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Abstra
tWe investigate notions of de
idability and de�nability for the Monadi
 Se
ond-Order Logi
 of labeled tree stru
tures, and links with �nite automata usingora
les to test input pre�xes.A general framework is de�ned allowing to transfer some MSO-propertiesfrom a graph-stru
ture to a labeled tree stru
ture. Transferred properties arede
idability of senten
es and existen
e of a de�nable model for every satis�ableformula. A 
lass of �nite automata with pre�x-ora
les is also de�ned, re
ogniz-ing exa
tly languages de�ned by MSO-formulas in any labeled tree-stru
ture.Applying these results, the well-known equality between languages re
og-nized by �nite automata, sets of verti
es MSO de�nable in a tree-stru
tureand sets of pushdown 
ontexts generated by pushdown-automata is extended to
k-iterated pushdown automata.Key words: Labeled tree stru
tures; MSO de�nable sets; Automata withora
le; Iterated pushdown stru
tures.Introdu
tionInitiated by the work of Bü
hi on words, the study of links between automataand logi
 has permit to identify stru
tures having a de
idable Monadi
 Se
ond-Order theory. In parti
ular, Rabin proved in [28℄ de
idability of the MSO-theoryof in�nite tree stru
tures in whi
h numerous properties are de�nable and theoriesare interpretable. These works have also led to a logi
 
hara
terisation of regularlanguages: languages re
ognised by �nite automata are exa
tly sets de�ned byMSO-formulas in a tree stru
ture.The goal of this paper is to extend these works to the study of labelledtree stru
tures: identify labellings for whi
h tree stru
ture have a de
idableMSO-theory, for whi
h every formula admits a de�nable model and give anautomata-
hara
terization of the de�nable sets.To a
hieve this goal, we introdu
e new interesting obje
ts and results. First,we de�ne a 
lass of word/tree automata with pre�x-ora
les (i.e., sets of wordsover the input alphabet) used to test the already pro
essed pre�xes of inputs.Languages and forest re
ognized by pre�x-ora
les automata enjoy ni
e property,Preprint submitted to Elsevier February 12, 2009



in parti
ular, the Rabin's 
orresponden
e between regular forests and modelsof MSO-formulas over in�nite trees 
an be extended to these languages: forestsre
ognized by automata with ora
les O1, . . . , Om are forests MSO-de�nable intree stru
tures extended by unary relations O1, . . . , Om. Remark that this ap-proa
h has already been devised in [32℄ to 
hara
terise some proper sub
lassesof regular languages by using regular pre�x-ora
les and to study their de�nabil-ity in First-Order Logi
 over extended word stru
tures. However, the de�nitionof automata with pre�x-ora
les does not expli
itly appear in this paper sin
eregular pre�x-ora
les 
an be simulated by the dire
t produ
t of �nite automata.Se
ond, we establish transfer theorems, allowing from a stru
ture, to 
onstru
ta tree stru
ture having some similar MSO properties. This approa
h is 
ommonfor the transfer of de
idability (for example the transfer of de
idability froma stru
ture to its tree-like stru
ture, (see [31℄ or [35℄), or from a graph to it'sunfolding (see [10℄)), but here, in addition to de
idability, transferred propertiesalso applied to sets MSO de�nable in su
h stru
tures and 
lasses of automatare
ognising them. In addition, our transfer of de
idability allows to obtain newde
idability results whi
h are not 
over by the ones 
ited above. Properties aretransferred to a labelled tree stru
ture from its image stru
ture by any mor-phism. If µ : D → D′ is a mapping and S is a relational stru
ture over D, theimage stru
ture µ(S) of S has D′ as domain and its relations are the images by
µ of the relations of S.Let t be a labelled tree, and t be the stru
ture asso
iated to t. For anymorphism of monoid µ, and under some simple hypothesis on the labelling of t,we obtain the following main results:

• Transfer of de
idability: (Theorem 55) if µ(t) has a de
idable MSO-theory,then t has a de
idable MSO-theory,
• Transfer of the property of De�nable Model: (Theorem 57) under a 
on-dition on µ, if µ(t) satis�es the property of De�nable Model (DM), then
t satis�es DM. This property ensures for a stru
ture S that any satis�-able formula admits at least one model whi
h is MSO-de�nable in S (seeDe�nition 15),

• Theorem of stru
ture: (Theorem 58) under the same 
ondition on µ, if
µ(t) satis�es DM, then any set is MSO-de�nable in t i� it is re
ognisedby a �nite automaton using only ora
les of the form µ−1(D) where D isMSO-de�nable in µ(t). (Then ea
h ora
le tests a property MSO-de�nablein µ(t), on the image by µ of input word pre�xes).Applying these results, we obtain tree stru
tures having a de
idable MSOtheory and 
lasses of languages having two equivalent 
hara
terizations: as lan-guages re
ognized by automata with ora
les, and as sets MSO-de�nable in somelabelled tree stru
tures. We thus extend the two 
hara
terizations of regularlanguages mentioned above.But regular languages admit a third 
hara
terization, as sets of pushdown
ontexts generated by a pushdown system of transitions [21℄. Some re
ent works2



deal with �iterated pushdown automaton�, whi
h are automata whose memory isroughly a sta
k of sta
k ... of sta
k (see for examples [5, 7, 24, 19℄), it is then nat-ural to attempt to de�ne a notion of �regular� sets of k-pushdowns (i.e., sta
kswith k level of embedded pushdowns) whi
h generalize the previous equality.We give equalities between languages of k-pushdowns re
ognized by automatawith p-ora
les, languages MSO-de�nable in a parti
ular tree stru
ture and setsof k-pushdown 
ontexts generated by a k-pushdown system of transitions. Weiteratively use the three transfer theorems on a family of stru
tures (Pk)k≥1having a pre�x words language Pk for domain. The language Pk de�nes an en-
oding of the set k-pds of all k-pushdowns. The stru
ture Pk is MSO-equivalentwith the stru
ture PDSk whose domain is k-pds and whose relations are thoseindu
ed by the 
lassi
al instru
tions on k-pushdowns. This allows to de�ne a
lass of languages in Pk that 
an be expressed in four equivalent ways (Theorem85):
• as languages re
ognised by �nite automata with pre�x-ora
le,
• as languages de�ned by MSO-formulas in the tree stru
ture of domain Pk,
• as en
odings of sets de�ned by MSO-formulas in PDSk,
• as en
oding of sets of k-pushdowns generated by a store-
ontrolled k-pdssystem of transitions.We show in addition that PDSk satis�es the property of De�nable Model.This paper is organized as follows. Se
tion 1 is devoted to basi
 de�nitionson words, logi
, automata and k-pushdowns stru
tures. It is also introdu
ed thenotion of word automata with ora
les. In Se
tion 2, we extend to tree automatathe use of ora
les. The Rabin's 
orresponden
e between regular forests andmodels of MSO-formulas over trees is adapted to these languages. In Se
tion 3,we develop a game-theoreti
al approa
h to prove the three transfer theorems.We give also a simple appli
ation of the transfer theorems. Finally, we give inSe
tion 4 a de�nition of k-regular sets of pushdowns.1. Preliminaries1.1. Basi
 de�nitions1.1.1. Some notations and 
onventionsGiven a set A, we denote by |A| the 
ardinal of A. If s is a map from a set

A, then s(A) = {s(a) | a ∈ A}. If ~V = (V1, . . . , Vn) is a ve
tor of subsets of Athen s( ~A) = (s(V1), . . . , s(Vn)). The 
hara
teristi
 fun
tion of ~V in A is a map
χ

~V
A : A→ {0, 1}n de�ned for all x ∈ A, by χ~V

A(x) = (b1, . . . , bn) where ∀i, bi = 1i� u ∈ Si.
3



1.1.2. Words and languagesIf A is a set, A∗ denotes the set of words (�nite sequen
es) over A, and ε theempty word. For u, v ∈ A∗, the length of u is denoted |u| and we write v 4 u if
v is pre�x of u. A set P ⊆ A∗ is a pre�x 
losed language if ∀u ∈ P , ∀v ∈ A∗, if
v 4 u then v ∈ P .1.1.3. Free groupGiven a �nite alphabet A , let us asso
iate to ea
h a ∈ A the inverse symbol
ā whi
h does not belong to A. We denote by A the set of inverse letters of Aand de�ne Â = A ∪ A. For every u = a1 · · · an ∈ Â∗, the inverse word of u is
u = bn · · · b1 where ∀i ∈ [1, n]:if ai ∈ A then bi = āi, and if ai = ā ∈ A then bi = a.Let us then 
onsider the redu
tion system S = {(aā, ε), (āa, ε)}. A word in Â∗is said to be redu
ed if it is S-redu
ed, i.e., it does not 
ontain o

urren
es of
aā or āa, for a ∈ A. We denote by Irr(A) the set of redu
ed words in Â∗. As
S is 
on�uent, ea
h word w is equivalent (mod ↔∗

S) to a unique redu
ed worddenoted ρ(w).We de�ne the free group (Irr(A), ε, •), where ∀u, v ∈ Irr(A), u • v = ρ(u · v).1.1.4. Proje
tionsFor any integers 0 < i ≤ j ≤ n, for any ve
tor of elements (a1, . . . , an), wede�ne the proje
tion πi(a1, . . . , an) = ai and πi,...,j(a1, . . . , an) = (ai, . . . , aj).For any alphabets B and A with B ⊆ A, the proje
tion πB : A∗ → B∗ is amorphism de�ned ∀a ∈ A by πB(a) = a if a ∈ B and πB(a) = ε else.1.1.5. Trees and forestsGiven �nite alphabets Σ and A and a pre�x 
losed language P ⊆ A∗, a
P -tree(Σ) (tree of domain P labelled by Σ) is a total fun
tion t : P → Σ. Theset of all P -tree(Σ) is denoted P -Tree(Σ). In order to deal with unlabelled treesin an uniform way, we introdu
e the spe
ial symbol ⊤. Unlabelled trees arethen fun
tions t : P → {⊤}. We will often 
onsider trees in P -Tree({0, 1}n),for n ≥ 0 (with the 
onvention that {0, 1}0 = {⊤}), we will denote this 
lass
P -Treen. Remark that a tree in P -Treen 
an always be seen as the 
hara
teristi
fun
tion χ~S

P of a ve
tor ~S = (S1, . . . , Sn), for Si ⊆ P .We will use two kinds of operations on trees and tree-languages:
• Restri
tion: let t ∈ A∗-Tree(Σ), t|P is the P -tree(Σ) obtained by restri
t-ing the domain of t to P . If F ⊆ A∗-Tree(Σ), then F|P = {t|P , t ∈ F}.
• Produ
t: let t1 be a P -tree(Σ1) and t2 a P -tree(Σ2), the produ
t of t1and t2 is the tree t1̂ t2 ∈ P -Tree(Σ1 × Σ2) ful�lling ∀u ∈ P , t1̂ t2(u) =

(t1(u), t2(u)). This de�nition 
an be extended to tree languages:if F1, F2 ⊆ P -Tree(Σ), then F1̂F2 = {t1̂ t2| t1 ∈ F1, t2 ∈ F2}.4



1.2. Finite automata with pre�x-ora
leFinite automata with pre�x-ora
le (or p-ora
le) extend the 
lass of �niteautomata by allowing some membership tests on pre�x of the input word. Anautomaton A with p-ora
les, on the input alphabet A is a �nite automatonasso
iated to a ve
tor ~O = (O1, . . . , Om) of subsets of A∗ and whose transitions
ontain a boolean ve
tor of size m 
alled test. During the 
omputation by A ofan input word, the already pro
essed part u of the input is kept in memory anda transition with test ~o 
an be applied if ~o is equal to the 
hara
teristi
 ve
torof u inside ~O (i.e., if ~o = χ
~O
A∗(u)).De�nition 1 (Finite automaton with p-ora
les). Given m ≥ 1, an au-tomaton with m p-ora
les is a tuple A = (Q, A, ~O, ∆, q0, F ) where Q is a�nite set of states, A is the input alphabet, ~O = (O1, . . . , Om), Oi ⊆ A∗,

∆ ⊆ Q × A × {0, 1}m × Q is the set of transitions, q0 ∈ Q is the initial state,and F ⊆ Q is the set of �nal states.A 
on�guration of A is a pair (q, u↑v) where uv ∈ A∗ and ↑ is a symbol whi
hdoes not belong to A. The binary relation on 
on�gurations is →A and 
onsistsin all pairs (q, u↑av) →A (p, ua↑v) su
h that (q, a, χ
~O
A∗(u), p) ∈ ∆. The languagere
ognised by A is L(A) = {u ∈ A∗| (q0, ↑u) →∗

A (qF , u↑), qF ∈ F}.We will use the following notations: FA ~O(A) is the family of automata over Awith p-ora
le ~O, the 
lass of ~O-regular languages (i.e., re
ognised by automatain FA ~O(A)) is REG~O(A). Remark that an automaton with ora
le ∅ is simply a�nite automaton. We write then FA rather than FA∅ and REG for REG∅.De�nition 2. An automaton with m p-ora
les A = (Q, A, ~O, ∆, q0, F ) is saidto be deterministi
 if ∀p ∈ Q, a ∈ A, ~o ∈ {0, 1}m, there is one and only one
q ∈ Q su
h that (p, a, ~o, q) ∈ ∆.Example 3. The following automaton is deterministi
 and re
ognize the lan-guage {anbncn}n≥1.
A = ({q0, q1, q2, q3, qF }, {a, b, c}, (O1, O2), ∆, q0, {qF }) whereO1 = {anbn}n≥1,
O2 = {ambncn−1}n≥1, m≥0 and ∆ 
onsists in
(q0, a, (0, 0), q1), (q1, a, (0, 0), q1), (q1, b, (0, 0), q2),
(q2, b, (0, 0), q2), (q2, b, (0, 1), q2) (q2, c, (1, 0), q3), (q2, c, (1, 1), qF ),
(q3, c, (0, 0), q3) and (q3, c, (0, 1), qF ).We asso
iate with ea
h automaton with m p-ora
les A ∈ FA ~O(A), a �nite au-tomaton Ã ∈ FA(A × {0, 1}m) 
alled sour
e of A and 
onstru
ted by movingthe test of ea
h transition into the input letter of the transition: ea
h transition
(p, a, ~o, q) is transformed in (p, (a,~o), q). The language L(A) 
an be obtain fromthe language L(Ã) and the "
hara
teristi
 language of ~O in A.De�nition 4. For every ~O = (O1, . . . , Om), Oi ⊆ A∗, the 
hara
teristi
 lan-guage of ~O is de�ned by:
L

~O
χ = {(a1, ~o1) . . . (an, ~on) ∈ (A× {0, 1}m)∗| ∀i ∈ [1, n], ~oi = χ

~O
A∗(a1 . . . ai−1)}.5



Observation 5. For every ~O = (O1, . . . , Om), Oi ⊆ A∗:REG~O(A) = {π1(L ∩ L
~O
χ ) | L ∈ REG(A× {0, 1}m)}.Using the Kleene's theorem, we obtain easily:Theorem 6. Let A an alphabet, and ~O a ve
tor of subsets of A∗,1. REG~O(A) is the 
lass of languages re
ognized by deterministi
 automata inFA ~O(A),2. REG~O(A) is 
losed under boolean operations.1.3. Iterated pushdown storesOriginally de�ned by Greiba
h in [22℄, iterated pushdown stores are storagestru
tures built iteratively. Let us �x an in�nite sequen
eA = A1, A2, . . . , Ak, . . .of disjoint and �nite alphabets. For all k ≥ 1, we denote by Ak the �nite se-quen
e A1, . . . , Ak and adopt the 
onvention that A0 = {⊥} and that A0 ∩ Aiis empty of all i ≥ 1.De�nition 7. We de�ne indu
tively the set k-pds(Ak) (or k-pds when alpha-bets of store are understood) of k-iterated pushdown-stores over Ak:

0-pds(A0) = {⊥},
(k + 1)-pds(Ak+1) = (Ak+1[k-pds(Ak)])∗ ⊥ [k-pds(Ak)].The set for all k-pushdowns for k ≥ 0 is denoted it-pds(A). In the rest of thepaper, any 1-pds a1[⊥]a2[⊥] · · ·an[⊥] ⊥ [⊥] will be written simply a1 . . . an ⊥and ∀k ≥ 0. We denote by ⊥k the �empty� k-pds 
ontaining only symbols ⊥:
⊥0=⊥ and ⊥k+1=⊥ [⊥k].From the de�nition, every ω in (k + 1)-pds(Ak+1), k ≥ 0, has a uniquede
omposition as ω = a[ω1]ω

′ with ω1 ∈ k-pds(Ak), ω′ ∈ (k + 1)(Ak+1)-pds∪{ε}and a ∈ Ak+1 ∪ {⊥}. Furthermore, a =⊥ i� ω′ = ε.Example 8. Let A1 = {a1, b1}, A2 = {a2, b2}, A3 = {a3} be storage alphabets,
ωex = a3[b2[b1a1 ⊥]a2[a1 ⊥] ⊥2] ⊥ [a2[a1 ⊥]a2[⊥] ⊥2] ∈ 3-pds(A3).Its de
omposition 
orresponds to a = a3, ω1 = b2[b1a1 ⊥]a2[a1 ⊥] ⊥2 and
ω′ =⊥ [a2[a1 ⊥]a2[⊥] ⊥2].The two following maps will be useful.Proje
tion: the map asso
iating ea
h k-pds to its top i-pds, 1 ≤ i ≤ k is

pk,i: k-pds(A1, . . . , Ak) → i-pds(A1, . . . , Ai), where ∀ω = a[ω1]ω
′ ∈ k-pds,

pk,k(ω) = ω and pk,i(ω) = pk−1,i(ω1) if 1 ≤ i ≤ k − 1.The double subs
ript notation will be used to handle inverse fun
tions,the rest of the time, we will note pi for pk,i.Top symbols: the map asso
iating any k-pds, k ≥ 1 to its k top-symbols is
top : k-pds(A1, . . . , Ak) → (Ak ∪ {⊥}) · · · (A2 ∪ {⊥})(A1 ∪ {⊥}) de�ned
∀ω = a[ω1]ω

′ ∈ k-pds by 6



top(ω) = a, if k = 1, else top(ω) = a · top(ω1).For i ∈ [1, k], and ω ∈ k-pds, we denote by topi(ω) the i-th letter of
top(ω).Example 9. Let ωex be the 3-pds given in Example 8:

p2(ωex) = b2[b1a1 ⊥]a2[a1 ⊥] ⊥2, p1(ωex) = b1a1 ⊥, and
top(ωex) = a3b2b1, top(p2(ωex)) = b2b1, top(p1(ωex)) = b1.An instru
tion on it-pds is a fun
tion from it-pds to it-pds whi
h does notmodify the level of the k-pushdowns (i.e., if instr is an instru
tion then for any
k ≥ 0 and any ω ∈ k-pds, instr(ω) ∈ k-pds). An instru
tion of level i is aninstru
tion whi
h does not modify the levels greater than i of any it-pds. Hen
e,given instr an instru
tion of level iif ω = a[ω1]ω

′ ∈ k-pds, k > i, then instr(ω) = a[instr(ω1)]ω
′if ω ∈ k-pds, k < i, then instr(w) = w.Therefore, to de�ne an instru
tion of level i, there is only need to de�ne it forany ω ∈ i-pds.Three instru
tions of level k are generally appli
able to it-pushdowns.De�nition 10. �Classi
al� instru
tions of level i ≥ 1 over A are de�ned forevery ω = b[ω1]ω

′ ∈ i-pds(Ai) by:
popi(ω) = ω′ if b 6=⊥, else popi(ω) is unde�ned,
pushi,a(ω) = a[ω1]ω,
changei,a(ω) = a[ω1]ω

′, if b 6=⊥ else changei,a(ω) is unde�ned.For k ≥ 1, Ik(Ak) = {popi | i ∈ [1, k]} ∪ {pushi,a, changei,a | a ∈ Ai, i ∈ [1, k]}.is the set of instru
tions over Ak.Thus, given ω ∈ k-pds and i ≤ k, popi(ω) erases pi(ω) on the top of thestore, pushi,ai
(ω) 
onsists in add ai[pi−1(ω)] on the top of the top i-pds and

changei,ai
(ω) 
onsists in repla
e topi(ω) by ai.Example 11. Let ω = b3[b2[b1 ⊥] ⊥2] ⊥3 be a 3-pds,

pop3(ω) =⊥3, pop2(ω) = b3[⊥2] ⊥3, pop1(ω) = b3[b2[⊥] ⊥2] ⊥3,
push2,a2

(ω) = b3[a2[b1 ⊥]b2[b1 ⊥] ⊥2] ⊥3,
push1,a1

(ω) = b3[b2[a1b1 ⊥] ⊥2] ⊥3,
change3,a3

(ω) = a3[b2[b1 ⊥] ⊥2] ⊥3, change1,a1
(ω) = b3[b2[a1 ⊥] ⊥2] ⊥3.We also de�ne the inverse instru
tion of pushi,a whi
h will be used to en
odethe k-pushdowns as words.De�nition 12. For any i ≥ 1 and a ∈ Ai, the instru
tion of level i pushi,a isde�ned for any ω ∈ i-pds(Ai) by

pushi,a(ω) = ω′ if there exists ω′ ∈ i-pds su
h that ω = pushi,a(ω′)

pushi,a(ω) is unde�ned else.In other words, ∀ω ∈ k-pds,
pushk,a(ω) = ω′ i� ω = a[ω1]b[ω1]ω

′′ and ω′ = b[ω1]ω
′′.7



1.4. Iterated pushdown ma
hinesWe de�ne here 
ontrolled iterated pushdowns systems whi
h extend systemswith iterated storage stru
ture intensively studied in the 70's (see [2, 22, 25, 26℄)and more re
ently in [13, 15, 16, 24, 5, 7, 6, 18, 17, 19℄. Here we de�ne iteratedpushdown ma
hines whose transitions are 
onditioned by membership tests onthe store.De�nition 13 (Controlled k-pushdown transitions system). Let k ≥ 0,a k-TS is a stru
ture A = (Q,Ak, ~C,∆, q0, F ) where Q is a �nite set of states,
Ak is the sequen
e of pushdown alphabets, ~C = (C1, . . . , Cm) is a ve
tor of
ontrollers Ci ⊆ k-pds(Ak), q0 ∈ Q is the initial state, F ⊆ Q is a set of �nalstates and ∆ ⊆ Q × top(k-pds(Ak)) × {0, 1}m × Ik(Ak) × Q is a �nite set oftransitions.The family of all k-TS 
ontrolled by ~C is k-TS~C(A1, . . . , Ak). The set of
on�gurations of A is ConA = Q× k-pds(A1, . . . , Ak). The single step relation
→A⊆ ConA × ConA of A is de�ned by

(p, ω) →A (q, ω′) i� (p, top(ω), χ~C
(ω), instr, q) ∈ ∆, and ω′ = instr(ω).We denote by ∗

→A the re�exive and transitive 
losure of →A. The set of k-pdsgenerated by A is P(A) = {ω ∈ k-pds(Ak)| ∃q ∈ F, (q0,⊥k)
∗

→A (q, ω)}.1.5. Logi
s1.5.1. Relational stru
turesLet Sig = {r1, . . . , rn} be a signature 
ontaining relational symbols only,where ρi ∈ N is the arity of symbol ri, a (relational) stru
ture S over thesignature Sig 
onsists of a domain DS and relations r1, . . . , rn on DS where ρiis the arity of ri. We shall use three kind of stru
tures:Let P ∈ A∗ pre�x 
losed and t = χ
~S
P ∈ P -Tree({0, 1}n),

• Tree stru
tures Let P ∈ A∗ pre�x 
losed and t = χ
~S
P ∈ P -Tree({0, 1}n),we asso
iate to t the stru
ture

t = 〈P, ε, (succa)a∈A, S1, . . . , Sn〉,where ∀a ∈ A, succa = {(u, ua), u ∈ P, ua ∈ P}.
• Image stru
tures Let t as previously and f : P → B be a map. Wedenote by f(t) the relational stru
ture

f(t) = 〈f(P ), f(ε), (Ea)a∈A, f(S1), . . . , f(Sn)〉,where Ea = {(f(u), f(ua)) | u, ua ∈ P}.
• k-pds stru
ture Given k ≥ 1, PDSk(Ak) is the stru
ture whose domainis k-pds(Ak) and endowed with the binary relations popi, pushi,a and

changei,a for every 1 ≤ i ≤ k, a ∈ Ai. Relations popi, pushi,a and
changei,a are graphs of the 
orresponding instru
tions on pushdowns.8



1.5.2. Monadi
 Se
ond-Order Logi
Let Sig be a signature and V ar = {x, y, z, . . . , X, Y, Z . . .} be a set of vari-ables, where x, y, . . . denote �rst-order variables and X,Y, . . . se
ond-order vari-ables. The set MSO(Sig) of MSO-formulas over Sig is the smallest set su
hthat:
• x ∈ X and Y ⊆ X are MSO-formulas for every x, Y,X ∈ V ar

• r(x1, . . . xρ) is an MSO-formula for every r ∈ Sig, of arity ρ and every�rst order variables x1, . . . xρ ∈ V ar

• if Φ, Ψ are MSO-formulas then ¬Φ, Φ ∨ Ψ, ∃x.Φ and ∃X.Φ are MSO-formulas.Let S = 〈DS , r1, . . . , rn〉 be a stru
ture over the signature Sig, a valuationof V ar over DS is a fun
tion val : V ar → DS ∪ P(DS) su
h that for every
x,X ∈ V ar, val(x) ∈ DS and val(X) ⊆ DS .The satis�ability of an MSO-formula in the stru
ture S with valuation val isthen de�ned by indu
tion on the stru
ture of the formula, in the usual way.An MSO-formula Φ(x̄, X̄) (where x̄ = (x1, . . . , xρ) and X̄ = (X1, . . . , Xτ ) de-notes free �rst and se
ond-order variables of Φ) over Sig is said to be satis�ablein S if there exists a valuation val su
h that S, val |= Φ(x̄, X̄).We will often abbreviate S, [x̄ 7→ ā, X̄ 7→ Ā] |= Φ(x̄, X̄) by S |= Φ(ā, Ā).De�nition 14. A stru
ture S admits a de
idable MSO-theory if for everyMSO-senten
e Φ (i.e. MSO-formula without free variables) one 
an e�e
tivelyde
ide whether S |= Φ.A ve
tor ~D = (D1, . . . , Dm) of subsets of DS is said to be MSO-de�nable in
S i� there exists Φ(X1, . . . , Xm) in MSO(Sig) su
h that:

• S |= Φ(D1, . . . , Dm) and
• ∀~S = (S1, . . . , Sm), with Si ⊆ DS , if S |= Φ(S1, . . . , Sm) then (S1, . . . , Sm) =

(D1, . . . , Dm).Remark that ~D is MSO-de�nable in S i� ea
h Di is MSO-de�nable in S.De�nition 15. A stru
ture S satis�es the property of De�nable Model (orDM for short) if for every formula Φ(X1, . . . , Xn) ∈ MSO(Sig) satis�able in S,there exists D1, . . . , Dn ⊆ DS su
h that1. S |= Φ(D1, . . . , Dn) and2. (D1, . . . , Dm) is MSO-de�nable in S.Let Sig = {r1, . . . , rn} (resp. Sig′ = {r′1, . . . , r
′
m}) be some relational signatureand S (resp. S′) be some stru
ture over the signature Sig (resp. Sig′).De�nition 16 (Interpretations). An MSO-interpretation of the stru
ture Sinto the stru
ture S′ is an inje
tive map f : DS → DS′ su
h that,9



1. f(DS) is MSO-de�nable in S′2. ∀i ∈ [1, n], there exists Φ′
i(x̄) ∈MSO(Sig′), (where x̄ = x1, . . . , xρi

) ful�ll-ing that, for every valuation val of V ar in DS

(S, val) |= ri(x̄) ⇔ (S′, f ◦ val) |= Φ′
i(x̄).Theorem 17 ([29℄). Suppose there exists a 
omputable MSO-interpretationof the stru
ture S into the stru
ture S′. If S′ has a de
idable MSO-theory, then

S has a de
idable MSO-theory too.De�nition 18. If there exists a MSO-interpretation of S into S′, and thereexists a MSO-interpretation of S′ into S, then we say that S and S′ are MSO-equivalent.2. Monadi
 Se
ond Order Logi
 and regular tree languages2.1. Tree automataWe de�ne here tree automata with p-ora
le extending tree automata byallowing membership tests on nodes of input trees. As previously, for a givenora
le ~O, the appli
ation of any transition to a node u of a tree depends on the
hara
teristi
 ve
tor of u in ~O.De�nition 19 (Tree automata with ora
les). Let m ≥ 1, a tree automa-ton with m ora
les is a stru
ture A = (Q,Σ, A, ~O,∆, q0, c) where Q, Σ and Aare �nite sets and A = {a1, . . . , an}, ~O is a ve
tor of m subsets of A∗, q0 ∈ Q,
c : Q→ [0, nc], nc ≥ 0 and ∆ ⊆ Q× Σ × {0, 1}m ×Qn.Given t ∈ A∗-Tree(Σ), a run of A over t is a tree r ∈ A∗-Tree(Q) ful�lling:

r(ε) = q0 and ∀u ∈ A∗, (r(u), t(u), χ
~O
A∗(u), r(ua1), . . . , r(uan)) ∈ ∆.A run r is su

essful if for every in�nite path π = q1 · · · qn · · · in r, the smallest

i ∈ [0, nc] appearing in�nitely often in the sequen
e c(q1), . . . , c(qn), . . . is even.The tree language re
ognised by A is denoted F(A) and refers to the set of treesfor whi
h there exists a su

essful run.The 
lass of A∗-tree(Σ) automata with ora
le ~O is denoted TFA ~O(A,Σ) (orTFA ~O(Σ) when A is understood), those of all ~O-regular A∗-tree languages (i.e.re
ognised by automata in TFA ~O(A,Σ)) is TREG~O(A,Σ) (or TREG~O(Σ) forshort). Remark that a tree automaton with ora
le ∅ is simply a tree automa-ton. We write then TFA(Σ) rather than TFA∅(Σ) and TREG(Σ) rather thanTREG∅(Σ).De�nition 20 (Chara
teristi
 forest of ~O). Given ~O = (O1, . . . , Om), with
Oi ⊆ A∗, the 
hara
teristi
 forest of ~O over Σ is F

~O
χ (Σ) = A∗-Tree(Σ)̂ {χ

~O
A∗}.10



Let us map ea
h tree automaton with m ora
les A = (Q,Σ, A, ~O,∆, q0, c) ∈TFA ~O to the tree automaton Ã = (Q,Σ × {0, 1}m, A, ∆̃, q0, c) ∈ TFA where ∆̃
onsists of every transition (q, (α,~o), p1, . . . , pn) su
h that (q, α,~o, p1, . . . , pn) ∈

∆. It 
an be easily 
he
ked that F(A) = π1(F(Ã) ∩ F
~O
χ (Σ)).Observation 21. For every ~O = (O1, . . . , Om), Oi ⊆ A∗,TREG~O(Σ) = {π1(F ∩ F

~O
χ (Σ)) | F ∈ TREG(Σ × {0, 1}m)}.Remark 22. It 
an be easily seen that {χ~O

A∗} and F
~O
χ (Σ) are ~O-regulars.It is well known (see for example [28℄,[33℄) that TREG(Σ) is 
losed underunion, interse
tion, 
omplementation and produ
t. Then, we obtain from Ob-servation 21:Theorem 23. The 
lass TREG~O(A,Σ) is 
losed under boolean operations andTREG~O(A,Σ1 × Σ2) is the 
lass of all F1̂F2 with F1 ∈ TREG~O(A,Σ1) and

F2 ∈ TREG~O(A,Σ2).Given P ⊆ A∗ a pre�x 
losed language, we de�ne now automata re
ognising�
P and for whi
h the su

ess of a given run depends only on nodes in P .De�nition 24 (P -
ut automaton). An automaton A ∈ TFA ~O is 
alled P -
ut if there exists a spe
ial state q⊥ ∈ Q su
h that c(q⊥) = 0 and
∀t ∈ A∗-Tree(Σ), r ∈ A∗-Tree(Q) run of A over t, for every u ∈ A∗:

u /∈ P i� r(u) = q⊥.In this 
ase, for every run r, subtrees external to P are su

essful and to knowif r is su

essful, one only needs to test the parity 
ondition on in�nite pathsinside P (then if P is �nite, any run is always su

essful).In the rest of the paper we use the notation TREG~O
P (A,Σ) to refer to the
lass of forests F|P , for F ∈ TREG~O(A,Σ).2.2. Tree languages as models of formulasWe adapt here the interpreted formalism of the MSO-logi
 of two su

es-sors (S2S) introdu
ed in [28℄ to establish a 
orresponden
e between ~O-regularforests and models of MSO-formulas over a labelled tree stru
ture. For eas-ier exposition, we shall restri
t to binary trees (we denote Tree(Σ) instead of

{0, 1}∗-Tree(Σ)). All de�nitions and results of this subse
tion 
an be naturallyextended to the 
ase where A is unspe
i�ed. In this subse
tion, ~O is always ave
tor (O1, . . . , Om), with m ≥ 1 �xed and Oi ⊆ {0, 1}∗ and P is a pre�x 
losedsubset of {0, 1}∗.We re
all �rst the interpreted formalism of the MSO-logi
 of two su

essorsby sti
king to notations used in [33℄(Se
tion 11).11



De�nition 25. An S2S-formula is an MSO-formula de�ned over the signature
(succ0, succ1), where succi is a 2-ary relation symbol.If φ(X1, . . . , Xm) is an S2S-formula and t = χ

~O
{0,1}∗ ∈ Treem, write t ⊢ φ(X1, . . . , Xm)if 〈{0, 1}∗, succ0, succ1〉, [Xi 7→ Oi] |= φ(X1, . . . , Xm).Let T (φ) = {t ∈ Treem | t ⊢ φ(X1, . . . , Xn)}. A tree language F ∈ Treem is
alled de�nable in S2S if F = T (φ) for some S2S-formula φ.Theorem 26 ([28℄). The union of 
lasses TREG({0, 1}n), for n ≥ 0, 
orre-sponds exa
tly to the 
lass of tree languages de�nable in S2S.We now interpret S2S-formulas by �xing some free variables and interpretingformulas over restri
ted trees.De�nition 27. Let φ(X1, . . . , Xn) be an S2S-formula with n > m, we de�nethe forest T ~O

P (φ) (or T ~O if P = {0, 1}∗) by:
T

~O
P (φ) = {t ∈ P -Treen−m | t̂χ~O

P ⊢ φ(X1, . . . , Xn)}.If F = T
~O

P (φ) for some S2S-formula φ, F is 
alled de�nable in S2S~O
P (or in S2S~Oif P = {0, 1}∗).Remark that T ~O(φ) = π1,n−m(T (φ) ∩ F

~O
χ ({0, 1}n−m)). Then, using Obser-vation 21, the Theorem 26 
an easily be extended to the S2S~O formalism.Theorem 28. The union of 
lasses TREG ~O({0, 1}k), for k ≥ 1, 
orrespondsexa
tly to the 
lass of tree languages de�nable in S2S~O.Remark 29. Given φ an S2S-formula, the size (the number of states) of A ∈TFA ~O su
h that F(A) = T

~O(φ) is the same as the size of Ã ∈ TFA su
h that
F(Ã) = T (φ). Then if φ has q quanti�er alternations and its length is n, thesize of A is F (n, q), i.e., a tower 22··

·O(n) of height q + 1 (see [20℄(�12.3)).Observation 30. The stru
ture χ~O
{0,1}∗ has a de
idable MSO-theory i� for allS2S-formula φ(X1, . . . , Xm), one 
an de
ide whether χ~O

{0,1}∗ ⊢ φ(X1, . . . , Xm).Corollary 31. The emptiness problem is de
idable for forests in TREG~O({0, 1}k)for all k ≥ 1 i� χ
~O
{0,1}∗ has a de
idable MSO-theory.Proof. χ

~O
{0,1}∗ has a de
idable MSO-theoryi� for all S2S-formula φ(X1, . . . , Xm), one 
an de
ide whether χ~O

{0,1}∗ ⊢

φ(X1, . . . , Xm) 12



i� for all k ≥ 1, for all S2S-formula ψ(Y1, . . . , Ym, X1, . . . , Xm), one 
an de-
ide whether χ~O
{0,1}∗ ⊢ ∃Y1, . . . Yk, ψ(Y1, . . . Yk, X1, . . . , Xm)i� for all k ≥ 1, for all S2S-formula ψ(Y1, . . . , Ym, X1, . . . , Xm), one 
an de-
ide whether there exists t ∈ Treek su
h that t̂χ~O

{0,1}∗ ⊢ ψ(Y1, . . . Yk, X1, . . . , Xm)i� for all k ≥ 1, for all S2S-formula ψ(Y1, . . . , Ym, X1, . . . , Xm), one 
an de-
ide whether T ~O(ψ) = ∅i� for all k ≥ 1, the emptiness problem is de
idable for forests in TREG~O({0, 1}k).We generalise now Theorem 28 to tree languages of domain P :Theorem 32. If P is MSO-de�nable in χ
~O
{0,1}∗ , with Oi ⊆ P , then the unionof 
lasses TREG~O

P ({0, 1}n) for n ≥ 1 
orresponds exa
tly to the 
lass of S2S~O
P -de�nable tree languages.We start by proving the �rst impli
ation:Lemma 33. If P is MSO-de�nable in χ~O

{0,1}∗ then every tree language de�nablein S2S~O
P belongs to TREG~O

P ({0, 1}n) for some n ≥ 1.Proof. Let φ(X1, . . . , Xn) be an S2S-formula, by relativizing φ to P , we 
on-stru
t an S2S-formula φP (X1, . . . , Xn) su
h that ∀S1, . . . , Sn ⊆ {0, 1}∗,
χ

~O
{0,1}∗ |= φP (S1, . . . , Sn) i� χ~O

P |= φ(S1, . . . , Sn) and S1, . . . , Sn ⊆ P.Let F = T
~O

P (φ) and F ′ = T
~O(φP ), then F = F ′

|P . From Theorem 28 applied to
φP , the forest F ′ is ~O-regular and thus F ∈ TREG~O

P ({0, 1}n).For the 
onverse impli
ation, we �rst restri
t ourself to P -
ut automata (seeDe�nition 24).Lemma 34. For every P -
ut automaton A ∈ TFA ~O({0, 1}n), the forest F(A)|Pis S2S~O
P -de�nable.Proof. Obviously, the proof of Theorem 28 also suits in the 
ase of A is P -
ut.To a
hieve the proof of Theorem 32, it remains to show the following lemma.Lemma 35. Let P ⊆ {0, 1}∗ pre�x 
losed and ~O ve
tor of subsets of P su
hthat P ∈ REG~O({0, 1}). For every F ∈ TREG~O(Σ), there e�e
tively exists a

P -
ut automaton A ∈ TFA ~O(Σ) su
h that F|P = F(A)|P .13



Proof. Let P · i−1 = {u ∈ {0, 1}∗|ui ∈ P}, for i = 0, 1 and ~P = (P · 0−1, P ·

1−1). Clearly, {χ~P
{0,1}∗} ∈ TREG~O. Theorem 23 ensures that there exists A1 ∈TFA ~O(Σ × {0, 1}2) su
h that F(A1) = F {̂χ

~P
{0,1}∗}. Then A1 allows to des
ribe

F , and also the borders of P . From A1, we 
onstru
t now a new automaton
A able to 
he
k from the borders of P , that there exists a labelling of subtreesexternal to P su
h that the 
omplete tree belongs to F .For every q ∈ Q1 (the set of states of A1), we 
onstru
t Aq ∈ TFA whosetransitions are all (p, α, q) su
h that (p, α, (0, . . . , 0), q) is a transition of A1 andwhose initial state is q. The emptiness problem being de
idable for regularforests ([28℄,[33℄[Chapter 9℄), we 
an e�e
tively 
onstru
t the set Acc = {q ∈
Q1 | L(Aq) 6= ∅}.
Acc des
ribes states from whi
h, outside of P , one 
an �nd an a

epting subtree.Then, t ∈ F (A1) i� there exists a run r over t, su
h that

• every in�nite path r(u1)r(u2) · · · r(un) · · · , with ui ∈ P is su

essful, and
• for all u ∈ P su
h that t(u) = (α, b0, b1) and bi = 0 for some i = 1, 2,
r(ui) ∈ Acc.Now, we 
onstru
t an automaton B1 whi
h is P -
ut and su
h that F(A1)|P =

F(B1)|P . We obtain this automaton by adding q⊥ to the set of states (with
c(q⊥) = 0) and modifying the set of transitions of A1 in the following way: atransition (p, (α, b0, b1), ~o, q0, q1) belongs to QB i�

• b0 = b1 = 1 and (p, (α, b0, b1), ~o, q0, q1) belongs to QA1 , or
• ∃I ⊆ {0, 1} su
h that ∀i ∈ I, bi = 0 and qi = q⊥ and ∃(p, (α, b0, b1), ~o, p0, p1) ∈
QA1 su
h that for all i, pi = qi if i /∈ I and pi ∈ Acc if i ∈ I.From this new automaton, it is then easy to 
onstru
t a P -
ut automaton Are
ognising the language π1(F(B1)). We have then F(A)|P = F|P . This 
on
ludethe proof of the Theorem 32.Complexity analysis Suppose P is re
ognised by a word-automaton ofsize τP and F by a tree automaton of size τ . Then the size of A1 is τ · τP , so isthe P -
ut automaton A.The 
onstru
tion of A requires to 
arry out ττP emptiness tests on automataof size smaller than that of τ · τP . From [20℄[Cor 8.22℄, the emptiness test for aparity tree automaton of size s 
an be made in time O(|Σ| · ss). Then A 
an be
onstru
ted in time O(|Σ| · (τ · τP )τ ·τP ).Corollary 36. The emptiness problem is de
idable for forests in TREG~O

P ({0, 1}k),for all k ≥ 1 i� χ
~O
P has a de
idable MSO-theory.2.3. Regular trees and property of De�nable ModelRegular trees form a remarkable family, as they 
orrespond to unfolding of�nite graphs, i.e., of graphs of �nite automata. They are useful in several ar-eas of 
omputer s
ien
e (see [10℄ for a survey on basi
 theory and appli
ations14



in semanti
s). We generalise here the notion of regular trees by de�ning trees
orresponding to unfolding of graphs of p-ora
le automata. We shall use thesetrees to study de
idability and de�nability of the MSO-logi
 on labelled trees.We �rst extend regular trees to ~O-regular trees. Ea
h ~O-regular tree 
orre-sponds to a deterministi
 word automaton with p-ora
le ~O. We then study linksbetween existen
e of su
h a tree in a forest re
ognised with ora
le-automata, andthe satis�ability of the DM property for a labelled tree stru
tures. Eventually,we 
lose this subse
tion by de�ning tree automata without input. We showthat the study of emptiness problem and regular trees 
an be restri
ted to su
hautomata.2.3.1. ~O-Regular treesA tree t ∈ A∗-Tree(Σ) is said to be ~O-regular i� there exists a deterministi
word automaton A ∈ FA~O(A) and a fun
tion out : Q → Σ generating t, i.e.,su
h that ∀u ∈ A∗, q ∈ Q,
(q0,↑ u) →A (q, u↑) i� out(q) = t(u).Remark 37. The following remarks will be useful:1. If t ∈ A∗-Tree(Σ) is ~O-regular, then for every α ∈ Σ, the set Lα = {u| t(u) =

α} is ~O-regular.2. For every ~O, the 
hara
teristi
 tree χ~O
A∗ is ~O-regular.We extend this de�nition to P -trees by saying that any t ∈ P -Tree(Σ) is ~O-regular when there exists t′ ∈ Tree(Σ), ~O-regular su
h that t = t′|P .2.3.2. Property of De�nable ModelWe study links between regular trees and the property of De�nable Model(DM) formulated De�nition 15.Proposition 38. If P is MSO-de�nable in χ

~O
A∗ , the following properties areequivalent:1. χ~O

P ful�ls DM,2. for all n ≥ 1, for every non-empty forest F ∈ TREG~O
P ({0, 1}n), there exists

~D MSO-de�nable in χ~O
P su
h that F 
ontains a ~D-regular tree.Proof. Suppose P is MSO-de�nable in χ

~O
A∗ , a simple rewriting of the DMproperty using Theorem 32 implies the equivalen
e between these two followingproperties:(1) χ~O

P ful�ls DM, 15



(2') for every non empty F ⊆ TREG~O
P ({0, 1}n), there exists ~S = (S1, . . . , Sn)MSO-de�nable in χ~O

P su
h that the tree χ~S
P belongs to F .(2') ⇒ (2) Suppose (2'), a

ording to Remark 37(2), the tree χ~S

P is ~S-regular.(2) ⇒ (2') Suppose that F ⊆ TREGP
~O
is ~O-regular and 
ontains a ~D-regulartree t. From de�nition of ~D-regular tree, the language {t} is ~D-regular.Suppose that t = χ

~S
|P , with ~S = (S1, . . . , Sn), Theorem 32 ensures that

~S is MSO-de�nable in χ~D
P . Sin
e ~D is MSO-de�nable in χ~O

P , ~S is too.Any nonempty regular forest 
ontains a regular tree ([28℄, [33℄[Thm 9.3℄), thefollowing result is then a straightforward 
orollary of the proposition above.Theorem 39. For every �nite alphabet A, the stru
ture 〈A∗, ε, (succa)a∈A〉ful�lls the property of De�nable Model.2.3.3. Input-free tree automataTo deal with emptiness problems or existen
e of regular trees, one 
an with-out lost of generality work with input-free tree automata i.e., tree automatawhose input alphabet is {⊤}. In transitions of a su
h an automaton, the inputletter 
an be omitted and then the set of transitions is ∆ ⊆ Q×{0, 1}m ×Q|A|.In the sequel, we write TFA ~O(A) (resp. TFA ~O) rather than TFA ~O(A, {⊤}) (resp.TFA ~O({⊤})).Any tree automaton with m ora
les A = (Q,Σ, A, ~O,∆, q0, c) 
an be trans-formed in B = (Q×Σ, A, ~O,∆′, Q0, c
′) input-free where for every α1, . . . , αn ∈ Σ,

((q, α), ~o, (p1, α1), . . . (p|A|, α|A|)) ∈ ∆′ i� (q, α,~o, p1, . . . , p|A|) ∈ ∆. Q0 
ontainsevery (q0, α), α ∈ Σ and c′(q, α) = c(q), ∀α ∈ Σ. (It remains to redu
e Q0 toonly one state, this 
onstru
tion being 
lassi
al, we don't des
ribe it). Obvi-ously, su

essful runs of B are exa
tly pairs r′ = r̂t, where r is a su

essful runof A over t. We obtain then the following result whi
h will permit to restri
tnext proofs to input-free automata:Proposition 40. For every A ∈ TFA ~O(A,Σ), one 
an �nd an input-free au-tomaton B ∈ TFA ~O(A) su
h that:1. F(A) 6= ∅ i� there exists a su

essful run on B,2. ∀~R, F(A) 
ontains a ~R-regular tree i� there exists a su

essful ~R-regularrun on B,3. ∀P pre�x 
losed, if A is P -
ut, then B is P -
ut.Proposition 41. For every A ∈ TFA ~O(A) input-free and deterministi
, if thereexists a run of A then this run is unique and ~O-regular.Proof. Let us suppose that A = (Q,A, ~O,∆, q0, c), with A = {a1, . . . , an},and 
onsider the word-automaton Ar = (Q,A, ~O,∆r, q0) where ∆r 
onsistsof all transitions (q, ai, ~o, pi) su
h that (q, ~o, p1, . . . , pn) ∈ ∆. Clearly, Ar isdeterministi
 and if there exists a su

essful run of A, it 
orresponds to the treegenerated by Ar asso
iated to the fun
tion out : q 7→ q, ∀q ∈ Q.16



3. Logi
 for restri
ted ora
lesWe now restri
t our study to tree automata with ora
les of the form ~O =
(µ|P

−1(R1), . . . , µ|P
−1(Rm)), where µ is a morphism from A∗ to any semi-group

S, P is a pre�x 
losed subset of A∗ and Ri ⊆ S.We use a game-theoreti
al approa
h of these automata to express problemsover ~O-regular forests by means of MSO-formulas over the graph stru
ture µ(χ
~O
P )(see Se
tion 1.5.1). This allows to show that if P is MSO-de�nable in χ~O, thenthe MSO de
idability 
an be transfered from µ(χ

~O
P ) to χ~O

P . We also de�ne a
ondition on µ|P making possible the transfer of the property DM and su
h thatthe 
lass of sets whi
h are MSO-de�nable in χ~O
P 
orresponds exa
tly to 
lass of

µ|P
−1( ~D)-regular languages interse
ted with P , for any ~D MSO-de�nable in

µ(χ
~O
P ).3.1. Games for pre�x-ora
le automata3.1.1. Parity gameA two-player game (player 0 and player 1) is a 
olored dire
ted graph whoseset of verti
es V is partitioned in player 0's verti
es (V0) and player 1 ones (V1),asso
iated to a winning 
ondition. Parity games are spe
ial games whi
h havebeen mu
h studied ([14, 20, 23℄)De�nition 42. A parity game is a tuple G = (V0, V1, E, v0, c) where V =

V0

⊎
V1 is the set of positions, E ⊆ V × V is the sets of possible moves, v0 ∈ Vis the start position and c : V → [0,max] is a map asso
iating to ea
h vertexa priority by means of an integer whi
h belongs to a bounded interval. A playin G is a (�nite or in�nite) path in the graph (V,E) starting at v0. If the playis �nite and ends in any vertex v ∈ Vǫ, ǫ ∈ {0, 1} (i.e., player ǫ 
annot playanymore), then player ǫ is de
lared loser (and therefore the other player winsthe play). Otherwise, the winner is determined by n0, value of the minimalpriority appearing in�nitely often in the play. In other words, if the play is

v0v1 · · · vn · · · , then n0 is the smallest integer having an in�nity of o

urren
esin the word c(v0)c(v1) · · · c(vn) · · · . If n0 is even, player 0 is de
lared winner,otherwise player 1 wins the play.A strategy for player ǫ is a map s : (V ∗Vǫ) → V 
onne
ting any pre�x ofplay ρ = v0v1 . . . vn to a vertex vn+1 su
h that (vn, vn+1) ∈ E. A strategy ismemoryless if for any ρ = v0v1 . . . vn the value of s(ρ) depends only on the
urrent vertex vn. In this 
ase, the strategy is represented as an appli
ationfrom Vǫ to V . A play ρ = v0v1 . . . vn . . . is said 
onform with s if for any i ≥ 0if vi ∈ Vǫ, then vi+1 = s(v0 . . . vi). A strategy s for player ǫ is a winningstrategy if every play 
onform with s is won by player ǫ.The notion of winning strategy allows to 
apture verti
es from whi
h a playeris sure to win (if he 
hooses a good strategy). We say that player ǫ wins thegame if there exists a winning strategy for ǫThe following result will be useful in the sequel.17



Theorem 43 ([14, 20℄). Given any parity game G:1. one and only one player wins the game2. for ǫ ∈ {0, 1}, if player ǫ wins the game, then player ǫ has a winningmemoryless strategy.3.1.2. Games with p-ora
le and regular treesWe use now parity games to express some problems related to ~O-regular treelanguages in the 
ontext �xed as follows:
• A is a �nite alphabet, supposed redu
ed to two element: A = {a0, a1} (allresults established in this subse
tion remain true if A is unspe
i�ed),
• µ is a surje
tive morphism from A∗ toward a semi-group (M,⋆),
• P is a pre�x 
losed subset of A∗,
• ~O = (µ|P

−1(R1), . . . , µ|P
−1(Rm)), with m ≥ 1 and Ri ⊆M .We prove that the emptiness problem for ~O-regular tree languages redu
ed todetermine the winner of a parity game whose verti
es are in
luded in the produ
tof µ(P ) with a �nite set. From this result, we show (Proposition 53(1)) thatthe emptiness problem for ~O-regular tree languages redu
ed to the satis�abilityof an MSO-formula in µ(χ

~O
P ) (see Se
tion 1.5.1). We prove, in addition, thatevery non-empty ~O-regular tree language 
ontains a µ|P ( ~D)-regular tree, where

~D is MSO-de�nable in µ(χ
~O
P ) (Proposition 53(2)).We �rst restri
t ourself to the study of input-free P -
ut automata. Advan-tage of using P -
ut automata is that to know if there exists a run and if thereexists a su

essful run, there is only need to 
onsider nodes in P . In addition,in a run of a P -
ut automaton, nodes whi
h do not belong to P are indi
atedby the label q⊥.De�nition 44 (Game with p-ora
les). Given an input-free P -
ut automa-ton A = (Q,A, ~O,∆, q0, c), we 
onstru
t the parity game GA = (V0, V1, E, v0, c

′)where
V0 = µ(P ) ×Q and V1 = µ(P ) × ∆, v0 = (µ(ε), q0)
E = E0 ∪ E1 where E0 ⊆ V0 × V1, E1 ⊆ V1 × V0 and
E0 = {((m, p), (m, δ)) | δ = (p, χ

µ( ~O)(m), p0, p1) ∈ ∆},
E1 = {((m, δ), (m ⋆ µ(ai), pi)) | pi 6= q⊥, δ = (p,~o, p0, p1), i ∈ {0, 1}} and
c′ is de�ned by c′(m, p) = c(p) and c′(m, (p,~o, p0, p1)) = c(p).Ea
h player moves alternately in the game. In position (µ(u), p), player 0
hooses a transition δ = (p,~o, p0, p1) from those ful�lling ~o = χ

~O
A∗(u). He movesthen to (µ(u), δ). Now it's the player 1 turn to play, he 
hooses a dire
tion aito follow (i ∈ {0, 1}) and moves to (µ(uai), pi). Hen
e, µ being a morphism, forevery pre�x of play ending in (m,x) ∈ V , then m = µ(u) where u 
onsists ofthe sequen
e of dire
tions 
hosen by player 1.18



Lemma 45. For any input-free P -
ut automaton A ∈ TFA ~O(A), A has a su
-
essful run i� player 0 has a winning strategy in GA.Proof. Let r be a run on A, and sr the strategy de�ned by: ∀v0 . . . vn pre�xof a play with vn ∈ V0 and su
h that the sequen
e of dire
tions 
hosen by player1 is u ∈ A∗, sr(v0 . . . vn) = (µ(u), (r(u), χ~O
(u), r(ua0), r(ua1))).Clearly, sr is winning i� r is su

essful.Conversely, given any winning strategy s for player 0 we 
onstru
t the tree

rs by applying to ea
h vertex u, the transition given by s(ρu) where ρu is thepre�x of play 
onform with s whose sequen
e of sele
ted dire
tions is u:
• rs(ε) = q0 and ρε = (µ(ε), q0),
• ∀u ∈ P , if s(ρu) = (µ(u), (p,~o, p0, p1)), then ∀i ∈ {0, 1}, rs(uai) = pi and
ρuai

= ρu · s(ρu) · (µ(u) ⋆ µ(ai), pi),
• ∀u /∈ P , rs(u) = q⊥.The tree thus 
onstru
ted is obviously a run on A and is su

essful i� s is awinning strategy.Thus by applying Theorem 43:Lemma 46. For any input-free P -
ut automaton A ∈ TFA ~O(A), A has a su
-
essful run i� player 0 has a memoryless winning strategy in GA.Given a memoryless strategy s for player 0, we 
onsider the game Gs

A = (∅, V0∪
V1, E

s, c′), where Es = E1 ∪ {(v, v′) | v ∈ V0, s(v) = v′}. Without loss ofgenerality, we 
an suppose that A is 
omplete, i.e., for every (q, ~o), there existsa transition (q, ~o, q1, q2). In this 
ase, any �nite play in GA ends in a player 1'sposition, and is then winning for player 0.Lemma 47. For every 
omplete input-free P -
ut automaton A ∈ TFA ~O, anymemoryless strategy for player 0 s is winning in GA i� the redu
ed game Gs
A iswinning for player 0.Proof. An in�nite sequen
e of verti
es v0 · · · vn · · · is a play in Gs

A i� it is aplay in GA 
onforms with s. Sin
e verti
es of GA and Gs
A have same priority,an in�nite sequen
e of verti
es is a winning play in GA 
onform with s i� it isa winning play in Gs

A.Any parity game G = (V0, V1, E, v0, c) with c : V → [0,max] is naturallyasso
iated to a relational stru
ture G of domain V de�ned over the signature
G = (V0, V1, E, v0, c0, . . . , cmax), where for all i ∈ [0,max], the arity of ci is 1.19



Lemma 48. For every 
omplete input-free P -
ut automaton A ∈ TFA ~O, one
an �nd an MSO(GA)-senten
e win su
h that ∀s memoryless strategy for player0 in GA,
G

s
A |= win i� s is winning.Proof. We 
onstru
t a formula P0 su
h that G

s
A |= P0 i� there exists a playin Gs

A lost by player 0, i.e., i� there exists an in�nite path v0 · · · vn · · · su
h thatthe smallest integer appearing in�nitely often in c′(v0) · · · c′(vn) · · · is odd.
P0 := ∃X,X0, . . . , Xmax,1. X is a path 
ontaining v02. ∀n,Xn = {x appearing in�nitely often in X | cn(x)}3. the smallest n su
h that Xn 6= ∅ is oddUsing [20℄[�12.2℄, �being a path� is MSO-expressible in Gs

A. From Theorem 43,player 0 loses the game i� player 1 wins the game, hen
e win := ¬P0.We relate now these results to the MSO-logi
 of the stru
ture µ(χ
~O
P ) bymeans of an en
oding the subsets of V1, and an en
oding of the player 0'smemoryless strategies, with a ve
tor of subsets of µ(P ). Given A ∈ TFA ~O, we�x the following notations:

• ∆ = {δ1, . . . , δd}, where δi 6= δj for all i 6= j,
• Q = {s1, . . . , sτ},
• for every D ⊆ V , g(D) = (g1(D), . . . , gd(D), h1(D), . . . , hτ (D)), where
∀i ∈ [1, . . . d], j ∈ [1, τ ],

gi(D) = {σ | (σ, δi) ∈ D}, hj(D) = {σ | (σ, sj) ∈ D},

• we asso
iate to any player 0's memoryless strategy s the ve
tor ~Ss =
(Ss,1, . . . , Ss,d), where ∀i ∈ [1, d],

Ss,i = {σ ∈ µ(P ), s(σ, π1(δi)) = (σ, δi)},and denote ~Ss the ve
tor µ−1
|P (~Ss).Remark that ~Ss gives a 
omplete 
hara
terization of s.Lemma 49. Given an input-free P -
ut automaton A ∈ TFA ~O, s a memorylessstrategy for player 0 in GA, and φ(X1, . . . , Xn) an MSO(GA)-formula, one 
ane�e
tively 
onstru
t an MSO-formula φg su
h that ∀D1, . . . Dn ⊆ µ(P )×(Q∪∆)

G
s
A |= φ(D1, . . . , Dn) i� µ(χ

~Ss
P ) |= φg(g(D1), . . . , g(Dn)).Proof. Let us 
onstru
t φg if φ is an atomi
 formula:

• ∀i ∈ [1, d], j ∈ [1, τ ], σ, σ′ ∈ µ(P ),20



� Es((σ, δi), (σ′, pj)) i� ∃ǫ ∈ {0, 1} s.t. σ′ = σ⋆µ(aǫ) and π2+ǫ(δi) = pj� Es((σ, pj), (σ
′, δi)) i� σ′ = σ, π1(δi) = pj and σ ∈ Ss,iThen (Es)g(X1, . . . , Xp+τ , Y1, . . . , Yp+τ ) 
an be expressed in the followingway: ∃i ∈ [1, d], ∃j ∈ [1, τ ] su
h that� either Xi = {x}, Yd+j = {y} and the other ones are empty and

∃ǫ ∈ {0, 1} s.t. y = x ⋆ µ(aǫ) and π2+ǫ(δi) = pj� or Yi = {y}, Xd+j = {x} and the other ones are empty and y = x,
π1(δi) = pj and x ∈ Ss,i

• cgs,n(X1, . . . , Xp+τ ) 
orresponds to the XOR of the two following proper-ties:� ∃i ∈ [1, d] su
h that Xi = {x} and the other ones are empty and
c(δi) = n,� ∃j ∈ [1, τ ] su
h that Xd+j = {x} and the other ones are empty and
c(pj) = n.

• if φ(X,Y ) := X ⊆ Y ,then φg(X1, . . . , Xd+τ , Y1, . . . , Yd+τ ) := ∀i ∈ [1, d+ τ ], Xi ⊆ Yi.Finally, if φ is not atomi
, φg is given by an obvious indu
tion.Combining Lemma 48 and Lemma 49, we obtain:Lemma 50. Let A ∈ TFA ~O 
omplete, input-free and P -
ut, one 
an �nd anMSO-senten
e sg, su
h that for every memoryless strategy s for player 0 in
GA,

µ(χ
~Ss
P ) |= sg i� s is winning.Given ~D = (D1, . . . , Dd) any ve
tor of subsets of µ(P ), it is easy to determineif there exists a memoryless strategy s su
h that ~D en
odes s (i.e su
h that

~D = ~Ss). Indeed, if we suppose A is 
omplete, there is just to 
he
k that forevery σ ∈ µ(P ), for every state p, there exists one and only one i ∈ [1, d] su
hthat, the �rst 
omponent of δi is p, and χµ(~O)(σ) = π2(δi) and σ ∈ Di. Thisproperty 
an be easily expressed in MSOL, hen
e, we dedu
e from Lemma 50:Lemma 51. For every 
omplete P -
ut input-free automaton A ∈ TFA ~O, thereexists d ≥ 0 and anMSO-formula regA(X1, . . . , Xd) su
h that ∀~S = (S1, . . . , Sd),
Si ⊆ µ(P ), the following properties are equivalent:1. µ(χ

~O
P ) |= regA(S1, . . . , Sd)2. ~S en
odes a winning memoryless strategy for player 0 in GA.Let us asso
iate to A and any memoryless strategy s, a deterministi
 input-free tree automaton As = (Q,A, ~Ss,∆s, q0), where ∆s is 
onstru
ted in thefollowing way: 21



• ∀~o, (q⊥, ~o, q⊥, q⊥) ∈ ∆s
• if δi = (q, ~o, p0, p1) ∈ ∆, then (q,~b, p0, p1) ∈ ∆s, ∀~b ∈ {0, 1}d su
h that� bi = 1,� ∀j 6= i, bj = 0 if the �rst 
omponent of δj is q.This automaton follows the transitions of A indi
ated by the strategy s.Lemma 52. For every winning memoryless strategy s for player 0, As is de-terministi
, P -
ut and its unique run is a su

essful run of A.Proof. By 
hoi
e of test ve
tors, As is 
learly deterministi
. A being 
ompleteand from de�nition of ~Ss, As admits a run r sin
e ∀u ∈ P , there exists i ∈ [1, d]su
h that r(u) = δi and µ(u) ∈ Ss,i. We prove that r is a su

essful run of A:
• r(ε) = q0,
• ∀u ∈ A∗, the transition (r(u), χ

~Ss
A∗(u), r(ua0), r(ua1)) belongs to ∆s andthere exists then i ∈ [1, d] and ~o su
h that δi = (r(u), ~o, r(ua0), r(ua0)) ∈

∆ and Ss,i = 1. Hen
e, we have in addition s(µ(u), r(u)) = (µ(u), δi) andthen ~o = χ
~O(u).Then, r is a run of A, and sin
e s is winning, r is su

essful and As is P -
ut.Sin
e As is deterministi
, Proposition 41 implies that its unique run is a ~Ss-regular tree. Applying Lemma 40, these results 
an be extended to the 
ase ofautomata with inputs. In addition, from Lemma 35, if P is MSO-de�nable in

χ
~O
A∗ , for every B ∈ TFA ~O(A), there exists a P -
ut automaton A in TFA ~O(A)su
h that F(A)|P = F(B)|P . Hen
e, when P is MSO-de�nable in χ~O

A∗ , Lemma52 and Lemma 51 
an be extended to every automaton in TFA ~O. The followingproposition summarize these results.Proposition 53. For every forest F ∈ TREG~O
P (A,Σ), where P is MSO-de�nablein χ~O

A∗, there exists d ≥ 0 and a formula regF (X1, . . . , Xd), su
h that1. F 6= ∅ i� µ(χ
~O
P ) |= ∃X1, . . . , Xd · regF (X1, . . . , Xd)2. for every ~S = (S1, . . . , Sd), Si ⊆ µ(P ),if µ(χ

~O
P ) |= regF (S1, . . . , Sd), then F 
ontains a µ|P

−1(~S)-regular tree.Complexity analysis.Lemma 51: Let A be an automaton ful�lling the 
onditions of Lemma 51, andsuppose τ is the number of states of A. The formula regA de�ned Lemma 51
ontains 3 quanti�er 
hanges and its length is O(τ). Indeed, using [20℄(�12.2),the formula win 
onstru
ted in Lemma 48 
ontains 3 quanti�er alternationsand its length is 
onstant. The formula sg obtained in Lemma 50 has then 3quanti�er 
hanges and has length O(1). Finally, the transformation of sg in22



reg does not modify the number of quanti�er 
hanges but adds O(τ) symbols.Then reg has 3 quanti�er 
hanges and has length O(τ).Proposition 53: Suppose that τ is the number of states of an automaton re
og-nizing F and τ ′ is the number of states of the word-automaton re
ognizing P .Using Lemma 35 we 
onstru
t in time O(|Σ| · (τ · τ ′)τ ·τ ′

) a P -
ut automaton
A having τ · τ ′ states and su
h that F(A)P = FP . This automaton 
an betransformed in an input-free automaton having |Σ||A| · τ · τ ′ states.Finally, using the 
omplexity analysis of Lemma 51, the formula regF de�nedin Proposition 53 
ontains 3 quanti�er 
hanges and its length is O(|Σ||A| · τ · τ ′).This formula 
an be 
onstru
ted in time O(|Σ| · (τ · τ ′)τ ·τ ′

).3.2. Transfer theoremsWe use the Proposition 53 to transfer some properties of the stru
ture µ(χ
~O
P )toward the stru
ture χ~O

P . The following de�nition �xes hypothesis for whi
hthese results hold.De�nition 54 (Transfer Hypothesis (TH)). We write TH(µ|P , ~O) if:
µ : A∗ → M is a surje
tive morphism of semi-group, P is a pre�x 
losedlanguage in A∗, and there exists ~R ve
tor of subsets of µ(P ) su
h that P ∈REGµ|P

−1(~R)(A) and ~O = µ−1
|P (~R).Theorem 55 (Transfer of de
idability). Let µ be a morphism from A∗ toany semi-group, P ⊆ A∗ be a pre�x 
losed language, and ~O a ve
tor of subsetsof P , su
h that TH(µ|P , ~O).If theMSO-theory of µ(χ

~O
P ) is de
idable, then theMSO-theory of χ~O

P is de
idable.Proof. Suppose that the MSO-theory of µ(χ
~O
P ) is de
idable. For all F ∈TREG~O

P , one 
an de
ide whether µ(χ
~O
P ) |= ∃ ~X,regF ( ~X) where regF is theformula established in Proposition 53, i.e., whether F is empty. Hen
e, fromCorollary 31, the MSO-theory of χ~O

P is de
idable.Complexity analysis.Let CD(n, τ) be the time to de
ide the validity of a senten
e in MSO(χ
~O
P ) oflength n and having τ quanti�er alternations. Suppose that P is re
ognized byan automaton having τP states. Let φ be a senten
e in MSO(χ

~O
|P ) of length n andhaving τ quanti�er 
hanges. From Remark 29, we 
an 
ompute a tree automa-ton A ∈ TREG~O su
h that T (φ) = T (A), and having F (n, τ) states. Then, theformula regT (A) has 3 quanti�er alternations and length |Σ||A|F (n, τ)τP andis 
onstru
ted in time O(|Σ|(F (n, τ)τP )F (n,τ)σP ). Finally, we de
ide if φ is truein time CD(3, |Σ||A|F (n, τ)τP ) +O(|Σ|(F (n, τ)τP )F (n,q)τP ) (or CD(3, F (n, τ)) if

P = A∗).We de�ne now a 
ondition on µ|P allowing to transfer the DM property (seeDe�nition 15). 23



De�nition 56. Given any surje
tif morphism µ from A∗ into any semi-group,and P ⊆ A∗ pre�x 
losed, the restri
ted map µ|P is said to be MSO-invertibleif for every ~O ve
tor of subsets of P , for every D ⊆ µ(P ),if D is MSO-de�nable in µ(χ
~O
P ) then µ|P

−1(D) is MSO-de�nable in χ~O
P .Theorem 57 (Transfer of property DM). If TH(µ|P , ~O) and µ|P is MSO-invertible, then µ(χ

~O
P ) satis�es DM implies χ~O

P satis�es DM.Proof. Let F be a non-empty ~O-regular forest in P -Treen, from Proposition53 and sin
e µ(χ
~O
P ) ful�lls DM, there exists ~S su
h that F 
ontains a µ|P

−1(~S)-regular tree and ~S is MSO-de�nable in µ(χ
~O
P ). Sin
e µ|P is MSO-invertible,there exists ~D = µ|P

−1(~S) su
h that ~D is MSO-de�nable in χ~O
P and F 
ontainsa ~D-regular tree. Hen
e, from Proposition 38, χ~O

P ful�lls DM.Complexity analysis For a formula in MSO(χ
~O
P ) of length n and having

τ quanti�er alternations, we denote by CM (n, τ) the time needed to 
onstru
ta formula that de�nes a model, and by (nS , τS) the size of a formula thatde�nes inverse models. Suppose P is re
ognized by an automaton having τPstates. Given φ ∈ MSO(χ
~O
P ) of length n and having τ quanti�er 
hanges, one
an 
onstru
t a formula that de�nes a model of φ in time CM (3, F (n, τ)) +

O((2F (n, τ) · τP )F (n,τ)·τP ) (or CM (3, F (n, τ)) if P = A∗).Theorem 58 (Stru
ture Theorem). If µ|P is MSO-invertible, TH(µ|P , ~O)and µ(χ
~O
P ) satis�es DM, then for every L ⊆ P , the following properties areequivalent:

• L is MSO-de�nable in χ~O
P

• there exists ~D MSO-de�nable in µ(χ
~O
P ) su
h that L is µP

−1( ~D)-regular.Proof. Let us suppose that L is MSO-de�ned in χ~O
P by a formula φ(X). Thenfrom Theorem 32, there exists a ~O-regular forest F = {χL

P} su
h that F =

T
~O

P (φ). From Proposition 53 and sin
e µ(χ
~O
P ) ful�lls DM, there exists ~D su
hthat χL

P is µ|P
−1( ~D)-regular and ~D is MSO-de�nable in µ(χ

~O
P ). From Remark37.1, the language L is µ|P

−1( ~D)-regular.Conversely, given ~D, MSO-de�nable in µ(χ
~O
P ), then sin
e µ|P

−1 is MSO-invertible, µ|P
−1( ~D) is MSO-de�nable in χ~O

P . Given L a µ|P
−1( ~D)-regular lan-guage, by using the automata-
hara
terization of L, it is then easy to �nd aMSO-formula de�ning L in χ~O

P . 24



Complexity analysis.For a formula in MSO(χ
~O
P ) of length n and having τ quanti�er alternations,we denote by CM (n, τ) the time needed to 
onstru
t a formula that de�nesa model, and by (nS , τS) the size of a formula that de�nes inverse models.Suppose that P is re
ognized by an automaton having τP states and that L isde�ned by φ ∈ MSO(χ

~O
P ) of length n and having τ quanti�er 
hanges, one 
an
onstru
t a word ora
le-automaton re
ognizing L having F (3, F (n, τ)) states.It 
an be 
onstru
ted in time CM (3, F (n, τ)) + O((2F (n, τ) · τP )F (n,τ)·τP ) (or

CM (3, F (n, τ)) if P = A∗).3.3. A �rst example of appli
ationVarious authors have exhibited 
lasses of relationR ⊆ N for whi
h 〈N, 0,+1, R〉has a de
idable MSO-theory. Cite for re
ent examples [8, 19, 17℄. These stru
-tures 
an be seen as images by a morphism, in order to transfer the de
idabilitytoward a tree stru
ture. Given two alphabets A and B, with B ⊆ A, we 
onsiderthe map lB : A∗ → N asso
iating to every word in A∗ its number of o

urren
esof letters in B. This map is 
learly a surje
tive morphism when N is endowedwith the �+� operator.Corollary 59. For every ~N = (N1, . . . , Nm), Ni ⊆ N su
h that 〈N,+1, ~N〉 hasa de
idable MSO-theory, the stru
ture χlB
−1( ~N)

A∗ admits a de
idable MSO-theory.This result has already been proved in [34℄[Proposition 2℄ for the 
ase A = B,as a dire
t appli
ation of the results about unfolding of graphs obtained in [11,12℄. However, to our knowledge, this method does not allow the transfer of theDM property, nor to deal with the de
idability for the 
ase A 6= B. Conversly,Theorem 55 does not seems to 
over all results we 
an obtain by unfolding, sin
ethe unfolded graph must indu
e a stru
ture of semi-group isomorphi
 to a tree.Corollary 60. Given ~N a ve
tor of subsets of N,1. the stru
ture χl−1
B

( ~N)
A∗ ful�lls DM,2. sets MSO-de�nable in χ

l−1
B

( ~N)

A∗ are languages in REGl−1
B

(~D), for ~D MSO-de�nable in 〈N, 0,+1, ~N〉.Proof. We prove these results by using Theorems 57 and 58.Sin
e lB(χ
l−1
B

( ~N)

A∗ ) = 〈N, 0,+1, ~N〉, we just need to prove that1. 〈N, 0,+1, ~N〉 ful�lls the DM property:This result is proved for all ~N in [30℄.2. lB is MSO-invertible:Consider the 
overing R of A∗ 
onsisting of all sets R that form an in�nitepath from ε and 
ontaining an in�nite number of elements in B. For all
R ∈ R, the restri
tion of lB to R is a surje
tive map from R to N. Remark25



in addition that the property �be an element of R� 
an be expressed by anMSO-formula over 〈A∗, ε, (su

a)a∈A〉.For every MSO-formula φ over S = 〈N, 0,+1, ~N〉 with n free variables, we
onstru
t by indu
tion an MSO-formula φ′ over S = 〈N, 0,+1, ~N〉 with
n+ 1 free-variables satisfying for every R ∈ R, for every S1, . . . , Sn ⊆ A∗:
χ

l−1
B

( ~N)

A∗ |= φ′(S1 ∩R, . . . , Sn ∩R,R) i� S |= φ(l(S1 ∩R, . . . , Sn ∩R)) (1)In this proof, relations with free �rst order variables are repla
ed by "equiv-alent" relations with free se
ond order variables. For exemple, ε(x) is re-pla
ed by ε(X) == ∃x. X = {x} ∧ ε(x).
• 0′(X,Y ) := ε(X),
• (+1)′(X1, X2, Y ) :=

∨
b∈B su

b(X1, X2),

• if ϕ := ∃X,ψ(X,X1, . . . , Xn), then ϕ′ := ∃X,ψ′(X∩Y,X1, . . . , Xn, Y ),
• if ϕ := ∀X,ψ(X,X1, . . . , Xn), then ϕ′ := ∃X,ψ′(X∩Y,X1, . . . , Xn, Y ),
ases X1 ⊆ X2 and X1 ⊆ N are given in an obvious way, idem for boolean
ombinations: (φ ∨ ψ)′ := φ′ ∨ ψ′, (φ ∧ ψ)′ := φ′ ∧ ψ′ et (¬φ)′ := ¬φ′. Itis easy to 
he
k that atomi
 formulas ful�ll Equivalen
e (1). We treat onlythe 
ase ϕ = ∃X · ψ. For the universal quanti�er, the proof is similar. Forboolean 
ombination, the proof is obviousFix S1, . . . , Sn ⊆ A∗ and R ∈ R.

χ
l−1
B

( ~N)
A∗ |= ϕ′(S1 ∩R, . . . , Sn ∩R,R) i�

∃S ⊆ A∗, χ
l−1
B

( ~N)

A∗ |= ψ′(S ∩R,S1 ∩R, . . . , Sn ∩R,R) i� (by (i.h))
∃S ⊆ A∗, S |= ψ(lB(S ∩R), lB(S1 ∩R), . . . , lB(Sn ∩R)) i�
∃D ⊆ N, S |= ψ(D, lB(S1 ∩R), . . . , lB(Sn ∩R)) i�

S |= ∃X, ψ(X, lB(S1 ∩R), . . . , lB(Sn ∩R)) i�
S |= ϕ(lB(S1 ∩R), . . . , lB(Sn ∩R)).We have remarked R is a 
overing of A∗ and for all R ∈ R, lB restri
tedto R is surje
tive, then ∀D ⊆ A∗, D′ ⊆ N,

D = l−1
B (D′) i� ∀R ∈ R, lB(R ∩D) = D′.Then, for every formula φ(X1, . . . , Xn) over S, the formula

φlB (X1, . . . , Xn) := ∀R ∈ R, φ′(R ∩X1, . . . , R ∩Xn, R)ful�lls χl−1
B

( ~N)
A∗ |= φlB (D1, . . . , Dn) i� ∃D′

1, . . . , D
′
n su
h that S |= φ(D′

1, . . . , D
′
n)and for every i ∈ [1, n], l−1

B (Di) = D′
i.26



4. Words, iterated-pushdowns and tree-stru
turesIn order to apply results obtained above to iterated pushdowns, we needto represent k-pds as words in a pre�x 
losed language. We then en
ode ea
h
ω ∈ k-pds(A1, . . . , Ak) by a word representing the smallest instru
tions sequen
eof pushi,a and pushi,a 
omputing ω from ⊥k. The set of su
h en
odings is apre�x 
losed language over Â1,k denoted Pk.We use transfer theorems proved in the previous se
tion to study MSO-properties of the stru
ture Pk = 〈Pk, ε, (•a)

a∈ dA1,k
〉 where •a is the binaryrelation right-produ
t by a inside the free group (Irr(A1,k), •, ε). We show thatfor every k ≥ 1, the stru
ture Pk has a de
idable MSO-theory and ful�lls theDM property (Theorem 76). We also de�ne a 
lass of automata with p-ora
lesre
ognizing exa
tly sets whi
h are MSO-de�nable inside Pk (Theorem 79).Eventually we prove that the stru
ture PDSk is MSO-equivalent to the stru
ture

Pk. It follows that PDSk has a de
idable MSO-theory and ful�lls DM. We alsogive a de�nition of regular sets of k-pushdowns whi
h enjoy several ni
e
hara
terizations (Theorem 85).4.1. Iterated-pushdowns viewed as wordsLet A1, . . . , Ak, . . . be store alphabets and A0 = ∅, ∀k ≥ 0, we denote by
A1,k the union of A1, . . . , Ak. Every ω ∈ k-pds(A1, . . . , Ak) 
an be representedby a word on Â1,k = A1,k ∪ A1,k en
oding an instru
tions sequen
e 
omputing
ω from ⊥k:

• every a ∈ Ai 
orresponds to pushi,a

• every ā ∈ Ai 
orresponds to pushi,aFor instan
e, the 2-pds ω = a2[c1b1 ⊥]a2[a1 ⊥] ⊥ [⊥] 
an be representedby the word u1 = a2a1a2ā1b1c1, or by u2 = a2a1b2b̄2a2ā1b1c1, or by u3 =
a2a1a1b2b̄2ā1a2ā1b1c1.There are then several representations of the same k-pds but all have the sameredu
ed representative in (Irr(A1,k), •, ε). Ea
h k-pds will be en
oded by itsredu
ed representation. In the previous example, the redu
ed representation is
u1 (sin
e ρ(u1) = ρ(u2) = ρ(u3) = u1). Ea
h word in Â1,k

∗ does not de�nea valid sequen
e of instru
tions. For example, a1b1a2b̄1b̄1 is not valid sin
e
a1b1a2b̄1 
orrespond to a2[a1 ⊥] ⊥ [b1a1 ⊥] and pushb1,1 is then unde�ned.Let us introdu
e the set Mk of words in Â1,k

∗ en
oding all valid sequen
es ofmoves, as well as the set Pk of redu
ed words of Mk whi
h en
odes the set of
k-pds. We de�ne simultaneously Pk(A1, . . . , Ak) (or simply Pk when the Ai'sare �xed) and Mk(A1, . . . Ak) (or simply Mk) by indu
tion on k:

• P0 = {ε},
• ∀k ≥ 0, Mk(A1, . . . , Ak) = {u ∈ Â1,k

∗
| ∀v 4 u, ρ(v) ∈ Pk(A1, . . . , Ak)}and

Pk+1(A1, . . . , Ak+1) = {u ∈ ρ((Â1,k∪Ak+1)
∗) | π dA1,k

(u) ∈ Mk(A1, . . . , Ak)}.27



Clearly, P1(A1) = A∗
1.De�nition 61 (Proje
tion). For k ≥ 0, fk : Pk+1 → Pk is de�ned for every

u ∈ Pk+1 by fk(u) = ρ(π dA1,k
(u)). We extend fk by fi+1,k : Pi+1 → Pk obtainedby su

essive appli
ations of fi, fi−1, . . . , fk.An obvious indu
tion on k proves the following re
ursive de�nition of PkProposition 62. For every k ≥ 1, u ∈ Pk and a ∈ Ai, 1 ≤ i ≤ k,

u • a ∈ Pk and
u • ā ∈ Pk i� fk,i(u) ∈ Pi · a.For every k ≥ 0, sets Pk and k-pds are linked by a bije
tion denoted ϕk:De�nition 63. The map ϕk : k-pds(A1, . . . , Ak) → Pk(A1, . . . , Ak) is de�nedby indu
tion on k ≥ 0 by:

• ϕ0(⊥0) = ε,
• ∀k ≥ 0, ω1 ∈ k-pds, ω ∈ (k + 1)-pds and a ∈ Ak+1,� ϕk+1(⊥ [ω1]) = ϕk(ω1)� ϕk+1(a[ω1]ω) = (ϕk+1(ω) · a · fk(ϕk+1(ω))) • ϕk(ω1).Example 64. Let ωex be the following 3-pds:
ωex = a3[b2[b1a1 ⊥]a2[a1 ⊥] ⊥2] ⊥ [a2[a1 ⊥]a2[⊥] ⊥2] = a3[ω1]ωThen, ϕ3(ωex) = (ϕ3(ω)a3f2(ϕ3(ω))) • ϕ2(ω1).We have, ϕ2(b2[b1a1 ⊥]a2[a1 ⊥] ⊥2) = a2a1b2b1 and ϕ2(a2[a1 ⊥]a2[⊥] ⊥2

) = a2a2a1, then ϕ3(ω) = a2a2a1. We obtain then,
ϕ3(ωex) = a2a2a1a3a2a2a1 • (a2a1b2b1)

= a2a2a1a3(ā1 ā2 ā2) • (a2a1b2b1)

= a2a2a1a3ā1 ā2a1b2b1.Proposition 65. For every (k + 1)-pds ω = a[ω1]ω
′, ϕk(ω1) = fk(ϕk+1(ω)).Proof. From de�nition of ϕk and fk:

fk(ϕk+1(a[ω1]ω
′)) = fk(ϕk+1(ω

′) · a · fk(ϕk+1(ω′)) • fk(ϕk(ω1)))

= fk(ϕk+1(ω
′)) • fk(ϕk+1(ω′)) • ϕk(ω1)

= ϕk(ω1).Remark 66. From Proposition 65 and de�nition of ϕk+1, it appears 
learlythat for all ω = an[ωn] · · · a1[ω1] ⊥ [ω0] ∈ (k + 1)-pds, n ≥ 0,
ϕk+1(ω) = ϕk(ω0)a1ϕk(ω0) •ϕk(ω1)a2ϕk(ω1) •ϕk(ω2) · · · anϕk(ωn−1) •ϕk(ωn).28



Lemma 67. For every k ≥ 0, ϕk is a bije
tive map.Proof. Inje
tion: Let us sket
h by indu
tion on k ≥ 0 that ϕk is an inje
tivemap. If k = 0, it is obvious. Suppose ϕk inje
tive, for k ≥ 0. For every
ω, ω′ ∈ (k + 1)-pds having same image by ϕk+1, Remark 66 implies the followingde
ompositions:
ω = an[ωn] · · · a1[ω1] ⊥ [ω0] et ω′ = an[ω′

n] · · ·a1[ω
′
1] ⊥ [ω′

0], n ≥ 0.We 
he
k ϕk+1 is bije
tive by a se
ond indu
tion over n ≥ 0. If n = 0, theindu
tion hypothesis over k proves that ω = ω′. Else, let ω = an[ωn]ω′′ and
ω′ = an[ωn]ω′′′. From de�nition of ϕk+1 and by hypothesis ϕk+1(ω) = ϕk+1(ω

′):
ϕk+1(ω

′′)·a·fk(ϕk+1(ω′′))•fk(ϕk(ωn)) = ϕk+1(ω
′′′)·a·fk(ϕk+1(ω′′′))•fk(ϕk(ω′

n)),in other words,
ϕk+1(ω

′′) = ϕk+1(ω
′′′) et fk(ϕk(ω′′)) • fk(ϕk(ωn)) = fk(ϕk(ω′′′)) • fk(ϕk(ω′

n)).From indu
tion hypothesis over n, we obtain ω′′ = ω′′′ and sin
e (Irr(A1,k), •, ε)is a group, fk(ϕk(ωn)) = fk(ϕk(ω′
n)). Then ω = ω′.Surje
tion:let us de�ne indu
tively the map ϕk

−1:
• ϕ0

−1(ε) =⊥0

• for every u ∈ Pk+1, k ≥ 0,� if u ∈ Pk, then ϕk+1
−1(u) =⊥ [ϕk

−1(u)]� else there exists u′ ∈ Pk+1, a ∈ Ak+1, u1 ∈ Irr(A1,k) su
h that
u = u′au1 and

ϕk+1
−1(u) = a[ϕk

−1(fk(u))]ϕk+1
−1(u′)We 
he
k that ϕk

−1 really de�nes the inverse map of ϕk by indu
tion over k.We detail the 
ase u = u′au1:
ϕk+1(ϕk+1

−1(u))

= ϕk+1(a[ϕk
−1(fk(u))]ϕ−1

k+1(u
′))

= ϕk+1(ϕk+1
−1(u′)) · a · fk(ϕk+1(ϕk+1

−1(u′))) • ϕk(ϕ−1
k (fk(u)))

= u′ · a · fk(u′) • fk(u) = u′ · a · fk(u′) • fk(u′) • u1 = u′ · a · u1.We 
lose this se
tion by studying links between the right-produ
t in Pk and theappli
ation of instru
tions to k-pushdowns.Lemma 68. For every k ≥ 1, u, v ∈ Pk, and a ∈ Ai, 1 ≤ i ≤ k,
v = u • a i� ϕk

−1(v) = pushi,a(ϕk
−1(u))

v = u • ā i� ϕk
−1(u) = pushi,a(ϕk

−1(v)) i� ϕk
−1(v) = pushi,a(ϕk

−1(u))

29



4.2. Logi
 on a free groupLet A1, . . . , Ak, . . . be disjoints alphabets �xed for the rest of the paper and
Sigk the signature (ε, (•a)

a∈ dA1,k
) where ε and •a are respe
tively a unary and abinary relation. The signature Sigm

k is Sigk augmented with m unary relations.Consider the stru
ture Pk de�ned on Sigk whose domain is Pk(A1, . . . , Ak)and su
h that ∀a ∈ Â1,k, •a = {(u, v)| u, v ∈ Pk, v = u • a}. For every
~O = (O1, . . . , Om) with Oi ⊆ Pk, Pk

~O denotes the stru
ture Pk augmentedwith relations O1, . . . , Om.By using the fa
t that, ∀k ≥ 1, Pk is the image by fk of the tree of domain
Pk+1, we show indu
tively, by applying transfert theorems of Se
tion 3, that
Pk satis�es the property DM, that its MSO-theory is de
idable and we give anautomata-
hara
terization of the MSO-de�nable sets of Pk.4.2.1. MSO-invertibilityIt is proved here that for every k ≥ 1, the mapping fk is MSO-invertible (seeDe�nition 56). This result will be helpful in two ways: �rst to apply transfertheorems to Pk and latter to show that stru
tures Pk and PDSk are MSO-equivalent.In the sequel, we denote by Tk the stru
ture 〈Pk, ε, (succa)

a∈ dA1,k∪Ak−1
〉. Inaddition, ∀ ~O ve
tor of subsets of Pk, we write T ~O

k the stru
ture obtained byadding to Tk the unary relations Oi.Observation 69. ∀k ≥ 1, ∀ ~O ve
tor of subsets of Pk+1, fk(T
~O

k+1) = Pk
fk(~O)1.We pro
eed in a similar way as the proof of Corollary 60. We start byde�ning a partition of Pk+1 whose ea
h element is in bije
tion with Pk. Forevery k ≥ 1, we 
onsider the family Fk+1 
onsisting of all sets F ⊆ Pk+1 su
hthat:

• either F = Pk,
• or ∃u ∈ Pk+1 and ∃a ∈ Ak+1 su
h that F = {uaw ∈ Pk+1| w ∈ Irr(A1,k)}.Ea
h F ∈ Fk+1 en
odes, via ϕk+1, a maximal set of (k+1)-pds whi
h di�er onlyby top level-k elements. The family Fk+1 allows to re
ompose the inverse imageof any de�nable subset of Pk. The proof is based on the following remarks:Remark 70. For every k ≥ 1:1. Fk+1 de�nes a partition of Pk+1.2. For every F ∈ Fk+1, the restri
tion of fk to F is a bije
tion toward Pk.1Here, and in the rest of the paper, fk is extended to sets, and ve
tor of sets in a naturalway. 30



3. The property F ∈ Fk+1 is MSO-expressible in Pk+1.Indeed, F ∈ Fk+1 i� F is a maximal set su
h that for every u, v ∈ F , thereexists a path from u to v using only edges •a where a ∈ Â1,k. It is theneasy to 
onstru
t a MSO-formula whose set of models in Pk+1 is exa
tly
Fk+1.Lemma 71. Given k ≥ 1 and m ≥ 0, for every MSO-formula φ(X1, . . . , Xn)over Sigm

k , there exists a MSO-formula φ′(X1, . . . , Xn, Y ) over Sigm
k+1 su
h that

∀~R = (R1, . . . , Rm), Ri ⊆ Pk:
∀S1, . . . , Sn ∈ Pk+1, ∀F ∈ Fk+1,
Pk+1

fk
−1(~R) |= φ′(S1 ∩ F, . . . , Sn ∩ F, F ) i� Pk

~R |= φ(fk(S1 ∩ F, . . . , Sn ∩ F )).Proof. We 
onstru
t φ′ for φ atomi
, the other 
ases are given by the sameindu
tion as the proof of Corollary 60.- (ε)′(X,Y ) := ∃x | X = {x} ∧
∧

a∈A1,k
¬(∃y, x • ā = y),- ∀a ∈ Â1,k, (•a)′(X1, X2, Y ) := •a(X1, X2).Let a ∈ Â1,1,k. If F = Pk, 
learly ∀u, v ∈ Pk

Pk+1
fk

−1(~R) |= •a
′({u}, {v}, F ) i� Pk

~R |= •a({fk(u)}, {fk(v)}).If F = {ubw ∈ Pk+1| w ∈ Irr(Ak)}, with b ∈ Ak+1, then for every v = ubw,
v′ = ubw′ ∈ F ,
Pk+1

fk
−1(~R) |= (•a)′({v}, {v}′, F ) i� Pk+1

fk
−1(~R) |= •a({ubw}, {ubw′})i� w′ = w • ai� fk(ub) • w′ = fk(ub) • w • ai� Pk

~R |= •a({fk(v)}, {fk(v′)}).- if φ(X) := X ⊆ Ri, then φ′(X) := X ⊆ fk
−1(Ri). Indeed, ∀S ⊆ Pk+1,

Pk+1
fk

−1(~R) |= φ′(S ∩ F, F ) i� Pk+1
fk

−1(~R) |= S ∩ F ⊆ fk
−1(R1)i� fk(S ∩ F ) ⊆ R1i� Pk

~R |= φ(fk(S)).- if Φ(X1, X2) := X1 ⊆ X2, then Φ′(X1, X2, Y ) := X1 ⊆ X2. The proof isthe same as the previous 
ase.Proposition 72. Given k ≥ 1 and φ(X1, . . . , Xn) an MSO-formula over Sigm
k ,

m ≥ 0, there exists an MSO-formula φ+1(X1, . . . , Xn) over Sigm
k+1 su
h that

∀R1, . . . , Rm ⊆ Pk, ∀S1, . . . , Sn ∈ Pk+1,
Pk+1

fk
−1(R1,...,Rm) |= φ+1(S1, . . . , Sn) i�

∃D1, . . . , Dn ⊆ Pk su
h that Pk
(R1,...,Rm) |= φ(D1, . . . , Dn) and ∀i, Si = fk

−1(Di).31



Proof. We pro
eed as in the proof of Corollary 60.Proposition 73. For every k ≥ 1, for every D ⊆ Pk de�nable in Pk the set
fk

−1(D) is MSO-de�nable in Pk+1.4.2.2. MSO-properties of PkWe apply now transfer theorems to Pk. First remark that fk is the restri
tionto Pk+1 of the morphism µk : Â1,k+1

∗
→ Irr(A1,k) mapping ea
h u ∈ Â1,k+1

∗to ρ(π dA1,k
(u)) (re
all that ρ is the redu
tion in the free group, see Se
tion 1.1).Let us introdu
e for every k ≥ 1, the ve
tor ~Ok of subsets of Pk de�ned by thefollowing indu
tion:

• ~O1 = ∅

• ~Ok+1 = (fk
−1( ~Ok), fk

−1(Pka1), . . . , f
−1
k (Pkan)) where A1,k = {a1, . . . , an}In other words, ~Ok 
onsists in every fk,i

−1(Pia), where 1 ≤ i ≤ k and a ∈ A1,i.Lemma 74. For every k ≥ 1, stru
tures Pk, Tk, Tk
~Ok and fk(Tk

~Ok) are MSO-equivalent (see De�nition 18).Proof. • Clearly, Pk is de�nable inside Tk sin
e ∀u, v ∈ Pk, a ∈ Â1,k,
u = v • a i� u = va or v = uā. Conversely, to show that Tk is de�nableinside Pk, we prove �rst that if Â1,k = {a1, . . . , an}, then the ve
tor
(Pk ·a1, . . . ,Pk ·an) is MSO-de�nable inside Pk. It su�
es to remark thatea
h Pk · ai is the smallest set Si ⊆ Pk su
h that for every u ∈ Pk, u ∈ Sii� � either •ai

(u, ε),� or there exists aj 6= ai ∈ Â1,k and v ∈ Sj su
h that u = v • ai.Now, it is easy to de�ne in Pk the relation indu
ed by the 
on
atenationprodu
t sin
e for every u, v ∈ Pk, a ∈ Â1,k, [u = va i� u = v • a and
v /∈ Pk · a℄.

• Tk
~Ok is de�nable inside Pk sin
e from the previous 
ase, ∀1 ≤ i ≤ k,

a ∈ A1,i, the set Pi·a is MSO-de�nable in Pi and then by using Proposition73, fk,i
−1(Pi · a) is MSO-de�nable in Pk.

• fk(Tk+1
~Ok+1) is MSO-equivalent to the stru
ture Pk

~Ok , whi
h is MSO-equivalent to the stru
ture Pk.The following lemma is required to apply transfer theorems (see De�nition54).Lemma 75. For every k ≥ 1, the property TH(fk, ~Ok+1) is satis�ed.32



Proof. It su�
es to 
he
k that for every k ≥ 0, Pk+1 ∈ REG~Ok+1 . Consider
Ak+1 = (Q = {q0} ∪ {qa | a ∈ Â1,k+1}, Â1,k+1,∆, q0, F = Q) where ∆ 
onsistsof every transitions

• (q0, a, ~o, qa), ∀a ∈ A1,k+1, ∀~o
• (qb, a, ~o, qa), ∀a ∈ A1,k+1, ∀b 6= ā, ∀~o
• (qb, ā, ~o, qa), ∀a ∈ Ai, i ∈ [1, k] ∀b 6= a, ∀~o su
h that the 
omponent
orresponding to fk,i

−1(Pia) is 1.From Proposition 62, L(Ak+1) = Pk+1.Theorem 76. For every k ≥ 1, the stru
ture Pk has a de
idable MSO-theoryand ful�lls the property DM.Proof. We prove this result by indu
tion on k ≥ 1:Basis: From Theorem 39, P1 has a de
idable MSO-theory and satis�es theproperty DM.Indu
tion step: let us suppose the property true for k ≥ 1. Sin
e TH(fk, ~Ok+1),by using Theorem 55 and equivalen
e between stru
tures proved Propo-sition 74, the MSO-theory of Pk+1 is de
idable. In the same way, sin
efrom Proposition 73, the map fk is MSO-invertible, and by using Theorem57, Pk+1 satis�es DM.The de
idability result has already been proved in [7℄.The same kind of reasoning 
an be applied to the stru
ture Pk

~O for anyve
tor ~O of subsets of Pk: if the MSO-theory of Pk

~O is de
idable, then theMSO-theory of Pk+1
fk

−1(~O) is de
idable.Theorem 77. Given ~R a ve
tor of subsets of A∗
1, and ~O = fk,1

−1(~R),1. if the MSO-theory of 〈A1
∗, ε, (succa)a∈A1 , ~R〉 is de
idable, then for every

k ≥ 1, the MSO-theory of Pk

~O is de
idable,2. if 〈A1
∗, ε, (succa)a∈A1 , ~R〉 ful�lls DM, then Pk

~O ful�lls DM.We de�ne now the 
lass FAk of automata 
orresponding to languages MSO-de�nable in Pk and the 
lass REGk of languages re
ognized by su
h automata.De�nition 78. For all k ≥ 1, 
lasses FAk and REGk are de�ned indu
tively asfollows:
• FA1 is the 
lass of �nite automata, and REG1 the regular languages one,
• for every k ≥ 1, FAk+1 
onsists in all automata A with p-ora
le (fk

−1(R1),
. . . , fk

−1(Rm)) su
h that ea
h Ri belongs to REGk,33



• for every k ≥ 1, REGk+1 
onsists in all languages in Pk re
ognized byautomata in FAk+1.Theorem 79. For every language L ⊆ Â1,k

∗ with k ≥ 1, L is MSO-de�nablein Pk i� L belongs to REGk.Proof. Let us prove this result by indu
tion on k ≥ 1.Basis: the 
ase k = 1 is obvious,Indu
tion step: let us suppose the property is valid for k ≥ 1.From Theorem 57, any language L ⊆ (k + 1)-pds is MSO-de�nable in
Pk+1 i� there exists a ve
tor ~D MSO-de�nable in Pk and A ∈ FA ~D su
hthat L = L(A). By indu
tion hypothesis, ea
h 
omponent of ~L belongs toREGk, and then, L is MSO-de�nable in Pk+1 i� D ∈ REGk+1.4.3. Regular sets of k-pushdownsWe now translate results obtained on Pk in terms of k-pushdowns. For that,we just need to prove that Pk and the stru
ture PDSk asso
iated to the type

k-pushdowns (see Se
tion 1.5.1(3)) are MSO-equivalent (see De�nition 18) . Weshow that ϕk : PDSk → Pk and ϕk
−1 : Pk → PDSk are MSO-interpretations.Then, the two stru
tures have the same MSO-properties and we have a ni
e
lass of p-ora
le-automata available to 
hara
terize the 
lass of all ϕk(D) su
hthat D is MSO-de�nable in PDSk. Using this automata 
hara
terization, wede�ne the 
lass of 
ontrolled k-pds systems of transitions generating the 
lassof all sets MSO-de�nable in PDSk.Theorem 80. For every k ≥ 1, ϕk
−1 : Pk(A1, . . . , Ak) → PDSk(A1, . . . , Ak)is a MSO-interpretation.Proof. Let us 
he
k that 
onditions of the de�nition of MSO-interpretation(De�nition 16) are well satis�ed,1. ϕk

−1(Pk) = k-pds is MSO-de�nable in PDSk2. from the Lemma 68, it follows that for every u, v ∈ Pk, a ∈ Ai, 1 ≤ i ≤ k:
Pk |= •a(u, v) i� PDSk |= pusha(ϕk

−1(u), ϕk
−1(v)) and

Pk |= •ā(u, v) i� PDSk |= pusha(ϕk
−1(v), ϕk

−1(u)).Let us prove now that ∀k ≥ 1, ϕk : PDSk → Pk is a MSO-interpretation.The next lemma establishes that to prove that an instru
tion of level k is MSO-de�nable in Pk+i, i ≥ 0, there is only to need to demonstrate that it is MSO-de�nable in Pk:Lemma 81. Given instr an instru
tion of level k ≥ 1, and Φ(x, y) a MSO-formula over Sigk satisfying for all u, v ∈ Pk:
Pk |= Φ(u, v) i� ϕk

−1(v) = instr(ϕk
−1(u)),34



then for every i ≥ 0, there exists a formula Φ+i(x, y) ∈ MSO(Sigk+i) su
h that
∀u, v ∈ Pk+i,

Pk+i |= Φ+i(u, v) i� ϕk+i
−1(v) = instr(ϕk+i

−1(u)).Proof. From proposition 65 and de�nition of ϕk
−1, it follows that for every

v, v′ ∈ (k + 1)-pds and ω1, ω
′
1 ∈ k-pds, the following properties are equivalent:1. there exists ω ∈ (k + 1)-pds ∪ {ε} and a ∈ Ak+1 ∪ {⊥} su
h that

ϕk+1
−1(v) = a[ω1]ω and ϕk+1

−1(v′) = a[ω′
1]ω2. there exists u ∈ Irr(Ak) su
h that v′ = v • u and

fk(v) = ϕk(ω1) and fk(v′) = ϕk(ω′
1).Then, given instr an instru
tion of level k and Φ MSO-de�ning instr in Pk, weobtain (by using formulas 
onstru
ted in Proposition 72) the following iterative
onstru
tion of Φ+i:

Φ+0(x, y) := Φ(x, y)

∀i ≥ 0, Φ+(i+1)(x, y) := ∃u, y = x • u ∧ (Φ+i)
+1(x, y).Theorem 82. For every k ≥ 1, ϕk : PDSk → Pk is a MSO-interpretation.Proof. By using the previous lemma, it only remains to show that pushk,a,

popk and changek,a are MSO-de�nable in Pk:for every a ∈ Ai, 1 ≤ i ≤ k,pushk,a(x, y) := y = x • apopk,a(x, y) := ∃a ∈ Ak, ∃w, x = y • a • w
hangek,a(x, y) := ∃u, u′, ∃b ∈ Ak, y = x • u′ • b̄ • a • u ∧ x (=)+1 yCorollary 83. For every k ≥ 1, every D ⊆ k-pds,
D is MSO-de�nable in PDSk i� ϕk(D) is MSO-de�nable in Pk.We now translate the properties of k-regular languages in terms of k-pushdownsby using the MSO-equivalen
e of the stru
tures Pk and PDSk.The following theorem is straightforward from Theorem 76.Theorem 84. For every k ≥ 1, the stru
ture PDSk has a de
idable MSO-theoryand ful�lls the property DM.The de
idability result is proved in [19℄ by using Mu
hnik's Theorem (see [27℄ or[35℄). Finally, we show that REGk admits several 
hara
terizations that extendthe REG ones.Theorem 85. For every S ⊆ k-pds(A1, . . . , Ak), k ≥ 1, the following propertiesare equivalent:1. S is generated by a k-pds system of transitions whose 
ontroller are MSO-de�nable in PDSk(A1, . . . , Ak) 35



2. S is MSO-de�nable in PDSk(A1, . . . , Ak)3. ϕk(S) is MSO-de�nable in Pk(A1, . . . , Ak)4. ϕk(S) is re
ognized by an automaton in FAk(A1, . . . , Ak).Proof. Equivalen
e between 2 and 3 stems from the equivalen
e between thetwo stru
tures. Equivalen
e between 3 and 4 is established in Theorem 76.Given a k-pds system of transitions S 
ontrolled by a ve
tor ~C of sets whi
h areMSO-de�nable in PDSk. It is possible to write a formula de�ning in PDSk theset of k-pds generated by S. So 1 implies 2.Let us end the proof by showing that 4 implies 1. Given k ≥ 0 and A =

(Q, Â1,k, ~R,∆, q0, F ) ∈ FAk, we are going to 
onstru
t A ∈ k-TS~C with ~C =

ϕk
−1(~R) ful�lling ϕk(L(A)) = P(A).From the equivalen
e between 2 and 3, ~C is a ve
tor of sets whi
h are MSO-de�nable in PDSk. We 
an suppose w.l.o.g. that A is 
omplete in Pk, i.e., that

∀u ∈ Â1,k

∗, u is 
omputed by A i� u ∈ Pk.Let us set A = (Q, (A1, . . . , Ak),∆′, ~C, q0,⊥, F ) where ∆′ is 
onstru
ted in thefollowing way:
• ∀(p, a, ~o, q) ∈ ∆, a ∈ Ai, 1 ≤ i ≤ k + 1, then ∀w ∈ top(k-pds(A1, . . . , Ak))

(p, w,~o, pushi,a, q) ∈ ∆′

• ∀(p, ā, ~o, q) ∈ ∆, a ∈ Ai, 1 ≤ i ≤ k, then ∀w ∈ top(k-pds(A1, . . . , Ak))

(p, w,~o, popi, q) ∈ ∆′.It 
an be easily 
he
ked that ϕk(L(A)) = P(A).Remark 86.1. It 
an be proved that languages re
ognized by k-pds automata 
ontrolledby MSO-de�nable sets are languages re
ognized by k-pds automata without
ontrollers.2. The equivalen
e between (1) and (4) is proved in [21℄ for k = 1.5. Final 
ommentThe work presented here is a part of the author's PhD presented at LaBRI,Bordeaux University on the theme of Iterated Pushdown automata [18℄. It isshown there that Theorem 85 has several appli
ations.For example, by using the automata 
hara
terization of REGk, it 
an beproved that the proje
tion in 1-pds of a pushdown set generated by a k-pdssystem of transitions is regular. This result allows the 
omparison betweenthe two 
lasses of predi
ates P given in [19℄ and [8℄ for whi
h the MSO-theoryof 〈N,+1, P 〉 is de
idable. It 
an be proved that all sequen
es of level k arepro�nitely ultimately periodi
 and the 
lass of predi
ates des
ribes in [19℄ isthen in
luded in the one des
ribed in [8℄.36



Theorem 85 also allows to de�ne a large 
lass of tuples (P1, . . . , Pm) of unarypredi
ates for whi
h the MSO-theory of 〈N,+1, P1, . . . , Pm〉 is de
idable for [17℄.Re
ent work deals with the notion of regular sets of �higher-order pushdowns�(hop) whi
h are restri
ted it-pushdowns. In [3℄, a set S of k-hops is 
alledregular if the set of words in (Ak ∪ {[, ]})∗ representing S is a

epted by a �niteautomaton. It is shown that for any higher-order pro
ess with a single state,the set of all prede
essors of a given regular set of 
on�gurations is regular.In [6℄, the author introdu
es a notion of regular sets of higher-order push-downs (hop). He studies the 
lasse Regk 
orresponding to the sets of k-hopa

essible by using only instru
tion push and push. He gives a normalized rep-resentation of this 
lass using regular expressions over a monoïde in (Â1,k∪Tk)∗,where Tk is an in�nite alphabet 
onsisting of all symbols TR, for R ∈ Regk−1.This normalization extended the one obtained in [9℄ for the level 1. The authorproves also that the 
lass Regk 
orresponds to the 
lass of sets MSO-de�nablein PDSk. The 
lass Regk 
orrespond then to the image by ϕk of the 
lass REGkde�ned in the previous se
tion. These two disjoints works prove that the 
lassREGk enjoyes numerous properties generalizing the PREG1 ones (whi
h 
orre-spond by isomorphism to the 
lass REG). In addition, the representation of
k-pds by word in the free group seems to be very well adapted to the general-ization of the notion of regular languages.A
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