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Regular sets over extended tree struturesSéverine FrataniLaboratoire d'Informatique Fondamentale de Marseille (LIF) CNRS : UMR6166Université de la Méditerranée - Aix-Marseille IIUniversité de Provene - Aix-Marseille I
AbstratWe investigate notions of deidability and de�nability for the Monadi Seond-Order Logi of labeled tree strutures, and links with �nite automata usingorales to test input pre�xes.A general framework is de�ned allowing to transfer some MSO-propertiesfrom a graph-struture to a labeled tree struture. Transferred properties aredeidability of sentenes and existene of a de�nable model for every satis�ableformula. A lass of �nite automata with pre�x-orales is also de�ned, reogniz-ing exatly languages de�ned by MSO-formulas in any labeled tree-struture.Applying these results, the well-known equality between languages reog-nized by �nite automata, sets of verties MSO de�nable in a tree-strutureand sets of pushdown ontexts generated by pushdown-automata is extended to
k-iterated pushdown automata.Key words: Labeled tree strutures; MSO de�nable sets; Automata withorale; Iterated pushdown strutures.IntrodutionInitiated by the work of Bühi on words, the study of links between automataand logi has permit to identify strutures having a deidable Monadi Seond-Order theory. In partiular, Rabin proved in [28℄ deidability of the MSO-theoryof in�nite tree strutures in whih numerous properties are de�nable and theoriesare interpretable. These works have also led to a logi haraterisation of regularlanguages: languages reognised by �nite automata are exatly sets de�ned byMSO-formulas in a tree struture.The goal of this paper is to extend these works to the study of labelledtree strutures: identify labellings for whih tree struture have a deidableMSO-theory, for whih every formula admits a de�nable model and give anautomata-haraterization of the de�nable sets.To ahieve this goal, we introdue new interesting objets and results. First,we de�ne a lass of word/tree automata with pre�x-orales (i.e., sets of wordsover the input alphabet) used to test the already proessed pre�xes of inputs.Languages and forest reognized by pre�x-orales automata enjoy nie property,Preprint submitted to Elsevier February 12, 2009



in partiular, the Rabin's orrespondene between regular forests and modelsof MSO-formulas over in�nite trees an be extended to these languages: forestsreognized by automata with orales O1, . . . , Om are forests MSO-de�nable intree strutures extended by unary relations O1, . . . , Om. Remark that this ap-proah has already been devised in [32℄ to haraterise some proper sublassesof regular languages by using regular pre�x-orales and to study their de�nabil-ity in First-Order Logi over extended word strutures. However, the de�nitionof automata with pre�x-orales does not expliitly appear in this paper sineregular pre�x-orales an be simulated by the diret produt of �nite automata.Seond, we establish transfer theorems, allowing from a struture, to onstruta tree struture having some similar MSO properties. This approah is ommonfor the transfer of deidability (for example the transfer of deidability froma struture to its tree-like struture, (see [31℄ or [35℄), or from a graph to it'sunfolding (see [10℄)), but here, in addition to deidability, transferred propertiesalso applied to sets MSO de�nable in suh strutures and lasses of automatareognising them. In addition, our transfer of deidability allows to obtain newdeidability results whih are not over by the ones ited above. Properties aretransferred to a labelled tree struture from its image struture by any mor-phism. If µ : D → D′ is a mapping and S is a relational struture over D, theimage struture µ(S) of S has D′ as domain and its relations are the images by
µ of the relations of S.Let t be a labelled tree, and t be the struture assoiated to t. For anymorphism of monoid µ, and under some simple hypothesis on the labelling of t,we obtain the following main results:

• Transfer of deidability: (Theorem 55) if µ(t) has a deidable MSO-theory,then t has a deidable MSO-theory,
• Transfer of the property of De�nable Model: (Theorem 57) under a on-dition on µ, if µ(t) satis�es the property of De�nable Model (DM), then
t satis�es DM. This property ensures for a struture S that any satis�-able formula admits at least one model whih is MSO-de�nable in S (seeDe�nition 15),

• Theorem of struture: (Theorem 58) under the same ondition on µ, if
µ(t) satis�es DM, then any set is MSO-de�nable in t i� it is reognisedby a �nite automaton using only orales of the form µ−1(D) where D isMSO-de�nable in µ(t). (Then eah orale tests a property MSO-de�nablein µ(t), on the image by µ of input word pre�xes).Applying these results, we obtain tree strutures having a deidable MSOtheory and lasses of languages having two equivalent haraterizations: as lan-guages reognized by automata with orales, and as sets MSO-de�nable in somelabelled tree strutures. We thus extend the two haraterizations of regularlanguages mentioned above.But regular languages admit a third haraterization, as sets of pushdownontexts generated by a pushdown system of transitions [21℄. Some reent works2



deal with �iterated pushdown automaton�, whih are automata whose memory isroughly a stak of stak ... of stak (see for examples [5, 7, 24, 19℄), it is then nat-ural to attempt to de�ne a notion of �regular� sets of k-pushdowns (i.e., stakswith k level of embedded pushdowns) whih generalize the previous equality.We give equalities between languages of k-pushdowns reognized by automatawith p-orales, languages MSO-de�nable in a partiular tree struture and setsof k-pushdown ontexts generated by a k-pushdown system of transitions. Weiteratively use the three transfer theorems on a family of strutures (Pk)k≥1having a pre�x words language Pk for domain. The language Pk de�nes an en-oding of the set k-pds of all k-pushdowns. The struture Pk is MSO-equivalentwith the struture PDSk whose domain is k-pds and whose relations are thoseindued by the lassial instrutions on k-pushdowns. This allows to de�ne alass of languages in Pk that an be expressed in four equivalent ways (Theorem85):
• as languages reognised by �nite automata with pre�x-orale,
• as languages de�ned by MSO-formulas in the tree struture of domain Pk,
• as enodings of sets de�ned by MSO-formulas in PDSk,
• as enoding of sets of k-pushdowns generated by a store-ontrolled k-pdssystem of transitions.We show in addition that PDSk satis�es the property of De�nable Model.This paper is organized as follows. Setion 1 is devoted to basi de�nitionson words, logi, automata and k-pushdowns strutures. It is also introdued thenotion of word automata with orales. In Setion 2, we extend to tree automatathe use of orales. The Rabin's orrespondene between regular forests andmodels of MSO-formulas over trees is adapted to these languages. In Setion 3,we develop a game-theoretial approah to prove the three transfer theorems.We give also a simple appliation of the transfer theorems. Finally, we give inSetion 4 a de�nition of k-regular sets of pushdowns.1. Preliminaries1.1. Basi de�nitions1.1.1. Some notations and onventionsGiven a set A, we denote by |A| the ardinal of A. If s is a map from a set

A, then s(A) = {s(a) | a ∈ A}. If ~V = (V1, . . . , Vn) is a vetor of subsets of Athen s( ~A) = (s(V1), . . . , s(Vn)). The harateristi funtion of ~V in A is a map
χ

~V
A : A→ {0, 1}n de�ned for all x ∈ A, by χ~V

A(x) = (b1, . . . , bn) where ∀i, bi = 1i� u ∈ Si.
3



1.1.2. Words and languagesIf A is a set, A∗ denotes the set of words (�nite sequenes) over A, and ε theempty word. For u, v ∈ A∗, the length of u is denoted |u| and we write v 4 u if
v is pre�x of u. A set P ⊆ A∗ is a pre�x losed language if ∀u ∈ P , ∀v ∈ A∗, if
v 4 u then v ∈ P .1.1.3. Free groupGiven a �nite alphabet A , let us assoiate to eah a ∈ A the inverse symbol
ā whih does not belong to A. We denote by A the set of inverse letters of Aand de�ne Â = A ∪ A. For every u = a1 · · · an ∈ Â∗, the inverse word of u is
u = bn · · · b1 where ∀i ∈ [1, n]:if ai ∈ A then bi = āi, and if ai = ā ∈ A then bi = a.Let us then onsider the redution system S = {(aā, ε), (āa, ε)}. A word in Â∗is said to be redued if it is S-redued, i.e., it does not ontain ourrenes of
aā or āa, for a ∈ A. We denote by Irr(A) the set of redued words in Â∗. As
S is on�uent, eah word w is equivalent (mod ↔∗

S) to a unique redued worddenoted ρ(w).We de�ne the free group (Irr(A), ε, •), where ∀u, v ∈ Irr(A), u • v = ρ(u · v).1.1.4. ProjetionsFor any integers 0 < i ≤ j ≤ n, for any vetor of elements (a1, . . . , an), wede�ne the projetion πi(a1, . . . , an) = ai and πi,...,j(a1, . . . , an) = (ai, . . . , aj).For any alphabets B and A with B ⊆ A, the projetion πB : A∗ → B∗ is amorphism de�ned ∀a ∈ A by πB(a) = a if a ∈ B and πB(a) = ε else.1.1.5. Trees and forestsGiven �nite alphabets Σ and A and a pre�x losed language P ⊆ A∗, a
P -tree(Σ) (tree of domain P labelled by Σ) is a total funtion t : P → Σ. Theset of all P -tree(Σ) is denoted P -Tree(Σ). In order to deal with unlabelled treesin an uniform way, we introdue the speial symbol ⊤. Unlabelled trees arethen funtions t : P → {⊤}. We will often onsider trees in P -Tree({0, 1}n),for n ≥ 0 (with the onvention that {0, 1}0 = {⊤}), we will denote this lass
P -Treen. Remark that a tree in P -Treen an always be seen as the harateristifuntion χ~S

P of a vetor ~S = (S1, . . . , Sn), for Si ⊆ P .We will use two kinds of operations on trees and tree-languages:
• Restrition: let t ∈ A∗-Tree(Σ), t|P is the P -tree(Σ) obtained by restrit-ing the domain of t to P . If F ⊆ A∗-Tree(Σ), then F|P = {t|P , t ∈ F}.
• Produt: let t1 be a P -tree(Σ1) and t2 a P -tree(Σ2), the produt of t1and t2 is the tree t1̂ t2 ∈ P -Tree(Σ1 × Σ2) ful�lling ∀u ∈ P , t1̂ t2(u) =

(t1(u), t2(u)). This de�nition an be extended to tree languages:if F1, F2 ⊆ P -Tree(Σ), then F1̂F2 = {t1̂ t2| t1 ∈ F1, t2 ∈ F2}.4



1.2. Finite automata with pre�x-oraleFinite automata with pre�x-orale (or p-orale) extend the lass of �niteautomata by allowing some membership tests on pre�x of the input word. Anautomaton A with p-orales, on the input alphabet A is a �nite automatonassoiated to a vetor ~O = (O1, . . . , Om) of subsets of A∗ and whose transitionsontain a boolean vetor of size m alled test. During the omputation by A ofan input word, the already proessed part u of the input is kept in memory anda transition with test ~o an be applied if ~o is equal to the harateristi vetorof u inside ~O (i.e., if ~o = χ
~O
A∗(u)).De�nition 1 (Finite automaton with p-orales). Given m ≥ 1, an au-tomaton with m p-orales is a tuple A = (Q, A, ~O, ∆, q0, F ) where Q is a�nite set of states, A is the input alphabet, ~O = (O1, . . . , Om), Oi ⊆ A∗,

∆ ⊆ Q × A × {0, 1}m × Q is the set of transitions, q0 ∈ Q is the initial state,and F ⊆ Q is the set of �nal states.A on�guration of A is a pair (q, u↑v) where uv ∈ A∗ and ↑ is a symbol whihdoes not belong to A. The binary relation on on�gurations is →A and onsistsin all pairs (q, u↑av) →A (p, ua↑v) suh that (q, a, χ
~O
A∗(u), p) ∈ ∆. The languagereognised by A is L(A) = {u ∈ A∗| (q0, ↑u) →∗

A (qF , u↑), qF ∈ F}.We will use the following notations: FA ~O(A) is the family of automata over Awith p-orale ~O, the lass of ~O-regular languages (i.e., reognised by automatain FA ~O(A)) is REG~O(A). Remark that an automaton with orale ∅ is simply a�nite automaton. We write then FA rather than FA∅ and REG for REG∅.De�nition 2. An automaton with m p-orales A = (Q, A, ~O, ∆, q0, F ) is saidto be deterministi if ∀p ∈ Q, a ∈ A, ~o ∈ {0, 1}m, there is one and only one
q ∈ Q suh that (p, a, ~o, q) ∈ ∆.Example 3. The following automaton is deterministi and reognize the lan-guage {anbncn}n≥1.
A = ({q0, q1, q2, q3, qF }, {a, b, c}, (O1, O2), ∆, q0, {qF }) whereO1 = {anbn}n≥1,
O2 = {ambncn−1}n≥1, m≥0 and ∆ onsists in
(q0, a, (0, 0), q1), (q1, a, (0, 0), q1), (q1, b, (0, 0), q2),
(q2, b, (0, 0), q2), (q2, b, (0, 1), q2) (q2, c, (1, 0), q3), (q2, c, (1, 1), qF ),
(q3, c, (0, 0), q3) and (q3, c, (0, 1), qF ).We assoiate with eah automaton with m p-orales A ∈ FA ~O(A), a �nite au-tomaton Ã ∈ FA(A × {0, 1}m) alled soure of A and onstruted by movingthe test of eah transition into the input letter of the transition: eah transition
(p, a, ~o, q) is transformed in (p, (a,~o), q). The language L(A) an be obtain fromthe language L(Ã) and the "harateristi language of ~O in A.De�nition 4. For every ~O = (O1, . . . , Om), Oi ⊆ A∗, the harateristi lan-guage of ~O is de�ned by:
L

~O
χ = {(a1, ~o1) . . . (an, ~on) ∈ (A× {0, 1}m)∗| ∀i ∈ [1, n], ~oi = χ

~O
A∗(a1 . . . ai−1)}.5



Observation 5. For every ~O = (O1, . . . , Om), Oi ⊆ A∗:REG~O(A) = {π1(L ∩ L
~O
χ ) | L ∈ REG(A× {0, 1}m)}.Using the Kleene's theorem, we obtain easily:Theorem 6. Let A an alphabet, and ~O a vetor of subsets of A∗,1. REG~O(A) is the lass of languages reognized by deterministi automata inFA ~O(A),2. REG~O(A) is losed under boolean operations.1.3. Iterated pushdown storesOriginally de�ned by Greibah in [22℄, iterated pushdown stores are storagestrutures built iteratively. Let us �x an in�nite sequeneA = A1, A2, . . . , Ak, . . .of disjoint and �nite alphabets. For all k ≥ 1, we denote by Ak the �nite se-quene A1, . . . , Ak and adopt the onvention that A0 = {⊥} and that A0 ∩ Aiis empty of all i ≥ 1.De�nition 7. We de�ne indutively the set k-pds(Ak) (or k-pds when alpha-bets of store are understood) of k-iterated pushdown-stores over Ak:

0-pds(A0) = {⊥},
(k + 1)-pds(Ak+1) = (Ak+1[k-pds(Ak)])∗ ⊥ [k-pds(Ak)].The set for all k-pushdowns for k ≥ 0 is denoted it-pds(A). In the rest of thepaper, any 1-pds a1[⊥]a2[⊥] · · ·an[⊥] ⊥ [⊥] will be written simply a1 . . . an ⊥and ∀k ≥ 0. We denote by ⊥k the �empty� k-pds ontaining only symbols ⊥:
⊥0=⊥ and ⊥k+1=⊥ [⊥k].From the de�nition, every ω in (k + 1)-pds(Ak+1), k ≥ 0, has a uniquedeomposition as ω = a[ω1]ω

′ with ω1 ∈ k-pds(Ak), ω′ ∈ (k + 1)(Ak+1)-pds∪{ε}and a ∈ Ak+1 ∪ {⊥}. Furthermore, a =⊥ i� ω′ = ε.Example 8. Let A1 = {a1, b1}, A2 = {a2, b2}, A3 = {a3} be storage alphabets,
ωex = a3[b2[b1a1 ⊥]a2[a1 ⊥] ⊥2] ⊥ [a2[a1 ⊥]a2[⊥] ⊥2] ∈ 3-pds(A3).Its deomposition orresponds to a = a3, ω1 = b2[b1a1 ⊥]a2[a1 ⊥] ⊥2 and
ω′ =⊥ [a2[a1 ⊥]a2[⊥] ⊥2].The two following maps will be useful.Projetion: the map assoiating eah k-pds to its top i-pds, 1 ≤ i ≤ k is

pk,i: k-pds(A1, . . . , Ak) → i-pds(A1, . . . , Ai), where ∀ω = a[ω1]ω
′ ∈ k-pds,

pk,k(ω) = ω and pk,i(ω) = pk−1,i(ω1) if 1 ≤ i ≤ k − 1.The double subsript notation will be used to handle inverse funtions,the rest of the time, we will note pi for pk,i.Top symbols: the map assoiating any k-pds, k ≥ 1 to its k top-symbols is
top : k-pds(A1, . . . , Ak) → (Ak ∪ {⊥}) · · · (A2 ∪ {⊥})(A1 ∪ {⊥}) de�ned
∀ω = a[ω1]ω

′ ∈ k-pds by 6



top(ω) = a, if k = 1, else top(ω) = a · top(ω1).For i ∈ [1, k], and ω ∈ k-pds, we denote by topi(ω) the i-th letter of
top(ω).Example 9. Let ωex be the 3-pds given in Example 8:

p2(ωex) = b2[b1a1 ⊥]a2[a1 ⊥] ⊥2, p1(ωex) = b1a1 ⊥, and
top(ωex) = a3b2b1, top(p2(ωex)) = b2b1, top(p1(ωex)) = b1.An instrution on it-pds is a funtion from it-pds to it-pds whih does notmodify the level of the k-pushdowns (i.e., if instr is an instrution then for any
k ≥ 0 and any ω ∈ k-pds, instr(ω) ∈ k-pds). An instrution of level i is aninstrution whih does not modify the levels greater than i of any it-pds. Hene,given instr an instrution of level iif ω = a[ω1]ω

′ ∈ k-pds, k > i, then instr(ω) = a[instr(ω1)]ω
′if ω ∈ k-pds, k < i, then instr(w) = w.Therefore, to de�ne an instrution of level i, there is only need to de�ne it forany ω ∈ i-pds.Three instrutions of level k are generally appliable to it-pushdowns.De�nition 10. �Classial� instrutions of level i ≥ 1 over A are de�ned forevery ω = b[ω1]ω

′ ∈ i-pds(Ai) by:
popi(ω) = ω′ if b 6=⊥, else popi(ω) is unde�ned,
pushi,a(ω) = a[ω1]ω,
changei,a(ω) = a[ω1]ω

′, if b 6=⊥ else changei,a(ω) is unde�ned.For k ≥ 1, Ik(Ak) = {popi | i ∈ [1, k]} ∪ {pushi,a, changei,a | a ∈ Ai, i ∈ [1, k]}.is the set of instrutions over Ak.Thus, given ω ∈ k-pds and i ≤ k, popi(ω) erases pi(ω) on the top of thestore, pushi,ai
(ω) onsists in add ai[pi−1(ω)] on the top of the top i-pds and

changei,ai
(ω) onsists in replae topi(ω) by ai.Example 11. Let ω = b3[b2[b1 ⊥] ⊥2] ⊥3 be a 3-pds,

pop3(ω) =⊥3, pop2(ω) = b3[⊥2] ⊥3, pop1(ω) = b3[b2[⊥] ⊥2] ⊥3,
push2,a2

(ω) = b3[a2[b1 ⊥]b2[b1 ⊥] ⊥2] ⊥3,
push1,a1

(ω) = b3[b2[a1b1 ⊥] ⊥2] ⊥3,
change3,a3

(ω) = a3[b2[b1 ⊥] ⊥2] ⊥3, change1,a1
(ω) = b3[b2[a1 ⊥] ⊥2] ⊥3.We also de�ne the inverse instrution of pushi,a whih will be used to enodethe k-pushdowns as words.De�nition 12. For any i ≥ 1 and a ∈ Ai, the instrution of level i pushi,a isde�ned for any ω ∈ i-pds(Ai) by

pushi,a(ω) = ω′ if there exists ω′ ∈ i-pds suh that ω = pushi,a(ω′)

pushi,a(ω) is unde�ned else.In other words, ∀ω ∈ k-pds,
pushk,a(ω) = ω′ i� ω = a[ω1]b[ω1]ω

′′ and ω′ = b[ω1]ω
′′.7



1.4. Iterated pushdown mahinesWe de�ne here ontrolled iterated pushdowns systems whih extend systemswith iterated storage struture intensively studied in the 70's (see [2, 22, 25, 26℄)and more reently in [13, 15, 16, 24, 5, 7, 6, 18, 17, 19℄. Here we de�ne iteratedpushdown mahines whose transitions are onditioned by membership tests onthe store.De�nition 13 (Controlled k-pushdown transitions system). Let k ≥ 0,a k-TS is a struture A = (Q,Ak, ~C,∆, q0, F ) where Q is a �nite set of states,
Ak is the sequene of pushdown alphabets, ~C = (C1, . . . , Cm) is a vetor ofontrollers Ci ⊆ k-pds(Ak), q0 ∈ Q is the initial state, F ⊆ Q is a set of �nalstates and ∆ ⊆ Q × top(k-pds(Ak)) × {0, 1}m × Ik(Ak) × Q is a �nite set oftransitions.The family of all k-TS ontrolled by ~C is k-TS~C(A1, . . . , Ak). The set ofon�gurations of A is ConA = Q× k-pds(A1, . . . , Ak). The single step relation
→A⊆ ConA × ConA of A is de�ned by

(p, ω) →A (q, ω′) i� (p, top(ω), χ~C
(ω), instr, q) ∈ ∆, and ω′ = instr(ω).We denote by ∗

→A the re�exive and transitive losure of →A. The set of k-pdsgenerated by A is P(A) = {ω ∈ k-pds(Ak)| ∃q ∈ F, (q0,⊥k)
∗

→A (q, ω)}.1.5. Logis1.5.1. Relational struturesLet Sig = {r1, . . . , rn} be a signature ontaining relational symbols only,where ρi ∈ N is the arity of symbol ri, a (relational) struture S over thesignature Sig onsists of a domain DS and relations r1, . . . , rn on DS where ρiis the arity of ri. We shall use three kind of strutures:Let P ∈ A∗ pre�x losed and t = χ
~S
P ∈ P -Tree({0, 1}n),

• Tree strutures Let P ∈ A∗ pre�x losed and t = χ
~S
P ∈ P -Tree({0, 1}n),we assoiate to t the struture

t = 〈P, ε, (succa)a∈A, S1, . . . , Sn〉,where ∀a ∈ A, succa = {(u, ua), u ∈ P, ua ∈ P}.
• Image strutures Let t as previously and f : P → B be a map. Wedenote by f(t) the relational struture

f(t) = 〈f(P ), f(ε), (Ea)a∈A, f(S1), . . . , f(Sn)〉,where Ea = {(f(u), f(ua)) | u, ua ∈ P}.
• k-pds struture Given k ≥ 1, PDSk(Ak) is the struture whose domainis k-pds(Ak) and endowed with the binary relations popi, pushi,a and

changei,a for every 1 ≤ i ≤ k, a ∈ Ai. Relations popi, pushi,a and
changei,a are graphs of the orresponding instrutions on pushdowns.8



1.5.2. Monadi Seond-Order LogiLet Sig be a signature and V ar = {x, y, z, . . . , X, Y, Z . . .} be a set of vari-ables, where x, y, . . . denote �rst-order variables and X,Y, . . . seond-order vari-ables. The set MSO(Sig) of MSO-formulas over Sig is the smallest set suhthat:
• x ∈ X and Y ⊆ X are MSO-formulas for every x, Y,X ∈ V ar

• r(x1, . . . xρ) is an MSO-formula for every r ∈ Sig, of arity ρ and every�rst order variables x1, . . . xρ ∈ V ar

• if Φ, Ψ are MSO-formulas then ¬Φ, Φ ∨ Ψ, ∃x.Φ and ∃X.Φ are MSO-formulas.Let S = 〈DS , r1, . . . , rn〉 be a struture over the signature Sig, a valuationof V ar over DS is a funtion val : V ar → DS ∪ P(DS) suh that for every
x,X ∈ V ar, val(x) ∈ DS and val(X) ⊆ DS .The satis�ability of an MSO-formula in the struture S with valuation val isthen de�ned by indution on the struture of the formula, in the usual way.An MSO-formula Φ(x̄, X̄) (where x̄ = (x1, . . . , xρ) and X̄ = (X1, . . . , Xτ ) de-notes free �rst and seond-order variables of Φ) over Sig is said to be satis�ablein S if there exists a valuation val suh that S, val |= Φ(x̄, X̄).We will often abbreviate S, [x̄ 7→ ā, X̄ 7→ Ā] |= Φ(x̄, X̄) by S |= Φ(ā, Ā).De�nition 14. A struture S admits a deidable MSO-theory if for everyMSO-sentene Φ (i.e. MSO-formula without free variables) one an e�etivelydeide whether S |= Φ.A vetor ~D = (D1, . . . , Dm) of subsets of DS is said to be MSO-de�nable in
S i� there exists Φ(X1, . . . , Xm) in MSO(Sig) suh that:

• S |= Φ(D1, . . . , Dm) and
• ∀~S = (S1, . . . , Sm), with Si ⊆ DS , if S |= Φ(S1, . . . , Sm) then (S1, . . . , Sm) =

(D1, . . . , Dm).Remark that ~D is MSO-de�nable in S i� eah Di is MSO-de�nable in S.De�nition 15. A struture S satis�es the property of De�nable Model (orDM for short) if for every formula Φ(X1, . . . , Xn) ∈ MSO(Sig) satis�able in S,there exists D1, . . . , Dn ⊆ DS suh that1. S |= Φ(D1, . . . , Dn) and2. (D1, . . . , Dm) is MSO-de�nable in S.Let Sig = {r1, . . . , rn} (resp. Sig′ = {r′1, . . . , r
′
m}) be some relational signatureand S (resp. S′) be some struture over the signature Sig (resp. Sig′).De�nition 16 (Interpretations). An MSO-interpretation of the struture Sinto the struture S′ is an injetive map f : DS → DS′ suh that,9



1. f(DS) is MSO-de�nable in S′2. ∀i ∈ [1, n], there exists Φ′
i(x̄) ∈MSO(Sig′), (where x̄ = x1, . . . , xρi

) ful�ll-ing that, for every valuation val of V ar in DS

(S, val) |= ri(x̄) ⇔ (S′, f ◦ val) |= Φ′
i(x̄).Theorem 17 ([29℄). Suppose there exists a omputable MSO-interpretationof the struture S into the struture S′. If S′ has a deidable MSO-theory, then

S has a deidable MSO-theory too.De�nition 18. If there exists a MSO-interpretation of S into S′, and thereexists a MSO-interpretation of S′ into S, then we say that S and S′ are MSO-equivalent.2. Monadi Seond Order Logi and regular tree languages2.1. Tree automataWe de�ne here tree automata with p-orale extending tree automata byallowing membership tests on nodes of input trees. As previously, for a givenorale ~O, the appliation of any transition to a node u of a tree depends on theharateristi vetor of u in ~O.De�nition 19 (Tree automata with orales). Let m ≥ 1, a tree automa-ton with m orales is a struture A = (Q,Σ, A, ~O,∆, q0, c) where Q, Σ and Aare �nite sets and A = {a1, . . . , an}, ~O is a vetor of m subsets of A∗, q0 ∈ Q,
c : Q→ [0, nc], nc ≥ 0 and ∆ ⊆ Q× Σ × {0, 1}m ×Qn.Given t ∈ A∗-Tree(Σ), a run of A over t is a tree r ∈ A∗-Tree(Q) ful�lling:

r(ε) = q0 and ∀u ∈ A∗, (r(u), t(u), χ
~O
A∗(u), r(ua1), . . . , r(uan)) ∈ ∆.A run r is suessful if for every in�nite path π = q1 · · · qn · · · in r, the smallest

i ∈ [0, nc] appearing in�nitely often in the sequene c(q1), . . . , c(qn), . . . is even.The tree language reognised by A is denoted F(A) and refers to the set of treesfor whih there exists a suessful run.The lass of A∗-tree(Σ) automata with orale ~O is denoted TFA ~O(A,Σ) (orTFA ~O(Σ) when A is understood), those of all ~O-regular A∗-tree languages (i.e.reognised by automata in TFA ~O(A,Σ)) is TREG~O(A,Σ) (or TREG~O(Σ) forshort). Remark that a tree automaton with orale ∅ is simply a tree automa-ton. We write then TFA(Σ) rather than TFA∅(Σ) and TREG(Σ) rather thanTREG∅(Σ).De�nition 20 (Charateristi forest of ~O). Given ~O = (O1, . . . , Om), with
Oi ⊆ A∗, the harateristi forest of ~O over Σ is F

~O
χ (Σ) = A∗-Tree(Σ)̂ {χ

~O
A∗}.10



Let us map eah tree automaton with m orales A = (Q,Σ, A, ~O,∆, q0, c) ∈TFA ~O to the tree automaton Ã = (Q,Σ × {0, 1}m, A, ∆̃, q0, c) ∈ TFA where ∆̃onsists of every transition (q, (α,~o), p1, . . . , pn) suh that (q, α,~o, p1, . . . , pn) ∈

∆. It an be easily heked that F(A) = π1(F(Ã) ∩ F
~O
χ (Σ)).Observation 21. For every ~O = (O1, . . . , Om), Oi ⊆ A∗,TREG~O(Σ) = {π1(F ∩ F

~O
χ (Σ)) | F ∈ TREG(Σ × {0, 1}m)}.Remark 22. It an be easily seen that {χ~O

A∗} and F
~O
χ (Σ) are ~O-regulars.It is well known (see for example [28℄,[33℄) that TREG(Σ) is losed underunion, intersetion, omplementation and produt. Then, we obtain from Ob-servation 21:Theorem 23. The lass TREG~O(A,Σ) is losed under boolean operations andTREG~O(A,Σ1 × Σ2) is the lass of all F1̂F2 with F1 ∈ TREG~O(A,Σ1) and

F2 ∈ TREG~O(A,Σ2).Given P ⊆ A∗ a pre�x losed language, we de�ne now automata reognising�
P and for whih the suess of a given run depends only on nodes in P .De�nition 24 (P -ut automaton). An automaton A ∈ TFA ~O is alled P -ut if there exists a speial state q⊥ ∈ Q suh that c(q⊥) = 0 and
∀t ∈ A∗-Tree(Σ), r ∈ A∗-Tree(Q) run of A over t, for every u ∈ A∗:

u /∈ P i� r(u) = q⊥.In this ase, for every run r, subtrees external to P are suessful and to knowif r is suessful, one only needs to test the parity ondition on in�nite pathsinside P (then if P is �nite, any run is always suessful).In the rest of the paper we use the notation TREG~O
P (A,Σ) to refer to thelass of forests F|P , for F ∈ TREG~O(A,Σ).2.2. Tree languages as models of formulasWe adapt here the interpreted formalism of the MSO-logi of two sues-sors (S2S) introdued in [28℄ to establish a orrespondene between ~O-regularforests and models of MSO-formulas over a labelled tree struture. For eas-ier exposition, we shall restrit to binary trees (we denote Tree(Σ) instead of

{0, 1}∗-Tree(Σ)). All de�nitions and results of this subsetion an be naturallyextended to the ase where A is unspei�ed. In this subsetion, ~O is always avetor (O1, . . . , Om), with m ≥ 1 �xed and Oi ⊆ {0, 1}∗ and P is a pre�x losedsubset of {0, 1}∗.We reall �rst the interpreted formalism of the MSO-logi of two suessorsby stiking to notations used in [33℄(Setion 11).11



De�nition 25. An S2S-formula is an MSO-formula de�ned over the signature
(succ0, succ1), where succi is a 2-ary relation symbol.If φ(X1, . . . , Xm) is an S2S-formula and t = χ

~O
{0,1}∗ ∈ Treem, write t ⊢ φ(X1, . . . , Xm)if 〈{0, 1}∗, succ0, succ1〉, [Xi 7→ Oi] |= φ(X1, . . . , Xm).Let T (φ) = {t ∈ Treem | t ⊢ φ(X1, . . . , Xn)}. A tree language F ∈ Treem isalled de�nable in S2S if F = T (φ) for some S2S-formula φ.Theorem 26 ([28℄). The union of lasses TREG({0, 1}n), for n ≥ 0, orre-sponds exatly to the lass of tree languages de�nable in S2S.We now interpret S2S-formulas by �xing some free variables and interpretingformulas over restrited trees.De�nition 27. Let φ(X1, . . . , Xn) be an S2S-formula with n > m, we de�nethe forest T ~O

P (φ) (or T ~O if P = {0, 1}∗) by:
T

~O
P (φ) = {t ∈ P -Treen−m | t̂χ~O

P ⊢ φ(X1, . . . , Xn)}.If F = T
~O

P (φ) for some S2S-formula φ, F is alled de�nable in S2S~O
P (or in S2S~Oif P = {0, 1}∗).Remark that T ~O(φ) = π1,n−m(T (φ) ∩ F

~O
χ ({0, 1}n−m)). Then, using Obser-vation 21, the Theorem 26 an easily be extended to the S2S~O formalism.Theorem 28. The union of lasses TREG ~O({0, 1}k), for k ≥ 1, orrespondsexatly to the lass of tree languages de�nable in S2S~O.Remark 29. Given φ an S2S-formula, the size (the number of states) of A ∈TFA ~O suh that F(A) = T

~O(φ) is the same as the size of Ã ∈ TFA suh that
F(Ã) = T (φ). Then if φ has q quanti�er alternations and its length is n, thesize of A is F (n, q), i.e., a tower 22··

·O(n) of height q + 1 (see [20℄(�12.3)).Observation 30. The struture χ~O
{0,1}∗ has a deidable MSO-theory i� for allS2S-formula φ(X1, . . . , Xm), one an deide whether χ~O

{0,1}∗ ⊢ φ(X1, . . . , Xm).Corollary 31. The emptiness problem is deidable for forests in TREG~O({0, 1}k)for all k ≥ 1 i� χ
~O
{0,1}∗ has a deidable MSO-theory.Proof. χ

~O
{0,1}∗ has a deidable MSO-theoryi� for all S2S-formula φ(X1, . . . , Xm), one an deide whether χ~O

{0,1}∗ ⊢

φ(X1, . . . , Xm) 12



i� for all k ≥ 1, for all S2S-formula ψ(Y1, . . . , Ym, X1, . . . , Xm), one an de-ide whether χ~O
{0,1}∗ ⊢ ∃Y1, . . . Yk, ψ(Y1, . . . Yk, X1, . . . , Xm)i� for all k ≥ 1, for all S2S-formula ψ(Y1, . . . , Ym, X1, . . . , Xm), one an de-ide whether there exists t ∈ Treek suh that t̂χ~O

{0,1}∗ ⊢ ψ(Y1, . . . Yk, X1, . . . , Xm)i� for all k ≥ 1, for all S2S-formula ψ(Y1, . . . , Ym, X1, . . . , Xm), one an de-ide whether T ~O(ψ) = ∅i� for all k ≥ 1, the emptiness problem is deidable for forests in TREG~O({0, 1}k).We generalise now Theorem 28 to tree languages of domain P :Theorem 32. If P is MSO-de�nable in χ
~O
{0,1}∗ , with Oi ⊆ P , then the unionof lasses TREG~O

P ({0, 1}n) for n ≥ 1 orresponds exatly to the lass of S2S~O
P -de�nable tree languages.We start by proving the �rst impliation:Lemma 33. If P is MSO-de�nable in χ~O

{0,1}∗ then every tree language de�nablein S2S~O
P belongs to TREG~O

P ({0, 1}n) for some n ≥ 1.Proof. Let φ(X1, . . . , Xn) be an S2S-formula, by relativizing φ to P , we on-strut an S2S-formula φP (X1, . . . , Xn) suh that ∀S1, . . . , Sn ⊆ {0, 1}∗,
χ

~O
{0,1}∗ |= φP (S1, . . . , Sn) i� χ~O

P |= φ(S1, . . . , Sn) and S1, . . . , Sn ⊆ P.Let F = T
~O

P (φ) and F ′ = T
~O(φP ), then F = F ′

|P . From Theorem 28 applied to
φP , the forest F ′ is ~O-regular and thus F ∈ TREG~O

P ({0, 1}n).For the onverse impliation, we �rst restrit ourself to P -ut automata (seeDe�nition 24).Lemma 34. For every P -ut automaton A ∈ TFA ~O({0, 1}n), the forest F(A)|Pis S2S~O
P -de�nable.Proof. Obviously, the proof of Theorem 28 also suits in the ase of A is P -ut.To ahieve the proof of Theorem 32, it remains to show the following lemma.Lemma 35. Let P ⊆ {0, 1}∗ pre�x losed and ~O vetor of subsets of P suhthat P ∈ REG~O({0, 1}). For every F ∈ TREG~O(Σ), there e�etively exists a

P -ut automaton A ∈ TFA ~O(Σ) suh that F|P = F(A)|P .13



Proof. Let P · i−1 = {u ∈ {0, 1}∗|ui ∈ P}, for i = 0, 1 and ~P = (P · 0−1, P ·

1−1). Clearly, {χ~P
{0,1}∗} ∈ TREG~O. Theorem 23 ensures that there exists A1 ∈TFA ~O(Σ × {0, 1}2) suh that F(A1) = F {̂χ

~P
{0,1}∗}. Then A1 allows to desribe

F , and also the borders of P . From A1, we onstrut now a new automaton
A able to hek from the borders of P , that there exists a labelling of subtreesexternal to P suh that the omplete tree belongs to F .For every q ∈ Q1 (the set of states of A1), we onstrut Aq ∈ TFA whosetransitions are all (p, α, q) suh that (p, α, (0, . . . , 0), q) is a transition of A1 andwhose initial state is q. The emptiness problem being deidable for regularforests ([28℄,[33℄[Chapter 9℄), we an e�etively onstrut the set Acc = {q ∈
Q1 | L(Aq) 6= ∅}.
Acc desribes states from whih, outside of P , one an �nd an aepting subtree.Then, t ∈ F (A1) i� there exists a run r over t, suh that

• every in�nite path r(u1)r(u2) · · · r(un) · · · , with ui ∈ P is suessful, and
• for all u ∈ P suh that t(u) = (α, b0, b1) and bi = 0 for some i = 1, 2,
r(ui) ∈ Acc.Now, we onstrut an automaton B1 whih is P -ut and suh that F(A1)|P =

F(B1)|P . We obtain this automaton by adding q⊥ to the set of states (with
c(q⊥) = 0) and modifying the set of transitions of A1 in the following way: atransition (p, (α, b0, b1), ~o, q0, q1) belongs to QB i�

• b0 = b1 = 1 and (p, (α, b0, b1), ~o, q0, q1) belongs to QA1 , or
• ∃I ⊆ {0, 1} suh that ∀i ∈ I, bi = 0 and qi = q⊥ and ∃(p, (α, b0, b1), ~o, p0, p1) ∈
QA1 suh that for all i, pi = qi if i /∈ I and pi ∈ Acc if i ∈ I.From this new automaton, it is then easy to onstrut a P -ut automaton Areognising the language π1(F(B1)). We have then F(A)|P = F|P . This onludethe proof of the Theorem 32.Complexity analysis Suppose P is reognised by a word-automaton ofsize τP and F by a tree automaton of size τ . Then the size of A1 is τ · τP , so isthe P -ut automaton A.The onstrution of A requires to arry out ττP emptiness tests on automataof size smaller than that of τ · τP . From [20℄[Cor 8.22℄, the emptiness test for aparity tree automaton of size s an be made in time O(|Σ| · ss). Then A an beonstruted in time O(|Σ| · (τ · τP )τ ·τP ).Corollary 36. The emptiness problem is deidable for forests in TREG~O

P ({0, 1}k),for all k ≥ 1 i� χ
~O
P has a deidable MSO-theory.2.3. Regular trees and property of De�nable ModelRegular trees form a remarkable family, as they orrespond to unfolding of�nite graphs, i.e., of graphs of �nite automata. They are useful in several ar-eas of omputer siene (see [10℄ for a survey on basi theory and appliations14



in semantis). We generalise here the notion of regular trees by de�ning treesorresponding to unfolding of graphs of p-orale automata. We shall use thesetrees to study deidability and de�nability of the MSO-logi on labelled trees.We �rst extend regular trees to ~O-regular trees. Eah ~O-regular tree orre-sponds to a deterministi word automaton with p-orale ~O. We then study linksbetween existene of suh a tree in a forest reognised with orale-automata, andthe satis�ability of the DM property for a labelled tree strutures. Eventually,we lose this subsetion by de�ning tree automata without input. We showthat the study of emptiness problem and regular trees an be restrited to suhautomata.2.3.1. ~O-Regular treesA tree t ∈ A∗-Tree(Σ) is said to be ~O-regular i� there exists a deterministiword automaton A ∈ FA~O(A) and a funtion out : Q → Σ generating t, i.e.,suh that ∀u ∈ A∗, q ∈ Q,
(q0,↑ u) →A (q, u↑) i� out(q) = t(u).Remark 37. The following remarks will be useful:1. If t ∈ A∗-Tree(Σ) is ~O-regular, then for every α ∈ Σ, the set Lα = {u| t(u) =

α} is ~O-regular.2. For every ~O, the harateristi tree χ~O
A∗ is ~O-regular.We extend this de�nition to P -trees by saying that any t ∈ P -Tree(Σ) is ~O-regular when there exists t′ ∈ Tree(Σ), ~O-regular suh that t = t′|P .2.3.2. Property of De�nable ModelWe study links between regular trees and the property of De�nable Model(DM) formulated De�nition 15.Proposition 38. If P is MSO-de�nable in χ

~O
A∗ , the following properties areequivalent:1. χ~O

P ful�ls DM,2. for all n ≥ 1, for every non-empty forest F ∈ TREG~O
P ({0, 1}n), there exists

~D MSO-de�nable in χ~O
P suh that F ontains a ~D-regular tree.Proof. Suppose P is MSO-de�nable in χ

~O
A∗ , a simple rewriting of the DMproperty using Theorem 32 implies the equivalene between these two followingproperties:(1) χ~O

P ful�ls DM, 15



(2') for every non empty F ⊆ TREG~O
P ({0, 1}n), there exists ~S = (S1, . . . , Sn)MSO-de�nable in χ~O

P suh that the tree χ~S
P belongs to F .(2') ⇒ (2) Suppose (2'), aording to Remark 37(2), the tree χ~S

P is ~S-regular.(2) ⇒ (2') Suppose that F ⊆ TREGP
~O
is ~O-regular and ontains a ~D-regulartree t. From de�nition of ~D-regular tree, the language {t} is ~D-regular.Suppose that t = χ

~S
|P , with ~S = (S1, . . . , Sn), Theorem 32 ensures that

~S is MSO-de�nable in χ~D
P . Sine ~D is MSO-de�nable in χ~O

P , ~S is too.Any nonempty regular forest ontains a regular tree ([28℄, [33℄[Thm 9.3℄), thefollowing result is then a straightforward orollary of the proposition above.Theorem 39. For every �nite alphabet A, the struture 〈A∗, ε, (succa)a∈A〉ful�lls the property of De�nable Model.2.3.3. Input-free tree automataTo deal with emptiness problems or existene of regular trees, one an with-out lost of generality work with input-free tree automata i.e., tree automatawhose input alphabet is {⊤}. In transitions of a suh an automaton, the inputletter an be omitted and then the set of transitions is ∆ ⊆ Q×{0, 1}m ×Q|A|.In the sequel, we write TFA ~O(A) (resp. TFA ~O) rather than TFA ~O(A, {⊤}) (resp.TFA ~O({⊤})).Any tree automaton with m orales A = (Q,Σ, A, ~O,∆, q0, c) an be trans-formed in B = (Q×Σ, A, ~O,∆′, Q0, c
′) input-free where for every α1, . . . , αn ∈ Σ,

((q, α), ~o, (p1, α1), . . . (p|A|, α|A|)) ∈ ∆′ i� (q, α,~o, p1, . . . , p|A|) ∈ ∆. Q0 ontainsevery (q0, α), α ∈ Σ and c′(q, α) = c(q), ∀α ∈ Σ. (It remains to redue Q0 toonly one state, this onstrution being lassial, we don't desribe it). Obvi-ously, suessful runs of B are exatly pairs r′ = r̂t, where r is a suessful runof A over t. We obtain then the following result whih will permit to restritnext proofs to input-free automata:Proposition 40. For every A ∈ TFA ~O(A,Σ), one an �nd an input-free au-tomaton B ∈ TFA ~O(A) suh that:1. F(A) 6= ∅ i� there exists a suessful run on B,2. ∀~R, F(A) ontains a ~R-regular tree i� there exists a suessful ~R-regularrun on B,3. ∀P pre�x losed, if A is P -ut, then B is P -ut.Proposition 41. For every A ∈ TFA ~O(A) input-free and deterministi, if thereexists a run of A then this run is unique and ~O-regular.Proof. Let us suppose that A = (Q,A, ~O,∆, q0, c), with A = {a1, . . . , an},and onsider the word-automaton Ar = (Q,A, ~O,∆r, q0) where ∆r onsistsof all transitions (q, ai, ~o, pi) suh that (q, ~o, p1, . . . , pn) ∈ ∆. Clearly, Ar isdeterministi and if there exists a suessful run of A, it orresponds to the treegenerated by Ar assoiated to the funtion out : q 7→ q, ∀q ∈ Q.16



3. Logi for restrited oralesWe now restrit our study to tree automata with orales of the form ~O =
(µ|P

−1(R1), . . . , µ|P
−1(Rm)), where µ is a morphism from A∗ to any semi-group

S, P is a pre�x losed subset of A∗ and Ri ⊆ S.We use a game-theoretial approah of these automata to express problemsover ~O-regular forests by means of MSO-formulas over the graph struture µ(χ
~O
P )(see Setion 1.5.1). This allows to show that if P is MSO-de�nable in χ~O, thenthe MSO deidability an be transfered from µ(χ

~O
P ) to χ~O

P . We also de�ne aondition on µ|P making possible the transfer of the property DM and suh thatthe lass of sets whih are MSO-de�nable in χ~O
P orresponds exatly to lass of

µ|P
−1( ~D)-regular languages interseted with P , for any ~D MSO-de�nable in

µ(χ
~O
P ).3.1. Games for pre�x-orale automata3.1.1. Parity gameA two-player game (player 0 and player 1) is a olored direted graph whoseset of verties V is partitioned in player 0's verties (V0) and player 1 ones (V1),assoiated to a winning ondition. Parity games are speial games whih havebeen muh studied ([14, 20, 23℄)De�nition 42. A parity game is a tuple G = (V0, V1, E, v0, c) where V =

V0

⊎
V1 is the set of positions, E ⊆ V × V is the sets of possible moves, v0 ∈ Vis the start position and c : V → [0,max] is a map assoiating to eah vertexa priority by means of an integer whih belongs to a bounded interval. A playin G is a (�nite or in�nite) path in the graph (V,E) starting at v0. If the playis �nite and ends in any vertex v ∈ Vǫ, ǫ ∈ {0, 1} (i.e., player ǫ annot playanymore), then player ǫ is delared loser (and therefore the other player winsthe play). Otherwise, the winner is determined by n0, value of the minimalpriority appearing in�nitely often in the play. In other words, if the play is

v0v1 · · · vn · · · , then n0 is the smallest integer having an in�nity of ourrenesin the word c(v0)c(v1) · · · c(vn) · · · . If n0 is even, player 0 is delared winner,otherwise player 1 wins the play.A strategy for player ǫ is a map s : (V ∗Vǫ) → V onneting any pre�x ofplay ρ = v0v1 . . . vn to a vertex vn+1 suh that (vn, vn+1) ∈ E. A strategy ismemoryless if for any ρ = v0v1 . . . vn the value of s(ρ) depends only on theurrent vertex vn. In this ase, the strategy is represented as an appliationfrom Vǫ to V . A play ρ = v0v1 . . . vn . . . is said onform with s if for any i ≥ 0if vi ∈ Vǫ, then vi+1 = s(v0 . . . vi). A strategy s for player ǫ is a winningstrategy if every play onform with s is won by player ǫ.The notion of winning strategy allows to apture verties from whih a playeris sure to win (if he hooses a good strategy). We say that player ǫ wins thegame if there exists a winning strategy for ǫThe following result will be useful in the sequel.17



Theorem 43 ([14, 20℄). Given any parity game G:1. one and only one player wins the game2. for ǫ ∈ {0, 1}, if player ǫ wins the game, then player ǫ has a winningmemoryless strategy.3.1.2. Games with p-orale and regular treesWe use now parity games to express some problems related to ~O-regular treelanguages in the ontext �xed as follows:
• A is a �nite alphabet, supposed redued to two element: A = {a0, a1} (allresults established in this subsetion remain true if A is unspei�ed),
• µ is a surjetive morphism from A∗ toward a semi-group (M,⋆),
• P is a pre�x losed subset of A∗,
• ~O = (µ|P

−1(R1), . . . , µ|P
−1(Rm)), with m ≥ 1 and Ri ⊆M .We prove that the emptiness problem for ~O-regular tree languages redued todetermine the winner of a parity game whose verties are inluded in the produtof µ(P ) with a �nite set. From this result, we show (Proposition 53(1)) thatthe emptiness problem for ~O-regular tree languages redued to the satis�abilityof an MSO-formula in µ(χ

~O
P ) (see Setion 1.5.1). We prove, in addition, thatevery non-empty ~O-regular tree language ontains a µ|P ( ~D)-regular tree, where

~D is MSO-de�nable in µ(χ
~O
P ) (Proposition 53(2)).We �rst restrit ourself to the study of input-free P -ut automata. Advan-tage of using P -ut automata is that to know if there exists a run and if thereexists a suessful run, there is only need to onsider nodes in P . In addition,in a run of a P -ut automaton, nodes whih do not belong to P are indiatedby the label q⊥.De�nition 44 (Game with p-orales). Given an input-free P -ut automa-ton A = (Q,A, ~O,∆, q0, c), we onstrut the parity game GA = (V0, V1, E, v0, c

′)where
V0 = µ(P ) ×Q and V1 = µ(P ) × ∆, v0 = (µ(ε), q0)
E = E0 ∪ E1 where E0 ⊆ V0 × V1, E1 ⊆ V1 × V0 and
E0 = {((m, p), (m, δ)) | δ = (p, χ

µ( ~O)(m), p0, p1) ∈ ∆},
E1 = {((m, δ), (m ⋆ µ(ai), pi)) | pi 6= q⊥, δ = (p,~o, p0, p1), i ∈ {0, 1}} and
c′ is de�ned by c′(m, p) = c(p) and c′(m, (p,~o, p0, p1)) = c(p).Eah player moves alternately in the game. In position (µ(u), p), player 0hooses a transition δ = (p,~o, p0, p1) from those ful�lling ~o = χ

~O
A∗(u). He movesthen to (µ(u), δ). Now it's the player 1 turn to play, he hooses a diretion aito follow (i ∈ {0, 1}) and moves to (µ(uai), pi). Hene, µ being a morphism, forevery pre�x of play ending in (m,x) ∈ V , then m = µ(u) where u onsists ofthe sequene of diretions hosen by player 1.18



Lemma 45. For any input-free P -ut automaton A ∈ TFA ~O(A), A has a su-essful run i� player 0 has a winning strategy in GA.Proof. Let r be a run on A, and sr the strategy de�ned by: ∀v0 . . . vn pre�xof a play with vn ∈ V0 and suh that the sequene of diretions hosen by player1 is u ∈ A∗, sr(v0 . . . vn) = (µ(u), (r(u), χ~O
(u), r(ua0), r(ua1))).Clearly, sr is winning i� r is suessful.Conversely, given any winning strategy s for player 0 we onstrut the tree

rs by applying to eah vertex u, the transition given by s(ρu) where ρu is thepre�x of play onform with s whose sequene of seleted diretions is u:
• rs(ε) = q0 and ρε = (µ(ε), q0),
• ∀u ∈ P , if s(ρu) = (µ(u), (p,~o, p0, p1)), then ∀i ∈ {0, 1}, rs(uai) = pi and
ρuai

= ρu · s(ρu) · (µ(u) ⋆ µ(ai), pi),
• ∀u /∈ P , rs(u) = q⊥.The tree thus onstruted is obviously a run on A and is suessful i� s is awinning strategy.Thus by applying Theorem 43:Lemma 46. For any input-free P -ut automaton A ∈ TFA ~O(A), A has a su-essful run i� player 0 has a memoryless winning strategy in GA.Given a memoryless strategy s for player 0, we onsider the game Gs

A = (∅, V0∪
V1, E

s, c′), where Es = E1 ∪ {(v, v′) | v ∈ V0, s(v) = v′}. Without loss ofgenerality, we an suppose that A is omplete, i.e., for every (q, ~o), there existsa transition (q, ~o, q1, q2). In this ase, any �nite play in GA ends in a player 1'sposition, and is then winning for player 0.Lemma 47. For every omplete input-free P -ut automaton A ∈ TFA ~O, anymemoryless strategy for player 0 s is winning in GA i� the redued game Gs
A iswinning for player 0.Proof. An in�nite sequene of verties v0 · · · vn · · · is a play in Gs

A i� it is aplay in GA onforms with s. Sine verties of GA and Gs
A have same priority,an in�nite sequene of verties is a winning play in GA onform with s i� it isa winning play in Gs

A.Any parity game G = (V0, V1, E, v0, c) with c : V → [0,max] is naturallyassoiated to a relational struture G of domain V de�ned over the signature
G = (V0, V1, E, v0, c0, . . . , cmax), where for all i ∈ [0,max], the arity of ci is 1.19



Lemma 48. For every omplete input-free P -ut automaton A ∈ TFA ~O, onean �nd an MSO(GA)-sentene win suh that ∀s memoryless strategy for player0 in GA,
G

s
A |= win i� s is winning.Proof. We onstrut a formula P0 suh that G

s
A |= P0 i� there exists a playin Gs

A lost by player 0, i.e., i� there exists an in�nite path v0 · · · vn · · · suh thatthe smallest integer appearing in�nitely often in c′(v0) · · · c′(vn) · · · is odd.
P0 := ∃X,X0, . . . , Xmax,1. X is a path ontaining v02. ∀n,Xn = {x appearing in�nitely often in X | cn(x)}3. the smallest n suh that Xn 6= ∅ is oddUsing [20℄[�12.2℄, �being a path� is MSO-expressible in Gs

A. From Theorem 43,player 0 loses the game i� player 1 wins the game, hene win := ¬P0.We relate now these results to the MSO-logi of the struture µ(χ
~O
P ) bymeans of an enoding the subsets of V1, and an enoding of the player 0'smemoryless strategies, with a vetor of subsets of µ(P ). Given A ∈ TFA ~O, we�x the following notations:

• ∆ = {δ1, . . . , δd}, where δi 6= δj for all i 6= j,
• Q = {s1, . . . , sτ},
• for every D ⊆ V , g(D) = (g1(D), . . . , gd(D), h1(D), . . . , hτ (D)), where
∀i ∈ [1, . . . d], j ∈ [1, τ ],

gi(D) = {σ | (σ, δi) ∈ D}, hj(D) = {σ | (σ, sj) ∈ D},

• we assoiate to any player 0's memoryless strategy s the vetor ~Ss =
(Ss,1, . . . , Ss,d), where ∀i ∈ [1, d],

Ss,i = {σ ∈ µ(P ), s(σ, π1(δi)) = (σ, δi)},and denote ~Ss the vetor µ−1
|P (~Ss).Remark that ~Ss gives a omplete haraterization of s.Lemma 49. Given an input-free P -ut automaton A ∈ TFA ~O, s a memorylessstrategy for player 0 in GA, and φ(X1, . . . , Xn) an MSO(GA)-formula, one ane�etively onstrut an MSO-formula φg suh that ∀D1, . . . Dn ⊆ µ(P )×(Q∪∆)

G
s
A |= φ(D1, . . . , Dn) i� µ(χ

~Ss
P ) |= φg(g(D1), . . . , g(Dn)).Proof. Let us onstrut φg if φ is an atomi formula:

• ∀i ∈ [1, d], j ∈ [1, τ ], σ, σ′ ∈ µ(P ),20



� Es((σ, δi), (σ′, pj)) i� ∃ǫ ∈ {0, 1} s.t. σ′ = σ⋆µ(aǫ) and π2+ǫ(δi) = pj� Es((σ, pj), (σ
′, δi)) i� σ′ = σ, π1(δi) = pj and σ ∈ Ss,iThen (Es)g(X1, . . . , Xp+τ , Y1, . . . , Yp+τ ) an be expressed in the followingway: ∃i ∈ [1, d], ∃j ∈ [1, τ ] suh that� either Xi = {x}, Yd+j = {y} and the other ones are empty and

∃ǫ ∈ {0, 1} s.t. y = x ⋆ µ(aǫ) and π2+ǫ(δi) = pj� or Yi = {y}, Xd+j = {x} and the other ones are empty and y = x,
π1(δi) = pj and x ∈ Ss,i

• cgs,n(X1, . . . , Xp+τ ) orresponds to the XOR of the two following proper-ties:� ∃i ∈ [1, d] suh that Xi = {x} and the other ones are empty and
c(δi) = n,� ∃j ∈ [1, τ ] suh that Xd+j = {x} and the other ones are empty and
c(pj) = n.

• if φ(X,Y ) := X ⊆ Y ,then φg(X1, . . . , Xd+τ , Y1, . . . , Yd+τ ) := ∀i ∈ [1, d+ τ ], Xi ⊆ Yi.Finally, if φ is not atomi, φg is given by an obvious indution.Combining Lemma 48 and Lemma 49, we obtain:Lemma 50. Let A ∈ TFA ~O omplete, input-free and P -ut, one an �nd anMSO-sentene sg, suh that for every memoryless strategy s for player 0 in
GA,

µ(χ
~Ss
P ) |= sg i� s is winning.Given ~D = (D1, . . . , Dd) any vetor of subsets of µ(P ), it is easy to determineif there exists a memoryless strategy s suh that ~D enodes s (i.e suh that

~D = ~Ss). Indeed, if we suppose A is omplete, there is just to hek that forevery σ ∈ µ(P ), for every state p, there exists one and only one i ∈ [1, d] suhthat, the �rst omponent of δi is p, and χµ(~O)(σ) = π2(δi) and σ ∈ Di. Thisproperty an be easily expressed in MSOL, hene, we dedue from Lemma 50:Lemma 51. For every omplete P -ut input-free automaton A ∈ TFA ~O, thereexists d ≥ 0 and anMSO-formula regA(X1, . . . , Xd) suh that ∀~S = (S1, . . . , Sd),
Si ⊆ µ(P ), the following properties are equivalent:1. µ(χ

~O
P ) |= regA(S1, . . . , Sd)2. ~S enodes a winning memoryless strategy for player 0 in GA.Let us assoiate to A and any memoryless strategy s, a deterministi input-free tree automaton As = (Q,A, ~Ss,∆s, q0), where ∆s is onstruted in thefollowing way: 21



• ∀~o, (q⊥, ~o, q⊥, q⊥) ∈ ∆s
• if δi = (q, ~o, p0, p1) ∈ ∆, then (q,~b, p0, p1) ∈ ∆s, ∀~b ∈ {0, 1}d suh that� bi = 1,� ∀j 6= i, bj = 0 if the �rst omponent of δj is q.This automaton follows the transitions of A indiated by the strategy s.Lemma 52. For every winning memoryless strategy s for player 0, As is de-terministi, P -ut and its unique run is a suessful run of A.Proof. By hoie of test vetors, As is learly deterministi. A being ompleteand from de�nition of ~Ss, As admits a run r sine ∀u ∈ P , there exists i ∈ [1, d]suh that r(u) = δi and µ(u) ∈ Ss,i. We prove that r is a suessful run of A:
• r(ε) = q0,
• ∀u ∈ A∗, the transition (r(u), χ

~Ss
A∗(u), r(ua0), r(ua1)) belongs to ∆s andthere exists then i ∈ [1, d] and ~o suh that δi = (r(u), ~o, r(ua0), r(ua0)) ∈

∆ and Ss,i = 1. Hene, we have in addition s(µ(u), r(u)) = (µ(u), δi) andthen ~o = χ
~O(u).Then, r is a run of A, and sine s is winning, r is suessful and As is P -ut.Sine As is deterministi, Proposition 41 implies that its unique run is a ~Ss-regular tree. Applying Lemma 40, these results an be extended to the ase ofautomata with inputs. In addition, from Lemma 35, if P is MSO-de�nable in

χ
~O
A∗ , for every B ∈ TFA ~O(A), there exists a P -ut automaton A in TFA ~O(A)suh that F(A)|P = F(B)|P . Hene, when P is MSO-de�nable in χ~O

A∗ , Lemma52 and Lemma 51 an be extended to every automaton in TFA ~O. The followingproposition summarize these results.Proposition 53. For every forest F ∈ TREG~O
P (A,Σ), where P is MSO-de�nablein χ~O

A∗, there exists d ≥ 0 and a formula regF (X1, . . . , Xd), suh that1. F 6= ∅ i� µ(χ
~O
P ) |= ∃X1, . . . , Xd · regF (X1, . . . , Xd)2. for every ~S = (S1, . . . , Sd), Si ⊆ µ(P ),if µ(χ

~O
P ) |= regF (S1, . . . , Sd), then F ontains a µ|P

−1(~S)-regular tree.Complexity analysis.Lemma 51: Let A be an automaton ful�lling the onditions of Lemma 51, andsuppose τ is the number of states of A. The formula regA de�ned Lemma 51ontains 3 quanti�er hanges and its length is O(τ). Indeed, using [20℄(�12.2),the formula win onstruted in Lemma 48 ontains 3 quanti�er alternationsand its length is onstant. The formula sg obtained in Lemma 50 has then 3quanti�er hanges and has length O(1). Finally, the transformation of sg in22



reg does not modify the number of quanti�er hanges but adds O(τ) symbols.Then reg has 3 quanti�er hanges and has length O(τ).Proposition 53: Suppose that τ is the number of states of an automaton reog-nizing F and τ ′ is the number of states of the word-automaton reognizing P .Using Lemma 35 we onstrut in time O(|Σ| · (τ · τ ′)τ ·τ ′

) a P -ut automaton
A having τ · τ ′ states and suh that F(A)P = FP . This automaton an betransformed in an input-free automaton having |Σ||A| · τ · τ ′ states.Finally, using the omplexity analysis of Lemma 51, the formula regF de�nedin Proposition 53 ontains 3 quanti�er hanges and its length is O(|Σ||A| · τ · τ ′).This formula an be onstruted in time O(|Σ| · (τ · τ ′)τ ·τ ′

).3.2. Transfer theoremsWe use the Proposition 53 to transfer some properties of the struture µ(χ
~O
P )toward the struture χ~O

P . The following de�nition �xes hypothesis for whihthese results hold.De�nition 54 (Transfer Hypothesis (TH)). We write TH(µ|P , ~O) if:
µ : A∗ → M is a surjetive morphism of semi-group, P is a pre�x losedlanguage in A∗, and there exists ~R vetor of subsets of µ(P ) suh that P ∈REGµ|P

−1(~R)(A) and ~O = µ−1
|P (~R).Theorem 55 (Transfer of deidability). Let µ be a morphism from A∗ toany semi-group, P ⊆ A∗ be a pre�x losed language, and ~O a vetor of subsetsof P , suh that TH(µ|P , ~O).If theMSO-theory of µ(χ

~O
P ) is deidable, then theMSO-theory of χ~O

P is deidable.Proof. Suppose that the MSO-theory of µ(χ
~O
P ) is deidable. For all F ∈TREG~O

P , one an deide whether µ(χ
~O
P ) |= ∃ ~X,regF ( ~X) where regF is theformula established in Proposition 53, i.e., whether F is empty. Hene, fromCorollary 31, the MSO-theory of χ~O

P is deidable.Complexity analysis.Let CD(n, τ) be the time to deide the validity of a sentene in MSO(χ
~O
P ) oflength n and having τ quanti�er alternations. Suppose that P is reognized byan automaton having τP states. Let φ be a sentene in MSO(χ

~O
|P ) of length n andhaving τ quanti�er hanges. From Remark 29, we an ompute a tree automa-ton A ∈ TREG~O suh that T (φ) = T (A), and having F (n, τ) states. Then, theformula regT (A) has 3 quanti�er alternations and length |Σ||A|F (n, τ)τP andis onstruted in time O(|Σ|(F (n, τ)τP )F (n,τ)σP ). Finally, we deide if φ is truein time CD(3, |Σ||A|F (n, τ)τP ) +O(|Σ|(F (n, τ)τP )F (n,q)τP ) (or CD(3, F (n, τ)) if

P = A∗).We de�ne now a ondition on µ|P allowing to transfer the DM property (seeDe�nition 15). 23



De�nition 56. Given any surjetif morphism µ from A∗ into any semi-group,and P ⊆ A∗ pre�x losed, the restrited map µ|P is said to be MSO-invertibleif for every ~O vetor of subsets of P , for every D ⊆ µ(P ),if D is MSO-de�nable in µ(χ
~O
P ) then µ|P

−1(D) is MSO-de�nable in χ~O
P .Theorem 57 (Transfer of property DM). If TH(µ|P , ~O) and µ|P is MSO-invertible, then µ(χ

~O
P ) satis�es DM implies χ~O

P satis�es DM.Proof. Let F be a non-empty ~O-regular forest in P -Treen, from Proposition53 and sine µ(χ
~O
P ) ful�lls DM, there exists ~S suh that F ontains a µ|P

−1(~S)-regular tree and ~S is MSO-de�nable in µ(χ
~O
P ). Sine µ|P is MSO-invertible,there exists ~D = µ|P

−1(~S) suh that ~D is MSO-de�nable in χ~O
P and F ontainsa ~D-regular tree. Hene, from Proposition 38, χ~O

P ful�lls DM.Complexity analysis For a formula in MSO(χ
~O
P ) of length n and having

τ quanti�er alternations, we denote by CM (n, τ) the time needed to onstruta formula that de�nes a model, and by (nS , τS) the size of a formula thatde�nes inverse models. Suppose P is reognized by an automaton having τPstates. Given φ ∈ MSO(χ
~O
P ) of length n and having τ quanti�er hanges, onean onstrut a formula that de�nes a model of φ in time CM (3, F (n, τ)) +

O((2F (n, τ) · τP )F (n,τ)·τP ) (or CM (3, F (n, τ)) if P = A∗).Theorem 58 (Struture Theorem). If µ|P is MSO-invertible, TH(µ|P , ~O)and µ(χ
~O
P ) satis�es DM, then for every L ⊆ P , the following properties areequivalent:

• L is MSO-de�nable in χ~O
P

• there exists ~D MSO-de�nable in µ(χ
~O
P ) suh that L is µP

−1( ~D)-regular.Proof. Let us suppose that L is MSO-de�ned in χ~O
P by a formula φ(X). Thenfrom Theorem 32, there exists a ~O-regular forest F = {χL

P} suh that F =

T
~O

P (φ). From Proposition 53 and sine µ(χ
~O
P ) ful�lls DM, there exists ~D suhthat χL

P is µ|P
−1( ~D)-regular and ~D is MSO-de�nable in µ(χ

~O
P ). From Remark37.1, the language L is µ|P

−1( ~D)-regular.Conversely, given ~D, MSO-de�nable in µ(χ
~O
P ), then sine µ|P

−1 is MSO-invertible, µ|P
−1( ~D) is MSO-de�nable in χ~O

P . Given L a µ|P
−1( ~D)-regular lan-guage, by using the automata-haraterization of L, it is then easy to �nd aMSO-formula de�ning L in χ~O

P . 24



Complexity analysis.For a formula in MSO(χ
~O
P ) of length n and having τ quanti�er alternations,we denote by CM (n, τ) the time needed to onstrut a formula that de�nesa model, and by (nS , τS) the size of a formula that de�nes inverse models.Suppose that P is reognized by an automaton having τP states and that L isde�ned by φ ∈ MSO(χ

~O
P ) of length n and having τ quanti�er hanges, one anonstrut a word orale-automaton reognizing L having F (3, F (n, τ)) states.It an be onstruted in time CM (3, F (n, τ)) + O((2F (n, τ) · τP )F (n,τ)·τP ) (or

CM (3, F (n, τ)) if P = A∗).3.3. A �rst example of appliationVarious authors have exhibited lasses of relationR ⊆ N for whih 〈N, 0,+1, R〉has a deidable MSO-theory. Cite for reent examples [8, 19, 17℄. These stru-tures an be seen as images by a morphism, in order to transfer the deidabilitytoward a tree struture. Given two alphabets A and B, with B ⊆ A, we onsiderthe map lB : A∗ → N assoiating to every word in A∗ its number of ourrenesof letters in B. This map is learly a surjetive morphism when N is endowedwith the �+� operator.Corollary 59. For every ~N = (N1, . . . , Nm), Ni ⊆ N suh that 〈N,+1, ~N〉 hasa deidable MSO-theory, the struture χlB
−1( ~N)

A∗ admits a deidable MSO-theory.This result has already been proved in [34℄[Proposition 2℄ for the ase A = B,as a diret appliation of the results about unfolding of graphs obtained in [11,12℄. However, to our knowledge, this method does not allow the transfer of theDM property, nor to deal with the deidability for the ase A 6= B. Conversly,Theorem 55 does not seems to over all results we an obtain by unfolding, sinethe unfolded graph must indue a struture of semi-group isomorphi to a tree.Corollary 60. Given ~N a vetor of subsets of N,1. the struture χl−1
B

( ~N)
A∗ ful�lls DM,2. sets MSO-de�nable in χ

l−1
B

( ~N)

A∗ are languages in REGl−1
B

(~D), for ~D MSO-de�nable in 〈N, 0,+1, ~N〉.Proof. We prove these results by using Theorems 57 and 58.Sine lB(χ
l−1
B

( ~N)

A∗ ) = 〈N, 0,+1, ~N〉, we just need to prove that1. 〈N, 0,+1, ~N〉 ful�lls the DM property:This result is proved for all ~N in [30℄.2. lB is MSO-invertible:Consider the overing R of A∗ onsisting of all sets R that form an in�nitepath from ε and ontaining an in�nite number of elements in B. For all
R ∈ R, the restrition of lB to R is a surjetive map from R to N. Remark25



in addition that the property �be an element of R� an be expressed by anMSO-formula over 〈A∗, ε, (sua)a∈A〉.For every MSO-formula φ over S = 〈N, 0,+1, ~N〉 with n free variables, weonstrut by indution an MSO-formula φ′ over S = 〈N, 0,+1, ~N〉 with
n+ 1 free-variables satisfying for every R ∈ R, for every S1, . . . , Sn ⊆ A∗:
χ

l−1
B

( ~N)

A∗ |= φ′(S1 ∩R, . . . , Sn ∩R,R) i� S |= φ(l(S1 ∩R, . . . , Sn ∩R)) (1)In this proof, relations with free �rst order variables are replaed by "equiv-alent" relations with free seond order variables. For exemple, ε(x) is re-plaed by ε(X) == ∃x. X = {x} ∧ ε(x).
• 0′(X,Y ) := ε(X),
• (+1)′(X1, X2, Y ) :=

∨
b∈B sub(X1, X2),

• if ϕ := ∃X,ψ(X,X1, . . . , Xn), then ϕ′ := ∃X,ψ′(X∩Y,X1, . . . , Xn, Y ),
• if ϕ := ∀X,ψ(X,X1, . . . , Xn), then ϕ′ := ∃X,ψ′(X∩Y,X1, . . . , Xn, Y ),ases X1 ⊆ X2 and X1 ⊆ N are given in an obvious way, idem for booleanombinations: (φ ∨ ψ)′ := φ′ ∨ ψ′, (φ ∧ ψ)′ := φ′ ∧ ψ′ et (¬φ)′ := ¬φ′. Itis easy to hek that atomi formulas ful�ll Equivalene (1). We treat onlythe ase ϕ = ∃X · ψ. For the universal quanti�er, the proof is similar. Forboolean ombination, the proof is obviousFix S1, . . . , Sn ⊆ A∗ and R ∈ R.

χ
l−1
B

( ~N)
A∗ |= ϕ′(S1 ∩R, . . . , Sn ∩R,R) i�

∃S ⊆ A∗, χ
l−1
B

( ~N)

A∗ |= ψ′(S ∩R,S1 ∩R, . . . , Sn ∩R,R) i� (by (i.h))
∃S ⊆ A∗, S |= ψ(lB(S ∩R), lB(S1 ∩R), . . . , lB(Sn ∩R)) i�
∃D ⊆ N, S |= ψ(D, lB(S1 ∩R), . . . , lB(Sn ∩R)) i�

S |= ∃X, ψ(X, lB(S1 ∩R), . . . , lB(Sn ∩R)) i�
S |= ϕ(lB(S1 ∩R), . . . , lB(Sn ∩R)).We have remarked R is a overing of A∗ and for all R ∈ R, lB restritedto R is surjetive, then ∀D ⊆ A∗, D′ ⊆ N,

D = l−1
B (D′) i� ∀R ∈ R, lB(R ∩D) = D′.Then, for every formula φ(X1, . . . , Xn) over S, the formula

φlB (X1, . . . , Xn) := ∀R ∈ R, φ′(R ∩X1, . . . , R ∩Xn, R)ful�lls χl−1
B

( ~N)
A∗ |= φlB (D1, . . . , Dn) i� ∃D′

1, . . . , D
′
n suh that S |= φ(D′

1, . . . , D
′
n)and for every i ∈ [1, n], l−1

B (Di) = D′
i.26



4. Words, iterated-pushdowns and tree-struturesIn order to apply results obtained above to iterated pushdowns, we needto represent k-pds as words in a pre�x losed language. We then enode eah
ω ∈ k-pds(A1, . . . , Ak) by a word representing the smallest instrutions sequeneof pushi,a and pushi,a omputing ω from ⊥k. The set of suh enodings is apre�x losed language over Â1,k denoted Pk.We use transfer theorems proved in the previous setion to study MSO-properties of the struture Pk = 〈Pk, ε, (•a)

a∈ dA1,k
〉 where •a is the binaryrelation right-produt by a inside the free group (Irr(A1,k), •, ε). We show thatfor every k ≥ 1, the struture Pk has a deidable MSO-theory and ful�lls theDM property (Theorem 76). We also de�ne a lass of automata with p-oralesreognizing exatly sets whih are MSO-de�nable inside Pk (Theorem 79).Eventually we prove that the struture PDSk is MSO-equivalent to the struture

Pk. It follows that PDSk has a deidable MSO-theory and ful�lls DM. We alsogive a de�nition of regular sets of k-pushdowns whih enjoy several nieharaterizations (Theorem 85).4.1. Iterated-pushdowns viewed as wordsLet A1, . . . , Ak, . . . be store alphabets and A0 = ∅, ∀k ≥ 0, we denote by
A1,k the union of A1, . . . , Ak. Every ω ∈ k-pds(A1, . . . , Ak) an be representedby a word on Â1,k = A1,k ∪ A1,k enoding an instrutions sequene omputing
ω from ⊥k:

• every a ∈ Ai orresponds to pushi,a

• every ā ∈ Ai orresponds to pushi,aFor instane, the 2-pds ω = a2[c1b1 ⊥]a2[a1 ⊥] ⊥ [⊥] an be representedby the word u1 = a2a1a2ā1b1c1, or by u2 = a2a1b2b̄2a2ā1b1c1, or by u3 =
a2a1a1b2b̄2ā1a2ā1b1c1.There are then several representations of the same k-pds but all have the sameredued representative in (Irr(A1,k), •, ε). Eah k-pds will be enoded by itsredued representation. In the previous example, the redued representation is
u1 (sine ρ(u1) = ρ(u2) = ρ(u3) = u1). Eah word in Â1,k

∗ does not de�nea valid sequene of instrutions. For example, a1b1a2b̄1b̄1 is not valid sine
a1b1a2b̄1 orrespond to a2[a1 ⊥] ⊥ [b1a1 ⊥] and pushb1,1 is then unde�ned.Let us introdue the set Mk of words in Â1,k

∗ enoding all valid sequenes ofmoves, as well as the set Pk of redued words of Mk whih enodes the set of
k-pds. We de�ne simultaneously Pk(A1, . . . , Ak) (or simply Pk when the Ai'sare �xed) and Mk(A1, . . . Ak) (or simply Mk) by indution on k:

• P0 = {ε},
• ∀k ≥ 0, Mk(A1, . . . , Ak) = {u ∈ Â1,k

∗
| ∀v 4 u, ρ(v) ∈ Pk(A1, . . . , Ak)}and

Pk+1(A1, . . . , Ak+1) = {u ∈ ρ((Â1,k∪Ak+1)
∗) | π dA1,k

(u) ∈ Mk(A1, . . . , Ak)}.27



Clearly, P1(A1) = A∗
1.De�nition 61 (Projetion). For k ≥ 0, fk : Pk+1 → Pk is de�ned for every

u ∈ Pk+1 by fk(u) = ρ(π dA1,k
(u)). We extend fk by fi+1,k : Pi+1 → Pk obtainedby suessive appliations of fi, fi−1, . . . , fk.An obvious indution on k proves the following reursive de�nition of PkProposition 62. For every k ≥ 1, u ∈ Pk and a ∈ Ai, 1 ≤ i ≤ k,

u • a ∈ Pk and
u • ā ∈ Pk i� fk,i(u) ∈ Pi · a.For every k ≥ 0, sets Pk and k-pds are linked by a bijetion denoted ϕk:De�nition 63. The map ϕk : k-pds(A1, . . . , Ak) → Pk(A1, . . . , Ak) is de�nedby indution on k ≥ 0 by:

• ϕ0(⊥0) = ε,
• ∀k ≥ 0, ω1 ∈ k-pds, ω ∈ (k + 1)-pds and a ∈ Ak+1,� ϕk+1(⊥ [ω1]) = ϕk(ω1)� ϕk+1(a[ω1]ω) = (ϕk+1(ω) · a · fk(ϕk+1(ω))) • ϕk(ω1).Example 64. Let ωex be the following 3-pds:
ωex = a3[b2[b1a1 ⊥]a2[a1 ⊥] ⊥2] ⊥ [a2[a1 ⊥]a2[⊥] ⊥2] = a3[ω1]ωThen, ϕ3(ωex) = (ϕ3(ω)a3f2(ϕ3(ω))) • ϕ2(ω1).We have, ϕ2(b2[b1a1 ⊥]a2[a1 ⊥] ⊥2) = a2a1b2b1 and ϕ2(a2[a1 ⊥]a2[⊥] ⊥2

) = a2a2a1, then ϕ3(ω) = a2a2a1. We obtain then,
ϕ3(ωex) = a2a2a1a3a2a2a1 • (a2a1b2b1)

= a2a2a1a3(ā1 ā2 ā2) • (a2a1b2b1)

= a2a2a1a3ā1 ā2a1b2b1.Proposition 65. For every (k + 1)-pds ω = a[ω1]ω
′, ϕk(ω1) = fk(ϕk+1(ω)).Proof. From de�nition of ϕk and fk:

fk(ϕk+1(a[ω1]ω
′)) = fk(ϕk+1(ω

′) · a · fk(ϕk+1(ω′)) • fk(ϕk(ω1)))

= fk(ϕk+1(ω
′)) • fk(ϕk+1(ω′)) • ϕk(ω1)

= ϕk(ω1).Remark 66. From Proposition 65 and de�nition of ϕk+1, it appears learlythat for all ω = an[ωn] · · · a1[ω1] ⊥ [ω0] ∈ (k + 1)-pds, n ≥ 0,
ϕk+1(ω) = ϕk(ω0)a1ϕk(ω0) •ϕk(ω1)a2ϕk(ω1) •ϕk(ω2) · · · anϕk(ωn−1) •ϕk(ωn).28



Lemma 67. For every k ≥ 0, ϕk is a bijetive map.Proof. Injetion: Let us sketh by indution on k ≥ 0 that ϕk is an injetivemap. If k = 0, it is obvious. Suppose ϕk injetive, for k ≥ 0. For every
ω, ω′ ∈ (k + 1)-pds having same image by ϕk+1, Remark 66 implies the followingdeompositions:
ω = an[ωn] · · · a1[ω1] ⊥ [ω0] et ω′ = an[ω′

n] · · ·a1[ω
′
1] ⊥ [ω′

0], n ≥ 0.We hek ϕk+1 is bijetive by a seond indution over n ≥ 0. If n = 0, theindution hypothesis over k proves that ω = ω′. Else, let ω = an[ωn]ω′′ and
ω′ = an[ωn]ω′′′. From de�nition of ϕk+1 and by hypothesis ϕk+1(ω) = ϕk+1(ω

′):
ϕk+1(ω

′′)·a·fk(ϕk+1(ω′′))•fk(ϕk(ωn)) = ϕk+1(ω
′′′)·a·fk(ϕk+1(ω′′′))•fk(ϕk(ω′

n)),in other words,
ϕk+1(ω

′′) = ϕk+1(ω
′′′) et fk(ϕk(ω′′)) • fk(ϕk(ωn)) = fk(ϕk(ω′′′)) • fk(ϕk(ω′

n)).From indution hypothesis over n, we obtain ω′′ = ω′′′ and sine (Irr(A1,k), •, ε)is a group, fk(ϕk(ωn)) = fk(ϕk(ω′
n)). Then ω = ω′.Surjetion:let us de�ne indutively the map ϕk

−1:
• ϕ0

−1(ε) =⊥0

• for every u ∈ Pk+1, k ≥ 0,� if u ∈ Pk, then ϕk+1
−1(u) =⊥ [ϕk

−1(u)]� else there exists u′ ∈ Pk+1, a ∈ Ak+1, u1 ∈ Irr(A1,k) suh that
u = u′au1 and

ϕk+1
−1(u) = a[ϕk

−1(fk(u))]ϕk+1
−1(u′)We hek that ϕk

−1 really de�nes the inverse map of ϕk by indution over k.We detail the ase u = u′au1:
ϕk+1(ϕk+1

−1(u))

= ϕk+1(a[ϕk
−1(fk(u))]ϕ−1

k+1(u
′))

= ϕk+1(ϕk+1
−1(u′)) · a · fk(ϕk+1(ϕk+1

−1(u′))) • ϕk(ϕ−1
k (fk(u)))

= u′ · a · fk(u′) • fk(u) = u′ · a · fk(u′) • fk(u′) • u1 = u′ · a · u1.We lose this setion by studying links between the right-produt in Pk and theappliation of instrutions to k-pushdowns.Lemma 68. For every k ≥ 1, u, v ∈ Pk, and a ∈ Ai, 1 ≤ i ≤ k,
v = u • a i� ϕk

−1(v) = pushi,a(ϕk
−1(u))

v = u • ā i� ϕk
−1(u) = pushi,a(ϕk

−1(v)) i� ϕk
−1(v) = pushi,a(ϕk

−1(u))

29



4.2. Logi on a free groupLet A1, . . . , Ak, . . . be disjoints alphabets �xed for the rest of the paper and
Sigk the signature (ε, (•a)

a∈ dA1,k
) where ε and •a are respetively a unary and abinary relation. The signature Sigm

k is Sigk augmented with m unary relations.Consider the struture Pk de�ned on Sigk whose domain is Pk(A1, . . . , Ak)and suh that ∀a ∈ Â1,k, •a = {(u, v)| u, v ∈ Pk, v = u • a}. For every
~O = (O1, . . . , Om) with Oi ⊆ Pk, Pk

~O denotes the struture Pk augmentedwith relations O1, . . . , Om.By using the fat that, ∀k ≥ 1, Pk is the image by fk of the tree of domain
Pk+1, we show indutively, by applying transfert theorems of Setion 3, that
Pk satis�es the property DM, that its MSO-theory is deidable and we give anautomata-haraterization of the MSO-de�nable sets of Pk.4.2.1. MSO-invertibilityIt is proved here that for every k ≥ 1, the mapping fk is MSO-invertible (seeDe�nition 56). This result will be helpful in two ways: �rst to apply transfertheorems to Pk and latter to show that strutures Pk and PDSk are MSO-equivalent.In the sequel, we denote by Tk the struture 〈Pk, ε, (succa)

a∈ dA1,k∪Ak−1
〉. Inaddition, ∀ ~O vetor of subsets of Pk, we write T ~O

k the struture obtained byadding to Tk the unary relations Oi.Observation 69. ∀k ≥ 1, ∀ ~O vetor of subsets of Pk+1, fk(T
~O

k+1) = Pk
fk(~O)1.We proeed in a similar way as the proof of Corollary 60. We start byde�ning a partition of Pk+1 whose eah element is in bijetion with Pk. Forevery k ≥ 1, we onsider the family Fk+1 onsisting of all sets F ⊆ Pk+1 suhthat:

• either F = Pk,
• or ∃u ∈ Pk+1 and ∃a ∈ Ak+1 suh that F = {uaw ∈ Pk+1| w ∈ Irr(A1,k)}.Eah F ∈ Fk+1 enodes, via ϕk+1, a maximal set of (k+1)-pds whih di�er onlyby top level-k elements. The family Fk+1 allows to reompose the inverse imageof any de�nable subset of Pk. The proof is based on the following remarks:Remark 70. For every k ≥ 1:1. Fk+1 de�nes a partition of Pk+1.2. For every F ∈ Fk+1, the restrition of fk to F is a bijetion toward Pk.1Here, and in the rest of the paper, fk is extended to sets, and vetor of sets in a naturalway. 30



3. The property F ∈ Fk+1 is MSO-expressible in Pk+1.Indeed, F ∈ Fk+1 i� F is a maximal set suh that for every u, v ∈ F , thereexists a path from u to v using only edges •a where a ∈ Â1,k. It is theneasy to onstrut a MSO-formula whose set of models in Pk+1 is exatly
Fk+1.Lemma 71. Given k ≥ 1 and m ≥ 0, for every MSO-formula φ(X1, . . . , Xn)over Sigm

k , there exists a MSO-formula φ′(X1, . . . , Xn, Y ) over Sigm
k+1 suh that

∀~R = (R1, . . . , Rm), Ri ⊆ Pk:
∀S1, . . . , Sn ∈ Pk+1, ∀F ∈ Fk+1,
Pk+1

fk
−1(~R) |= φ′(S1 ∩ F, . . . , Sn ∩ F, F ) i� Pk

~R |= φ(fk(S1 ∩ F, . . . , Sn ∩ F )).Proof. We onstrut φ′ for φ atomi, the other ases are given by the sameindution as the proof of Corollary 60.- (ε)′(X,Y ) := ∃x | X = {x} ∧
∧

a∈A1,k
¬(∃y, x • ā = y),- ∀a ∈ Â1,k, (•a)′(X1, X2, Y ) := •a(X1, X2).Let a ∈ Â1,1,k. If F = Pk, learly ∀u, v ∈ Pk

Pk+1
fk

−1(~R) |= •a
′({u}, {v}, F ) i� Pk

~R |= •a({fk(u)}, {fk(v)}).If F = {ubw ∈ Pk+1| w ∈ Irr(Ak)}, with b ∈ Ak+1, then for every v = ubw,
v′ = ubw′ ∈ F ,
Pk+1

fk
−1(~R) |= (•a)′({v}, {v}′, F ) i� Pk+1

fk
−1(~R) |= •a({ubw}, {ubw′})i� w′ = w • ai� fk(ub) • w′ = fk(ub) • w • ai� Pk

~R |= •a({fk(v)}, {fk(v′)}).- if φ(X) := X ⊆ Ri, then φ′(X) := X ⊆ fk
−1(Ri). Indeed, ∀S ⊆ Pk+1,

Pk+1
fk

−1(~R) |= φ′(S ∩ F, F ) i� Pk+1
fk

−1(~R) |= S ∩ F ⊆ fk
−1(R1)i� fk(S ∩ F ) ⊆ R1i� Pk

~R |= φ(fk(S)).- if Φ(X1, X2) := X1 ⊆ X2, then Φ′(X1, X2, Y ) := X1 ⊆ X2. The proof isthe same as the previous ase.Proposition 72. Given k ≥ 1 and φ(X1, . . . , Xn) an MSO-formula over Sigm
k ,

m ≥ 0, there exists an MSO-formula φ+1(X1, . . . , Xn) over Sigm
k+1 suh that

∀R1, . . . , Rm ⊆ Pk, ∀S1, . . . , Sn ∈ Pk+1,
Pk+1

fk
−1(R1,...,Rm) |= φ+1(S1, . . . , Sn) i�

∃D1, . . . , Dn ⊆ Pk suh that Pk
(R1,...,Rm) |= φ(D1, . . . , Dn) and ∀i, Si = fk

−1(Di).31



Proof. We proeed as in the proof of Corollary 60.Proposition 73. For every k ≥ 1, for every D ⊆ Pk de�nable in Pk the set
fk

−1(D) is MSO-de�nable in Pk+1.4.2.2. MSO-properties of PkWe apply now transfer theorems to Pk. First remark that fk is the restritionto Pk+1 of the morphism µk : Â1,k+1

∗
→ Irr(A1,k) mapping eah u ∈ Â1,k+1

∗to ρ(π dA1,k
(u)) (reall that ρ is the redution in the free group, see Setion 1.1).Let us introdue for every k ≥ 1, the vetor ~Ok of subsets of Pk de�ned by thefollowing indution:

• ~O1 = ∅

• ~Ok+1 = (fk
−1( ~Ok), fk

−1(Pka1), . . . , f
−1
k (Pkan)) where A1,k = {a1, . . . , an}In other words, ~Ok onsists in every fk,i

−1(Pia), where 1 ≤ i ≤ k and a ∈ A1,i.Lemma 74. For every k ≥ 1, strutures Pk, Tk, Tk
~Ok and fk(Tk

~Ok) are MSO-equivalent (see De�nition 18).Proof. • Clearly, Pk is de�nable inside Tk sine ∀u, v ∈ Pk, a ∈ Â1,k,
u = v • a i� u = va or v = uā. Conversely, to show that Tk is de�nableinside Pk, we prove �rst that if Â1,k = {a1, . . . , an}, then the vetor
(Pk ·a1, . . . ,Pk ·an) is MSO-de�nable inside Pk. It su�es to remark thateah Pk · ai is the smallest set Si ⊆ Pk suh that for every u ∈ Pk, u ∈ Sii� � either •ai

(u, ε),� or there exists aj 6= ai ∈ Â1,k and v ∈ Sj suh that u = v • ai.Now, it is easy to de�ne in Pk the relation indued by the onatenationprodut sine for every u, v ∈ Pk, a ∈ Â1,k, [u = va i� u = v • a and
v /∈ Pk · a℄.

• Tk
~Ok is de�nable inside Pk sine from the previous ase, ∀1 ≤ i ≤ k,

a ∈ A1,i, the set Pi·a is MSO-de�nable in Pi and then by using Proposition73, fk,i
−1(Pi · a) is MSO-de�nable in Pk.

• fk(Tk+1
~Ok+1) is MSO-equivalent to the struture Pk

~Ok , whih is MSO-equivalent to the struture Pk.The following lemma is required to apply transfer theorems (see De�nition54).Lemma 75. For every k ≥ 1, the property TH(fk, ~Ok+1) is satis�ed.32



Proof. It su�es to hek that for every k ≥ 0, Pk+1 ∈ REG~Ok+1 . Consider
Ak+1 = (Q = {q0} ∪ {qa | a ∈ Â1,k+1}, Â1,k+1,∆, q0, F = Q) where ∆ onsistsof every transitions

• (q0, a, ~o, qa), ∀a ∈ A1,k+1, ∀~o
• (qb, a, ~o, qa), ∀a ∈ A1,k+1, ∀b 6= ā, ∀~o
• (qb, ā, ~o, qa), ∀a ∈ Ai, i ∈ [1, k] ∀b 6= a, ∀~o suh that the omponentorresponding to fk,i

−1(Pia) is 1.From Proposition 62, L(Ak+1) = Pk+1.Theorem 76. For every k ≥ 1, the struture Pk has a deidable MSO-theoryand ful�lls the property DM.Proof. We prove this result by indution on k ≥ 1:Basis: From Theorem 39, P1 has a deidable MSO-theory and satis�es theproperty DM.Indution step: let us suppose the property true for k ≥ 1. Sine TH(fk, ~Ok+1),by using Theorem 55 and equivalene between strutures proved Propo-sition 74, the MSO-theory of Pk+1 is deidable. In the same way, sinefrom Proposition 73, the map fk is MSO-invertible, and by using Theorem57, Pk+1 satis�es DM.The deidability result has already been proved in [7℄.The same kind of reasoning an be applied to the struture Pk

~O for anyvetor ~O of subsets of Pk: if the MSO-theory of Pk

~O is deidable, then theMSO-theory of Pk+1
fk

−1(~O) is deidable.Theorem 77. Given ~R a vetor of subsets of A∗
1, and ~O = fk,1

−1(~R),1. if the MSO-theory of 〈A1
∗, ε, (succa)a∈A1 , ~R〉 is deidable, then for every

k ≥ 1, the MSO-theory of Pk

~O is deidable,2. if 〈A1
∗, ε, (succa)a∈A1 , ~R〉 ful�lls DM, then Pk

~O ful�lls DM.We de�ne now the lass FAk of automata orresponding to languages MSO-de�nable in Pk and the lass REGk of languages reognized by suh automata.De�nition 78. For all k ≥ 1, lasses FAk and REGk are de�ned indutively asfollows:
• FA1 is the lass of �nite automata, and REG1 the regular languages one,
• for every k ≥ 1, FAk+1 onsists in all automata A with p-orale (fk

−1(R1),
. . . , fk

−1(Rm)) suh that eah Ri belongs to REGk,33



• for every k ≥ 1, REGk+1 onsists in all languages in Pk reognized byautomata in FAk+1.Theorem 79. For every language L ⊆ Â1,k

∗ with k ≥ 1, L is MSO-de�nablein Pk i� L belongs to REGk.Proof. Let us prove this result by indution on k ≥ 1.Basis: the ase k = 1 is obvious,Indution step: let us suppose the property is valid for k ≥ 1.From Theorem 57, any language L ⊆ (k + 1)-pds is MSO-de�nable in
Pk+1 i� there exists a vetor ~D MSO-de�nable in Pk and A ∈ FA ~D suhthat L = L(A). By indution hypothesis, eah omponent of ~L belongs toREGk, and then, L is MSO-de�nable in Pk+1 i� D ∈ REGk+1.4.3. Regular sets of k-pushdownsWe now translate results obtained on Pk in terms of k-pushdowns. For that,we just need to prove that Pk and the struture PDSk assoiated to the type

k-pushdowns (see Setion 1.5.1(3)) are MSO-equivalent (see De�nition 18) . Weshow that ϕk : PDSk → Pk and ϕk
−1 : Pk → PDSk are MSO-interpretations.Then, the two strutures have the same MSO-properties and we have a nielass of p-orale-automata available to haraterize the lass of all ϕk(D) suhthat D is MSO-de�nable in PDSk. Using this automata haraterization, wede�ne the lass of ontrolled k-pds systems of transitions generating the lassof all sets MSO-de�nable in PDSk.Theorem 80. For every k ≥ 1, ϕk
−1 : Pk(A1, . . . , Ak) → PDSk(A1, . . . , Ak)is a MSO-interpretation.Proof. Let us hek that onditions of the de�nition of MSO-interpretation(De�nition 16) are well satis�ed,1. ϕk

−1(Pk) = k-pds is MSO-de�nable in PDSk2. from the Lemma 68, it follows that for every u, v ∈ Pk, a ∈ Ai, 1 ≤ i ≤ k:
Pk |= •a(u, v) i� PDSk |= pusha(ϕk

−1(u), ϕk
−1(v)) and

Pk |= •ā(u, v) i� PDSk |= pusha(ϕk
−1(v), ϕk

−1(u)).Let us prove now that ∀k ≥ 1, ϕk : PDSk → Pk is a MSO-interpretation.The next lemma establishes that to prove that an instrution of level k is MSO-de�nable in Pk+i, i ≥ 0, there is only to need to demonstrate that it is MSO-de�nable in Pk:Lemma 81. Given instr an instrution of level k ≥ 1, and Φ(x, y) a MSO-formula over Sigk satisfying for all u, v ∈ Pk:
Pk |= Φ(u, v) i� ϕk

−1(v) = instr(ϕk
−1(u)),34



then for every i ≥ 0, there exists a formula Φ+i(x, y) ∈ MSO(Sigk+i) suh that
∀u, v ∈ Pk+i,

Pk+i |= Φ+i(u, v) i� ϕk+i
−1(v) = instr(ϕk+i

−1(u)).Proof. From proposition 65 and de�nition of ϕk
−1, it follows that for every

v, v′ ∈ (k + 1)-pds and ω1, ω
′
1 ∈ k-pds, the following properties are equivalent:1. there exists ω ∈ (k + 1)-pds ∪ {ε} and a ∈ Ak+1 ∪ {⊥} suh that

ϕk+1
−1(v) = a[ω1]ω and ϕk+1

−1(v′) = a[ω′
1]ω2. there exists u ∈ Irr(Ak) suh that v′ = v • u and

fk(v) = ϕk(ω1) and fk(v′) = ϕk(ω′
1).Then, given instr an instrution of level k and Φ MSO-de�ning instr in Pk, weobtain (by using formulas onstruted in Proposition 72) the following iterativeonstrution of Φ+i:

Φ+0(x, y) := Φ(x, y)

∀i ≥ 0, Φ+(i+1)(x, y) := ∃u, y = x • u ∧ (Φ+i)
+1(x, y).Theorem 82. For every k ≥ 1, ϕk : PDSk → Pk is a MSO-interpretation.Proof. By using the previous lemma, it only remains to show that pushk,a,

popk and changek,a are MSO-de�nable in Pk:for every a ∈ Ai, 1 ≤ i ≤ k,pushk,a(x, y) := y = x • apopk,a(x, y) := ∃a ∈ Ak, ∃w, x = y • a • whangek,a(x, y) := ∃u, u′, ∃b ∈ Ak, y = x • u′ • b̄ • a • u ∧ x (=)+1 yCorollary 83. For every k ≥ 1, every D ⊆ k-pds,
D is MSO-de�nable in PDSk i� ϕk(D) is MSO-de�nable in Pk.We now translate the properties of k-regular languages in terms of k-pushdownsby using the MSO-equivalene of the strutures Pk and PDSk.The following theorem is straightforward from Theorem 76.Theorem 84. For every k ≥ 1, the struture PDSk has a deidable MSO-theoryand ful�lls the property DM.The deidability result is proved in [19℄ by using Muhnik's Theorem (see [27℄ or[35℄). Finally, we show that REGk admits several haraterizations that extendthe REG ones.Theorem 85. For every S ⊆ k-pds(A1, . . . , Ak), k ≥ 1, the following propertiesare equivalent:1. S is generated by a k-pds system of transitions whose ontroller are MSO-de�nable in PDSk(A1, . . . , Ak) 35



2. S is MSO-de�nable in PDSk(A1, . . . , Ak)3. ϕk(S) is MSO-de�nable in Pk(A1, . . . , Ak)4. ϕk(S) is reognized by an automaton in FAk(A1, . . . , Ak).Proof. Equivalene between 2 and 3 stems from the equivalene between thetwo strutures. Equivalene between 3 and 4 is established in Theorem 76.Given a k-pds system of transitions S ontrolled by a vetor ~C of sets whih areMSO-de�nable in PDSk. It is possible to write a formula de�ning in PDSk theset of k-pds generated by S. So 1 implies 2.Let us end the proof by showing that 4 implies 1. Given k ≥ 0 and A =

(Q, Â1,k, ~R,∆, q0, F ) ∈ FAk, we are going to onstrut A ∈ k-TS~C with ~C =

ϕk
−1(~R) ful�lling ϕk(L(A)) = P(A).From the equivalene between 2 and 3, ~C is a vetor of sets whih are MSO-de�nable in PDSk. We an suppose w.l.o.g. that A is omplete in Pk, i.e., that

∀u ∈ Â1,k

∗, u is omputed by A i� u ∈ Pk.Let us set A = (Q, (A1, . . . , Ak),∆′, ~C, q0,⊥, F ) where ∆′ is onstruted in thefollowing way:
• ∀(p, a, ~o, q) ∈ ∆, a ∈ Ai, 1 ≤ i ≤ k + 1, then ∀w ∈ top(k-pds(A1, . . . , Ak))

(p, w,~o, pushi,a, q) ∈ ∆′

• ∀(p, ā, ~o, q) ∈ ∆, a ∈ Ai, 1 ≤ i ≤ k, then ∀w ∈ top(k-pds(A1, . . . , Ak))

(p, w,~o, popi, q) ∈ ∆′.It an be easily heked that ϕk(L(A)) = P(A).Remark 86.1. It an be proved that languages reognized by k-pds automata ontrolledby MSO-de�nable sets are languages reognized by k-pds automata withoutontrollers.2. The equivalene between (1) and (4) is proved in [21℄ for k = 1.5. Final ommentThe work presented here is a part of the author's PhD presented at LaBRI,Bordeaux University on the theme of Iterated Pushdown automata [18℄. It isshown there that Theorem 85 has several appliations.For example, by using the automata haraterization of REGk, it an beproved that the projetion in 1-pds of a pushdown set generated by a k-pdssystem of transitions is regular. This result allows the omparison betweenthe two lasses of prediates P given in [19℄ and [8℄ for whih the MSO-theoryof 〈N,+1, P 〉 is deidable. It an be proved that all sequenes of level k arepro�nitely ultimately periodi and the lass of prediates desribes in [19℄ isthen inluded in the one desribed in [8℄.36



Theorem 85 also allows to de�ne a large lass of tuples (P1, . . . , Pm) of unaryprediates for whih the MSO-theory of 〈N,+1, P1, . . . , Pm〉 is deidable for [17℄.Reent work deals with the notion of regular sets of �higher-order pushdowns�(hop) whih are restrited it-pushdowns. In [3℄, a set S of k-hops is alledregular if the set of words in (Ak ∪ {[, ]})∗ representing S is aepted by a �niteautomaton. It is shown that for any higher-order proess with a single state,the set of all predeessors of a given regular set of on�gurations is regular.In [6℄, the author introdues a notion of regular sets of higher-order push-downs (hop). He studies the lasse Regk orresponding to the sets of k-hopaessible by using only instrution push and push. He gives a normalized rep-resentation of this lass using regular expressions over a monoïde in (Â1,k∪Tk)∗,where Tk is an in�nite alphabet onsisting of all symbols TR, for R ∈ Regk−1.This normalization extended the one obtained in [9℄ for the level 1. The authorproves also that the lass Regk orresponds to the lass of sets MSO-de�nablein PDSk. The lass Regk orrespond then to the image by ϕk of the lass REGkde�ned in the previous setion. These two disjoints works prove that the lassREGk enjoyes numerous properties generalizing the PREG1 ones (whih orre-spond by isomorphism to the lass REG). In addition, the representation of
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