A4 then b; = a.

Let us then consider the reduction system S = {(aa,e), (aa,s)}. A word in A*
is said to be reduced if it is S-reduced, i.e., it does not contain occurrences of
aa or aa, for a € A. We denote by Irr(A) the set of reduced words in A*. As
S is confluent, each word w is equivalent (mod «+%) to a unique reduced word
denoted p(w).

We define the free group (Irr(A), e, o), where Vu,v € Irr(A), ue v = p(u - v).

1.1.4. Projections

For any integers 0 < i < j < n, for any vector of elements (ay,...,a,), we
define the projection m;(as,...,a,) = a; and 7. j(a1,...,an) = (ai,...,a; ).
For any alphabets B and A with B C A, the projection np : A* — B* is a
morphism defined Va € A by ng(a) = a if a € B and wg(a) = € else.

1.1.5. Trees and forests

Given finite alphabets ¥ and A and a prefix closed language P C A*, a
P-tree(X) (tree of domain P labelled by X) is a total function ¢ : P — X. The
set of all P-tree(X) is denoted P-Tree(X). In order to deal with unlabelled trees
in an uniform way, we introduce the special symbol T. Unlabelled trees are
then functions ¢ : P — {T}. We will often consider trees in P-Tree({0,1}"),
for n > 0 (with the convention that {0,1}° = {T}), we will denote this class
P-Tree,,. Rﬂemark that a tree in P-Tree,, can always be seen as the characteristic
function Xlsj of a vector S = (S1,...,5p), for S; C P.

We will use two kinds of operations on trees and tree-languages:

e Restriction: let ¢t € A*-Tree(X), #|p is the P-tree(X) obtained by restrict-
ing the domain of t to P. If I' C A*-Tree(X), then F|p = {t|p, t € F'}.

e Product: let ¢; be a P-tree(X;) and ty a P-tree(Xq), the product of t
and to is the tree t1"to € P-Tree(X; x Xo) fulfilling Yu € P, t1 t2(u) =
(t1(u),t2(w)). This definition can be extended to tree languages:
if Fy, Fy C P—Tree(E), then FlAFQ = {tlAt2| t, € Fy, ts € F2}



1.2. Finite automata with prefiz-oracle

Finite automata with prefix-oracle (or p-oracle) extend the class of finite
automata by allowing some membership tests on prefix of the input word. An
automaton A with p-oracles, on the input alphabet A is a finite automaton
associated to a vector O = (O1,...,0y) of subsets of A* and whose transitions
contain a boolean vector of size m called test. During the computation by A of
an input word, the already processed part u of the input is kept in memory and
a transition with test o canﬁbe applied if ¢ is equal to the characteristic vector
of u inside O (i.e., if &= x9. (u)).

Definition 1 (Finite automaton with p-oracles). Given m > 1, an au-
tomaton with m p-oracles is a tuple A = (Q, A,0, A, qo, F) where @ is a
finite set of states, A is the input alphabet, O = (O1,...,0n), O; C A*,
A CQxAx{0,1}™ x Q is the set of transitions, gy € @ is the initial state,
and F' C (@ is the set of final states.

A configuration of A is a pair (¢, urv) where uv € A* and 1 is a symbol which
does not belong to A. The binary relation on configurations is — 4 and consists
in all pairs (¢, uyav) — 4 (p,uav) such that (¢,a, x4 (u), p) € A. The language
recognised by A is L(A) = {u € A*[ (qo,1u) =% (qr,u1), qr € F}.

We will use the following notations: FAa(A) is the family of automata over A
with p-oracle (j, the class of é—regular languages (i.e., recognised by automata
in FAG(A)) is REGa(A). Remark that an automaton with oracle ) is simply a
finite automaton. We write then FA rather than FA” and REG for REG’.

Definition 2. An automaton with m p-oracles A = (Q, A, 6, A, qo, F) is said
to be deterministic if Vp € @Q, a € A, & € {0,1}™, there is one and only one
q € @ such that (p,a,0,q) € A.

Example 3. The following automaton is deterministic and recognize the lan-
guage {a"b"c"}p>1.

A= ({q07 q1, 42, g3, QF}7 {a7 b, C}v (017 02)7 A, qo, {QF}) where O1 = {anbn}n21,
Oz = {a™b"c"1},51 m>0 and A consists in

(q07 a, (07 0)5 ql): (Q1a a, (05 0)7 Q1)7 (qlv ba (07 0)5 QQ),

(Q27 ba (07 O)a CI2), (Q2a bv (Oa 1)7 QQ) (Q2a & (L 0)7 Q3)> (qu ¢, (17 1)a QF)a

(Q?n ¢, (07 O)a Q3) and (QSv ¢, (07 1)a QF)-

We associate with each automaton with m p-oracles A € FAZ(A), a finite au-

tomaton A € FA(A x {0,1}™) called source of A and constructed by moving
the test of each transition into the input letter of the transition: each transition

(p,a,d,q) is transformed in (p, (a,d),q). The language L(.A) can be obtain from
the language L(A) and the "characteristic language of O in A.

Definition 4. For every 0= (O1,...,0m), O; € A*, the characteristic lan-
guage of O is defined by: .
Lg = {((1,1, 51) . (an, Jn) S (A X {0, 1}m)*| Vi € [l,n], 61 = Xg* (a1 . aifl)}.



Observation 5. For every 0= (O1,...,0n), O; C A*:
REG(A) = {m (L NLY) | L € REG(A x {0,1}"™)}.
Using the Kleene’s theorem, we obtain easily:

Theorem 6. Let A an alphabet, and O a vector of subsets of A*,

1. REGé(A) is the class of languages recognized by deterministic automata in
FA9(A),

. g 18 closed under boolean operations.
2. REGY(A) is closed under boolean op

1.3. Iterated pushdown stores

Originally defined by Greibach in [22], iterated pushdown stores are storage
structures built iteratively. Let us fix an infinite sequence A = Ay, Ao, ..., Ag, ...
of disjoint and finite alphabets. For all £ > 1, we denote by Aj the finite se-
quence Aq, ..., A; and adopt the convention that Ao = {_L} and that Ay N A;
is empty of all i > 1.

Definition 7. We define inductively the set k-pds(Ax) (or k-pds when alpha-
bets of store are understood) of k-iterated pushdown-stores over Ayg:
0-pds(Ag) = {L},

(k +1)-pds(Axt1) = (Apra[k-pds(Ar)])" L [k-pds(Ar)]-

The set for all k-pushdowns for k£ > 0 is denoted it-pds(A). In the rest of the
paper, any 1-pds aj[L]ag[L]---ay[L] L [L] will be written simply a; ...a, L
and Vk > 0. We denote by Lj the “empty“ k-pds containing only symbols L:
J_():J_ and J_k+1:J_ [J_k]

From the definition, every w in (k + 1)-pds(Ax+1), & > 0, has a unique
decomposition as w = alwi|w’ with wy € k-pds(4y), v’ € (k + 1)(Ag+1)-pdsuU{e}
and a € Apyq U{L}. Furthermore, a =L iff o’ =¢.

Example 8. Let A; = {a1,b1}, Ay = {a2, b2}, As = {as} be storage alphabets,
Wer = ag[bg[blal J_]ag[al J_] J_Q] 1 [ag[al J_]CLQ[J_] J_Q] S 3—pdS(.A3)

Its decomposition corresponds to a = as, w1 = ba[bya; L]asla; 1] Lo and
w' =1 [ag[al J_]GQ[J_] J_g].

The two following maps will be useful.

Projection: the map associating each k-pds to its top i-pds, 1 < <k is
Phi: k-pds(Aq, ..., Ag) — i-pds(Ay, ..., A;), where Vw = afw;|w’ € k-pds,
Pik(w) =w and pgi(w) = pr—14(w1) if 1 <i <k —1.

The double subscript notation will be used to handle inverse functions,
the rest of the time, we will note p; for py ;.

Top symbols: the map associating any k-pds, k > 1 to its k top-symbols is
top : k-pds(Ay, ..., Ap) — (Ap U{L}) - (A2 U{L})(A1 U{L}) defined
Yw = afwi]w’ € k-pds by



top(w) = a, if k =1, else top(w) = a - top(wy).

For i € [1,k], and w € k-pds, we denote by top,(w) the i-th letter of
top(w).
Example 9. Let w,, be the 3-pds given in Example 8:
P2(Wex) = balbray Llaz[a; L] Lo, p1(wes) = b1as L, and
top(wex) = azbabi, top(P2(wez)) = bab1, top(p1(wez)) = b1.
An instruction on ¢t-pds is a function from it-pds to it-pds which does not
modify the level of the k-pushdowns (i.e., if instr is an instruction then for any
kE > 0 and any w € k-pds, instr(w) € k-pds). An instruction of level i is an
instruction which does not modify the levels greater than ¢ of any it-pds. Hence,
given instr an instruction of level i

if w = afur]w’ € k-pds, k > 4, then instr(w) = alinstr(wy)]w’

if w € k-pds, k < i, then instr(w) = w.

Therefore, to define an instruction of level i, there is only need to define it for
any w € i-pds.

Three instructions of level k are generally applicable to it-pushdowns.
Definition 10. “Classical” instructions of level ¢ > 1 over A are defined for
every w = blwi|w’ € i-pds(A;) by:

pop;(w) = w' if b #£1, else pop,(w) is undefined,

puShi,a(w) = a’[wl]wa

change; ,(w) = afwi]w’, if b #L else change; ,(w) is undefined.
For k > 1, Z,(Ax) = {pop; | i € [1,k]} U {push, ,,change, , | a € A;,i € [1,k]}.
is the set of instructions over Aj.
Thus, given w € k-pds and ¢ < k, pop,;(w) erases p;(w) on the top of the
store, push, ,. (w) consists in add a;[p;—1(w)] on the top of the top i-pds and
change; , (w) consists in replace top;(w) by a;.
Example 11. Let w = b3[ba[b; L] L2] L3 be a 3-pds,
popz(w) =13, popy(w) = bs[L2] L3, pop;(w) = b3[ba2[L] Lo] L3,
push21a2 (w) = bg[ag[bl J_]bg[bl J_] J_Q] J_g,
pushLal (w) = bg[bg[albl J_] J_Q] J_g,
change; . (w) = az[ba[b1 L] Lo] L3, change, , (w) = b3[bala; L] Lo] L.
We also define the inverse instruction of push; , which will be used to encode
the k-pushdowns as words.

Definition 12. For any ¢ > 1 and a € A;, the instruction of level i push, , is
defined for any w € i-pds(A;) by

push; ,(w) = " if there exists w’ € i-pds such that w = push, ,(w’)

push; ,(w) is undefined else.

In other words, Yw € k-pds,

pushy, ,(w) = " iff w = afwi]blwi]w” and W' = blw;]w”.



1.4. Iterated pushdown machines

We define here controlled iterated pushdowns systems which extend systems
with iterated storage structure intensively studied in the 70’s (see [2, 22, 25, 26])
and more recently in [13, 15, 16, 24, 5, 7, 6, 18, 17, 19]. Here we define iterated
pushdown machines whose transitions are conditioned by membership tests on
the store.

Definition 13 (Controlled k-pushdown transitions system). Let & > 0,
a k-TS is a structure 2 = (Q, Ay, C, A, qo, F) where @ is a finite set of states,
Ay is the sequence of pushdown alphabets, C = (C1,...,Cy) is a vector of
controllers C; C k-pds(Ax), go € Q is the initial state, FF C @ is a set of final
states and A C @ X top(k-pds(Ag)) x {0,1}™ x Zj(Ag) x @ is a finite set of
transitions. .

The family of all k&-TS controlled by €' is k-TSY (A1, ..., A). The set of
configurations of A is Cong = @ X k-pds(Ai, ..., Ax). The single step relation
—9C Cong x Cong of A is defined by

(p.w) —a (4,0) Hff (p, t0p(w), X(w), instr,q) € A, and o' = instr(w).

We denote by —g the reflexive and transitive closure of —g. The set of k-pds
generated by A is P(A) = {w € k-pds(Ax)| 3¢ € F, (qo, L) —a (q,w)}.

1.5. Logics
1.5.1. Relational structures

Let Sig = {r1,...,mn} be a signature containing relational symbols only,
where p; € N is the arity of symbol r;, a (relational) structure S over the
signature Sig consists of a domain Dgs and relations r1,...,r, on Ds where p;
is the arity of r;. We shall use three kind of structures:

Let P € A* prefix closed and ¢t = X}S; € P-Tree({0,1}"),

e Tree structures Let P € A* prefix closed and ¢t = XJS; € P-Tree({0,1}™),
we associate to ¢t the structure

i = <P7 g, (S’U,CCa)aeA, Sl7 ey Sn>7
where Va € A, succ, = {(u,ua), u € P, ua € P}.

e Image structures Let ¢ as previously and f : P — B be a map. We
denote by f(¢) the relational structure

f@) - <f(P)7 f(5)7 (Ea)a€A7 f(Sl>a R f(Sn>>a
where E, = {(f(u), f(ua)) | u,ua € P}.

e k-pds structure Given k > 1, PDS;(Ay) is the structure whose domain
is k-pds(Aj) and endowed with the binary relations pop;, push; , and
change; , for every 1 < i < k, a € A;. Relations pop;, push; , and
change; , are graphs of the corresponding instructions on pushdowns.



1.5.2. Monadic Second-Order Logic

Let Sig be a signature and Var = {z,y,z,...,X,Y,Z ...} be a set of vari-
ables, where x, y, ... denote first-order variables and X, Y’ ... second-order vari-
ables. The set MSO(Sig) of MSO-formulas over Sig is the smallest set such
that:

e r € X and Y C X are MSO-formulas for every z,Y, X € Var

o r(x1,...2,) is an MSO-formula for every r € Sig, of arity p and every
first order variables x1,...z, € Var

o if & U are MSO-formulas then =®, & vV ¥, 2. and 3X.® are MSO-
formulas.

Let S = (Ds,r1,...,7,) be a structure over the signature Sig, a valuation
of Var over Dg is a function val : Var — Ds U P(Ds) such that for every
z, X € Var, val(z) € Ds and val(X) C Ds.

The satisfiability of an MSO-formula in the structure S with valuation val is
then defined by induction on the structure of the formula, in the usual way.
An MSO-formula ®(z,X) (where z = (z1,...,2,) and X = (Xi,...,X,) de-
notes free first and second-order variables of @) over Sig is said to be satisfiable
in S if there exists a valuation val such that S,val = ®(z, X).

We will often abbreviate S, [z — a, X +— A] &= ®(z,X) by S = ®(a, A).

Definition 14. A structure S admits a decidable MSO-theory if for every
MSO-sentence ® (i.e. MSO-formula without free variables) one can effectively
decide whether S |= ®.

A vector D = (D1, ...,Dy,) of subsets of Dg is said to be MSO-definable in
S iff there exists ®(X1,...,X,,) in MSO(Sig) such that:

e SE®(Dy,...,D,,) and

o VS =(S1,...,50), with S; C Ds,if S = ®(S1, ..., S,m) then (S1,...,Sn,) =
(Dlv"'aDm)'

Remark that D is MSO-definable in S iff each D; is MSO-definable in S.

Definition 15. A structure S satisfies the property of Definable Model (or
DM for short) if for every formula ®(X1,..., X,) € MSO(Sig) satisfiable in S,
there exists D1,..., D, C Dgs such that

1. SE®(Dy,...,D,) and
2. (D1,...,D,,) is MSO-definable in S.

Let Sig = {r1,...,r} (vesp. Sig’ = {r},..., 7., }) be some relational signature
and S (resp. §’) be some structure over the signature Sig (resp. Sig’).

Definition 16 (Interpretations). An MSO-interpretation of the structure S
into the structure &’ is an injective map f : Ds — Ds+ such that,



1. f(Ds) is MSO-definable in &’
2. Vi € [1,n], there exists ®}(z) € MSO(Sig'), (where T = x1,...,x,,) fulfill-
ing that, for every valuation val of Var in Dgs

(S,val) = ri(z) & (8, foval) E P)(T).

Theorem 17 ([29]). Suppose there ezists a computable MSO-interpretation
of the structure S into the structure S’. If 8’ has a decidable MSO-theory, then
S has a decidable MSO-theory too.

Definition 18. If there exists a MSO-interpretation of S into &’, and there
exists a MSO-interpretation of S’ into S, then we say that S and S’ are MSO-
equivalent.

2. Monadic Second Order Logic and regular tree languages

2.1. Tree automata

We define here tree automata with p-oracle extending tree automata by
allowing membership tests on nodes of input trees. As previously, for a given
oracle 6, the application of any transition to a node u of a tree depends on the
characteristic vector of u in O.

Definition 19 (Tree automata with oracles). Let m > 1, a tree automa-
ton with m oracles is a structure A = (Q, %, 4,0, A, qo, ¢) where @, ¥ and A

are finite sets and A = {ay,...,an}, O is a vector of m subsets of A*, g € Q,
c:Q —1[0,n:,n.>0and A CQ x X x{0,1}"™ x Q".
Given t € A*-Tree(X), a run of A over ¢ is a tree r € A*-Tree(Q) fulfilling:

r(e) = qo and Yu € A*, (r(u),t(u), X?* (u),r(uay),...,r(uay,)) € A.

A run r is successful if for every infinite path # = ¢1 - -+ g, -+ in 7, the smallest
i € [0,n.] appearing infinitely often in the sequence c¢(q1),...,c(qn), ... is even.
The tree language recognised by A is denoted F(.A) and refers to the set of trees
for which there exists a successful run.

The class of A*-tree(3) automata with oracle O is denoted TFAG(A7 %) (or
TFA?(2) when A is understood), those of all O-regular A*-tree languages (i.e.

recognised by automata in TFA(A,%)) is TREG?(4,%) (or TREGY (D) for
short). Remark that a tree automaton with oracle @) is simply a tree automa-
ton. We write then TFA(X) rather than TFA?(X) and TREG(X) rather than
TREG(%).

Definition 20 (Characteristic forest of (j) Given O = (O1,...,0), with
O; C A*, the characteristic forest of O over ¥ is FO(X) = A*-Tree(X){x§. }-
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Let us map each tree automaton with m oracles A = (Q, %, A, 6, A, qo,c) €

TFA? to the tree automaton A = (@Q,% x {0, 1}’”,A,ﬁ,q0,c) € TFA where A
consists of every transition (g, (c, d),p1,...,pn) such that (¢, a,d,p1,...,pn) €

A. Tt can be easily checked that F(A) = m (F(A) N FQ(E))
Observation 21. For every O = (Oy,...,0,,), O; C A*,

TREGé(E) ={m(FnN FQ(E)) | F e TREG(X x {0,1}™)}.
Remark 22. It can be easily seen that {X(Z*} and FQ(Z) are O-regulars.

It is well known (see for example [28],[33]) that TREG(X) is closed under
union, intersection, complementation and product. Then, we obtain from Ob-
servation 21:

Theorem 23. The class TREGO(A Y) is closed under boolean operations and
TREGO(A, %, x ) is the class of all F\"Fy with Fy € TREG(A,%1) and
F, € TREGO (A4, 5,).

Given P C A* a prefix closed language, we define now automata recognising
P and for which the success of a given run depends only on nodes in P.

Definition 24 (P-cut automaton). An automaton A € TFAY is called P-
cut if there exists a special state ¢; € @ such that ¢(q,) =0 and
Vit € A*-Tree(X), r € A*-Tree(Q) run of A over t, for every u € A*:

ué¢ Piff r(u) =q..

In this case, for every run r, subtrees external to P are successful and to know
if r is successful, one only needs to test the parity condition on infinite paths
inside P (then if P is finite, any run is always successful).

In the rest of the paper we use the notation TREG2(A,Y) to refer to the
class of forests F|p, for F' € TREG?(4,%).

2.2. Tree languages as models of formulas

We adapt here the interpreted formalism of the MSO-logic of two succes-
sors (S2S) introduced in [28] to establish a correspondence between O-regular
forests and models of MSO-formulas over a labelled tree structure. For eas-
ier exposition, we shall restrict to binary trees (we denote Tree(X) instead of
{0,1}*-Tree(X)). All definitions and results of this subsection can be naturally
extended to the case where A is unspecified. In this subsection, O is always a
vector (O1,...,0p,), with m > 1 fixed and O; C {0,1}* and P is a prefix closed
subset of {0, 1}*.

We recall first the interpreted formalism of the MSO-logic of two successors
by sticking to notations used in [33](Section 11).
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Definition 25. An S2S-formula is an MSO-formula defined over the signature
(succy, sucey ), where suce; is a 2-ary relation symbol.

If (X1,..., X,n) is an S2S-formula and t = X?O,l}* € Tree,,, writet - ¢(X1,..., Xm)
if ({0,1}*, succo, sucer), [Xi — O;] E &( X1, ..., Xm).

Let T(p) = {t € Tree,, |t &(X1,...,X,)}. A tree language F € Tree,, is
called definable in S2S if F' = T(¢) for some S2S-formula ¢.

Theorem 26 ([28]). The union of classes TREG({0,1}"), for n > 0, corre-
sponds exactly to the class of tree languages definable in S2S.

We now interpret S2S-formulas by fixing some free variables and interpreting
formulas over restricted trees.

Definition 27. Let ¢(X1,...,X,) be an S2S-formula with n > m, we define
the forest TS (¢) (or TC if P = {0,1}*) by:

T($) = {t € P-Treep—m | XD F &(X1,..., Xo)}-
IfF= Tg(qﬁ) for some S2S-formula ¢, F' is called definable in SQS(IE (orin 5280
if P ={0,1}").

Remark that T6(¢) =71 e (T(¢) N F?({O, 1}™=™)). Then, using Obser-

vation 21, the Theorem 26 can easily be extended to the S2S¢ formalism.

Theorem 28. The union of classes TREGOﬂ({O7 1}¥), for k > 1, corresponds
exactly to the class of tree languages definable in S2S°.

Remark 29. Given ¢ an S2S-formula, the size (the number of states) of A €
TF&O such that F(A) = T9(¢) is the same as the size of A € TFA such that
F(A) = T(¢). Then if ¢ has ¢ quantifier alternations and its length is n, the

Lom)

size of Ais F(n,q), i.e., a tower 22 of height ¢ + 1 (see [20](§12.3)).

Observation 30. The structure X{Oﬂoyl}* has a decidable MSO-theory iff for all
S2S-formula ¢(X1, ..., X,,), one can decide whether X{Oﬁoﬁl}* Fo(Xy,..., Xm).

Corollary 31. The emptiness problem is decidable for forests in TREGé({O, 1}%)
for all k > 1 iff X{OOJ}* has a decidable MSO-theory.

PROOF. X?O,l}* has a decidable MSO-theory

iff for all S2S-formula ¢(X,..., Xm), one can decide whether X3 ;. -
O(X1,.. .. Xm)

12



iff for all £ > 1, for all S2S-formula ¢(Y1,..., Y, X1,..., Xm), one can de-
cide whether X?O,l}* Favy,... .Y, oW, Y, X, o0, X

iff for all k£ > 1, for all S2S-formula (Y1,...,Y,,, X1,...,X,,), one can de-

cide whether there exists ¢t € Treej, such that tAx?O 1} FoYr,.. . Ye, Xy, ..

iff for all k£ > 1, for all S2S-formula ¢(Y1,...,Y,,, X1,...,X,,), one can de-
cide whether T° (1)) = ()

s Xm)

iff for all £ > 1, the emptiness problem is decidable for forests in TREGa({O, 1}5).

We generalise now Theorem 28 to tree languages of domain P:

Theorem 32. If P is MSO-definable in XOOJ}*, with O; C P, then the union

of classes TREG}O:({O, 1}™) for m > 1 corresponds exactly to the class of S2Sg—
definable tree languages.

We start by proving the first implication:

Lemma 33. If P is MSO-definable in X{Oﬂoﬁl}* then every tree language definable
in S2Sg belongs to TREGg({O, 1}™) for some n > 1.

Proor. Let ¢(X1,...,X,) be an S2S-formula, by relativizing ¢ to P, we con-
struct an S2S-formula ¢p(X1,...,X,) such that VSq,...,S, C {0,1}*,

X{o1y- E ¢p(S1,..., Sn) iff XP = ¢(S1,...,5,) and Si,..., S8, C P.
Let F' = Tg(¢) and F' =T%(¢p), then F = F/,. From Theorem 28 applied to
¢p, the forest F’ is O-regular and thus F € TREGS({0,1}™).

For the converse implication, we first restrict ourself to P-cut automata (see
Definition 24).

Lemma 34. For every P-cut automaton A € TFAG({O, 1}™), the forest F(A) p
is S25-definable.

PRrROOF. Obviously, the proof of Theorem 28 also suits in the case of A is P-cut.

To achieve the proof of Theorem 32, it remains to show the following lemma.

Lemma 35. Let P C {0,1}* prefiz closed and O vector of subsets of P such
that P € REG?({0,1}). For every F € TREGY(X), there effectively exists a
P-cut automaton A € TFA?(Z) such that Fip=F(A)p.
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PROOF. Let P-i~' = {u e {0,1}*|ui € P}, for i =0,1 and P = (P-0"1, P
171). Clearly, {Xfo,l}*} € TREGY. Theorem 23 ensures that there exists A; €

TFA? (S x {0,1}2) such that F(A;) = FA{Xfo,l}*}' Then A; allows to describe
F, and also the borders of P. From A;, we construct now a new automaton
A able to check from the borders of P, that there exists a labelling of subtrees
external to P such that the complete tree belongs to F'.

For every ¢ € Q1 (the set of states of Ay), we construct A, € TFA whose
transitions are all (p, «, ¢) such that (p,«, (0,...,0),q) is a transition of .4; and
whose initial state is q. The emptiness problem being decidable for regular
forests ([28],[33][Chapter 9]), we can effectively construct the set Acc = {q €
Q1 | L(A,) # 0}.

Acc describes states from which, outside of P, one can find an accepting subtree.
Then, t € F(A;) iff there exists a run r over ¢, such that

e every infinite path r(uy)r(ug)---r(uy)- -+, with u; € P is successful, and

e for all u € P such that t(u) = (a,bo,b1) and b; = 0 for some i = 1,2,
r(ui) € Acc.

Now, we construct an automaton B; which is P-cut and such that F(A;)p =
F(B1)p. We obtain this automaton by adding ¢, to the set of states (with
¢(qr) = 0) and modifying the set of transitions of A; in the following way: a
transition (p, (a, bo, b1), 0, qo, q1) belongs to Qp iff

L4 bO - bl =1and (pa (aabO;bl)aaa quql) belongs to Q.Al) or

e 37 C {0,1} such that Vi € I, b; = 0 and ¢; = ¢, and 3(p, (o, bo, b1), 0, o, p1) €
Q 4, such that for all i, p; = ¢; if i ¢ I and p; € Accifi € I.

From this new automaton, it is then easy to construct a P-cut automaton A
recognising the language m (F(B1)). We have then F(A)p = F|p. This conclude
the proof of the Theorem 32.

Complexity analysis Suppose P is recognised by a word-automaton of

size Tp and F by a tree automaton of size 7. Then the size of A; is 7 - 7p, so is
the P-cut automaton A.
The construction of A requires to carry out 77p emptiness tests on automata
of size smaller than that of 7 - 7p. From [20][Cor 8.22], the emptiness test for a
parity tree automaton of size s can be made in time O(|X] - s*). Then A can be
constructed in time O(|X| - (7 - 7p)77F).

Corollary 36. The emptiness problem is decidable for forests in TREGIO;({O, 1}5),
forall k >1 iﬁﬁ has a decidable MSO-theory.

2.3. Regular trees and property of Definable Model

Regular trees form a remarkable family, as they correspond to unfolding of
finite graphs, i.e., of graphs of finite automata. They are useful in several ar-
eas of computer science (see [10] for a survey on basic theory and applications
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in semantics). We generalise here the notion of regular trees by defining trees
corresponding to unfolding of graphs of p-oracle automata. We shall use these
trees to study decidability and definability of the MSO-logic on labelled trees.
We first extend regular trees to O- regular trees. Each O- regular tree corre-
sponds to a deterministic word automaton with p-oracle O. We then study links
between existence of such a tree in a forest recognised with oracle-automata, and
the satisfiability of the DM property for a labelled tree structures. Eventually,
we close this subsection by defining tree automata without input. We show
that the study of emptiness problem and regular trees can be restricted to such
automata.

2.53.1. O-Regular trees
A tree t € A*-Tree(X) is said to be O-regular iff there exists a deterministic

word automaton A € FAO(A) and a function out : Q — X generating t, i.e.,
such that Yu € A*, q € Q,

(90,1 u) — 4 (g,ur) iff out(q) = t(u).

Remark 37. The following remarks will be useful:
1. Ift € A*-Tree(X) is O-regular, then for every a € X, the set Lo, = {u| t(u) =
a} is O-regular.

2. For every 6, the characteristic tree XQ* is O—regular.

We extend this definition to P-trees by saying that any t € P-Tree(X) is O-

regular when there exists ¢’ € Tree(2), O-regular such that ¢ = tf P

2.3.2. Property of Definable Model
We study links between regular trees and the property of Definable Model
(DM) formulated Definition 15.

Proposition 38. If P is MSO-definable in xg*, the following properties are
equivalent: T
1. x@ fulfils DM,

2. for alln > 1, for every non-empty forest F' € TREGO({O 1}™), there exists
D MSO- definable in XP such that F contains a D- reqular tree.

PROOF. Suppose P is MSO-definable in X(Z*: a simple rewriting of the DM
property using Theorem 32 implies the equivalence between these two following
properties:

(1) %€ fulfils DM,
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(27) for every non empty F C TREGg({O, 1}™), there exists S =(51,...,5)
MSO-definable in ﬁ such that the tree x5 belongs to F.

(2°) = (2) Suppose (27), according to Remark 37(2), the tree XIS; is Sregular.

(2) = (2’) Suppose that F' C TREGIi is O-regular and contains a D-regular
tree ¢. From definition of D- regular tree, the language {t} is D-regular.
Suppose that t = y° P> w1th S = (S1,...,5n), Theorem 32 ensures that

S is MSO-definable in X_P- Since D is MSO-definable in X_IO;, S is too.

Any nonempty regular forest contains a regular tree ([28], [33][Thm 9.3]), the
following result is then a straightforward corollary of the proposition above.

Theorem 39. For every finite alphabet A, the structure (A*, e, (succq)aca)
fulfills the property of Definable Model.

2.3.3. Input-free tree automata

To deal with emptiness problems or existence of regular trees, one can with-
out lost of generality work with input-free tree automata i.e., tree automata
whose input alphabet is {T}. In transitions of a such an automaton, the input
letter can be omitted and then the set of transitions is A C @ x {0, 1}7” x QA
In the sequel, we write TFAO(A) (resp. TFAO) rather than TFA? (A, {T}) (resp.
TFAS({T})).

Any tree automaton with m oracles A = (Q, X%, A, 0, A, qo, ¢) can be trans-
formedin B = (QxX, A, O,A, Qo, ¢) input-free where for every ay, ..., a, € 3,
(¢, @), 0, (p1, 1), ... (Pla), a))) € A iff (g, 0,0, p1,...,pja)) € A. Qo contains
every (qo, ), a € ¥ and (q,a) = ¢(q), Ya € X. (It remains to reduce Qo to
only one state, this construction being classical, we don’t describe it). Obvi-
ously, successful runs of B are exactly pairs r’ = v t, where r is a successful run
of A over t. We obtain then the following result which will permit to restrict
next proofs to input-free automatas:

Proposition 40. For every A € TFAa(A, Y), one can find an input-free au-
tomaton B € TFAé(A) such that:

1. F(A) # 0 iff there exists a successful run on B,

2. Vﬁ, F(A) contains a ]%—regular tree iff there exists a successful ]%—regular

run on B,
3. VP prefix closed, if A is P-cut, then B is P-cut.

Proposition 41. For every A € TFAa(A) input-free and deterministic, if there
exists a run of A then this run is unique and O-regular.

PROOF. Let us suppose that A = (Q,A,é,A,qO,c), with A = {a1,...,a,},
and consider the word-automaton A, = (Q,A,O, Ay, qo) where A, consists
of all transitions (g, a;,d,p;) such that (q,0,p1,...,pn) € A. Clearly, A, is
deterministic and if there exists a successful run of A, it corresponds to the tree
generated by A, associated to the function out : ¢ — ¢, Vq € Q.
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3. Logic for restricted oracles

We now restrict our study to tree automata with oracles of the form 0 =
(p (R1)s ..., pyp ' (Rm)), where y is a morphism from A* to any semi-group
S, P is a prefix closed subset of A* and R; C S.

We use a game-theoretical approach of these automata to express problems

over 6—regular forests by means of MSO-formulas over the graph structure M(X]O;)
(see Section 1.5.1). This allows to show that if P is MSO-definable in X_é , then

the MSO decidability can be transfered from ,u(XIO;) to XQ. We also define a
condition on yp making possible the transfer of the property DM and such that

the class of sets which are MSO-definable in X_}O; corresponds exactly to class of

1 p~1(D)-regular languages intersected with P, for any D MSO-definable in
1(x%)-

3.1. Games for prefiz-oracle automata

3.1.1. Parity game

A two-player game (player 0 and player 1) is a colored directed graph whose
set of vertices V is partitioned in player 0’s vertices (Vy) and player 1 ones (V1),
associated to a winning condition. Parity games are special games which have
been much studied ([14, 20, 23])

Definition 42. A parity game is a tuple G = (Vy, V4, E,vg,¢) where V =
Vo lJ V1 is the set of positions, E C V x V is the sets of possible moves, vy € V
is the start position and ¢ : V' — [0, maxz] is a map associating to each vertex
a priority by means of an integer which belongs to a bounded interval. A play
in G is a (finite or infinite) path in the graph (V, F) starting at vg. If the play
is finite and ends in any vertex v € V,, € € {0,1} (i.e., player e cannot play
anymore), then player € is declared loser (and therefore the other player wins
the play). Otherwise, the winner is determined by ng, value of the minimal
priority appearing infinitely often in the play. In other words, if the play is
Vo1 -+ + U - - -, then ng is the smallest integer having an infinity of occurrences
in the word c(vg)c(vy) -+ c(vy)---. If no is even, player 0 is declared winner,
otherwise player 1 wins the play.

A strategy for player ¢ is a map s : (V*V.) — V connecting any prefix of
play p = vov1 ... v, to a vertex v,41 such that (v,,v,41) € E. A strategy is
memoryless if for any p = vov; ... v, the value of s(p) depends only on the
current vertex v,. In this case, the strategy is represented as an application
from V, to V. A play p = vgv1...v, ... is said conform with s if for any ¢ > 0
if v; € V,, then v;1 = S(vg...v;). A strategy s for player e is a winning
strategy if every play conform with s is won by player e.

The notion of winning strategy allows to capture vertices from which a player
is sure to win (if he chooses a good strategy). We say that player ¢ wins the
game if there exists a winning strategy for e

The following result will be useful in the sequel.
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Theorem 43 (|14, 20]). Given any parity game G:

1. one and only one player wins the game
2. for ¢ € {0,1}, if player € wins the game, then player € has a winning
memoryless strategy.

3.1.2. Games with p-oracle and regular trees
We use now parity games to express some problems related to O-regular tree
languages in the context fixed as follows:

e A is a finite alphabet, supposed reduced to two element: A = {ag, a;} (all
results established in this subsection remain true if A is unspecified),

e 4 is a surjective morphism from A* toward a semi-group (M, x),
e P is a prefix closed subset of A*,

o O=(wp "(R1),....pp~ (Rp)), with m > 1 and R; C M.

We prove that the emptiness problem for 6—regu1ar tree languages reduced to
determine the winner of a parity game whose vertices are included in the product
of u(P) with a finite set. From this result, we show (Proposition 53(1)) that
the emptiness problem for Oi—regular tree languages reduced to the satisfiability
of an MSO-formula in ;(x9) (see Section 1.5.1). We prove, in addition, that
every non-empty 6—regu1ar tree language contains a p(ﬁ)—regular tree, where
D is MSO-definable in 1(x9) (Proposition 53(2)).

We first restrict ourself to the study of input-free P-cut automata. Advan-
tage of using P-cut automata is that to know if there exists a run and if there
exists a successful run, there is only need to consider nodes in P. In addition,
in a run of a P-cut automaton, nodes which do not belong to P are indicated
by the label ¢ .

Definition 44 (Game with p-oracles). Given an input-free P-cut automa-
ton A= (Q, A, 0, A, qo, ¢), we construct the parity game G4 = (Vp, V1, E, vp, )
where

Vo = pu(P) x Q and Vi = u(P) x A, vo = (u(€), qo)

FE = FEyU Fq where Fg CVy x Vi, B4 CVp x V and

EO = {((map)u (mué)) | 6 = (p7 XM(O)(m)7p07pl) € A}?

Ey = {((m75)5 (m*:u’(al)apl)) |pz # ql1, §= (p567p07p1)7 te {05 1}} and

¢ is defined by Cl(map) - C(p) and Cl(ma (p7 aap()apl)) = C(p)

Each player moves alternately in the game. In position (p(u),p), player 0
chooses a transition d = (p, 3, pg, p1) from those fulfilling 6 = xG. (u). He moves
then to (p(u),d). Now it’s the player 1 turn to play, he chooses a direction a;
to follow (i € {0,1}) and moves to (u(ua;),p;). Hence, pu being a morphism, for
every prefix of play ending in (m,z) € V, then m = u(u) where u consists of
the sequence of directions chosen by player 1.
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Lemma 45. For any input-free P-cut automaton A € TFAC(A), A has a suc-
cessful run iff player 0 has a winning strategy in G 4.

PRrROOF. Let r be a run on A, and S, the strategy defined by: Vug ... v, prefix
of a play with v,, € Vj and such that the sequence of directions chosen by player
lisue A",

Sr(vo - von) = (p(u), (r(u), xg(u), r(uag), r(uar))).

Clearly, s, is winning iff r is successful.

Conversely, given any winning strategy S for player 0 we construct the tree
rs by applying to each vertex u, the transition given by s(p,) where p, is the
prefix of play conform with s whose sequence of selected directions is u:

e 15(¢) = qo and p- = (1(€), qo),

e Vu € P, if s(p,) = (u(u), (p, 0, po,p1)), then Vi € {0,1}, rg(ua;) = p; and
Pua; = Pu - S(pu) : (N(U) *M(ai)api);

o Vué P, rs(u) =q..

The tree thus constructed is obviously a run on A and is successful iff s is a
winning strategy.

Thus by applying Theorem 43:

Lemma 46. For any input-free P-cut automaton A € TFAC(A), A has a suc-
cessful run iff player 0 has a memoryless winning strategy in G 4.

Given a memoryless strategy s for player 0, we consider the game G% = (0, Vo U
Wi, E5, ), where E5 = Eq U {(v,v') | v € Vo,s(v) = v'}. Without loss of
generality, we can suppose that A is complete, i.e., for every (g, 0), there exists
a transition (g, 0, ¢1,¢2). In this case, any finite play in G 4 ends in a player 1’s
position, and is then winning for player 0.

Lemma 47. For every complete input-free P-cut automaton A € TFAG, any
memoryless strategy for player 0 S is winning in G 4 iff the reduced game G° is
winning for player 0.

PRrROOF. An infinite sequence of vertices vg--- v, --- is a play in G5 iff it is a
play in G 4 conforms with s. Since vertices of G4 and G® have same priority,
an infinite sequence of vertices is a winning play in G 4 conform with s iff it is
a winning play in G%.

Any parity game G = (Vp, Vi, E,vp,¢) with ¢ : V' — [0, maz] is naturally

associated to a relational structure G of domain V' defined over the signature
G = Vo,V1,E,vp,co,...,Cmaz), where for all i € [0, maz], the arity of ¢; is 1.
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Lemma 48. For every complete input-free P-cut automaton A € TFAO, one
can find an MSO(G 4 )-sentence WIN such that Vs memoryless strategy for player
0in G4,

G% = WIN iff S is winning.

ProoF. We construct a formula Py such that G5 = P iff there exists a play
in G° lost by player 0, i.e., iff there exists an infinite path vg - - - vy, - - - such that
the smallest integer appearing infinitely often in ¢/(vg) - ¢(vy,) - -+ is odd.

PO = E')(7 Xo, N 7Xmax;

1. X is a path containing vy

2. ¥n, X,, = {z appearing infinitely often in X | ¢, (x)}
3. the smallest n such that X,, # 0 is odd

Using [20][§12.2], “being a path” is MSO-expressible in G*,. From Theorem 43,
player 0 loses the game iff player 1 wins the game, hence WIN := = F.

We relate now these results to the MSO-logic of the structure M(X]O;) by
means of an encoding the subsets of Vj, and an encoding of the player 0’s

memoryless strategies, with a vector of subsets of u(P). Given A € TFAC | we
fix the following notations:

A ={01,...,0q}, where ¢; # 0, for all i # j,

Q={s1,...,8:},

for every D C V, g(D) = (g1(D),...,ga(D), hi(D),..., h-(D)), where
Viell,...d],jel,7],

9i(D) = {o | (0,6:) € D}, hj(D) = {0 | (0,s;) € D},

we associate to any player 0’s memoryless strategy S the vector S, =
(Ss1,---+5s,4), where Vi € [1,d],

Ssi = {0 € p(P), s(o,m(6:)) = (0,0i)},

and denote S, the vector ur;(gs).
Remark that S, gives a complete characterization of s.
Lemma 49. Given an input-free P-cut automaton A € TFA?, s a memoryless

strategy for player 0 in G4, and ¢(X1,...,X,) an MSO(G.)-formula, one can
effectively construct an MSO-formula ¢9 such that VD1, ... D, C u(P)x (QUA)

Gy = ¢(D1,.., Da) iff n(x%) = ¢7(9(D1), ., 9(Dy)).
PROOF. Let us construct ¢ if ¢ is an atomic formula:

e Vic([l,d],je[l,7], 0,0 € u(P),
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— E3((0,6;), (', p;)) iff e € {0,1} s.t. 0/ = oxp(a.) and moq(0;) = pj
— ES((U,pj), (0”,61')) iff o/ = o, 7T1(6i) =Dpj and o € Ss,i
Then (E®)9(X1,..., Xptr, Y1,..., Y,y ) can be expressed in the following
way: Ji € [1,d], 3j € [1, 7] such that
— either X; = {2}, Ysy; = {y} and the other ones are empty and
Je € {0,1} s.t. y =z * p(ae) and moy(d;) = p;
—orY; = {y}, Xq+; = {x} and the other ones are empty and y = z,
T (51) =Dpj and x € Ss,i

o ¢, (X1,...,Xptr) corresponds to the XOR of the two following proper-
ties:

— Ji € [1,d] such that X; = {z} and the other ones are empty and

c(8i) = n,
— 3j € [1,7] such that X41; = {2} and the other ones are empty and
c(p;) =n.

¢ if $(X,Y) =X CY,
then ¢9(X1,..., Xayr, Y1,..., Yaqr) :=Vie [1,d+ 7], X; C Y.

Finally, if ¢ is not atomic, ¢¢ is given by an obvious induction.
Combining Lemma 48 and Lemma 49, we obtain:

Lemma 50. Let A € TFA? complete, input-free and P-cut, one can find an
MSO-sentence SG, such that for every memoryless strategy S for player 0 in
G.A’

u(x‘gs) E sa iff s is winning.

Given D = (Dy, ..., Dq) any vector of subsets of u(P), it is easy to determine
if there exists a memoryless strategy s such that D encodes s (i.e such that
D= 5?5) Indeed, if we suppose A is complete, there is just to check that for
every o € u(P), for every state p, there exists one and only one i € [1,d] such
that, the first component of §; is p, and X“(é) (o) = m2(0;) and o € D;. This
property can be easily expressed in MSOL, hence, we deduce from Lemma 50:

Lemma 51. For every complete P-cut input-free automaton A_}E TFAO, there
exists d > 0 and an MSO-formula REG A(X71, ..., Xq4) such that VS = (S1,...,S4),
S; C u(P), the following properties are equivalent:

L. /L(ﬁ) ': REGA(Slv SRR Sd)

2. S encodes a winning memoryless strategy for player 0 in G 4.
Let us associate to A and any memoryless strategy S, a deterministic input-

free tree automaton Ag; = (Q,A,i,As,qo), where Ag is constructed in the
following way:
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L VJ; (%.757 CIJ_aCIJ_) S AS
e if §; = (q,0,p0,p1) € A, then (q,g,po,pl) €A, Vbe {0,1}4 such that

— b =1,
— Vj #1, b; = 0 if the first component of J; is q.

This automaton follows the transitions of A indicated by the strategy s.

Lemma 52. For every winning memoryless strategy S for player 0, As is de-
terministic, P-cut and its unique run is a successful run of A.

Proor. By choice of test vectors, As is clearly deterministic. A being complete
and from definition of Ss, As admits a run 7 since Vu € P, there exists i € [1,d]
such that r(u) = 0; and p(u) € Ss;. We prove that r is a successful run of A:

e 7(¢) = qo,

e Vu € A* the transition (r(u),xf;i (u), r(uap), r(uar)) belongs to Ag and
there exists then ¢ € [1,d] and & such that §; = (r(u), 3, r(uag), r(uag)) €
A and Ss; = 1. Hence, we have in addition s(u(u),r(u)) = (u(u),d;) and

then & = x© (u).
Then, r is a run of A, and since s is winning, r is successful and Ag is P-cut.

Since As is deterministic, Proposition 41 implies that its unique run is a S.-
regular tree. Applying Lemma 40, these results can be extended to the case of
automata with inputs. In addition, from Lemma 35, if P is MSO-definable in

X_g*; for every B € TFAG(A), there exists a P-cut automaton A in TFAa(A)
such that F(A) p = F(B)p. Hence, when P is MSO-definable in X_?*; Lemma

52 and Lemma 51 can be extended to every automaton in TFAC. The following
proposition summarize these results.

Proposition 53. For every forest F € TREGg(A, Y), where P is MSO-definable
mn XQ*, there exists d > 0 and a formula REGF(X1,...,X4), such that

1. F# 0 iff u(x9) E3X1,.... Xq- REGP(X1, ..., Xa)
2. for every S = (S1,...,54), Si C u(P),
if u(&) E REGE(S1,...,S54), then F contains a u‘pfl(g)—regular tree.

Complexity analysis.

Lemma 51: Let A be an automaton fulfilling the conditions of Lemma 51, and
suppose T is the number of states of A. The formula REG 4 defined Lemma 51
contains 3 quantifier changes and its length is O(7). Indeed, using [20](§12.2),
the formula WIN constructed in Lemma 48 contains 3 quantifier alternations
and its length is constant. The formula SG obtained in Lemma 50 has then 3
quantifier changes and has length O(1). Finally, the transformation of sG in
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REG does not modify the number of quantifier changes but adds O(r) symbols.
Then REG has 3 quantifier changes and has length O(7).

Proposition 53: Suppose that 7 is the number of states of an automaton recog-
nizing ' and 7’ is the number of states of the word-automaton recognizing P.
Using Lemma 35 we construct in time O(|%| - (7 - 7/)7™') a P-cut automaton
A having 7 - 7' states and such that F(A)p = Fp. This automaton can be
transformed in an input-free automaton having |X|41- 7 - 7/ states.

Finally, using the complexity analysis of Lemma 51, the formula REGp defined
in Proposition 53 contains 3 quantifier changes and its length is O(|%|I4 - 7. 77).
This formula can be constructed in time O(|S|- (- 7/)77).

3.2. Transfer theorems
We use the Proposition 53 to transfer some properties of the structure 1(x9)

toward the structure Xg. The following definition fixes hypothesis for which
these results hold.

—

Definition 54 (Transfer Hypothesis (TH)). We write TH(u p, O) if:
u: A* — M is a surjective mgrphism of semi-group, P is a prefix closed
language in A*, and there exists R vector of subsets of u(P) such that P €

REG"* (P (4) and 0 =y} (R).

Theorem 55 (Transfer of decidability). Let p be a morphism from A* to
any semi-group, P C A* be a prefiz closed language, and O a vector of subsets
of P, such that TH(p, O).

If the MSO-theory ofu(x_g) is decidable, then the MSO-theory ofxg is decidable.

PROOF. Suppose that the MSO-theory of ,u(x_IO;) is decidable. For all F €
TREG}O;, one can decide whether M(X]O;) = 3X,REGp(X) where REGp is the

formula established in Proposition q5fi.e., whether F' is empty. Hence, from
Corollary 31, the MSO-theory of ﬁ is decidable.

Complexity analysis.

Let Cp(n,T) be the time to decide the validity of a sentence in MSO(x%) of
length n and having 7 quantifier alternations. Suppose that Pis recognized by
an automaton having 7p states. Let ¢ be a sentence in MSO(&) of length n and
having 7 quant{ﬁer changes. From Remark 29, we can compute a tree automa-
ton A € TREGY such that T(¢) = T(A), and having F(n,) states. Then, the
formula REGp(4) has 3 quantifier alternations and length |2 F(n, 7)7p and
is constructed in time O(|X|(F(n, 7)7p)F (™77 Finally, we decide if ¢ is true
in time Cp (3, |S|I F(n, 7)7p) + O(|Z|(F(n, 7)7p)F D7) (or Cp(3, F(n,T)) if
P = A*).

We define now a condition on pp allowing to transfer the DM property (see
Definition 15).
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Definition 56. Given any surjectif morphism p from A* into any semi-group,
and P C A* prefix closed, the restricted map pp is said to be MSO-invertible

if for every O vector of subsets of P, for every D C u(P),
if D is MSO-definable in p(xp) then yp~' (D) is MSO-definable in x

|*UO¢

Theorem 57 (Transfer of property DM) If TH(u|p,6) and pp is MSO-
invertible, then u(xp) satisfies DM implies XP satisfies DM.

PROOF. Let F' be a non-empty O- regular forest in P-Tree,,, from Proposition
53 and since u(xp) fulfills DM, there exists S such that F' contains a et (S)-

regular tree and S is MSO-definable in ,u(XP) Since pjp is MSO-invertible,
there exists D = u‘p_l(S) such that D is MSO-definable in XP and F’ contains
a ﬁ—regular tree. Hence, from Proposition 38, ﬁ fulfills DM.

Complexity analysis For a formula in MSO(X_Q) of length n and having

T quantifier alternations, we denote by Cps(n,7) the time needed to construct
a formula that defines a model, and by (ns,7s) the size of a formula that
defines inverse models. Suppose P is recognized by an automaton having 7p

states. Given ¢ € MSO(XIO;) of length n and having 7 quantifier changes, one

can construct a formula that defines a model of ¢ in time Cps(3, F(n, 7)) +
O((2F (n, ) - 7p) 7)Y (or Cpr(3, F(n, 7)) if P = A*).

Theorem 58 (Structure Theorem). If yp is MSO-invertible, TH(u‘p,(j)

and u(xg) satisfies DM, then for every L C P, the following properties are
equivalent:

e [ is MSO-definable in x

|*UO¢

e there exists D MSO-definable in u(&) such that L is up’l(ﬁ)-regular.

Proo¥r. Let us suppose that L is MSO-defined in Xg by a formula ¢(X). Then
from Theorem 32, there exists a O-regular forest F = {xE} such that F =
To(gb). From Proposition 53 and since pu(x P) fulfills DM, there exists D such
that x5 is pp ~1(D)-regular and D is MSO-definable in ,LL(X_P). From Remark
37.1, the language L is u‘pfl(l_)')—regular.

Conversely, given ﬁ, MSO-definable in M(X_}O;); then since u‘pfl is MSO-

invertible, u|p_1(5) is MSO-definable in Xg- Given L a u|p_1(ﬁ)—regular lan-
guage, by using the automat%—characteriﬁion of L, it is then easy to find a
MSO-formula defining L in x%.

24



Complezity analysis.

For a formula in MSO(Xg) of length n and having 7 quantifier alternations,
we denote by Cas(n,7) the time needed to construct a formula that defines
a model, and by (ngs,7s) the size of a formula that defines inverse models.
Suppose that P is recognized by an automaton having 7p states and that L is
defined by ¢ € MSO(Xg) of length n and having T quantifier changes, one can
construct a word oracle-automaton recognizing L having F(3, F(n, 7)) states.
It can be constructed in time Cps(3, F(n,7)) + O((2F (n,7) - 7p)F (7 7P) (or
Cm(3,F(n,7)) if P =A").

3.8. A first example of application

Various authors have exhibited classes of relation R C N for which (N, 0, +1, R)
has a decidable MSO-theory. Cite for recent examples [8, 19, 17]. These struc-
tures can be seen as images by a morphism, in order to transfer the decidability
toward a tree structure. Given two alphabets A and B, with B C A, we consider
the map I : A* — N associating to every word in A* its number of occurrences
of letters in B. This map is clearly a surjective morphism when N is endowed
with the “4+“ operator.

Corollary 59. For every N = (Ni,...,Np), Ni C N such that (N, +1, N) has
1,0
a decidable MSO-theory, the structure xff* M) admits a decidable MSO-theory.

This result has already been proved in [34][Proposition 2] for the case A = B,
as a direct application of the results about unfolding of graphs obtained in [11,
12]. However, to our knowledge, this method does not allow the transfer of the
DM property, nor to deal with the decidability for the case A # B. Conversly,
Theorem 55 does not seems to cover all results we can obtain by unfolding, since
the unfolded graph must induce a structure of semi-group isomorphic to a tree.

Corollary 60. Given N a vector of subsets of N,

15" (V)
1. the structure x ;. fulfills DM,
—1/ 5 1, R -
2. sets MSO-definable in Xff* M) are languages in REGZBI(D), for D MSO-

definable in (N, 0,41, ]\7>

Proor. We prove these results by using Theorems 57 and 58.
1=t

Since lp(x £ (N)) = (N,0,+1, N), we just need to prove that
1. (N,0,+1, N) fulfills the DM property:
This result is proved for all N in [30].
2. Ip is MSO-invertible:
Consider the covering R of A* consisting of all sets R that form an infinite

path from ¢ and containing an infinite number of elements in B. For all
R € R, the restriction of g to R is a surjective map from R to N. Remark
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in addition that the property “be an element of R” can be expressed by an
MSO-formula over (A*, e, (SUCC,)qea)-

For every MSO-formula ¢ over § = (N, 0, +1, N ) with n free variables, we
construct by induction an MSO-formula ¢’ over S = (N,O,+1,N> with
n + 1 free-variables satisfying for every R € R, for every Sy,...,S, C A*:

N (SIAR,. .. Sy NRR) IS = ¢S NR,....S N R)) (1)

In this proof, relations with free first order variables are replaced by "equiv-
alent" relations with free second order variables. For exemple, (x) is re-
placed by e(X) == Jz. X = {2} A e(x).

e 0/(X,)Y) :=e(X),

° (+1)I(X1, Xz, Y) = \/beB SUCCb(Xl, Xg),

o if o :=3X (X, X1,...,X,), then ¢ := IX ' (XNY, X1,...,X,,Y),

o if o :=VX, (X, X1,...,X,), then ¢’ :=3IX ¢/ (XNY, X1,..., X,.,Y),

cases X7 C X5 and X; C N are given in an obvious way, idem for boolean
combinations: (¢ V) = @' V', (o AY) ==& AN et (m@) := ¢ Tt
is easy to check that atomic formulas fulfill Equivalence (1). We treat only
the case ¢ = 3X - 1. For the universal quantifier, the proof is similar. For
boolean combination, the proof is obvious

Fix S1,...,5, C A* and R € R.

X2 b Y(SiNR,..., SN R,R) i
asca, 2N B WSNRSNR,..., S, N R,R) iff (by (ih)
3SC A, S £ w(s(SAR),I5(SiNR),. ... 15(S. O R)) iff
SDCN, 8 = &(D,lg(SiNR),....15(S. O R)) iff
S £ 3X, (X, 15(SiNR), ... l5(S, N R)) iff
S £ (sl AR),... . 15(S. N\ R)).

We have remarked R is a covering of A* and for all R € R, Ip restricted
to R is surjective, then VD C A*, D' C N,

D=1;"(D")if VRER, Ig(RND)=D".
Then, for every formula ¢(X1,...,X,) over S, the formula

by (X1,...,Xn) =VRER, ¢(RNX1,...,RN X, R)

1,
fulfills \'2. ) = ¢y, (D1, ..., D,)iff 3D}, ..., D!, such that S = ¢(D}, ..., D!
i)

and for every i € [1,n], [5*(D;) = D..
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4. Words, iterated-pushdowns and tree-structures

In order to apply results obtained above to iterated pushdowns, we need
to represent k-pds as words in a prefix closed language. We then encode each
w € k-pds(Ay, ..., Ax) by a word representing the smallest instructions sequence
of push; , and puﬁm computing w from 1. The set of such encodings is a

prefix closed language over Zi\k denoted Py.

We use transfer theorems proved in the previous section to study MSO-
properties of the structure Px = (P, €, (a),c 5, ) Where o, is the binary
relation right-product by a inside the free group (Irf(ALk), o, c). We show that
for every k > 1, the structure Pj has a decidable MSO-theory and fulfills the
DM property (Theorem 76). We also define a class of automata with p-oracles
recognizing exactly sets which are MSO-definable inside P (Theorem 79).
Eventually we prove that the structure PDSy, is MSO-equivalent to the structure
Pi.. It follows that PDSy has a decidable MSO-theory and fulfills DM. We also
give a definition of regular sets of k-pushdowns which enjoy several nice
characterizations (Theorem 85).

4.1. Iterated-pushdowns viewed as words

Let Ai,..., Ak, ... be store alphabets and Ay = 0, Yk > 0, we denote by
Ay the union of Ay, ..., Ax. Every w € k-pds(Ay, ..., Ar) can be represented
by a word on Z;c = A1 U Ay, encoding an instructions sequence computing
w from 1:

e every a € A; corresponds to push, ,
e every a € A; corresponds to push, ,

For instance, the 2-pds w = aa[c1b1 L]asfa; L] L [L] can be represented

by the word u; = asajasaibici, or by us = azaleEQCLQC_lelCl, or by us =
agalalbzggdlagdlblcl.
There are then several representations of the same k-pds but all have the same
reduced representative in (Irr(A; ), e,e). Each k-pds will be encoded by its
reduced representation. In the previous example, the reduced representation is
uy (since p(u1) = p(u2) = p(uz) = uy). Each word in Zl\k* does not define
a wvalid sequence of instructions. For example, ai1biasb1b; is not valid since
aibiazby correspond to asfa; L] L [bra; 1] and pushy, ; is then undefined.

Let us introduce the set M, of words in Z;C* encoding all valid sequences of
moves, as well as the set Py of reduced words of M}, which encodes the set of
k-pds. We define simultaneously Py (A41,...,Ax) (or simply P when the A4;’s
are fixed) and My (A4y,... Ay) (or simply My,) by induction on k:

[ Po = {8},

o Vk >0, Mp(Ar, ..., Ay) = {u e Ay | Vo < u, p(v) € Pe(Ar,.... Ay}
and
Pk+1(A1, . 7Ak+1) = {u S p((Al,kUAk-i-l)*) | ng\’k (u) S Mk(Al, C ,Ak)}
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Clearly, P1(A1) = A7.

Definition 61 (Projection). For k > 0, f : Pry1 — Py is defined for every
u € Pry1 by fr(u) = p(7rg;c (u)). We extend fy by f;41 % : Pix1 — Px obtained
by successive applications of f;, f;_1,..., fx.
An obvious induction on & proves the following recursive definition of Py,

Proposition 62. For every k> 1, u € Py anda € A;, 1 <i <k,

ueac P and

uea € Py iff fi(u) € P;-a.
For every k > 0, sets Py and k-pds are linked by a bijection denoted y:

Definition 63. The map ¢y : k-pds(41,...,Ax) — Pr(A1,..., Ag) is defined
by induction on k£ > 0 by:

[ (po(J_()) =g,

o Vk>0,w; €k-pds, we (k+1)-pds and a € Agy1,

— @rt1(L [wi]) = pr(w1)
— prr1(awi|w) = (Pr+1(W) - @ - Tk (Prt1(w))) ® pr(wr).
Example 64. Let w,, be the following 3-pds:
Wex = A3 [bg [b1a1 J_]ag[al J_] J_Q] 1 [ag [a1 J_]GQ[J_] J_g] = ag[wl]w

Then, @3(wez) = (p3(w)asfa(ps(w))) @ 2(wi).
We have, @Q(bQ[blal J.]CLQ[CLl J_] J_Q) = a2a1b2b1 and @2(0,2[0,1 J_]CLQ[J_] J_Q
) = asasay, then ¢3(w) = asaza;. We obtain then,

03(Wez) = asa2a1a3G2G2a7 ® (a2a1b2by)
= a2a2a1a3(d1 ao dz) ° (agalbgbl)

= a2a2a1a3a_1 a_Qalebl.
Proposition 65. For every (k + 1)-pds w = a[wi|w’, vr(w1) = fk(@rr1(w)).

PrROOF. From definition of ¢ and f:

fr.(prri(alw]w) = fe(prs1(W') - a- filerra(W’)) o fr(pr(w)))
= f(prp1(w')) o fi(@rr1 (W) @ r(wr)
= r(wr)

Remark 66. From Proposition 65 and definition of @41, it appears clearly
that for all w = apfwy] - - a1[w1] L [wo] € (k + 1)-pds, n >0,

Prr1(w) = or(wo)arr(wo) @ pr(wi)azwr(wi) @ Er(wa) - - - anr(Wn—1) ® Pr(wn).
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Lemma 67. For every k > 0, ¢ is a bijective map.

PRrOOF. Injection: Let us sketch by induction on k£ > 0 that ¢y is an injective
map. If & = 0, it is obvious. Suppose ¢y injective, for k& > 0. For every
w,w’ € (k4 1)-pds having same image by ¢+1, Remark 66 implies the following
decompositions:

W= apfwy] - arfwi] L [wo] et W' = apfw)] - aiwi] L [w(], n > 0.

We check pg11 is bijective by a second induction over n > 0. If n = 0, the
induction hypothesis over k proves that w = ’. Else, let w = ap[w,|w” and
W' = aplwy]w”’. From definition of @41 and by hypothesis i1 (w) = Qg1 (w):
11 ()0 T (P (@) oF (91 wn)) = 1 (") B (1 (@) o (91 (])),
in other words,

P (W) = o (W) et B (pr(w”)) @ filon(wn)) = Ti(pr(w) o fi(or(wn)).
From induction hypothesis over n, we obtain w” = w"’ and since (Irr(A4; 1), e, €)
is a group, fi(pr(wn)) = fk(pr(w))). Then w = W'
Surjection:let us define inductively the map 5, ~':

e o '(e) =Lo
e for every u € Pri1, k>0,

— if u € Py, then ¢py1H(w) =L [ (u)]

— else there exists ' € Pry1, a € Apt1, ur € Irr(A; k) such that
u = u'au; and

o1 (u) = aler ™ (fr(w))]ere ™ (u)

We check that ), ! really defines the inverse map of ¢ by induction over k.
We detail the case v = u'au;:

)
u))gii (u))

) a- fk(sﬁk+1(<ﬂk+1 L(w))) o or(y  (fe(w))
(w)=u"-a-fx(u)efr(u)ou =u" a-u.

Pt (Prr1 (u
= Sﬁk+1( [ (fk
Pr+1(Prr1 " (u

= o -a-fp(u)efy

)
(

/

We close this section by studying links between the right-product in Py, and the
application of instructions to k-pushdowns.

Lemma 68. For every k > 1, u,v € P, anda € A;, 1 <i <k,
v=uea iff ;"' (v) = push; ,(ox " (1))

v=ueaiff or"(u) = push; ,(or " (v)) iff or ™" (v) = push; 4 (2x " (u))
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4.2. Logic on a free group

Let Aq,..., Ak, ... be disjoints alphabets fixed for the rest of the paper and
Sigy, the signature (¢, (8q), 57— ) where € and e, are respectively a unary and a
binary relation. The signature Sig;" is Sigy augmented with m unary relations.

Consider the structure Py defined on Sigr whose domain is Pr(Aq,..., Ax)
and such that Va € Ay, o, = {(u,v)| u,v € Py, v = uea}. For every

0 = (O1,...,0p) with O; C Pi, Pr® denotes the structure Pj augmented
with relations Oy, ..., Oy,.

By using the fact that, Vk > 1, Py, is the image by fi of the tree of domain
Pr+1, we show inductively, by applying transfert theorems of Section 3, that
P satisfies the property DM, that its MSO-theory is decidable and we give an
automata-characterization of the MSO-definable sets of Py.

4.2.1. MSO-invertibility

It is proved here that for every k£ > 1, the mapping f;, is MSO-invertible (see
Definition 56). This result will be helpful in two ways: first to apply transfer
theorems to Pj and latter to show that structures Pp and PDS; are MSO-
equivalent.

In the sequel, we denote by T} the structure (Py, e, (succ,) ). In

o G.GA/lngAk,1
addition, YO vector of subsets of P, we write Tko the structure obtained by
adding to T}, the unary relations O;.

Observation 69. Vk > 1, VO vector of subsets of Pr+1, fk(T,gl) = Pkfk(é)l.

We proceed in a similar way as the proof of Corollary 60. We start by
defining a partition of Py whose each element is in bijection with Py. For
every k > 1, we consider the family §x11 consisting of all sets F' C Py such
that:

e cither F' = Py,
e or Ju € Py and Ja € Ayyq such that F' = {uaw € Pryq| w € Irr(Aq )}

Each F' € §i41 encodes, via 41, a maximal set of (k+1)-pds which differ only
by top level-k elements. The family §41 allows to recompose the inverse image
of any definable subset of P;. The proof is based on the following remarks:

Remark 70. For every k > 1:

1. Fx+1 defines a partition of Pyyq.
2. For every F' € §g41, the restriction of fi to F' is a bijection toward Py.

IHere, and in the rest of the paper, fi is extended to sets, and vector of sets in a natural
way.
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3. The property F' € §r41 is MSO-expressible in Pr1.
Indeed, F' € §i4q iff F is a maximal set such that for every u,v € F, there

exists a path from u to v using only edges e, where a € Xl\k It is then
easy to construct a MSO-formula whose set of models in Pj41 is exactly
Sh+1-

Lemma 71. Given k > 1 and m > 0, for every MSO-formula ¢(X1,...,X,)
over Sigy', there exists a MSO-formula ¢/ (X1, ..., Xy, Y) over Sig}", | such that

VR = (Ri1,...,Rn),R; C Py:
VS1, ..., 5 € Prt1, VF € Fkt1,

Pep® B ¢ (SINF... S.NFF) iff P o(t(S1NF,...,5, N F)).

PrOOF. We construct ¢’ for ¢ atomic, the other cases are given by the same
induction as the proof of Corollary 60.

- (@(X)Y) =32 | X ={a} ANea,, ~(Fy, zea=y),

S Va € Apg, (00) (X1, X2,Y) = 04 (X1, Xa).
Let a € Ay1 . If ' =Py, clearly Yu,v € Py,
P P o) ({ud, {0}, F) iff Pe® = oo ({fi(u)}, {fx(v)}).

If I = {ubw € Prt1| w € Irr(Ay)}, with b € Agy1, then for every v = ubw,
v =ubw' € F,

Prir™ P (o) ({0}, {0}, F) it Prga™ @ = oy ({ubw}, {ubw'})
iff w=wea
iff  fr(ub) ew' = fr(ub)ewea

iff ’Pkﬁ ': .a({fk(v)}v {fk(v/)})
- if 9(X) := X C Ry, then ¢/(X) := X C ™' (R;). Indeed, VS C Prya,

’Pk_‘_lfk*l(é) ': Qb/(Sﬂ F, F) iff ,Pk+1fk71(Ra) ': SAFC fk_l(Rl)
it f,(SNF)C Ry

it PRl ().

- if (I)(Xl,Xg) = Xl Q Xg, then (I)/(Xl,XQ,Y) = X1 g Xg. The pI“OOf is
the same as the previous case.

Proposition 72. Given k > 1 and ¢(X1,...,X,) an MSO-formula over Sig}",
m > 0, there exists an MSO-formula ¢71(X1,...,X,,) over Sigy' , such that
v}317"'7R7‘r7, c Pk; v‘S’lu"an € Pk-i—l’

’Pk+1f"71(R1""’Rm) E ot (St Sn) iff
3Dy,.... Dy C Py, such that Py, ) | ¢(Dy,..., Dy) and Vi, S; = £~ (Dy).
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PRrROOF. We proceed as in the proof of Corollary 60.

Proposition 73. For every k > 1, for every D C Py definable in Py the set
f,, "1 (D) is MSO-definable in Pri1.

4.2.2. MSO-properties of Pk

We apply now transfer theorems to Pg. First remark that fy is the restriction
t0 P41 of the morphism py, : m* — Irr(A4; ) mapping each u € 14/1,;1*
to p(wm (u)) (recall that p is the reduction in the free group, see Section 1.1).

Let us introduce for every k > 1, the vector Oy, of subsets of Py, defined by the
following induction:

[ ] 61 = (Z)
° 6k+1 = (fkfl(OHk),fkfl(’Pkal), . ,fk_l(’Pkan)) where Ay = {a1,...,an}

In other words, Oy, consists in every fk)fl(Pia), where 1 <i<Fkandae A ;.

Lemma 74. For every k > 1, structures Py, Tk, Tkék and fk(TkO’“) are MSO-
equivalent (see Definition 18).

PROOF. e (Clearly, Py is definable inside T} since Yu,v € Py, a € m,
u=veaiff u=wvaorv=ua Conversely, to show that T} is definable
inside Py, we prove first that if Ay, = {a1,...,a,}, then the vector
(Pr-a1,...,Pk-a,)is MSO-definable inside Pg. It suffices to remark that
each Py - a; is the smallest set S; C Py such that for every u € Py, u € S;
iff

— either o, (u,¢),
— or there exists a; # @; € Z;c and v € S; such that u = v e a;.

Now, it is easy to define in Py, the relation induced by the concatenation
product since for every u,v € Py, a € A1, [u = va iff u = v ea and

U¢Pk'ﬁ].

° Tkék is definable inside Py since from the previous case, V1 < ¢ < k,
a € Ay, the set P;-a is MSO-definable in P; and then by using Proposition
73, fri '(P; - a) is MSO-definable in Py.

° f;g(TkJrlO"“) is MSO-equivalent to the structure ’Pkok, which is MSO-
equivalent to the structure Pk.

The following lemma is required to apply transfer theorems (see Definition
54).

Lemma 75. For every k > 1, the property TH(f, O;;rl) is satisfied.
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Proor. It suffices to check that for every k > 0, Pry1 € REGO*+1. Consider
A1 = (Q = {qo} U{qa | @ € A1 11}, A1 kr1,D,q0, F = Q) where A consists
of every transitions

L4 (QO7 a, 67 Qa); Ya S Al,k+17 va

o (qv,0,0,qq), Ya € Ay 11, Vb # a, Vo

e (4v,a,0,q,), Ya € A;, i € [1,k] Vb # a, V0 such that the component
corresponding to fk7fl(’Pia) is 1.

From Proposition 62, L(Ak+1) = Prt1-

Theorem 76. For every k > 1, the structure Py has a decidable MSO-theory
and fulfills the property DM.

PRrOOF. We prove this result by induction on k£ > 1:

Basis: From Theorem 39, P; has a decidable MSO-theory and satisfies the
property DM.

Induction step: let us suppose the property true for k& > 1. Since TH(fz, Opy1),
by using Theorem 55 and equivalence between structures proved Propo-
sition 74, the MSO-theory of P41 is decidable. In the same way, since
from Proposition 73, the map f;, is MSO-invertible, and by using Theorem
57, Pr+1 satisfies DM.

The decidability result has already been proved in [7].

The same kind of reasoning can be applied to the structure ’Pké for any
vector O of subsets of Py if the MSO-theory of ’Pka is decidable, then the
MSO-theory of Prr1™ (@) is decidable.

Theorem 77. Given R a vector of subsets of A, and O = f, ' (R),
1. if the MSO-theory of (A1*,e, (succa)aca,, R) is decidable, then for every

k> 1, the MSO-theory of PxC is decidable,
2. if (A1*, e, (succq)aca,, R) fulfills DM, then PiC fulfills DM.

We define now the class FA; of automata corresponding to languages MSO-
definable in Py and the class REGy, of languages recognized by such automata.

Definition 78. For all £ > 1, classes FA;, and REGy, are defined inductively as
follows:

e FA; is the class of finite automata, and REG; the regular languages one,

e for every k > 1, FA,; consists in all automata A with p-oracle (fz ~*(Ry),
.. ,fk_l(Rm)) such that each R; belongs to REGy,
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o for every k > 1, REGg41 consists in all languages in Py recognized by
automata in FAg .

Theorem 79. For every language L C Zl\k* with k > 1, L is MSO-definable
in Py iff L belongs to REGy.

PROOF. Let us prove this result by induction on k£ > 1.
Basis: the case k = 1 is obvious,

Induction step: let us suppose the property is valid for £ > 1.
From Theorem 57, any language L C (k+ 1)-pds is MSO-definable in

Pr41 iff there exists a vector D MSO-definable in Pr. and A € FAf) such

that L = L(A). By induction hypothesis, each component of L belongs to
REGy, and then, L is MSO-definable in Pr4q iff D € REGj41.

4.8. Regular sets of k-pushdowns

We now translate results obtained on Py in terms of k-pushdowns. For that,
we just need to prove that Pp and the structure PDSj associated to the type
k-pushdowuns (see Section 1.5.1(3)) are MSO-equivalent (see Definition 18) . We
show that ¢ : PDS, — P and ¢, ' : P, — PDS;, are MSO-interpretations.
Then, the two structures have the same MSO-properties and we have a nice
class of p-oracle-automata available to characterize the class of all ¢ (D) such
that D is MSO-definable in PDSy. Using this automata characterization, we
define the class of controlled k-pds systems of transitions generating the class
of all sets MSO-definable in PDS,,.

Theorem 80. For every k > 1, op ' : Pr(Ay1,..., Ax) — PDSL(A1,..., Ax)
is a MSO-interpretation.

PRrOOF. Let us check that conditions of the definition of MSO-interpretation
(Definition 16) are well satisfied,

1. ¢, 1 (Py) = k-pds is MSO-definable in PDSy,

2. from the Lemma 68, it follows that for every u,v € Py, a € A;, 1 <i < k:
Pr. = o4 (u,v) iff PDSy = push, (¢r 1 (u), pr " (v)) and
Pr. = oa(u,v) iff PDSy = push, (¢r 1 (v), o ~1(uw)).

Let us prove now that Vk > 1, ¢ : PDS; — Pg is a MSO-interpretation.
The next lemma establishes that to prove that an instruction of level &k is MSO-
definable in Pg44, ¢ > 0, there is only to need to demonstrate that it is MSO-
definable in Py:

Lemma 81. Given instr an instruction of level k > 1, and ®(x,y) a MSO-
formula over Sigy satisfying for all u,v € Py:

Pr | O(u,v) iff ox ' (v) = instr(or " (u)),
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then for every i > 0, there exists a formula ®;(x,y) € MSO(Sigr+;) such that
Yu,v € Prii,

Prti b= Pyiu,0) iff pryi ' (v) = instr(ppri ™ (u)).

PRroOF. From proposition 65 and definition of ¢, !, it follows that for every
v,v" € (k4 1)-pds and wy,w) € k-pds, the following properties are equivalent:

1. there exists w € (k+ 1)-pdsU {e} and a € Ap41 U {L} such that
pr+1” ' (v) = alwi]w and @ TH(V) = alwiw
2. there exists u € Irr(Ay) such that v" = v e u and
Jr(w) = gr(w1) and fi(v') = pp(w))-
Then, given instr an instruction of level k and ® MSO-defining instr in Pg, we
obtain (by using formulas constructed in Proposition 72) the following iterative
construction of ®;:

(I)+0(‘I7y) = (I)(Iay)
Vi >0, @41y (2,y) = 3u, y = zou (P4) T (2, y).
Theorem 82. For every k > 1, v : PDS, — Px is a MSO-interpretation.

PROOF. By using the previous lemma, it only remains to show that pushy ,,
pop;, and change,, , are MSO-definable in Py:
forevery a € A;, 1 <i <k,

PUSHy o(2,y) := y =z eq

POPy o(z,y) :==3a € A, Jw, z =yeaew

CHANGE} o(2,7y) := Ju,u/, I € Ay, y =z ou ebeaeu Az (=)"'y
Corollary 83. For every k > 1, every D C k-pds,
D is MSO-definable in PDSy, iff ¢ (D) is MSO-definable in Py.

We now translate the properties of k-regular languages in terms of k-pushdowns
by using the MSO-equivalence of the structures Py and PDSy.
The following theorem is straightforward from Theorem 76.

Theorem 84. For every k > 1, the structure PDSy, has a decidable MSO -theory
and fulfills the property DM.

The decidability result is proved in [19] by using Muchnik’s Theorem (see [27] or
[35]). Finally, we show that REG” admits several characterizations that extend
the REG ones.

Theorem 85. For every S C k-pds(Ay, ..., Ax), k > 1, the following properties
are equivalent:

1. S is generated by a k-pds system of transitions whose controller are MSO-
definable in PDSg(Aq,..., Ag)
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2. S is MSO-definable in PDSk (A1, ..., Ax)
3. vr(S) is MSO-definable in Pr(A1,. .., Ag)
4. pr(S) is recognized by an automaton in FAL(Aq, ..., Ag).

PRrROOF. Equivalence between 2 and 3 stems from the equivalence between the
two structures. Equivalence between 3 and 4 is established in Theorem 76.
Given a k-pds system of transitions S controlled by a vector C of sets which are
MSO-definable in PDSy. It is possible to write a formula defining in PDSj the
set of k-pds generated by S. So 1 implies 2.

Let us end the proof by showing that 4 implies 1. Given k > 0 and A =
(Q,m,ﬁ,A,qO,F) € FA., we are going to construct A € k-TSY with c =
or L (R) fulfilling o (L(A)) = P(2).

From the equivalence between 2 and 3, C' is a vector of sets which are MSO-
definable in PDSy. We can suppose w.l.o.g. that A is complete in Py, i.e., that
Yu € m*, u is computed by A iff u € Py.

Let us set A = (Q, (Ay,..., Ag), A/, c, qo, L, F') where A’ is constructed in the
following way:

e V(p,a,0,q) € A,ae A;, 1 <i<k+1,then Vw € top(k-pds(Ay,...,Ar))
(p,w,d,push; ,,q) € A’
e V(p,a,6,q) € A, a € A;, 1 <i <k, then Vw € top(k-pds(Ay, ..., Ay))
(p,w, 3, pop;,q) € A
It can be easily checked that ¢ (L(A)) = P(2).

Remark 86.

1. It can be proved that languages recognized by k-pds automata controlled
by MSO-definable sets are languages recognized by k-pds automata without
controllers.

2. The equivalence between (1) and (4) is proved in [21] for k£ = 1.

5. Final comment

The work presented here is a part of the author’s PhD presented at LaBRI,
Bordeaux University on the theme of Iterated Pushdown automata [18]. It is
shown there that Theorem 85 has several applications.

For example, by using the automata characterization of REGy, it can be
proved that the projection in 1-pds of a pushdown set generated by a k-pds
system of transitions is regular. This result allows the comparison between
the two classes of predicates P given in [19] and [8] for which the MSO-theory
of (N,+1, P) is decidable. It can be proved that all sequences of level k are
profinitely ultimately periodic and the class of predicates describes in [19] is
then included in the one described in [§].
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Theorem 85 also allows to define a large class of tuples (P1, ..., P,,) of unary
predicates for which the MSO-theory of (N, +1, P, ..., P,,) is decidable for |17].

Recent work deals with the notion of regular sets of “higher-order pushdowns*
(hop) which are restricted it-pushdowns. In [3], a set S of k-hops is called
regular if the set of words in (Ar U{[,]})* representing S is accepted by a finite
automaton. It is shown that for any higher-order process with a single state,
the set of all predecessors of a given reqular set of configurations is regular.

In [6], the author introduces a notion of regular sets of higher-order push-
downs (hop). He studies the classe Regy corresponding to the sets of k-hop
accessible by using only instruction push and push. He gives a normalized rep-
resentation of this class using regular expressions over a monoide in (A, UT%)*,
where T} is an infinite alphabet consisting of all symbols Tg, for R € Regj—1.
This normalization extended the one obtained in [9] for the level 1. The author
proves also that the class Regy corresponds to the class of sets MSO-definable
in PDSy. The class Regy correspond then to the image by ¢y of the class REGF
defined in the previous section. These two disjoints works prove that the class
REG" enjoyes numerous properties generalizing the PREG; ones (which corre-
spond by isomorphism to the class REG). In addition, the representation of
k-pds by word in the free group seems to be very well adapted to the general-
ization of the notion of regular languages.
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