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Abstract. We present a method to define unary relations P1, . . . , Pn

such that the Monadic Second-Order theory of the natural integers en-
dowed with the successor relation and P1, . . . , Pn is decidable. The main
tool is a novel class of iterated pushdown automata whose transitions
are controlled by tests on the store.

Introduction

In [7], Elgot and Rabin devise a method allowing to construct unary predicates
P such that the Monadic Second-Order theory of 〈N,+1, P 〉 is decidable (here
+1 denotes the successor relation). Further results in this direction have been es-
tablished in [22,21,18,3,13]. This kind of problem takes place in the more general
perspective of studying “weak” arithmetical theories, which possess interesting
decidability properties (see [2]).

We present here a method allowing to define sequences of relations P1, . . . , Pn,
such that the MSO-theory of 〈N,+1, P1, . . . , Pn〉 is decidable. To our knowledge
the only one result dealing with several relations have been given in [16] in the

special case where Pi = {m2i}m∈N. The work here presented extends the one we
made in [13], where we prove the decidability of the MSO-theory of 〈N,+1, P 〉
for a large class of relations P . The method consisted of consider integer se-
quences computed by iterated pushdown automata. These automata have been
introduced in [1] as a generalization of pushdown automata and have been more
studied, see e.g. [19,5,8,9,10,6], or more recently [4,17,12].

We obtain here more powerful results by the same method but by using a
novel class of automata. The new feature of the automata here considered is that
transitions are ”controlled” by some predicates. These automata are introduced
in [12,11] where conditions on controllers are given to ensure the decidability of
the MSO-theory of their computation graphs. This allows to obtain two main
improvements: first, results of [13] are extended to several relations, and second,
these relations belong to a largest class. In particular, in [13], every relations are
included in the one studied in [3], and are then ”Residually Ultimately Periodic”.
Here we go out this class by showing, e.g., that structures 〈N,+1, n⌊√n⌋〉 and
〈N,+1, n⌊log(n)⌋〉 have a decidable MSO-theory.



1 Preliminaries

1.1 Some notations

Given a finite set A, we denote by |A| the cardinal of A and by P(A) the powerset
of A. The set of all positive integer is N and N+ = N− {0}.

If s is a map from a set A, then s(A) = {s(a) | a ∈ A}.

1.2 Words and languages

If A is a set, A∗ denotes the set of words (finite sequences) over A, ε is the empty
word and A+ = A∗ − {ε}. For a given word u ∈ A∗, we denote by |u| the length
of u.

For n ≥ 0 we define An = {u ∈ A∗.|u| = n} and A(n) = {u ∈ A∗.|u| ≤ n}.

1.3 Iterated Pushdown stores

Originally defined by Greibach in [14], iterated pushdown stores are storage
structures built iteratively. Let us fix an infinite sequence A = A1, A2, . . . , Ak, . . .
of alphabets. For all k ≥ 1, we denote by Ak the finite sequence A1, . . . , Ak and
adopt the convention that A0 = ∅.

Definition 1. For k ≥ 0, the set k-pds(Ak) of all k-iterated pushdown stores
over Ak is defined inductively by:

0-pds(A0) = {ε} and for k ≥ 0, (k + 1)-pds(Ak+1) = (Ak+1[k-pds(Ak)])∗.

The set of all iterated pushdown stores is it-pds(A) =
⋃

k≥0

k-pds(Ak).

Then, every non empty ω in (k + 1)-pds(Ak+1), (for k ≥ 0), has a unique de-
composition as ω = a[ω1]ω

′ with ω1 ∈ k-pds(Ak), ω′ ∈ (k + 1)-pds(Ak+1) and
a ∈ Ak+1. In the rest of the paper, we will often replace by a every occurrence
of a[ε] appearing in the description of a k-pds.

Example 1. Let A1 = {a1, b1}, A2 = {a2, b2} and A3 = {a3, b3} be alphabets,
and ωex = b3[b2[b1[ε]a1[ε]]a2[a1[ε]]]a3[ε]a3[a2[a1[ε]b1[ε]]] ∈ 3-pds(A3). It can be
written ωex = b3[b2[b1a1]a2[a1]]a3a3[a2[a1b1]], and its decomposition is ωex =
a[ω1]ω

′ with a = b3, ω1 = b2[b1a1]a2[a1] and ω′ = a3a3[a2[a1b1]].

The two following maps will be useful.

Projection: the map associating any it-pds to its top i-pds, 1 ≤ i is
pi: it-pds(A)→ i-pds(Ai), defined for all ω ∈ k-pds(Ak) by:

if k < i then pi(ω) is undefined,
if k = i then pi(ω) = ω,
if k > i then pi(ω) = pi(ω1) if ω = a[ω1]ω

′ and pi(ω) = ε if ω = ε.
Top symbols: the map associating any it-pds to its top symbols is top :
it-pds(A)→ A

∗ defined by:



top(ε) = ε and top(a[ω1]ω
′) = a · top(ω1).

Let i ∈ [1, k], and ω ∈ k-pds, if | top(ω)| ≥ i, then topi(ω) is the i-th letter
of top(ω), else topi(ω) = ε.

Example 2. Let ωex be the 3-pds given in Example 1:
p2(ωex) = b2[b1a1]a2[a1], p1(ωex) = b1a1, and
top(ωex) = b3b2b1, top(p2(ωex)) = b2b1, top(p1(ωex)) = b1.

A pushdown instruction is a map from it-pds(A) to it-pds(A) which does not
modify the level of the pushdowns (i.e., if instr is an instruction, then for any
k ≥ 1 and any ω ∈ k-pds, instr(ω) ∈ k-pds). An instruction of level i is an
instruction which does not modify the levels greater than i of any it-pds. Hence,
given instr an instruction of level i and ω = a[ω1]ω

′ ∈ k-pds:
if k > i, then instr(ω) = a[instr(ω1)]ω

′ and instr(ε) = ε,
if k < i, then instr(ω) = ω and instr(ε) = ε.

Therefore, to define an instruction of level i, we just need to define it for any
stack ω ∈ i-pds(Ai).
Four instructions are generally applicable to it-pushdowns.

Definition 2. For any i ≥ 1, “classical“ instructions of level i over A are
defined by: for all ω = a[ω1]ω

′ ∈ i-pds(Ai), for all b ∈ Ai,

– popi(ω) = ω′ and popi(ε) is undefined,
– pushb(ω) = b[ω1]ω and pushb(ε) = b,
– changeb(ω) = b[ω1]ω

′ and changeb(ε) is undefined,
– stay(ω) = ω and stay(ε) = ε.

For k ≥ 1, Ik(Ak) = {stay} ∪ {popi}i∈[1,k] ∪ {pusha, changea}a∈Ak
is the set of

instructions over Ak.

Then, given ω ∈ k-pds(Ak), i ∈ [1, k] and b ∈ Ai, popi(ω) erases pi(ω) on the
top of the store, pushb(ω) consists in add b[pi−1(ω)] on the top of the top i-pds
and changeb(ω) consists in replace topi(ω) by b.

Example 3. Let ω = b3[b2[b1a1]a2[a1]]a3[b2] be a 3-pds:
pop3(ω) = a3[b2], pop2(ω) = b3[a2[a1]]a3[b2],
pop1(ω) = b3[b2[a1]a2[a1]]a3[b2],
pusha3

(ω) = a3[b2[b1a1]a2[a1]]b3[b2[b1a1]a2[a1]]a3[b2],
pusha2

(ω) = b3[a2[b1a1]b2[b1a1]a2[a1]]a3[b2],
pusha1

(ω) = b3[b2[a1b1a1]a2[a1]]a3[b2],
changea3

(ω) = a3[b2[b1a1]a2[a1]]a3[b2],
changea2

(ω) = b3[a2[b1a1]a2[a1]]a3[b2],
changea1

(ω) = b3[b2[a1a1]a2[a1]]a3[b2].

1.4 Iterated Pushdown Automata and extensions.

We define here iterated pushdown automata (it-pda) and a particular class of
controlled iterated pushdown automata. We suppose fixed an infinite sequence
A = A1, . . . , Ak, . . . of stack alphabets.



Definition 3 (Iterated pushdown automata). Let k ≥ 1, a k-pda is a struc-
ture A = (Q,Σ,Ak, ∆, q0, Z) where Q is a finite set of states, Σ is a termi-
nal alphabet, q0 ∈ Q is the initial state, Z ∈ Ak is the initial symbol, and
∆ ⊆ Q×Σ ×Ak

(k) − {ε} × Ik(Ak)×Q is the transition relation.
The family of all k-pda over the stack alphabets Ak is k-PDA(Ak) (or k-PDA

when Ak is understood). The set of configurations of A is ConA = Q × Σ∗ ×
k-pds(Ak). The single step relation →A⊆ ConA × ConA of A is defined by

(p, ασ, ω)→A (q, σ, ω′) iff (p, α, top(ω), instr, q) ∈ ∆, and ω′ = instr(ω).

We denote by
∗→A the reflexive and transitive closure of →A. The language

recognized by A is L(A) = {σ ∈ Σ∗ | ∃q ∈ F, (q0, σ, Z)
∗→A (q, ε, ε)}.

Counter pushdown automata are 1-pda whose stack alphabet is reduced to
a unique letter. The stack can then be seen as an integer. We extend this notion
to it-pda: a counter it-pda is an it-pda whose stack alphabet of level 1 (i.e., A1)
is reduced to a single letter. Now we define controlled counter it-pda (it-cpda)
which are counter it-pda whose transitions are controlled by tests on the top
counter of the stack. Initially, controlled it-pda have been introduced in [11,12].

Definition 4 (Controlled counter iterated pushdown automata). Let
k ≥ 0, a k-cpda is a structure A = (Q,Σ,Ak,N , ∆, q0, Z) where Q, Σ, q0 and Z
are defined as previously, , Ak = A1, . . . , Ak, with |A1| = 1, N = (N1, . . . , Nm)

is a vector of subsets of N called controllers and ∆ ⊆ Q × Σ × Ak
(k) − {ε} ×

{0, 1}m × Ik(Ak)×Q is the transition relation.
The family of all k-cpda controlled by N , over the pushdown alphabets Ak is
k-CPDA(Ak)N (or k-CPDAN when Ak is understood). The set of configurations
of A is ConA = Q×Σ∗×k-pds(Ak). The single step relation→A⊆ ConA×ConA

of A is defined by

(p, ασ, ω)→A (q, σ, ω′) iff (p, α, top(ω), χN (|p1(ω)|), instr, q) ∈ ∆, and
ω′ = instr(ω),

where for all n ≥ 0, χN (n) is the boolean vector (o1, . . . , om) fulfilling [oi = 1

iff n ∈ Ni], ∀i ∈ [1,m]. The relation
∗→A and the language recognized by A are

defined as previously.

Remark that an automaton in k-CPDA∅ can be seen as a counter k-pda,
without controllers. We denote by k-CPDA the class of such automata, and we
omit the test vector o in the description of their transitions.

Sometimes, we will write the transition relation∆ of an automata in k-CPDAN

as a map ∆ : Q×Σ ×Ak
(k) − {ε} × {0, 1}m → P(Ik(Ak)×Q).

Example 4. Let A2 = ({a1}, {a2, b2}), and N ⊆ N. The following automaton
A ∈ 2-CPDAN (A2) fulfills : L(A) = {αnβnγn | n ∈ N}.
A = ({q0, q1}, {α, β, γ},A2, N,∆, q0, a2) with:

∆(q0, ε, a2, 1) = {(pop2, q0)},
∆(q0, α, a2, o) = ∆(q0, α, a2a1, o) = {(pusha1

, q0)}, for all o = 0, 1,



∆(q0, ε, a2a1, 1) = {(pushb2
, q1)},

∆(q1, β, b2a1, o) = ∆(q1, γ, a2a1, o) = {(pop1, q1)}, for all o = 0, 1,
∆(q1, ε, b2, o) = ∆(q1, ε, a2, o) = {(pop2, q1)}, for all o = 0, 1.

Suppose that N is the set of all prime numbers, here is a computation of the
word α2β2γ2:
(q0, α

2β2γ2, a2[ε]) → (q0, αβ
2γ2, a2[a1]) → (q0, β

2γ2, a2[a1a1]) → (since 2 ∈ N)
(q1, β

2γ2, b2[a1a1]a2[a1a1]) → (q1, βγ
2, b2[a1]a2[a1a1]) → (q1, γ

2, b2a2[a1a1]) →
(q1, γ

2, a2[a1a1])→ (q1, γ, a2[a1])→ (q1, ε, a2)→ (q1, ε, ε).

1.5 Deterministic automata

Two transitions (p, α, w,o, instr, q) and (p′, α′, w′,o′, instr′, q′) of a k-cpda are
said to be compatible iff p = p′, w = w′, o = o′ and

[α 6= ε and α = α′] or [α = ε] or [α′ = ε].

A k-cpda is deterministic iff for every transitions δ, δ′ ∈ ∆, δ = δ′ or δ and
δ′ are incompatible. The class of all deterministic automata in k-CPDAN is
k-DCPDAN .

For a deterministic automaton, we will often write ∆ as a map: ∆ : Q×Σ×
Ak

(k) − {ε} × {0, 1}m → Ik(Ak)×Q.

1.6 Monadic Second-Order Logic

Let V ar = {x, y, z, . . . , X, Y, Z . . .} be a set of variables where x, y, . . . denote
first order variables and X,Y, . . . second order variables and Sig be a signature.
The set MSO(Sig) of MSO-formulas over Sig is the smallest set such that:

• x ∈ X and Y ⊆ X are MSO-formulas for every x, Y,X ∈ V ar
• r(x1, . . . xρ) is an MSO-formula for every r ∈ Sig, of arity ρ and every first

order variables x1, . . . xρ ∈ V ar
• if φ, ψ are MSO-formulas then ¬φ, φ∨ψ, ∃x.φ and ∃X.φ are MSO-formulas.

Let S = 〈DS , r1, . . . , rn〉 be a structure over the signature Sig, a valuation of V ar
over DS is a function val : V ar→ DS ∪P(DS) such that for every x,X ∈ V ar,
val(x) ∈ DS and val(X) ⊆ DS .
The satisfiability of an MSO-formula in the structure S with valuation val is
then defined by induction on the structure of the formula, in the usual way.
An MSO-formula φ(x̄, X̄) (where x̄ = (x1, . . . , xρ) and X̄ = (X1, . . . , Xτ ) denote
free first and second order variables of φ) over Sig is said to be satisfiable in
S if there exists a valuation val such that S, val |= φ(x̄, X̄).
We will often abbreviate S, [x̄ 7→ ā, X̄ 7→ Ā] |= φ(x̄, X̄) by S |= φ(ā, Ā).

Definition 5. A structure S admits a decidable MSO-theory if for every MSO-
sentence φ (i.e. MSO-formula without free variables) one can effectively decide
whether S |= φ.



A subset D of DS is said to be MSO-definable in S iff there exists φ(X) in
MSO(Sig) such that:

S |= φ(D) and ∀S ⊆ DS , if S |= φ(S) then S = Ds.

Sig = {r1, . . . , rn} (resp. Sig′ = {r′1, . . . , r′m}) be some relational signature and
S (resp. S′) be some structure over the signature Sig (resp. Sig′).

Definition 6 (Interpretations). An MSO-interpretation of the structure S
into the structure S′ is an injective map f : DS → DS′ such that,

1. f(DS) is MSO-definable in S′
2. ∀i ∈ [1, n], there exists φ′i(x̄) ∈MSO(Sig′), (where x̄ = x1, . . . , xρi

) fulfilling
that, for every valuation val of V ar in DS

(S, val) |= ri(x̄)⇔ (S′, f ◦ val) |= φ′i(x̄).

Theorem 1 ([20]). Suppose there exists a computable MSO-interpretation of
the structure S into the structure S′. If S′ has a decidable MSO-theory, then S
has a decidable MSO-theory too.

1.7 Logic over iterated-pushdowns

Let A be a sequence of alphabets, computations of an automaton in k-PDA(Ak)
are naturally expressed by MSO formulas in the following structure:

PDSk(Ak) = 〈k-pds(Ak), (topu)u∈Ak
(k) , (popi, pusha,changea, )i∈[1,k],a∈Ak

〉.

Relations popi, pusha, changea and topu are graphs of the corresponding
instructions on pushdowns.

Theorem 2 ([13, Theorems 30 and 32]). The MSO-theory of PDSk(Ak) is
decidable, for all k ≥ 1.

Computations of an automaton in k-CPDA(Ak)N , with N = (N1, . . . , Nm), are
expressed in the extended structure PDSk(Ak)N obtained from PDSk(Ak) by
adding the unary relations pN1, . . . , pNn where pNi = {ω ∈ k-pds(Ak), |p1(ω)| ∈
Ni} .

Theorem 3 ([12, Theorem 6.2.2],[11]). If N is a vector of subsets of IN,
and the MSO-theory of 〈IN,+1, N1, . . . , Nm〉 is decidable, then the MSO-theory
of PDSk(Ak)N is decidable.



1.8 Sequences

A sequence of natural numbers is any map u : N→ N. Such a sequence u can be
also viewed as a formal power series

u(X) =

∞
∑

n=0

unX
n.

The following operators on series are classical:

E: the shift operator: (Eu)(n) = u(n+ 1); (Eu)(X) = u(X)−u(0)
X

∆: the difference operator

(∆u)(n) = u(n+ 1)− u(n); (∆u)(X) =
u(X)(1−X)− u(0)

X

Σ: the summation operator (Σu)(n) =
∑n

j=0 u(j); (Σu)(X) = u(X)
1−X

+: the sum operator

(u + v)(n) = u(n) + v(n); (u + v)(X) = u(X) + v(X)

·: the external product, for every r ∈ Q (r · u)(n) = r · u(n)
⊙: the Hadamard product, (also called the “ordinary“ product)

(u ⊙ v)(n) = u(n) · v(n)

×: the convolution product

(u× v)(n) =
n

∑

k=0

u(k) · v(n− k); (u × v)(X) = u(X) · v(X)

−1: the operator ”inverse”, for u strictly increasing,

u−1(n) = |u(N+) ∩ [0, . . . , n]|
◦: the sequence composition (u◦v)(n) = u(v(n))
•: the series composition : if v(0) = 0, (u•v)(X) =

∑∞
n=0 u(n) · v(X)n.

2 Sequences defined by automata

We define here a class of integer sequences by means of k-cpda. We show that the
class of sequences thus defined contains numerous classes of recursive sequences
and is closed under many natural operations.

Definition 7 ((k,N )-computable sequences). Let N be a vector of subsets
of N. A sequence of natural integers s is called a (k,N )-computable sequence
iff there exists A ∈ k-DCPDA(Ak)N , defined over the pushdown alphabets Ak =
A1, . . . , Ak where each Ai contains a letter ai, and such that for all n ≥ 0:

(q0, α
s(n), a1[a2 . . . [ak−1[ak

n]] . . .])
∗→A (q0, ε, ε).

We denote by SN
k the set of all (k,N)-computable sequences of natural integers

(or Sk if N = ∅).



This computation scheme is well adapted to recurrent sequences. Let us expose
the principle with a simple example.

Example 5 (Linear recurrence). Let s be the sequence defined by

s(0) = 2; ∀n ≥ 0, s(n+ 1) = 2s(n) + 1.

Suppose that there exists A ∈ 2-DCPDA such that:

1. ∀ω ∈ 2-pds, (q0, α
s(0), a2[ε]ω)

∗→A (q0, ε, ω),

2. ∀n ≥ 0, ∀ω ∈ 2-pds, (q0, ε, a2[a1
n+1]ω)

∗→A (q0, ε, b2[a1
n]a2[a1

n]a2[a1
n]ω),

3. ∀n ≥ 0, ∀ω ∈ 2-pds, (q0, α, b2[a1
n]ω)

∗→A (q0, ε, ω).

Let us check by induction over n ≥ 0 that such an automaton fulfills the following
property P(n): ∀ω ∈ 2-pds,

(q0, α
s(n), a2[a1

n]ω)
∗→A (q0, ε, ω).

Hypothesis (1) proves P(0). Suppose P(n) for n ≥ 0. For every ω ∈ 2-pds, we
obtain by applying hypothesis (2), hypothesis (3), then two times P(n):

(q0, α
s(n+1), a2[a1

n+1]ω)
∗→A (q0, α

s(n+1), b2[a1
n]a2[a1

n]a2[a1
n]ω)

∗→A (q0, α
2s(n), a2[a1

n]a2[a1
n]ω)

∗→A (q0, α
s(n), a2[a1

n]ω)
∗→A (q0, ε, ω).

Then, P(n) is true for every n ≥ 0, and in the particular case where ω = ε, A
computes the sequence s.

Let us prove that there exists a deterministic 2-pda fulfilling hypothesis (1),
(2) and (3). Let A = ({q0, q1, q2}, {α},A2, ∆, q0, a2) where A1 = {a1}, A2 =
{a2, b2} and:

(a) ∆(q0, α, a2) = (changeb2
, q0),

(b) ∆(q0, ε, a2a1) = (pop1, q1) and
∆(q1, ε, a2a1) = ∆(q1, ε, a2) = (pusha2

, q2) and
∆(q2, ε, a2a1) = ∆(q2, ε, a2) = (pushb2

, q0),
(c) ∆(q0, α, b2) = ∆(q0, α, b2a1) = (pop2, q0).

This automaton is deterministic, transitions (a) and (c) allow to obtain hypoth-
esis (1), transitions (b) makes true hypothesis (2), and transitions (c) allow the
computation (3).

2.1 Some computable sequences

Definition 8 (N-rational sequences). A sequence (un)n≥0 is N-rational iff
there is a matrix M in Nd×d and two vectors L in B1×d and C in Bd×1 such
that un = L ·Mn · C.



Proposition 1 ([13, Prop. 50]). If (un)n≥0 is N-rational, then (un)n≥0 ∈ S2.

Proposition 2 ([13, Prop. 53]). Let Pi(X1, . . . , Xp), (1 ≤ i ≤ p) be poly-
nomials with coefficients in N, c1, . . . , ci, . . . cp ∈ N and , ui (1 ≤ i ≤ p) be
the sequence defined by ui(n + 1) = Pi(u1(n), . . . , up(n)), and ui(0) = ci. Then
u1 ∈ S3.

Proposition 3. Let s be a strictly increasing sequence of natural numbers, then

s−1 ∈ S
s(N+)
2 .

Theorem 4.

0- For every f ∈ SN
k+1, k ≥ 1, and every integer c ∈ N, sequences Ef and

f + c
1−X

, belong to SN
k+1; if ∀n ∈ N, f(n) ≥ c then f − c

1−X
belongs to SN

k+1; the

sequence 0 7→ c, n+ 1 7→ f(n) belongs to SN
k+1.

1- For every f, g ∈ SN
k+1, with k ≥ 1, the sequence f + g belongs to SN

k+1.

2- For every f, g ∈ SN
k+1, with k ≥ 2, the sequence f ⊙ g, belongs to SN

k+1 and

for every f ′ ∈ SN
k+2, f

′g belongs to SN
k+2.

3- For f ∈ Sk+1
N , g ∈ Sk, k ≥ 2, sequences f × g and f • g belong to SN

k+1.
4- For every g ∈ Sk, with k ≥ 2, the sequence f defined by: f(n + 1) =
∑n

m=0 f(m) · g(n − m) and f(0) = 1 (the convolution inverse of 1 − X × f)
belongs to Sk+1.
5- For every f ∈ Sk, g ∈ SN

ℓ , for k, l ≥ 2, the sequence f◦g belongs to SN
k+ℓ−1.

6- For every k ≥ 2 and for every system of recurrent equations expressed by poly-
nomials in SN

k+1[X1, . . . , Xp], with initial conditions in N, every solution belongs

to SN
k+1.

7- For every k ≥ 2 and for every system of recurrent equations expressed by
polynomials with coefficients in SN

k+2, exponents in SN
k+1 and initial conditions

in N, every solution belongs to SN
k+2.

3 Application to the sequential calculus

We combine now the decidability theorems about k-pda structures presented in
Section 1.7 and the results obtained in Section 2 to prove the decidability of the
MSO-theory of structures 〈N,+1, P 〉, for a large class of relations P (Theorem
5 and Theorem 8) containing for example (n⌊√n⌋)n∈N or (n2⌊logn⌋)n∈N. These
results are generalized to the case of structures with several relations (Theorem
7), as for example

〈IN,+1, {nk1}n≥0, {nk1k2}n≥0, . . . , {nk1···km}n≥0〉, for k1, . . . , km ≥ 0.

3.1 Extensions of 〈N, +1〉

It is proved in [13] that for every sequence s calculated (in the sense of Def-
inition 7) by an automaton in k-DCPDA(Ak), the structure 〈N,+1,Σs(N)〉 is



interpretable inside the structure PDSk(Ak), and since this structure has a de-
cidable MSO-theory (Theorem 2), it follows from Theorem 1:

Theorem 5 ([13, Theorem 82]). For every s ∈ Sk, k ≥ 1, the MSO-theory
of 〈N,+1,Σs(N)〉 is decidable.

By the same proof, we can show that for every sequence s calculated by an au-
tomaton in k-DCPDA(A)N , the structure 〈N,+1,Σs(N)〉 is interpretable inside
the structure PDSk(Ak)N . Then using Theorem 3, we get:

Theorem 6. If s ∈ SN
k , with N = (N1, . . . , Nm) such that 〈IN,+1, N1, . . . , Nm〉

has a decidable MSO-theory, then 〈IN,+1,Σs(IN)〉 has a decidable MSO-theory.

Theorem 7. If s ∈ SN
k , with N = (N1, . . . , Nm) such that 〈IN,+1, N1, . . . , Nm〉

has a decidable MSO-theory, then 〈IN,+1,Σs(IN), Σs(N1), . . . , Σs(Nm)〉 has a
decidable MSO-theory.

3.2 Differentiably, k-computable sequences

The particular form of the predicates Σs(N) considered in Theorems 5, 6 and 7
leads naturally to the study of the following class of sequences.

Definition 9. Let k ≥ 2 and N a vector of subsets of N. We define the class
ΣSN

k ⊆ NN as the set
ΣSN

k = {Σv | v ∈ SN
k }.

Theorem 5 means that for every sequence s in ΣSk, the structure 〈IN,+1, s(IN)〉
has a decidable MSO-theory. In the same way, by Theorem 6 if s ∈ ΣSN

k , and
〈IN,+1, N1, . . . , Nm〉 has a decidable MSO-theory, then 〈IN,+1, s(IN)〉 has a de-
cidable MSO-theory. Obviously, from Theorem 7, we obtain:

Corollary 1. Let v1, . . . , vm ∈ ΣSk, the following structure has a decidable
MSO theory:

〈IN,+1, vm(IN), vm(vm−1(IN)), . . . , vm(vm−1(. . . (v1(IN))))〉.

Proposition 4. If P is a polynomial with positive integer coefficients, the se-
quence u defined by u(n) = P (n) for all n ≥ 0 belongs to ΣS2.

Proposition 5. Let s be a strictly increasing integer sequence, the sequence s−1

belongs to ΣS
s(IN+)
2 .

Corollary 2. The two following structures have a decidable MSO-theory:

〈IN,+1, {nkm}n≥0, {nkmkm−1}n≥0, . . . , {nkm···k1}n≥0〉, with k1, . . . , km ≥ 0,
〈IN,+1, vm(IN), vm−1(IN), . . . , v1(IN)〉, with v1(n) = 2n and vi+1(n) = 2vi(n).



We show now that classes ΣSN
k are closed by many operations.

Theorem 8.
0- For every u ∈ ΣSN

k+1, k ≥ 1, and every integer c ∈ N, the sequences Eu,

u+ c
1−X

(adding c to every term), belong to ΣSN
k+1;

if u(n) ≥ c then u− c
1−X

(subtracting c to every term) belongs to ΣSN
k+1;

if u(0) ≥ c, then the sequence 0 7→ c, n+ 1 7→ u(n) belongs to ΣSN
k+1.

1- For every u, v ∈ ΣSN
k+1, k ≥ 1, the sequence u+ v belongs to ΣSN

k+1.

2- For every u, v ∈ ΣSN
k+1, k ≥ 2, the sequence u⊙ v belongs to ΣSN

k+1.

3- For every u ∈ ΣSN
k+1, v ∈ ΣSk, k ≥ 2, u× v belongs to ΣSN

k+1.
4- For every u ∈ ΣSk, k ≥ 2,such that v(0) ≥ 1, the sequence u defined by:
u(0) = 1 and u(n + 1) =

∑n
m=0 u(m) · v(n − m) (the convolution inverse of

1−Xv) belongs to ΣSk+1.
5- For every u ∈ ΣSk, v ∈ ΣSN

ℓ , k, l ≥ 2, u◦v belongs to ΣSN
k+ℓ−1.

6- For every k ≥ 2, if u1(n), . . . up(n) is the vector of solutions of a system of
recurrent equations expressed by polynomials in ΣSN

k+1[X1, . . . , Xp], with initial

conditions ui(0), ui(1) ∈ N, with ui(0) ≤ ui(1), then u1 ∈ ΣSN
k+1.

Corollary 3. Let t be the sequence defined by t(n) = P (n)s−1(n)ℓ, where s ∈ Sk

is strictly growing sequence, P is a polynomial with positive integer coefficients
and ℓ is a positive integer. Then the structure 〈IN,+1, t(IN)〉 has a decidable
MSO-theory.

Corollary 4. Structures 〈N, +1, (n⌊√n⌋)n∈N〉, and 〈N, +1, (n⌊logn⌋)n≥1〉 have
a decidable MSO-theory.

Remark 1. It can be proved that classes ΣSk are included in the class of “resid-
ually ultimately periodic” (RUP) sequences studied by [3]. It is shown in [3]
that for any RUP sequence s , the theory of 〈N,+1, s(N)〉 is decidable. It can
be proved that sequences in ΣSN

k considered Theorem 6, like (n⌊
√

(n)⌋)n∈IN or
(n⌊log(n)⌋)n∈IN are not RUP.

Acknowledgements This work is a part of the Ph.D. of the author. The author
thanks her supervisors, G. Sénizergues and F. Carrère for having directed and
allowed this work.

References

1. A. V. Aho. Nested stack automata. J. Assoc. Comput. Mach., 16:383–406, 1969.
2. A. Bès. A survey of arithmetical definability. Bull. Belg. Math. Soc. Simon Stevin,

(suppl.):1–54, 2001. A tribute to Maurice Boffa.
3. O. Carton and W. Thomas. The monadic theory of morphic infinite words and

generalizations. Inform. and Comput., 176(1):51–65, 2002.
4. D. Caucal. On infinite terms having a decidable monadic theory. In Mathematical

foundations of computer science 2002, volume 2420 of Lecture Notes in Comput.
Sci., pages 165–176. Springer, Berlin, 2002.



5. W. Damm. The IO- and OI-hierarchies. Theoret. Comput. Sci., 20(2):95–207,
1982.

6. W. Damm and A. Goerdt. An automata-theoretical characterization of the OI-
hierarchy. Inform. and Control, 71(1-2):1–32, 1986.

7. Calvin C. E. and M. O. Rabin. Decidability and undecidability of extensions of
second (first) order theory of (generalized) successor. J. Symbolic Logic, 31(2):169–
181, 1966.

8. J. Engelfriet. Iterated pushdown automata and complexity classes. In Proceedings
of the 14th Symposium on Theory of Computing, pages 365–373. Association for
Computing Machinery, 1983.

9. J. Engelfriet and G. Slutzki. Extended macro grammars and stack controlled
machines. J. Comput. System Sci., 29(3):366–408, 1984.

10. J. Engelfriet and H. Vogler. Corrigenda: “Pushdown machines for the macro tree
transducer”. Theoret. Comput. Sci., 48(2-3):339 (1987), 1986.

11. S Fratani. Regular sets over tree structures. Submitted to TCS, Available at url:
http://www.cmi.univ-mrs.fr/˜sfratani/.
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4 Annexe

4.1 Some basic tools

Let A = (Q,Σ,Ak,N , ∆, q0, Z) be some k-cpda. A total state of A is any pair
(q, ω) ∈ Q× k-pds(Ak).

If α is used to denote a symbol of Σ, then αε denotes the letter α or the
empty word.

Derivation We associate with A an infinite “alphabet“

VA = {(p, ω, q) | p, q ∈ Q, ω ∈ k-pds(Ak)− {ε}}, (1)

and a set of productions associated with A, denoted PA and made of the set of
all the following rules:

– the transition rules:

(p, ω, q) ⊢A αε(p
′, ω′, q) if (p, αε, ω)→A (p′, ε, ω′) and q ∈ Q is arbitrary,

(p, ω, q) ⊢A αε if (p, αε, ω)→A (q, ε, ε).

– the decomposition rules:

(p, ω, q) ⊢A (p, η, r)(r, η′, q)

if ω = η · η′, η 6= ε, η′ 6= ε and r ∈ Q is arbitrary.

The one-step derivation generated by A, denoted by ⊢A, is the smallest subset of
(V ∪Σ)∗× (V ∪Σ)∗ which contains PA and is compatible with left product and
right product. Finally, the derivation generated byA, denoted ⊢∗A, is the reflexive
and transitive closure of ⊢A. These notions correspond to the usual notion of
context-free grammar associated with the following automaton of level A1: this
automaton has the pushdown alphabet A = {a[ω] | a ∈ Ak, ω ∈ (k − 1)-pds}
and has the transition function

∆1(q, αε, a[ω]) = {(η′, q′) ∈ Q×A∗ | (q, α, a[ω])→A (q′, ε, η′)}.

Of course, as soon as k ≥ 2, this pushdown alphabet is infinite, but all the usual
properties of the relation ⊢A=⊢A1 and its links with →A=→A1 remains true in
this context (see [15, proof of the Theorem 5.4.3, pp 151-158]). In particular, for
every σ ∈ Σ∗, p, q ∈ Q,ω ∈ A∗,

(p, ω, q)⊢∗Aσ ⇔ (p, σ, ω)
∗→A (q, ε, ε).

The following lemma is useful.

Lemma 1. Let pi, qi ∈ Q, ωi ∈ A∗ for i ∈ {1, 2, 3}. The following properties
are equivalent:



1. (p1, ω1, q1)⊢∗A(p2, ω2, q2)(p3, ω3, q3)
2. there exists ω′

2, ω
′
3 ∈ A∗, such that:

(p1, ε, ω1)
∗→A (p2, ε, ω2ω

′
2),

(q2, ε, ω
′
2)

∗→A (p3, ε, ω3ω
′
3) and

(q3, ε, ω
′
3)

∗→A (q1, ε, ε).

We usually assume that pushdown alphabets and Q are disjoint, therefore, omit-
ting the commas in (p, ω, q) does not lead to any confusion.

Terms Let us fix a family (Ik)k≥0 of denumerable sets of symbols: Ik =
{Ω,Ω′, Ω′′, . . . , Ω1, Ω2, . . .} denotes the set of indeterminates of level k. We
suppose that Ik ∩ Ii = ∅ for all i, j ≥ 0 and that pushdown alphabets and sets
of indeterminates are always disjoint. A k-term is a k-pds in which are added
symbols that do not belong to the pushdown alphabets. Each indeterminate of
level i (i.e., in Ii) can be place anywhere at the level i of a term. Let us define
inductively the set Tk(Ak) of terms of level k, for k ≥ 0:

– T0(A0) = {ε}
– Tk+1(Ak+1) = (Ak+1[Tk(Ak)] ∪ Ik+1)

∗.

We denote a k-term T by T [Ω1, . . . , Ωn] provided that the only indetermi-
nates appearing in T are Ω1, . . . , Ωn.

The concatenation product over k-pds is generalized to Tk, so as the operation
top and the instructions push, pop et change.

For all term T such that topi(T ) is an indeterminate, the level i instructions
pushai

, popi and changeai
are undefined, else, they are defined as for k-pds.

Substitutions Given T [Ω1, . . . , Ωn] ∈ Tk(Ak) with Ωi ∈ Iki
for i ∈ [1, n],

ki ∈ [1, k] and T1 ∈ Tk1 , . . . , Tn ∈ Tkn
, we denote by T [T1, . . . , Tn] the k-term

obtained by substituting Ti for Ωi.
The following ”substitution principle” is straightforward and will be widely

used in our proofs. Given A ∈ k-CPDAN , we extend the relations ⊢A and → A
to terms that do not contain indeterminates of level 1.

Lemma 2. Given A ∈ k-CPDAN and Ω = (Ω1, . . . , Ωn) where each Ωi is an in-
determinate of level ki ∈ [2, k]. If T [Ω] and T ′[Ω] are two terms in Tk(A1, . . . , Ak),
then for all p, q, p′, q′ ∈ Q,

if (pT [Ω]q)→∗
A (p′T ′[Ω]q′), then

– for all H = (H1, . . . , Hn) such that for all i ∈ [1, n], Hi is a ki-term,

(pT [H]q)→∗
A (p′T ′[H ]q′),



– for all ω = (ω1, . . . , ωn) such that for all i ∈ [1, n], ωi is a ki-pds,

(pT [ω]q)→∗
A (p′T ′[ω]q′).

The key idea for this lemma is that, as Ai ∩ Ii = ∅ ∀i ≥ 1, the symbols
Ωi can be copied or erased during the derivation but they cannot influence the
sequence of rules uses in that derivation.

4.2 Proof of Proposition 3

Proof. Let A = ({q0}, {α}, ({a1}, {a2}), s(N+), ∆, q0, a2) with
∆(q0, ε, a2, 0) = (q0, α, a2, 1) = (pop2, q0) and
∆(q0, ε, a2a1, 0) = ∆(q0, α, a2a1, 1) = (pop1, q0).

Starting from a configuration (q0, σ, a2[a1
n]), A pops iteratively the counter,

by reading to each iteration a terminal letter α iff the counter belongs to s(IN+).
Finally, when the stack remains empty, the length of the read terminal word is
the number of elements of [0, n] ∩ s(N+), i.e., s−1(n).

4.3 Proof of Theorem 4

In order to simplify the proofs, we will often use in automata, some transition of
the following form: (q, σ, w, instr1 . . . instrm, p) where σ ∈ Σ∗, m ≥ 1 and each
instri is a pushdown instruction. A such a transition is applied in the following
way:

(q, σσ′, ω)→ (p, σ′ω′) iff top(ω) = w and ω′ = instrm(· · · (instr1(ω)).
The same extension will be used for controlled automata. Clearly, we do not

modify the expressiveness of a class of automata by using this kind of transitions.
In the same way, if there exists a deterministic automaton in k-DCPDAN using
such transitions, then one can construct a deterministic ”standard” automaton
in k-DCPDAN recognizing the same language.

In all this section, we will use the following notation:
for all k ≥ 2, i ∈ [2, k + 1],

Tk,i[Ωi−1] := ak[ak−1[· · · [ai[Ωi−1]] · · · ]],

for the precise symbols a1, . . . , ak. In particular, Tk,k[Ωk−1] = ak[Ωk−1] and
Tk,k+1[Ωk] = Ωk.

We start by giving two lemmas which will be widely use in the next con-
structions. They are in fact two versions of the same lemma, a weak version and
a strong version, which allows, from a an automaton in k-DCPDAN computing
a sequence s, to construct a new automaton in k-DCPDAN making s(n) copies
of a particular configuration. We construct this automaton in a such way as it
is ready to be composed with another.

Lemma 3 (Weak normal form). Let s be a sequence of natural numbers, k ≥
1 and A ∈ (k + 1)-DCPDA

N
defined over the pushdown alphabets A1, . . . , Ak+1

where a1 ∈ A1,. . . , ak+1 ∈ Ak+1 and fulfilling,



(H1) ∀n ≥ 0, (q0, α
s(n), ak+1[ak[. . . [a2[a1

n]] . . .]])
∗→A (q0, ε, ε).

(H2) A does not contain lefthand side of the form (q, α, ε) or (q, ε, ε).

Then, we can construct B ∈ (k + 1)-DCPDA
N

defined on the pushdown al-
phabets A1 ∪A′

1, . . . , Ak+1 ∪Ak+1
′, where A′

k+1 contains a special symbol ak+1,
whose set of states contains q0 and such that:
(P1) (q0, ak+1[ak[. . . [a2[a1

n]] . . .]], q0)⊢∗B(q0,ak+1[ε], q0)
s(n).

(P2) ∆′ does not contain lefthand side of the form (q0, ε, ε).
(P3) ∆′ does not contain lefthand side of the form (q0, ε,ak+1 · w).

Construction: Suppose that A = (Q, {α}, (A1, . . . , Ak+1),N , ∆, q0, ak+1) is an
automaton fulfilling hypothesis (H1), (H2). Let Bk+1 = Ak+1 ∪ {ak+1,bk+1} ∪
{(bk+1, δ) | bk+1 ∈ Ak+1, δ ∈ ∆} and

B = (Q, ∅, (A1, . . . , Ak, Bk+1),N , ∆′, q0, ak+1)

where ∆′ consists of the following transitions:

• for all ∆(p, ε, w,o) = (instr, q),
(1) ∆′(p, ε, w,o) = (instr, q),

• for all bk+1 ∈ Ak+1 and δ = (p, α, bkw,o, instr, q) ∈ ∆,
(2.1) ∆′(p, ε, bk+1w,o) = (change(bk+1,δ) push

bk+1
, q0),

(2.2) ∆′(q0, ε, (bk+1, δ)w,o) = (changebk+1
instr, q),

• for all w 6= ε ∈ top(k-pds(Ak)), o ∈ {0, 1}|N|,
(3.1) ∆′(q0, ε,bk+1w,o) = (popk, q0),

• for all o ∈ {0, 1}|N|,
(3.2) ∆′(q0, ε,bk+1,o) = (push

ak+1
, q0).

Proof. Let us prove the validity of the construction.
Determinism and conditions (P2,P3): Let us verify that B is deterministic. The
automaton A being deterministic, two distinct transitions of types 1 or 2 are
always incompatible. Transitions of type 3 are incompatible and since bk+1 is
a new symbol, each of them is incompatible with all transition of type 1 or 2.
Then B is deterministic.

The automatonA fulfilling hypothesis (H2), it is obvious that B fulfills (P2).
Finally, the condition (P3) is verified by transitions resulting from A (type 1
and 2) since ak+1 is a new symbol, the since we do not have added transitions
using this symbol, the condition (P3) is verified by B.
Condition (P1): In order to prove that B fulfills the condition (P1), we establish
the two following implications:

for all p, q ∈ Q, ω, ω′ ∈ k + 1-pds(A1, . . . , Ak, Bk+1)

(p, ε, ω)
∗→A (q, ε, ω′) =⇒ (pωq0)⊢∗B(qω′q0), (2)

(p, α, ω)→A (q, ε, ω′) =⇒ (pωq0)⊢∗B(q0ak+1[ε]q0)(qω
′q0). (3)

Note that we let open the possibility that ω, ω′ contain occurences of letters that
do not belong to Ak+1. The relation

∗→A is defined from transitions of A, but



applied to total states in Q× k-pds(A1, . . . , Ak, Bk+1).

The implication (2) is obtained by translation, in terme of derivation, of
transitions of type (1). Let us prove (3). We suppose that ω = bk+1[ω1]ω

′′,
ω′ = instr(ω) and (p, α, ω) →δ (q, ε, ω′), for δ ∈ ∆. The following derivation
holds:

(pωq0) ⊢B (q0bk+1[ω1](bk+1, δ)[ω1]ω
′′q0) (by transitions (2.1))

⊢∗B (q0bk+1[ε](a, δ)[ω1]ω
′′q0) (by iteration of transitions (3.1))

⊢B (q0ak+1[ε](a, δ)[ω1]ω
′′q0) (by transitions (3.2))

⊢B (q0ak+1[ε]q0)(q0(a, δ)[ω1]ω
′′q0) (by decomposition rule)

⊢B (q0ak+1[ε]q0)(qω
′q0)(by transitions (2.2)).

By using implications (2) and (3), and hypothesis (H1), an obvious induction
on the length of the derivation (H1) proves that for all n ≥ 0,

(q0ak+1[· · · [a1
n] · · · ]q0)⊢∗B(q0ak+1[ε]q0)

s(n).

Lemma 4 (Strong normal form). Let s be a sequence of natural numbers,

k ≥ 2 and A ∈ (k + 1)-DCPDA
N

defined over alphabets A1, . . . , Ak+1 where
a1 ∈ A1,. . . , ak+1 ∈ Ak+1 and fulfilling ∀n ≥ 0,

(H1) (q0, α
s(n), ak+1[ak[. . . [a2[a1

n]] . . .]])
∗→A (q0, ε, ε).

(H2) A does not contain lefthand side of the form (q0, α, ε) or (q0, ε, ε).

Then, we can construct B ∈ (k + 1)-DCPDA
N

defined over the alphabets
A1 ∪ A′

1, . . . , Ak+1 ∪ Ak+1
′, where A′

k+1 contains a special symbol ak+1, whose
set of states contains q0 and such that:
(Q1) ∀Ωk ∈ Ik, (q0, ak+1[ak[. . . [a2[a1

n]] . . .]Ωk], q0)⊢∗B(q0,ak+1[Ωk], q0)
s(n)

(Q2) ∆′ does not contain lefthand side of the form (q0, ε, ε).
(Q3) ∆′ does not contain lefthand side of the form (q0, ε,ak+1 · w).

Proof. Let us consider the following derivations:
Initialization rule (D0):

(q0ak+1[Tk,2[a1
n]Ωk]q0)⊢∗B(q0bk+1[Tk,2[a1

n]bk[Tk−1,2[a1
n]]Ωk]q0)

s-computation (D1):

(q0bk+1[Tk,2[a1
n]bk[Tk−1,2[a1

n]]Ωk]q0)⊢∗B(q0ak+1[bk[Tk−1,2[a1
n]]Ωk]q0)

s(n)

Ending rule (D2):

(q0ak+1[bk[Tk−1,2[a1
n]]Ωk]q0)⊢∗A′(q0ak+1[Ωk]q0)

If B is an automaton for which these derivations hold, then the following deriva-
tion (Q1) is valid:

(q0, ak+1[Tk,2[a1
n]Ωk], q0) ⊢∗B (q0bk+1[Tk,2[a1

n]bk[Tk−1,2[a1
n]]Ωk]q0)

⊢∗B (q0ak+1[bk[Tk−1,2[a1
n]]Ωk]q0)

s(n)

⊢∗B (q0ak+1[Ωk]q0)
s(n).



To prove the lemma, we just have to construct a deterministic automaton B
for which derivations (D0), (D1) et (D2) hold and fulfilling conditions (Q2,Q3).
Construction: By using Lemma 3, and a suitable renaming of the pushdown
alphabets, we obtain an deterministic automaton A = (Q, ∅,Ak+1,N , ∆′, q0)
fulfilling conditions (P1(bk+1ak · · · a1,ak+1)), (P2) and (P3(ak+1)).

Consider B = (Q, ∅, (B1, . . . , Bk+1),N , ∆ ∪ ∆′, q0), with Bk+1 = Ak+1 ∪
{ak+1}, Bk = Ak ∪ {bk}, Bi = Ai for 1 ≤ i ≤ k − 1, and ∆ consists of the
following transitions:

• for symbols a1, a2, . . . ak, bk+1 used in (P1), for all o ∈ {0, 1}|N|,
(0) ∆(q0, ε, ak+1 · · · a2a1,o) = (changebk+1

change
bk

pushak
, q0),

• for all (q, ε, ck+1, χN (0), instr, p) ∈ ∆′, ck+1 ∈ Ak+1 unspecified, o ∈ {0, 1}|N|,
(1)∆(q, ε, ck+1bkak−1 · · · a2a1,o) = ∆(q, ε, ck+1bkak−1 · · · a2,o) = (instr, p),

• for all w ∈ top((k − 1)-pds(A1, . . . , Ak−1)), o ∈ {0, 1}|N|,
(2) ∆′(q0, ε,ak+1bkw,o) = (popk, q0).

Determinism and conditions (Q2, Q3): Automaton A is deterministic and since
ak+1, bk are new symbols, the addition of transitions (0) and (2) does not intro-
duce non-determinism. In the same way, transitions of type (1) are incompatibles
with all transitions of ∆′ or with transitions of another type, and since A is de-
terministic, for all pair (q, ck+1) ∈ Q × Ak+1, there exists a unique transition
whose lefthand side is (q, ε, ck+1, χN (0)) and transitions of type (1) are then
all incompatibles between them. B is then deterministic. In addition, A verifies
(P2) and (P3(ak+1)), and the addition of transitions (0),(1), and (2), preserve
these properties. Then B verifies (Q2) and (Q3(ak+1)).
Condition (Q1): From the discussion preceding the construction, we just have
to show that derivations (D0), (D1) and (D2) are realized by B. The derivation
(D0) is obtained by application of a transition of type (0), and (D2) is realized
by a transition of type (2). It rest then to verify that (D1) is a valid derivation.

Let us define for all n ≥ 0, the application

τn : (k + 1)-pds(A1, . . . , Ak+1)→ Tk(B1, . . . , Bk+1)

associating to any (k + 1)-pds, the term obtained by adding bk[Tk−1,2[a1
n]]Ωk

at the bottom of each of them k-pds:

– ∀ω = ck+1[ω1]ω
′ ∈ (k + 1)-pds, τn(ω) = ck+1[ω1bk[Tk−1,2[a1

n]]Ωk]τn(ω),
– τn(ε) = ε.

For all ω, ω′ ∈ (k + 1)-pds, p, q ∈ Q, n ≥ 0

(p, ε, ω)→A (q, ε, ω′) =⇒ (p, ε, τn(ω))→B (q, ε, τn(ω′)). (4)

The property can be easily verified:

– if topk(ω) 6= ε, then topk(ω) = topk(τn(ω)) and the transition applied to the
lefthand side of the implication (4) is also applicable to (p, ε, τn(ω)) then

(p, ε, τn(ω))→B (q, ε, τn(ω′)),



– else, ω = ck+1[ε]ω
′, then the instruction applied to the lefthand side of (4)

has inevitably the form (p, ε, ck+1, χN (0), instr, q) where instr is whether
a (k + 1)-instruction, or an instruction push of level k. Then, there exists
o = χN (n), such that the transition of type (2) (p, ε, bk+1bk · · ·a1,o, instr, q)
belongs to ∆ and

(p, ε, τn(ω))→B (q, ε, τn(ω′)).

Let us reformulate these results in term of derivations:
for all ω, ωi ∈ (k + 1)-pds, i ∈ [1, ℓ], p, q, qi, pi ∈ Q, n,m ≥ 0:

(p, ω, q)⊢m
A

ℓ
∏

i=1

(pi, ωi, qi) =⇒ (p, τn(ω), q)⊢m
B

ℓ
∏

i=1

(pi, τn(ωi), qi) (5)

This implication can be easily verified by an induction over m ≥ 0. If the applied
rule is a decomposition rule, it also applies to (p, τn(ω), q) and the property is
then verified. If the rule applied comes from a transition, then (4) implies (5).

We can now achieve the proof of the lemma by showing that B realize the
derivation (D1). By substituting the derivation (P1(bk+1ak · · · a1,ak+1)) to the
lefthand side of (5), we obtain

(q0, τn(bk+1[Tk,2[a1
n]]), q0)⊢∗A′(q0, τn(ak+1[ε])q0)

i.e., (D1).

Remark 2.

1. Let us add to the transitions of B constructed in Lemma 3 (resp. 4), tran-
sitions (q0, α,ak+1,o, pop1, q0) (for o unspecified), we obtain then a new
automaton B′ verifying hypothesis (H0), (H1) of Definition 7.

2. Properties (P1) (resp. (Q1)) make B ready to be combined with another
automaton: it suffices to add transitions starting from q0ak[ω] for ω well
chosen, and leading to a configuration of another deterministic automaton.
Properties (P2,P3) (resp. (Q2, Q3)) allow that the new automaton thus
composed is deterministic.

3. The strong version of the lemma is valid only for k ≥ 2. The case k = 1 is
particular since the indeterminate has then level 1 and we have remarked that
because of controllers, relations ⊢A and→A are defines only for terms that do
not contains indeterminates of level 1. In addition, if k = 1, condition (Q1)
is written (q0, a2[a1

nΩ1], q0)⊢∗B(q0,a2[Ω1], q0)
s(n) and we see that it is not

possible any more to insert the separator b1 between a1 and Ω1, necessary
to the proof of the strong version of the lemma.

4. The construction given for the weak version is completely independent of
the chosen controllers, and it is not necessary to know their value to carry
out the construction. For the strong version, the effective construction of the
automaton requires to be able to compute the value of χN (0).

Proposition 6 (Somme). If s, t ∈ SN
k+1 with k ≥ 1, then s+ t ∈ SN

k+1.



Proof. Let A,A′ ∈ k-DCPDAN computing respectively s and t. Suppose that

q0ak+1[Tk,2[a1
n]]q0⊢∗Aαs(n) and q0bk+1[Tk,2[a1

n]]q0⊢∗A′αt(n).

To compute s+t, it suffices to construct B ∈ k-DCPDAN producing the following
computation: starting from the total state q0ck+1[Tk,2[a1

n]] (where ck+1 is a
new symbol), by applying the instruction changebk+1

followed with pushak+1
, we

obtain the total state q0ak+1[Tk,2[a1
n]]bk+1[Tk,2[a1

n]], where q0 is the starting
(and ending) state of automata A and A′. It mimics then the behaviour of A on
q0ak+1[Tk,2[a1

n]], then the A′ ones on q0bk+1[Tk,2[a1
n]], and ends in q0.

Proposition 7 (Ordinary product). If s, t ∈ SN
k+1, k ≥ 2 then f ⊙ g ∈ SN

k+1.

Construction: By using Lemma 4, we obtain (after a suitable choice of set of

states and pushdown alphabets) A,A′ ∈ (k + 1)-DCPDA
N

, fulfilling conditions:
(Q1) ∀Ωk ∈ Ik, (q0, ak+1[ak[. . . [a2[a1

n]] . . .]Ωk], q0)⊢∗A(q0,ak+1[Ω], q0)
s(n).

(Q1′) ∀Ωk ∈ Ik, (q0,ak+1[ak[. . . [a2[a1
n]] . . .]Ωk], q0)⊢∗A′(q0,bk+1[Ω], q0)

t(n).
(Q2) ∆ does not contain lefthand side of the form (q0, ε, ε).
(Q2′) ∆′ does not contain lefthand side of the form (q0, ε, ε).
(Q3) ∆ does not contain lefthand side of the form (q0, ε,ak+1 · w).
(Q3′) ∆′ does not contain lefthand side of the form (q0, ε,bk+1 · w).
(Q4) Q ∩Q′ = {q0}.
(Q5) ∀i ∈ [1, k], Ai ∩Ai

′ = {ai} and Ak+1 ∩Ak+1
′ = {ak+1}.

We construct

B = (Q ∪Q′, {α}, (B1, . . . , Bk+1),N , ∆ ∪∆′ ∪∆′′, q0, bk+1)

where Bi = Ai ∪ A′
i for 1 ≤ i ≤ k and Bk+1 = Ak+1 ∪ A′

k+1 ∪ {bk+1} et ∆′′ is

the union for o ∈ {0, 1}|N| of the following transitions:

(1) ∆′′(q0, ε, bk+1ak · · · a2,o) = (pushak
changeak+1

, q0)

(2) ∆′′(q0, α,bk+1,o) = (popk+1, q0)

Proof.
Determinism: Consider (q1, ε, w1), lefthand side of a rule of ∆, and (q2, ε, w2)
lefthand side of a rule of ∆′. Each of them can be applied to a same state only
if q1 = q2 and w1 = w2. In this case, from (Q4) q1 = q2 = q0 and from (Q5)
w1 = w2 = ak+1w. But the condition (Q3) makes impossible such lefthand
sides for ∆. Then ∆ ∪∆′ is deterministic. The addition of transitions (1) does
not break the determinism since bk+1 is a new symbol, finally from (Q3’), a
transition (2) is compatible with no transition of ∆′, and from (Q5) with no
transition of ∆. The automaton is then deterministic.

In addition, from (Q2) and (Q2’), the automaton B verifies the condition
(H2) of the Definition 7: there are no transitions whose lefthand side is (q0, ε, ε)
or (q0, α, ε).
Computation of the sequence: Let us show now that the automaton compute



f ⊙ g. For all n ≥ 0, the following derivations are valid:

(q0bk+1[Tk,2[a1
n]]q0) ⊢A (q0ak+1[Tk,2[a1

n]Tk,2[a1
n]]q0) (by transitions (1))

⊢∗A (q0ak+1[Tk,2[a1
n]]q0)

f(n) (by (Q1))

⊢∗A (q0bk+1[ε]q0)
f(n)·g(n) (by (Q1′))

⊢∗A αf(n)·g(n) (by transitions (2)).

Proposition 8. If s ∈ SN
k+1, k ≥ 2, then the sequence t defined by t(0) = c ≥ 1

and t(n+ 1) = s(n).t(n)d, for d ≥ 1, belongs to SN
k+1.

Proof. There exists an automatonA1 = (Q, {α}, (A1, . . . , Ak+1),N , ∆1, q0, ak+1) ∈
k + 1-DCPDAN fulfilling conditions (Q1(ak+1 · · ·a1,ak+1)), (Q2), (Q3(ak+1))
established in Lemma 4. We consider

A = (Q, {α}, (B1, . . . , Bk+1),N , ∆, q0, dk+1) ∈ k-CPDA

where Bk+1 = Ak+1 ∪{dk}, Bi = Ai for all 1 ≤ i ≤ k and ∆ is union of ∆1 with
the following new transitions:

for all o ∈ {0, 1}|N|,

(0.1) ∆(q0, ε, dk+1ak · · · a2a1,o) = (pop1(pushak
)d changeak+1

, q0),

(0.2) ∆(q0, ε, dk+1ak · · · a2,o) = (popk(pushdk+1
)c−1, q0),

(1)∆(q0, ε,ak+1ak · · · a2a1,o) = ∆(q0, ε,ak+1ak · · · a2,o) = (changedk+1
, q0),

(2) ∆(q0, α, dk+1,o) = (popk+1, q0).

This automaton is deterministic: ∆1 is a deterministic and from condition
(Q2), transitions (1) do not break the determinism. In addition, transitions (0.i)
et (2) are incompatible with all transitions of ∆1 (since dk+1 is a new symbol),
and cannot interfer the ones with the others.
In order to show that A computes t, we enumerate interesting basic derivations:
Initialization rules, (I0):
by using transitions (0.1),

(q0dk+1[Tk,2[a1
n+1]Ωk]q0)⊢∗A(q0ak+1[(Tk,2[a1

n])d+1Ωk]q0),

Initialization rules, (I0’); by transitions (0.2) and the decomposition rule,

(q0dk+1[Tk,2[ε]Ωk]q0)⊢∗A(q0dk+1[Ωk]q0)
c,

s-computation rule, (C1):
from (P1),

(q0ak+1[Tk,2[a1
n]Ωk]q0)⊢∗A(q0ak+1[Ωk]q0)

s(n),

Gluing rule, (R2): by using transitions (1), for all n ≥ 0

(q0ak+1[Tk,2[a1
n]Ωk]q0)⊢∗A(q0dk+1[Tk,2[a1

n]Ωk]q0),



Ending rule, (T3): by using transitions (2),

(q0dk+1[ε]q0) ⊢A α.

Let us show by induction, the following property P(n):

(q0dk+1[Tk,2[a1
n]Ωk]q0)⊢∗A(q0dk+1[Ωk]q0)

t(n).

Basis: The initialization rule (I0’) proves P(0).
Induction step: Consider the derivation:

(q0dk+1[Tk,2[a1
n+1]Ωk]q0)⊢∗A (q0ak+1[(Tk,2[a1

n])d+1Ωk]q0) (by rule (I0)),

⊢∗A (q0ak+1[(Tk,2[a1
n])dΩk]q0)

s(n) (by (C1)),

⊢∗A (q0dk+1[(Tk,2[a1
n])dΩk]q0)

s(n) (by rule (R2)).(6)

By applying d times P(n) (with suitable substitutions of the indeterminate Ωk),
we obtain:

(q0dk+1[(Tk,2[a1
n])dΩk]q0)⊢∗A(q0dk+1[Ωk]q0)

t(n)d

(7)

The composition of derivations (6) and (7) gives:

(q0dk+1[Tk,2[a1
n+1]Ωk]q0)⊢∗A(q0dk+1[Ωk]q0)

s(n)·t(n)d

= (q0dk+1[Ωk]q0)
t(n+1)

The property P(n+ 1) is then true, then P(n) is true for all n ≥ 0.
By applying the ending rule (T3) to P(n), we deduce that, for all n ≥ 0,

(q0dk+1[Tk,2[a1
n]]q0)⊢∗Aαt(n)

Let us notice that, by Propositions 6 and 7, for all k ≥ 3, (SN
k ,+, ·) is a semi-

ring. We denote by P (n,X1, . . . , Xp) any element of the semi-ring Sk[X1, . . . , Xp]
to emphasise the fact that coefficients of P are functions of the integer argument
n.

Proposition 9. Let k ≥ 2, let Pi(n,X1, . . . , Xp), 1 ≤ i ≤ p be polynomials with
coefficients in SN

k+1 and ui, for 1 ≤ i ≤ p, be sequences defined by

ui(n+ 1) = Pi(n, u1(n), . . . , up(n)), and ui(0) = γi. Then u1 ∈ SN
k+1.

Sketch of proof: The principle used here is the same as the one exposed in proof of
Proposition 8, extended to several indeterminates. Suppose that for all 1 ≤ i ≤ p,

Pi(n,X1, . . .Xp) =

νi
∑

j=0

ui,j(n)X
di,j,1

1 . . .Xdi,j,p
p .

By using Lemma 4, we can suppose that each coefficient ui,j(n) is computed by
an automaton,

Ai,j = (Qi,j , ∅, (A1,i,j , . . . , Ak,i,j),N , ∆i,j , q0, ak+1,i,j) ∈ (k + 1)-DCPDA
N



fulfilling conditions (Q1(ak+1,i,j , ak · · · a1,ak+1,i,j)), (Q2) and (Q3(ak+1,i,j))
defined in Lemma 4. By a renaming of states and pushdown alphabets, we obtain
for all couple (i, j) 6= (i′, j′):

Qi,j∩Qi′,j′ = {q0}; ∀l ∈ [1, k], Al,i,j∩Al,i′,j′ = {ai} and Ak+1,i,j∩Ak+1,i′,j′ = ∅.

Given A = (Q, {α}, (A1, . . . , Ak+1),N , ∆, q0, ak+1) ∈ (k + 1)-DCPDA
N

such
that for all (i, j), Q contains allQi,j ,∆ contains all∆i,j , and for all ℓ, Aℓ contains
allAl,i,j . Suppose in addition thatAk contains the new symbols uk,1,uk,2, . . . ,uk,p

and Ak+1 contains the new symbol ak+1. Suppose that transitions allow the fol-
lowing basic derivations:
initialization rules:

(q0ak+1[uk,i[Tk−1,2[a1
n+1]]Ωk]q0)⊢∗A

νi
∏

j=0

(q0ak+1,i,j [(Tk,2[a1
n])2Ωk]q0)

and
(q0ak+1[uk,i[Tk−1,2[ε]]Ω]q0)⊢∗A(q0ak+1[Ωk]q0)

γi

coefficients rules:

(q0ak+1,i,j [Tk,2[a1
n]Ωk]q0)⊢∗Ai,j

(q0ak+1,i,j [Ωk]q0)
ui,j(n)

(it is just the condition (Q1) for Ai,j)
gluing rules: for all n ≥ 0, the gluing rule is:

(q0ak+1,i,j [Tk,2[a1
n]Ωk]q0)⊢∗A(q0ak+1[(

p
∏

ℓ=1

(uk,ℓ[Tk−1,2[a1
n]])di,j,ℓ)Ωk]q0)

termination rule:
(q0ak+1[ε]q0) ⊢A α

Consider the property P(n) defined by:

∀i ∈ [1, p], (q0ak+1[uk,i[Tk−1,2[a1
n]]Ωk]q0)⊢∗A(q0ak+1[Ωk]q0)

ui(n).

The property P(n) can easily be verified by an induction over n: by applying
successively initialization, coefficients and gluing rules, we obtain the following
derivation:

(q0ak+1[uk,i[Tk−1,2[a1
n+1]]Ωk]q0)⊢∗A

νi
∏

j=0

(q0ak+1[(

p
∏

ℓ=1

(uk,ℓ[Tk−1,2[a1
n]])di,j,ℓ)Ωk]q0)

ui,j(n)

By applying hypothesis P(n), we obtain P(n+1). Applying the termination rule
to P(n), we prove that this automaton computes the sequence ui.

Using the normalization properties (Q2) et (Q3), it is possible to add tran-
sitions to the union of ∆i,j , in a such way as all these rules are valid and A stays
deterministic:



- variables of lefthand sides of the rules above are different,
- it suffices then to decompose each rule in a finite sequence of elementary steps,
using some disjoint sets of states for intermediary transitions, to obtain a such
a deterministic automaton.

Proposition 10. Let f ∈ SN
k+1, g ∈ Sk

N , k ≥ 3. Then the sequence h defined

for all n ≥ 0 by h(n) = f(n)g(n) belongs to SN
k+1.

Proof. Let us proceed as in the proof of Proposition 4: we expose, in a first step,
a list of particular derivations (that we call “rules”) and prove that these rules
are sufficient to compute the required sequence; in a second step, we explain how
to construct a deterministic automaton which makes these rules available..
First step:

LetA = (Q, {α}, (A1, . . . , Ak+1),N , ∆, q0, ak+1) ∈ k + 1-DCPDA
N with Ak+1 ⊇

{ak+1,ak+1, bk+1}, and Ak ⊇ {ak, bk,bk} and for all i ∈ [1, k − 1], Ai ⊇ {ai}.
Let us define ak+1

−1 · A = (Q, {α}, (A1, . . . , Ak),N , ak+1
−1 · ∆, q0, ak) ∈

k-DCPDAN , where

ak+1
−1 ·∆ = {δ | δ = (q, αε, ak+1w,o, q

′, instr) ∈ ∆ and instr ∈ Instrk}.

We suppose that A allows the following basic derivations (where Ωi is an inde-
terminate of level i):
initialization rule, (I0):

(q0bk+1[Tk,2[a1
n]]q0)⊢∗A(q0ak+1[bk[Tk−1,2[a1

n] Tk−1,2[a1
n]]]q0),

f -computation, (C1):

(q0ak+1[Tk,2[a1
n]Ωk]q0)⊢∗A(q0ak+1[Ωk]q0)

f(n),

g-computation, (C2):

(r0bk[Tk−1,2[a1
n]Ωk−1]r0)⊢∗ak+1

−1·A(r0bk[Ωk−1]r0)
g(n),

gluing rules, (R12): ∀ωk ∈ k-pds,

(q0ak+1[ωk]q0) ⊢A (r0ak+1[ωk]q0),

gluing rules, (R21): ∀ω ∈ (k − 1)-pds,

(r0ak+1[bk[ωk−1]Ωk]q0) ⊢A (q0ak+1[ak[ωk−1]Ωk]q0),

gluing rules, (R(0)21):

(r0ak+1[ε]q0) ⊢A (q0ak+1[ε]q0),

ending rules, (T3):
(q0ak+1[ε]q0) ⊢A α.



The intuition behind these rules is that gluing rules (Rij) allow to connect the
end of a computation (Ci) with the beginning of a computation (Cj). The special
gluing rule (R(0)21) handles the case where the computation (C2) results in the
number 0, leading to the value f(n)0 = 1. 1

Let us prove by induction over i ≥ 0 the following property P(i):
for every ωi ∈ k-pds(A1, . . . , Ak), if

(r0ωir0)⊢∗ak+1
−1A(r0bk[Tk−1,2[a1

n]]r0)
i (8)

then
(q0ak+1[ωi]q0)⊢∗A(q0ak+1[ε]q0)

f(n)i

. (9)

Basis: i = 0
We suppose that (8) holds. The following derivation is then valid:

(q0ak+1[ω0]q0)

⊢A (r0ak+1[ω0]q0) (by rule (R12))

⊢∗A (r0ak+1[ε]q0) (by hypothesis (8) and definition of ak+1
−1 · A)

⊢∗A (q0ak+1[ε]q0) (by rule (R(0)21)).

Induction step:
We suppose that hypothesis (8) is fulfilled by i + 1 and that P(i) holds. By
means of Lemma 2, we can translate hypothesis (8) into:
there exists ωi ∈ k-pds(A1, . . . , Ak) such that

(r0, ε, ωi+1)
∗→ak+1

−1·A (r0, ε,bk[Tk−1,2[a1
n]]ωi) and (r0ωir0)⊢∗ak+1

−1·A(r0bk[Tk−1,2[a1
n]]r0)

i.

We obtain the derivation:

(q0ak+1[ωi+1]q0)⊢∗A (r0ak+1[ωi+1]q0) (by rule (R12))

⊢∗A (r0ak+1[bk[Tk−1,2[a1
n]]ωi]q0) (by above translation)

⊢∗A (q0ak+1[ak[Tk−1,2[a1
n]]ωi]q0) (by rule (R21))

⊢∗A (q0ak+1[ωi]q0)
f(n) (by (C1)). (10)

Combining this derivation with P(i), we get:

(q0ak+1[ωi+1]q0)⊢∗A(q0ak+1[ε]q0)
f(n)i+1

.

(end of induction).
Let us consider ω = bk[Tk−1,2[a1

n]Tk−1,2[a1
n]]. By rule (C2), ω fulfills hypothesis

(8) for the integer i = g(n). Hence, by P(i),

(q0ak+1[bk[Tk−1,2[a1
n]Tk−1,2[a1

n]]]q0)⊢∗A(q0ak+1[ε]q0)
f(n)g(n)

. (11)

Finally, by applying the initialization rule, the derivation (11), and the ending
rule (T3), we get

(q0, bk+1[Tk,2[a1
n]], q0)⊢∗Aαf(n)g(n)

.

1 we adopt the convention that 00 = 1 in the definition of h = fg .



Second step
Let us construct such an automaton. We suppose that the sequence f(n) is com-
puted A1 = (Q1, ∅, (B1, . . . , Bk+1),N , ∆1, q0, ak+1) ∈ k + 1-DCPDA

N fulfilling
conditions (Q1(ak+1, · · ·a1,ak+1)), (Q2) and (Q3(ak+1) stated in Lemma 4. As
well, the sequence g(n) is computed by A2 = (Q2, ∅, (C1, . . . , Ck),N , ∆2, r0, bk)
∈ k-DCPDAN fulfilling the same conditions (for symbols bk, ak−1, . . . , a1 and the
ending symbol bk).

We suppose thatQ1∩Q2 = ∅, Bk∩Ck = ∅ and for i ∈ [1, k−1],Bi∩Ci = {ai}.
Let us define A = (Q, {α}, (A1, . . . , Ak+1),N , ∆, q0, bk+1) where

Q = Q1 ∪Q2, Ai = B1 ∪ Ci for i ∈ [1, k], Ak+1 = Bk+1 ∪ {bk+1},
and ∆ is the union of ∆1 ∪ (ak+1 ·∆2) with the following rules:

(0) ∆(q0, ε, bk+1ak · · ·a2) = ∆(q0, ε, bk+1ak · · · a2a1) =
(changebk

pushak−1
change

ak+1
, r0),

(1.2) ∆(q0, ε,ak+1w) = (changeak+1
, r0) for all w 6= ε ∈ top(k-pds(Ak)),

(2.1.0) ∆(r0, ε, ak+1) = (change
ak+1

, q0),
(2.1) ∆(r0, ε, ak+1bkw) = (changeak

, q0) for all w ∈ top((k − 1)-pds(Ak−1)),
(3) ∆(q0, α,ak+1) = (q0, popk+1).

Since A1 fulfills (Q3(ak+1)), transitions (1.2) and (3) do not introduce any
non-determinism, as well, for transitions (2.1), since A2 fulfills (Q3(bk)) and
bk /∈ Bk. Transitions (2.1.0) use the pair (r0, ak+1) which is not used in ak+1 ·∆2

(by hypothesis (Q2)). Transitions (0) use a new symbol. Then A is deterministic
and fulfills (H2).
The transitions are chosen so as to make the rules (describes in first step) avail-
able: (C1) holds by the choice of ∆1, (C2) holds by the choice of ak+1 · ∆2,
(R21) holds by transitions (2.1), (R(0)21) holds by transition (2.1.0), (R12) hold
by transitions (1.2) and (T3) holds by transition (3).

Proposition 11. Let k ≥ 3. Let Pi(n,X1, . . . , Xp), 1 ≤ i ≤ p be polynomial
with coefficients in SN

k+1 and exponents in SN
k . We consider sequences ui, for

1 ≤ i ≤ p defined by
ui(n+ 1) = Pi(n, u1(n), . . . , up(n)), and ui(0) = ci. Then u1 ∈ SN

k+1.

Sketch of proof: The principle used here is the same as the one exposed in proof
of Proposition 10, extended to several indeterminates. . We suppose that for all
1 ≤ i ≤ p,

Pi(n,X1, . . .Xp) =

νi
∑

j=0

ui,j(n)X
di,j,1(n)
1 . . .Xdi,j,p(n)

p .

By using Lemma 4, we can suppose that:

– each coefficient ui,j(n) is computed by an automaton

Ai,j = (Qi,j , ∅, (A1,i,j , . . . , Ak,i,j),N , ∆i,j , q0, ak+1,i,j) ∈ (k + 1)-DCPDA
N

fulfilling conditions (Q1(ak+1,i,jak · · · a1)), (Q2) and (Q3(ak+1,i,j)) defined
in Lemma 4.



– each coefficient di,j,ℓ(n) is computed by an automaton

Bi,j,ℓ = (Qi,j,ℓ, ∅, (B1,i,j,ℓ, . . . , Bk,i,j,ℓ),N , ∆i,j,ℓ, r0, bk,i,j,ℓ) ∈ k-DCPDAN

fulfilling conditions (Q1(bk,i,j,ℓak−1 · · ·a1)), (Q2) and (Q3(bk,i,j,ℓ)) defined
in Lemma 4.

By a renaming of states and pushdown alphabets, we obtain for all couple (i, j) 6=
(i′, j′):

– Qi,j ∩Qi′,j′ = {q0},
– ∀m ∈ [1, k], Am,i,j ∩Am,i′,j′ = {ai} and
– Ak+1,i,j ∩Ak+1,i′,j′ = ∅,

and for all (i, j, ℓ) 6= (i′, j′, ℓ′):

– Qi,j,ℓ ∩Qi′,j′,ℓ′ = {r0},
– ∀m ∈ [1, k − 1], Bm,i,j,ℓ ∩Bm,i′,j′,ℓ′ = {ai} and
– Bk+1,i,j,ℓ ∩Bk+1,i′,j′,ℓ′ = ∅,

finally for all (i, j), (i′, j′, ℓ′):
Qi,j ∩Qi′,j′,ℓ′ = ∅, ∀m ∈ [1, k], Am,i,j ∩Bm,i′,j′,ℓ′ = ∅.

We suppose we are givenA = (Q, {α},Ak+1,N , ∆, q0, ak+1) ∈ (k + 1)-DCPDA
N

such that for all (i, j, ℓ), Q contains all Qi,j∪Qi,j,ℓ, for all m ∈ [1, k], Am contains
all Am,i,j ∪ Bm,i,j,ℓ, Ak+1 contains all Ak+1,i,j and ∆ contains all ∆i,j ∪∆i,j,ℓ.
We suppose in addition that Ak contains the new symbols uk,1,uk,2, . . . ,uk,p

and Ak+1 contains the new symbol ak+1. We suppose finally that transitions
allow the following basic derivations:
initialization rules:

(q0ak+1[uk,i[Tk−1,2[a1
n+1]]Ωk]q0)⊢∗A

νi
∏

j=1

(q0ak+1,i,j [Tk,2[a1
n][Tk,2[a1

n]]Ωk]q0),

coefficients rules:

(q0ak+1,i,j [Tk,2[a1
n]Ωk]q0)⊢∗A(q0ak+1,i,j [Ωk]q0)

ui,j(n),

(it is just the condition (Q1) for the automaton Ai,j)
gluing rules, (R1):

(q0ak+1,i,j [Tk,2[a1
n]Ωk]q0)⊢∗A(q0ak+1[(

p
∏

ℓ=1

bk,i,j,ℓ[Tk−1,2[a1
n]Tk−1,2[a1

n]])Ωk]r0),

degrees rules:

(r0bk,i,j,ℓ[Tk−1,2[a1
n]Ωk−1]r0)⊢∗ak+1

−1·A(r0bk,i,j,ℓ[Ωk−1]r0)
di,j,ℓ(n),

gluing rules, (R2):

(r0ak+1[bk,i,j,ℓ[Tk−1,2[a1
n]Ωk]q0)⊢∗A(q0ak+1[uk,ℓ[Tk−1,2[a1

n]]Ωk]q0),



ending rule:
(q0ak+1[ε]q0) ⊢A α.

We consider the property P(n) defined by:

∀i ∈ [1, p], (q0ak+1[uk,i[Tk−1,2[a1
n]]Ω]q0)⊢∗A(q0ak+1[Ω]q0)

ui(n).

The property P(n) can be proved by induction over n: by applying initialization
rule, then coefficients rule, then gluing rule (R1), then degrees rule, and finally
gluing (R2), we get the following derivation:

(q0ak+1[uk,i[Tk−1,2[a1
n+1]]Ωk]q0)⊢∗A

νi
∏

j=0

(q0ak+1[(

p
∏

ℓ=1

(uk,ℓ[Tk−1,2[a1
n]])di,j,ℓ(n))Ωk]q0)

ui,j(n)

From hypothesis P(n), we obtain P(n + 1). The application of the ending rule
to P(n) prove then that this automaton computes the sequence ui.

Using the normalization properties (Q2) et (Q3), it is possible to add tran-
sitions to the union of ∆i,j , in a such way as all these rules are valid and A stays
deterministic:
- variables of lefthand sides of the rules above are different,
- it suffices then to decompose each rule in a finite sequence of elementary steps,
using some disjoint sets of states for intermediary transitions, to obtain a such
a deterministic automaton.

Proposition 12 (Convolution-product). Let f ∈ SN
k+1 and g ∈ Sk, for k ≥

3. Then f × g ∈ SN
k+1 where f × g denotes the convolution-product:

(f × g)(n) =

n
∑

m=0

f(m) · g(n−m) for all n ∈ N

Proof. The major difficulty is to define for all 0 ≤ m ≤ n, a (k+1)-pds ωm,n−m

from which we can calculate f(m) ·g(n−m), then to generate the sequence ωn,0,
ωn−1,1, . . . , ω0,n. This time, we need two counters which must be able to evolve
simultaneously, it is then not possible to place them both at level 1. The counter
a1 of the sequence f will be placed at level 1 as usually, while that of sequence
g, denoted b2 will be placed at level 2.

That is why sequences f and g belong to two classes of different levels and
why we do not authorize the automaton computing g to be controlled. We code
each couple (m,n−m) by the following 2-pds:

γm,n = a2[a
m
1 ]b2[a

m+1
1 ] · · · b2[a1

n], m 6= n, γn,n = a2[a1
n]

The integer m is coded as usually in the first atom, while the integer n − m
corresponds to the length of the suffix b2[a

m+1
1 ] · · · b2[a1

n]. We compute then
f(m) · g(n −m) by using the same kind of argument as in Proposition 7 con-
cerning the product.
First step



Let us suppose we are given A = (Q, {α},Ak+1,N , ∆, q0) ∈ (k + 1)-CPDA
N

with A1 = {a1},A2 ⊇ {a2, b2},Ai ⊇ {ai} for i ∈ [3, k] etAk+1 ⊇ {ak+1,ak+1bk+1}.
As previously, the letter Ωi is an indeterminate of level i. Letters a2 and b2

are used as “counters” for the sequence g, while a1 is the counter used for the
sequence f . We suppose that A allows the following basic derivations:
f -computation, (C1): for all n,m ≥ 0,

(q0bk+1[Tk,3[γm,n]Ωk]q0)⊢∗A(q0bk+1[Ωk]q0)
f(m),

g-computation, (C2): for all n ≥ 0,m ∈ [0, n] ,

(q0bk+1[Tk,3[γn,m]]q0)⊢∗A(q0ak+1[ε]q0)
g(m),

pair-generation, (G3): for all 1 ≤ m ≤ n,

(q0ak+1[Tk,3[γm,n]]q0)⊢∗A(q0ak+1[Tk,3[γm−1,n]]q0)(q0bk+1[Tk,3[γm,n]Tk,3[γm,n]]q0),

initial pair generation, (G30): for all n ≥ 0,

(q0ak+1[Tk,3[γ0,n]]q0)⊢∗A(q0bk+1[Tk,3[γ0,n]Tk,3[γ0,n]]q0),

ending rule, (T4):
(q0ak+1[ε]q0)⊢∗Aα.

Since γn,n = a2[a1
n], by applying iteratively (G3) then (G30), we get:

(q0ak+1[Tk,2[a1
n]]q0) ⊢∗A

n
∏

m=0

(q0bk+1[Tk,3[γm,n]Tk,3[γm,n]]q0). (12)

Starting with each factor of this product, we derive:

(q0bk+1[Tk,3[γm,n]Tk,3[γm,n]]q0)⊢∗A (q0bk+1[Tk,3[γm,n]]q0)
f(m) (by (C1))

⊢∗A (q0ak+1[ε]q0)
g(n−m)·f(m) (by (C2)).(13)

Combining the two derivations (12) and (13), we get:

(q0ak+1[Tk,3[a2[a1
n]]]q0) ⊢∗A (q0ak+1[ε]q0)

Pn
m=0 g(n−m)·f(m)

= (q0ak+1[ε]q0)
(f×g)(n).

Second step:
Let us construct a such an automatonA. The sequence f(n) is computed by some
(k+1)-ACD A′

1 ∈ k + 1-DCPDA
N fulfilling conditions (Q1(bk+1ak · · ·a1,bk+1),

(Q2) and (Q3(bk+1)) states in Lemma 4. We introduce a new symbol b2,
by adding transitions allowing to see b2 as a a bottom symbol. We obtain
then an automaton A1 = (Q1, ∅, (B1, . . . , Bk+1),N , ∆1, q0, bk+1), where Bk+1 ⊇
{bk+1,bk+1}, Bi ⊇ {ai} for i ∈ [3, k], B2 ⊇ {a2, b2} et B1 = {a1} fulfilling
conditions (C1), (Q2) and (Q3(bk+1)).



From Lemma 3, the sequence g(n) is computed by an automaton

A′
2 = (Q′

2, ∅, (C2, . . . , Ck+1), ∆
′
2, q0) ∈ k-DCPDA

where C2 = {b2}, Ci ⊇ {ai} for i ∈ [3, k], Ck+1 ⊇ {bk+1,ak+1} and fulfilling the
condition (P1(q0,bk+1ak · · · a3b2,ak+1)), the condition (P2) and the condition
(P3(ak+1)). It is then easy to transform A′

2 into a controlled automaton A2 =
(Q2, {α}, (C1, . . . , Ck+1),N , ∆2, q0) ∈ k + 1-DCPDAN , with C1 = {a1}, and
fulfilling (C2) and (P2) and (P3):
we pose for each ∆2

′(p, ε, w) = (instr, q) such that |w| = k,

∆2(p, ε, w,o) = ∆(p, ε, wa1,o) = (instr+1, q), ∀o ∈ {0, 1}|N|,

and for each ∆2
′(p, ε, w) = (instr, q) such that |w| < k,

∆2(p, ε, w,o) = (instr+1, q), ∀o ∈ {0, 1}|N|,

with for all i ∈ [1, k], popi
+1 = popi+1, pusha

+1 = pusha and changea
+1 =

changea.

The symbol a1 is then ignored by the automaton and controllers have no
influence on transitions. We choose the alphabets is a such way as B2 ∩ C2 =
{a2, b2}, Bi ∩ Ci = {ai} for i ∈ [3, k] and Bk+1 ∩ Ck+1 = {bk+1}.
Let us define A = (Q, {α}, (A1, . . . , Ak+1),N , ∆, q0, ak+1) where

Q = Q1 ∪Q2 ∪ {r1}; Ai = Bi ∪ Ci for i ∈ [1, k], and Ak+1 = Bk+1 ∪ Ck+1;

∆ is the union of (∆1 ∪∆2) with the following transitions: ∀o ∈ {0, 1}|N|,

(3.1) ∆(q0, ε, ak+1ak · · ·a2a1,o) = (pushak
changebk+1

pushak+1
popk, r1),

(3.2) ∆(r1, ε, ak+1ak · · · a2a1,o) = (changeb2
pusha2

pop1, q0),
(30) ∆(q0, ε, ak+1ak · · · a2,o) = (pushak

pushbk+1
, q0),

(4) ∆(q0, α,ak+1,o) = (popk+1, q0).

Initial automata Ai are deterministic, and since A2 fulfills (P2(Ak+1)), the new
automaton A is also deterministic.
Transitions are chosen so as to make the rules (described in the first step) avail-
able: (Ci) holds by ∆i, (i = 1, 2), (G3) holds by transitions (3.j), (G30) holds by
transitions (30), and (T4) holds by transitions (4). We can then conclude that
A compute f × g.

The generation mode of pairs that we use obliges the final automaton to be of
level at least 4 (to obtain bk+1[Tk,3[γm,n]Tk,3[γm,n]] from ak+1[Tk,3[γm,n]]). How-
ever, the first copy is used to compute f(m) and we thus do not need Tk,3[γm,n]
entire, but simply of the value of m. Since for the construction of the system
allowing derivation (C2), we use the weak version of the lemma of normalization,
which is valid for automata of level at least 2, it is in fact possible to prove the
proposition for k = 2 but the proof is slightly different.



Proposition 13 (Convolution-product). Let f ∈ S3
N and g ∈ S2. Then

f × g ∈ S3
N where f × g denotes the convolution-product:

(f × g)(n) =

n
∑

m=0

f(m) · g(n−m) for all n ∈ N.

Proof. We use here the same notations as in the proof of the previous lemma,
by adding γ′m,n = b2[a1

m+1] · · · b2[a1
n] (i.e., γm,n = a2[a1

m]γ′m,n).

First step: We suppose given a automaton A ∈ k-DCPDAN for which the fol-
lowing derivations hold:
f -computation, (C1): for all n ≥ 0,

(q0b3[a2[a1
n]Ω2]q0)⊢∗A(q0b2[Ω2]q0)

f(n),

g-computation, (C2): for all n ≥ 0,m ∈ [0, n],

(q0b3[γ
′
m,n]q0)⊢∗A(q0a3[ε]q0)

g(n−m),

pair-generation, (G3): for all 1 ≤ m ≤ n,

(q0a3[γm,n]q0)⊢∗A(q0a3[γm−1,n]q0)(q0b3[γm,n]q0),

initial pair-generation, (G30): for all 0 ≤ n,

(q0a3[γ0,n]q0)⊢∗A(q0b3[γ0,n]q0),

ending rule, (T4):
(q0a3[ε]q0)⊢∗Aα.

From these rules, we obtain the following derivations:

(q0a3[a2[a1
n]]q0)⊢∗A

∏n
m=0(q0b3[γm,n]q0) (by rules (G3), (G30))

⊢∗A
∏n

m=0(q0b3[γ
′
m,n]q0)

f(m) (by rule (C1))

⊢∗A
∏n

m=0(q0a3[ε]q0) (by rule (C2))

⊢∗A αh(n) (by rule (T4)).

Second step:
Lemma 4 allows to obtain transitions making valid (C1), those allowing (C2)
are obtained as in the previous proof except that it is not any more necessary
to erase a2[a1

m] before to start the computation. The derivation (T4) is obtain
in an obvious way, finally, the system allowing the pair-generation rules is the
union for o ∈ {0, 1}|N| of transitions:

(3) ∆(q0, ε, a3a2a1,o) = (changeb3
pusha3

changeb2
pusha2

pop1, q0),
(3.0) ∆(q0, ε, a3a2,o) = (changeb3

, q0).

With a suitable choice of concrete set of states and pushdown alphabets, we
obtain a deterministic automaton computing f × g.



Proposition 14 (Convolution-inverse). Let g ∈ Sk, k ≥ 2, and let f be the

sequence defined by: f(0) = 1 and for all n ≥ 0, f(n+1) =
n

∑

m=0

f(m) · g(n−m).

Then f ∈ Sk+1.

Sketch of proof: We follow the same lines as for Proposition 12.
First step: We suppose we are givenA = (Q, {α}, (Ak+1), ∆, q0, ak+1) ∈ k + 1-DCPDA,
with Ak+1 ⊇ {ak+1,ak+1, bk+1,bk+1}, Ai ⊇ {ai} for i ∈ [k, 3], A2 ⊇ {a2, b2,b2}
and A1 = {a1}, where this new symbol b2 plays the role of a bottom symbol
for the automaton computing g. We call here ”blocking pds” every 2-pds ω of
the form b2[ω1] · ω2, for ωi ∈ i-pds or ω = ε. As previously, we encode the pair
(m,n−m) by the 2-pds

γm,n = a2[a
m
1 ]b2[a

m+1
1 ] · · · b2[a1

n].

Blocking pds will be used to construct rules allowing to glue each element ωi,j

leading to the computation of f(i)g(j). We suppose that A allows the following
basic derivations:
g-computation, (C2): for all ℓ ≥ 1, i0, i1, . . . , iℓ ≥ 0 and ω, blocking pds,

(q0bk+1[Tk,3[a2[a1
i0 ]b2[a1

i1 ] · · · b2[a1
iℓ ]ω]Ωk]q0⊢∗A(q0bk+1[Ωk]q0)

g(ℓ),

pair-generation, (G3): for all n ≥ 0,

(q0ak+1[Tk,3[γn+1,n+1Ω2]]q0)⊢∗A
n

∏

m=0

(q0bk+1[(Tk,3[γm,nΩ2])
2]q0),

starting pairs, (G30):

(q0ak+1[Tk,3[γ0,0Ω2]Ωk]q0)⊢∗A(q0bk+1[Ωk]q0),

gluing rule, (R23): for all 0 ≤ m ≤ n, there exists a blocking pds ω such that,

(q0bk+1[Tk,3[γm,nΩ2]Ωk]q0)⊢∗A(q0ak+1[Tk,3[γm,mωΩ2]Ωk]q0),

ending rule, (T4):

(q0bk+1[ε]q0)⊢∗Aα.

Let us prove by induction the following property P(n): for all 0 ≤ m ≤ n
and all blocking pds ω,

(q0ak+1[Tk,3[γm,mω]]q0)⊢∗A(q0bk+1[ε]q0)
f(m).



Basis: P(0) follows from (D30), by substituting ω to Ω2 and ε to Ωk.
Induction step:

(q0ak+1[Tk,3[γn+1,n+1ω]]q0)

(by (G3)) ⊢∗A
n

∏

m=0

(q0bk+1[(Tk,3[γm,nω])2]q0)

(by (C2)) ⊢∗A
n

∏

m=0

(q0bk+1[Tk,3[γm,nω]]q0)
g(n−m)

(by (R23)) ⊢∗A
n

∏

m=0

(q0ak+1[Tk,3[γm,mωm]]q0)
g(n−m)

(by induction hypothesis) ⊢∗A
n

∏

m=0

(q0bk+1[ε]q0)
f(m)·g(n−m)

= (q0bk+1[ε]q0)
f(n+1)

(where all the ωm are blocking pds). By using (T4) we obtain:

∀n ∈ IN, (q0ak+1[Tk,2[a1
n]]q0)⊢∗Aαf(n).

Second step: We can construct an automatonA2 realizing (D2) and fulfilling also
the condition (P2) of Lemma 4. Starting and ending rules can be made valid by
a set of transitions, in a similar way to that used in the proof of Proposition 12.
The gluing rules (R23) are obtained by the following transitions:
∆(q0, ε,bk+1ak · · · a2) = ∆(q0, ε,bk+1ak · · ·a2a1) = (change

b2
pusha2

changeak+1
, q0).

For all γm,n = a2[a1
m]ω, we get the derivation:

(q0,bk+1[Tk,3[γm,n]], q0) ⊢A (q0, ak+1[Tk,3[a2[a1
m]b2[a1

m]ω]], q0).

It is possible to prove this proposition for k = 3, but the proof is slightly
different.

Proposition 15 (convolution-inverse). Let g ∈ S2, and f the sequence de-

fined by: f(0) = 1 and for all n ≥ 0, f(n + 1) =

n
∑

m=0

f(m) · g(n − m). Then

f ∈ S3.

Proof. We use here the same notations as in the proof of the previous lemma, by
adding γ′m,n = b2[a1

m+1] · · · b2[a1
n] (i.e., γm,n = a2[a1

m]γ′m,n). We recall that a
blocking pushdown is a 2-pds such that top2(ω) = b2. Suppose we are given an
automaton A ∈ 3-CPDA

N for which the following derivations hold:
initialisation rule, (I0): for all n ≥ 0,

(q0, d3[a2[a1
n]], q0)⊢∗A(q0, a3[γn,nb2[a1

n]], q0),



g-computation, (C2): for all n ≥ 0,m ∈ [1, n], for all blocking pds, ω

(q0b3[γ
′
m,nω]q0)⊢∗A(q0b3[ω]q0)

g(n−m),

pair-generation, (G3): for all n ≥ 0,

(q0a3[a2[a1
n+1]Ω2]q0)⊢∗A

n
∏

m=0

(q0a3[a2[a1
m]b2[a1

m]γ′m,nΩ2]q0),

starting pair, (G30): for all 0 ≤ n,

(q0a3[γ0,0Ω2]q0)⊢∗A(q0b3[Ω2]q0),

ending rule, (T0):
(q0a3[ε]q0)⊢∗Aα,

(T1):
(q0b3[b2[Ω1]Ω2]q0)⊢∗A(q0a3[Ω2]q0),

gluing rule, (R4): for all ω 6= ε ∈ 2-pds,

(q0a3[ω]q0)⊢∗A(q0b3[ω]q0).

From these rules, we prove by induction the following property P(n):

(q0a3[a2[a1
n]b2[Ω1]Ω2]q0)⊢∗A(q0a3[Ω2]q0)

f(n).

Basis: By applying (G30) then (T1), we get:

(q0a3[γ0,0b2[Ω1]Ω2]q0)⊢∗A(q0b3[b2[Ω1]Ω2]q0)⊢∗A(q0a3[Ω2]q0),

since γ0,0 = a2[ε] and f(0) = 1, P(0) is proved.
Induction step: Suppose P(n), for n ≥ 0,

(q0a3[a2[a1
n+1]b2[Ω1]Ω2]q0)

(by (G3)) ⊢∗A
n

∏

m=0

(q0a3[a2[a1
m]b2[a1

m]γ′m,nb2[Ω1]Ω2]q0)

( by induction hypothesis) ⊢∗A
n

∏

m=0

(q0a3[γ
′
m,nb2[Ω1]Ω2]q0)

f(m)

(by (R4)) ⊢∗A
n

∏

m=0

(q0b3[γ
′
m,nb2[Ω1]Ω2]q0)

f(m)

(by (C2)) ⊢∗A
n

∏

m=0

(q0b3[b2[Ω1]Ω2]q0)
f(m)g(n−m)

(by (T1)) ⊢∗A
n

∏

m=0

(q0a3[Ω2]q0)
f(m)g(n−m)

= (q0a3[Ω2]q0)
f(n+1).



Then, by composing the initialization rule, the derivation above and the ending
rule (T0), we get for all n ≥ 0:

(q0d3[a2[a1
n]]q0) ⊢∗A (q0a3[γn,nb2[a1

n]]q0)

⊢∗A (q0a3[ε]q0)

⊢∗A αf(n).

Second step: By proceeding as in the proof of Lemma 13, we obtain an automaton

A1 ∈ 3-DCPDAN such that for all n ≥ 0, m ∈ [1, n]

(q0b3[γ
′
m,n]q0)⊢∗A(q0b3[ε]q0)

g(n−m)

(it is the rule (C2) of the proof of Lemma 13) and fulfilling (Q3): there are no
transition starting with (q0, ε,b3w).
By adding the new symbol b2 and by transforming the transitions in a such way
as treat blocking pds as an empty pds, we obtain an automaton fulfilling (C2).
This transformation does not introduce transitions starting with (q0, ε,b3w) and
(Q3) holds. The other derivations are obtained in an obvious way.

Remark 3. Let us see the sequence g as a formal power series

g =

∞
∑

n=0

g(n)Xn.

Proposition 14 asserts that the series 1
1−Xg

belongs to Sk+1. In other words,
the convolution inverse of every formal power series of the form 1 −Xg, where
g ∈ Sk, belongs to Sk+1.

Proposition 16 (Series composition). Let g ∈ Sk, k ≥ 2, g(0) = 0 and
f ∈ SN

k+1, then the sequence (f • g)(X) = f(g(X)) belongs to SN
k+1.

Proof. For n ≥ 0, (f • g)(n) = f(n) · h(n) where

h(n) =
∑

(i1,...,im)∈In

g(i1) · · · g(im)

and In = {(i1, . . . , im) | m ∈ [1, n], i1, . . . , im ≥ 1,
∑

j∈[1,m]

ij = n}

Then, by using Proposition 7, it suffices to prove that the sequence h(n)
belongs to Sk+1. For that, it is necessary to be able to enumerate all the m-
tuples of In. Let us encode elements of In by words in {a2, b2}n−1 · b2.

All p = (p1 + 1, . . . , pm + 1), pi ≥ 0 that belongs to In is associated in a
bijective way to the word up = a2

p1b2a2
p2b2 · · ·a2

pmb2 in {a2, b2}n−1 · b2.
We can then represent every element of In by a 2-pds by using the following

encoding of the words belonging to {a2, b2}∗:



∀u = β1 · · ·βn ∈ {a2, b2}n,

γu = β1[a1]β2[a1a1] · · ·βn[a1
n]c2[a1

n].

Now, we need an order to enumerate all the m-tuples of In. We choose the
reversed lexical order: for all u, v ∈ {a2, b2}n, we write u <n v iff u = u′a2w
and v = v′b2w. We get then a total order over elements {a2, b2}n−1 · b2. The
least element is a2

n−1b2 and the greatest element is b2
n. We define the successor

relation for this order: if u = b2
pa2w, the successor of u is succlex(u) = a2

pb2w.

First step: We suppose we are givenA = (Q, {α},Ak+1, ∆, q0, ak+1) ∈ (k + 1)-DCPDA,
with Ak+1 ⊇ {ak+1,ak+1, bk+1, ck+1}, Ai ⊇ {ai} for i ∈ [k, 3], A2 ⊇ {a2, b2, c2}
and A1 = {a1}, allowing the following basic derivations:
initialization, (I0): ∀n ≥ 0,

(q0ak+1[Tk,3[c2[a1
n]]]q0)⊢∗A(q0ck+1[Tk,3[γa2

n−1b2 ]]]q0),

m-tuple-generation, (G1): for all u ∈ {a2, b2}n−1 · b2, u 6= b2
n,

(q0ck+1[Tk,3[γu]]q0)⊢∗A(q0ck+1[Tk,3[γsuccn(u)]]q0)(q0bk+1[Tk,3[γu]]q0),

m-tuple-generation, (G10):

(q0ck+1[Tk,3[γb2
n ]]q0)⊢∗A(q0bk+1[Tk,3[γb2

n ]]q0),

g-computation, (D2): for all ℓ ≥ 1, i0, i1, . . . , iℓ ≥ 0,

(q0bk+1[Tk,3[a2[a1
i0 ]a2[a1

i1 ] · · · a2[a1
iℓ−1 ]b2[a1

iℓ ]Ω2]]q0)⊢∗A(q0ak+1[Tk,3[Ω2]]q0)
g(ℓ+1),

g-computation, (D20): for all i ≥ 0,

(q0bk+1[Tk,3[b2[a1
i]Ω2]]q0)⊢∗A(q0ak+1[Tk,3[Ω2]]q0)

g(1),

ending rules, (T0): for all i ≥ 0,

(q0ak+1[Tk,3[c2[a1
i]]]q0)⊢∗Aα

ending rules, (T1): for all i ≥ 0,

(q0ak+1[Tk,3[a2[Ω1]Ω2]]q0)⊢∗A(q0bk+1[Tk,3[a2[Ω1]Ω2]]q0),

ending rules, (T1’): for all i ≥ 0

(q0ak+1[Tk,3[b2[Ω1]Ω2]]q0)⊢∗A(q0bk+1[Tk,3[b2[Ω1]Ω2]]q0).

Let us prove that such an automaton computes the sequence h. Since <n

defines a total order over {a2, b2}n−1b2 whose the least element is a2
n−1b2 and

the greatest is b2
n, by applying the initialization rule (I0), then iteration of (G1),

then (G10), we get:

(q0ak+1[Tk,3[c2[a1
n]]]q0) ⊢∗A (q0ck+1[Tk,3[γa2

n−1b2 ]]]q0)

⊢∗A
∏

p∈In

(q0bk+1[Tk,3[γup
]]q0). (14)



Starting from each factor of the product (14) encoding p = (p1, . . . , pm),
pi ≥ 1, we get, by applying iteratively (C2,T1) and (C20,T1) (or (C2) when
γupi,...,pm

start with a2 and (C20) when γupi,...,pm
start with b2):

(q0bk+1[Tk,3[γup
]]q0) ⊢∗A (q0ak+1[Tk,3[γup2,...,pm

]]q0)
g(p1)

⊢∗A (q0bk+1[Tk,3[γup2,...,pm
]]q0)

g(p1)

⊢∗A · · ·
⊢∗A (q0ak+1[Tk,3[c2[a1

n]]]q0)
g(p1)···g(pm). (15)

Let us apply to each element of the product (14), the associated derivation
(15). We get

(q0ak+1[Tk,3[c2[a1
n]]]q0) ⊢∗A

∏

(p1,...,pm)∈In

(q0ak+1[Tk,3[c2[a1
n]]]q0)

g(p1)···g(pm)

⊢∗A
∏

(p1,...,pm)∈In

αg(p1)···g(pm) (by rule (T0))

= α
P

(p1,...,pm)∈In
g(p1)···g(pm) = αh(n).

The automaton A computes then the sequence h.

Second step: Let us construct a such an automaton. Using a construction sim-
ilar to that given in the proof of Proposition 14 (and similar to that given
in the proof of Proposition 15 if k = 2) for the derivation (C2), we get A2 =
(Q2, ∅, (B1, . . . , Bk+1), ∆2, q0, bk+1) ∈ (k + 1)-DCPDA, whereBk+1 ⊇ {bk+1,ak+1},
Bi ⊇ {ai} for i ∈ [3, k], B2 ⊇ {a2, b2, c2} and B1 = {a1} and fulfilling derivations
(C2) and (C20) and conditions (Q2) and (Q2(ak+1)) stated in Lemma 4.

We define A = (Q, {α}, (A1, . . . , Ak+1), ∆, q0, ak+1) where

Q = Q2 ∪ {q1, q2}, Ai = Bi for i ∈ [1, k], Ak+1 = Bk+1 ∪ {ck+1, ak+1},

and ∆ is the union of ∆2 with the following transitions: for w = ak · · · a3,

(0.1) ∆(q0, ε, ak+1wc2a1) = (pushb2
, q1),

(0.2) ∆(q1, ε, ak+1wa2a1) = ∆(q1, ε, ak+1wb2a1) = (pusha2
pop1, q1),

(0.3) ∆(q1, ε, ak+1wa2) = ∆(q1, ε, ak+1wb2) = (pop2 changeck+1
, q0),

(1.1.1) ∆(q0, ε, ck+1wb2a1) = (changebk+1
pushck+1

, q2),
(1.1.2) ∆(q0, ε, ck+1wa2a1) = (changebk+1

pushck+1
changeb2

, q0),
(1.2.1) ∆(q2, ε, ck+1wb2a1) = (pop2, q2),
(1.3.0) ∆(q2, ε, ck+1wc2a1) = (popk+1, q0),
(1.3.1) ∆(q2, ε, ck+1wa2a1) = (changeb2

, q1),
(1.4.1) ∆(q1, ε, ck+1wb2a1) = ∆(q1, ε, ck+1wa2a1) = (pop1 pusha2

, q1),
(1.5.1) ∆(q1, ε, ck+1wa2) = (pop2, q0),

(3) ∆(q0, α,ak+1wc2a1) = (popk+1, q0),



(4) ∆(q0, α,ak+1wb2a1) = ∆(q0, α,ak+1wa2a1) = (changebk+1
, q0).

These transitions are all incompatibles between them. Since ck+1 and ak+1

are new symbols, and A2 is deterministic and fulfills the condition (Q3(ak+1)),
the addition of transitions ∆1 does not modify the determinism of ∆. The au-
tomaton A is then deterministic.

Now, we prove that A realize the derivations describe in the first step.
Derivations (C2) and (C20) hold by transitions ∆2. The ending rule (T0)

is obtained by applying the transition (3), derivations (T1) and (T1’) hold by
choice of transitions (4).

By transitions (0.1), then iteration of (0.2), then (0.3) we get the following
derivation:

(q0ak+1[Tk,3[c2[a1
n]]]q0) ⊢A (q1ak+1[Tk,3[b2[a1

n]c2[a1
n]]]q0)

⊢∗A (q1, ak+1[Tk,3[a2[ε]a2[a1] · · ·a2[a1
n−1]b2[a1

n]c2[a1
n]]]q0)

⊢A (q0, ck+1[Tk,3[a2[a1] · · ·a2[a1
n−1]b2[a1

n]c2[a1
n]]]q0)

= (q0ck+1[Tk,3[γa2
n−1b2 ]]q0).

Then the initial derivation (I0) holds.
Let us prove that generation rules hold. To verify (G1), we distinguish two

cases according to the first letter of u ∈ {a2, b2}n−1 · b2, u 6= b2
n:

Case 1: if u = b2
ia2w, then, let ω be the 2-pds such that γu = b2[a1] · · · b2[a1

i]a2[a1
i+1]ω,

we get the following derivation:

(q0ck+1[Tk,3[γu]]q0)

(by 1.1.1) ⊢A (q2ck+1[Tk,3[γu]]q0)(q0bk+1[Tk,3[γu]]q0)

(by (1.2.1)) ⊢i
A (q2ck+1[Tk,3[a2[a1

i+1]ω]]q0)(q0bk+1[Tk,3[γu]]q0)

(by (1.3.1)) ⊢A (q1ck+1[Tk,3[b2[a1
i+1]ω]]q0)(q0bk+1[Tk,3[γu]]q0)

(by (1.4.1)) ⊢i
A (q1ck+1[Tk,3[a2[ε] · · · a2[a1

i]b2[a1
i+1]ω]]q0)(q0, bk+1[Tk,3[γu]]q0)

(by (1.5.1)) ⊢A (q0ck+1[Tk,3[γsucclex(u)]]q0)(q0bk+1[Tk,3[γu]]q0).

Case 2: if u = a2w, then, let ω such that γu = a2[a1]ω.
We get the following derivation:

(q0ck+1[Tk,3[γu]]q0)

(by (1.1.2)) ⊢A (q0ck+1[Tk,3[b2[a1]ω]]q0)(q0bk+1[Tk,3[γu]]q0)

= (q0ck+1[Tk,3[γsucclex(u)]]bk+1[Tk,3[γu]]q0).

Finally, let us prove that the generation rule (G10) holds:

(q0ck+1[Tk,3[γb2
n ]]q0)

(by (1.1.1)) ⊢A (q2ck+1[Tk,3[γb2
n ]]q0)(q0bk+1[Tk,3[γb2

n ]]q0)

(by (1.2.1)) ⊢n
A (q2ck+1[Tk,3[c2[a1

n]]]q0)(q0bk+1[Tk,3[γb2
n ]]q0)

(by (1.3.0)) ⊢A (q0bk+1[Tk,3[γb2
n ]]q0).



Proposition 17 (Sequence composition). Let k1, k2 ≥ 1, f ∈ Sk1+1 and
g ∈ SN

k2+1, then g◦f ∈ SN
k1+k2+1.

Construction: Using Lemma 3, after a suitable choice for the concrete sets of
states and pushdown alphabets we obtainA1 ∈ (k1 + 1)-DCPDA

N
(A1, . . . , Ak1+1),

and A2 ∈ (k2 + 1)-DCPDA
N (B1, . . . , Bk2+1) fulfilling conditions:

(P1.1) ∀Ωk ∈ Ik, (q0, ak1+1[ak1 [· · · [a2[a1
n]] · · · ]], q0)⊢∗A1

(q0,ak1+1[ε], q0)
f(n).

(P1.2) ∀Ωk ∈ Ik, (r0, bk2+1[bk2 [· · · [b2[b1n]] · · · ]], r0)⊢∗A2
(r0,bk2+1[ε], r0)

g(n).
(P2.1) ∆1 does not contain lefthand side of the form (q0, ε, ε), q ∈ Q1.
(P2.2) ∆2 does not contain lefthand side of the form (q, ε, ε), q ∈ Q2.
(P3.1) ∆1 does not contain lefthand side of the form (q, ε,ak+1 · w).
(P3.2) ∆2 does not contain lefthand side of the form (r0, ε,bk+1 · w,o).
(P4) A1 ∩Bk2+1 = {a1} = {bk2+1}.
We considerA = (Q, {α}, (C1, . . . , Ck1+k2+1),N , ∆, (q0, r0), ak1+1) ∈ (k1 + k2 + 1)-DCPDA

N

where:Q = Q1×Q2 andCk2+k1+1 = Ak1+1, . . . , Ck2+2 = A2, Ck2+1 = Bk2+1, . . . , C1 =
B1 and ∆ is the union of the following transitions:
Transitions inherited from A1:

for all∆1(q1, ε, w1) = (instr, p1), w1 ∈ top((k1 + 1)-pds), for all o ∈ {0, 1}|N|,
(1) ∆((q1, r0), ε, w1,o) = (instr+k2 , (p1, r0)),

where the notation instr+k means:

– if instr = popi then instr+k = popi+k

– else instr+k = instr.

Transitions inherited from A2:
for all ∆2(r, ε, w2,o) = (instr, r′), w2 ∈ top((k2 + 1)-pds), r, r′ ∈ Q2, and for

all q1 ∈ Q1, w1 ∈ Ak1+1 · · ·A2:
(2) ∆((q1, r), ε, w1 · w2,o) = (instr, (q1, r

′)).

Proof. Let us prove that the above automaton A is deterministic.
The fact that the initial automata Ai (i = 1, 2) are deterministic, entails that no
pair of transitions of the same type are incompatible. Now, suppose that there
is one transition of type (1) compatible with a transition of type (2). We would
then have

((q, r0), w1) = ((q1, r), w
′
1 · w′

2),

for q, q1 ∈ Q1, r ∈ Q2, w1 ∈ top((k1 + 1)-pds(A1, . . . , Ak1+1)), w
′
1 ∈ Ak1+1 · · ·A1,

w′
2 ∈ top((k2 + 1)-pds)(B1, . . . , Bk2+1). The only possibility for a such an equal-

ity is that
r = r0 and [w′

2 = a1 = bk2+1 or w′
2 = ε]

But, by condition (P3.2), there is no transition of ∆2 starting with (r0,bk2+1),
in the same way, by (P2.2′), there is no transition of ∆2 starting with (r0, ε).
Finally, we are sure that A is deterministic.
Let us check now that

((q0, r0)ak1+1[· · ·a2[bk2+1[· · · [b2[b1n]] · · · ]] · · · ](q0, r0))⊢∗A((q0, r0)ak1+1[ε](q0, r0))
f(g(n))

(16)



In order to show such a derivation, we introduce the partial map
ϕ : (k2 + 1)-pds(B1, . . . , Bk2+1)→ 1-pds(A1) fulfilling for all ω ∈ (k2 + 1)-pds(B1,
. . . , Bk2+1):

ϕ(ω) = a1
n ⇔ (r0ωr0)⊢∗A2

(r0bk2+1r0)
n or ω = ε and ϕ(ω) = ε. (17)

Hence, ϕ(ω) is defined exactly for those ω such that (r0ωr0) derived (modulo
A2) into (r0bk2+1r0)

∗.

Lemma 5. For all (k1 + 1)-term T1[Ω1], where Ω1 is an indeterminate of level
1 admitting one and only one occurrence in T1, for all ω1 ∈ dom(ϕ) and ω ∈
(k1 + 1)-pds,

if (q, ε, T1[ϕ(ω1)])→A1 (q′, ε, ω),

then, there exists ω2 ∈ dom(ϕ) and a (k1 + 1)-term T2[Ω1], such that for all
p ∈ Q

((q, r0)T1
+k2 [ω1](p, r0))⊢∗A((q′, r0)T2

+k2 [ω2](p, r0)) and T2[ϕ(ω2)] = ω.

Proof. Let us suppose that the applied transition is (q, ε, w, instr, q′), i.e.,

(q, ε, T1[ϕ(ω1)])→A1 (q′, ε, instr(T1[ϕ(ω1)])) and ω = instr(T1[ϕ(ω1)]). (18)

Let us distinguish two cases, depending on the position of the indeterminate in
T1:
Case 1: if Ω1 does not appear in top symbols of T1, then instr(T1) is defined.
Let T2[Ω1] = instr(T1[Ω1]). We have then ω = T2[ϕ(ω1)].

Since top1(T ) 6= Ω1, | top(T1
+k2 [ω])| ≤ k1 + 1, and by using the transition of

type (1) associated to the transition applied in (18) (and having for test χN (0)),
we get

((q, r0)T1
+k2 [ω1](p, r0)) ⊢A ((q′, r0)T2

+k2 [ω1](p, r0)).

Case 2: if the occurrence of Ω1 appears in top symbols of T1, we distinguish two
sub-cases depending on the level of the instruction instr.

Case 2.1 if instr is an instruction of level greater than 1, then instr(T1) is de-
fined. Let T2 = instr(T1), then instr+k2(T1

+k2) = T2
+k2 and ω = T2[ϕ(ω1)].

We distinguish again two subcases depending on the value of ϕ(ω1):
Case 2.1.1: if ϕ(ω1) = ε, then, by applying the transitions of type (2), then
the transition of type (1) associated to the computation (18):

((q, r0)T1
+k2 [ω1](p, r0)) ⊢∗A ((q, r0)T1

+k2 [ε](p, r0))

⊢∗A ((q′, r0) instr+k2(T1
+k2)[ε](p, r0)).

The lemma holds then for ω2 = ε since T2[ϕ(ω2)] = T2[ε] = ω.
Case 2.1.2: if ϕ(ω1) = a1

n+1, n ≥ 0, then by definition of ϕ, there exists
ω̂1 ∈ dom(ϕ) such that:

(r0ω1r0)⊢∗A2
(r0bk2+1r0)(r0ω̂1r0) et ϕ(ω̂1) = a1

n.



By applying the transitions of type (2), then the transition of type (1) asso-
ciated to the computation (18):

(q, r0)T1
+k2 [ω1](p, r0)) ⊢∗A1

((q, r0)T1
+k2 [bk2+1ω̂1](p, r0))

⊢∗A1
((q′, r0) instr+k2(T1

+k2 [bk2+1ω̂1])(p, r0)).

Then the lemma holds for ω2 = bk2+1ω̂1 since T2[ϕ(ω2)] = T2[a1
n+1] = ω.

Case 2.2 if instr is an instruction of level 1, let T2 = T1. We get then ω =
T2[instr(ϕ(ω1))]. We distinguish again two cases depending on the value of
ϕ(ω1):
Case 2.2.1: if ϕ(ω1) = ε, then by applying transitions of type (2), then the
transition of type (1) associated to the computation (18):

(q, r0)T1
+k2 [ω1](p, r0)) ⊢∗A1

((q, r0)T1
+k2 [ε](p, r0))

⊢∗A1
((q′, r0)T1

+k2 [instr+k2(ε)](p, r0))

(in this case instr = pusha1
). Then, the lemma holds for ω2 = instr+k2(ε)

since T2[ϕ(ω2)] = T2[ϕ(ε)] = ω.
Case 2.2.2: if ϕ(ω) = a1

n+1, n ≥ 0, then by applying the transitions of type
(2), then the transition of type (1) associated to the computation (18):

(q, r0)T1
+k2 [ω1](p, r0)) ⊢∗A1

((q, r0)T1
+k2 [bk2+1ω̂1](p, r0))

⊢∗A1
((q′, r0)T1

+k2 [instr+k2(bk2+1ω̂1)](p, r0)).

Then the lemma holds for ω2 = instr+k2(bk2+1ω̂1) since

T2[ϕ(ω2)] = T2[instr(a1
n+1)] = ω.

We extend now this lemma to derivations by introducing a partial function
Φ : VA → VA1 , from the set of variables of A (defined in §4.1 by equation (1))
to the set of variables A1. For all T [Ω1, . . . , Ωn] ∈ T(k1+1)(A1, . . . , Ak1+1), Ωi

indeterminates of level 1 and ω1, . . . , ωn ∈ (k2 + 1)-pds(B1, . . . , Bk2+1), q ∈ Q1,
we define

Φ((q, r0)T
+k2 [ω1, . . . , ωn](q′, r0)) = (qT [ϕ(ω1), . . . , ϕ(ωn)]q′)

hence Φ(V ) is defined exactly for variables V = ((q, r0)T
+k2 [ω1, . . . , ωn](q′, r0))

such that for every Ωi appearing in T , ωi ∈ dom(ϕ). We extend the map Φ to
words by setting:

Φ(V1V2 · · ·Vm) = Φ(V1)Φ(V2) · · ·Φ(Vm) if for all i , Vi ∈ dom(Φ)

and Φ(V1V2 · · ·Vm) is undefined otherwise.

Lemma 6. If U ∈ dom(Φ) and U ′
1 ∈ VA1

∗ are such that

Φ(U) ⊢A1 U
′
1

then, there exists a word U ′ ∈ dom(Φ) such that

U⊢∗AU ′ & Φ(U ′) = U ′
1.



Proof. Let us prove this lemma. It is sufficient to prove it in the case where
U is reduced to one variable. Suppose U = (q, r0)T [ω1, ω2, . . . , ωn](q′, r0) where
T [Ω1, Ω2, . . . , Ωn] is a (k1 + 1)-term, each ωi belongs to dom(ϕ) and q, q′ ∈
Q1. Without loss of generality, we can suppose that each Ωi has exactly one
occurrence in T and for all 1 ≤ i < j ≤ n, the occurence of Ωi is on the left of
the occurence of Ωj . We suppose that

Φ(U) ⊢A1 U
′
1. (19)

Let us distinguish three cases, depending on the type of rule used in derivation
(19).
Case 1: decomposition rule.
This means that T = T ′ · T ′′ and then, there exists n′ ∈ [1, n] such that

qT [ϕ(ω1), . . . , ϕ(ωn)]q′ ⊢A1 qT1[ϕ(ω1), . . . , ϕ(ωn′)]q′′ · q′′T2[ϕ(ωn′+1), . . . , ϕ(ωn)]q′

= U ′
1.

In this case, by decomposition rule, U⊢∗AU ′ with

U ′ = (q, r0)T1
+k2 [ω1, . . . , ωn′ ](q′′, r0) · (q′′, r0)T2

+k2 [ωn′+1, . . . , ωn](q′, r0)

fulfills the conclusion of the lemma.
Case 2: transition rule.
There exists p ∈ Q1 and an instruction instr such that (19) can be translated in:

(q, T [ϕ(ω1), . . . , ϕ(ωn)], q′) ⊢A1 (p, instr(T [ϕ(ω1), . . . , ϕ(ωn)]), q′).

By applying the lemma above, there exists U ′ ∈ dom(Φ) such that U⊢∗A1
U ′ and

Φ(U ′) = (p, T [ϕ(ω1), . . . , ϕ(ωn)], q′).

We can now prove the derivation (16). Let k = k1 + k2 + 1, we remark that,

Φ((q0, r0)Tk,k2+1
+k2 [bk2 [· · · b2[b1n] · · · ]](q0, r0)) = (q0Tk,k2+1[a1

g(n)]q0)

⊢∗A1
(q0ak1+1[ε]q0)

f(g(n)).

Applying Lemma 6 iteratively, we obtain some U ′ ∈ dom(Φ) such that:

((q0, r0)Tk,k2+1
+k2 [bk2 [· · · b2[b1n] · · · ]](q0, r0))⊢∗AU ′ and Φ(U ′) = (q0ak1+1[ε]q0)

f(g(n)).

But the only possible value for a pre-image by Φ of (q0ak1+1[ε]q0)
f(g(n)) is

U ′ = ((q0, r0)ak1+1[ε](q0, r0))
f(g(n)),

since ak+1[ε] cannot correspond to term without indeterminate of level 1.



4.4 Proofs of the Section 3

Theorem 7:

Proof. It is possible to construct a k-DCPDAN recognizing the language L ∈
({α} ∪ {βo | o ∈ {0, 1}m})∗:

L = {αs(0)x0 · · ·αs(n)xn | n ≥ 0, ∀i ∈ [1, n], xi = βχN (i)}

and whose computation graph consists of an infinite path labelled by the word

αs(0)βχN (0) · · ·αs(n)βχN (n) · · ·

Let Po = {n | χN (n) = o}. The structure S = 〈IN, +1, Σs(IN), (Σs(Po))o∈{0,1}m〉
is interpretable in this graph. From Theorem 6, since 〈IN,+1,N〉 has a decidable
theory, the structure S so has.

Finally, 〈IN,+1,Σs(IN), Σs(N1), . . . , Σs(Nm)〉 is clearly interpretable in S
since for every i ∈ [1,m],

Σs(Ni) =
⋃

o|πi(o)=1

Σs(Po)

and has then a decidable MSO-theory.

Proposition 4:

Proof. Suppose that P (X) =
∑m

i=0 aiX
i. From definition, u(n) = P (n) ∈ ΣS2

iff there exists v ∈ S2 such that Σv = u.
Let v be the sequence defined by: v(0) = u(0) and for all n ≥ 0, v(n + 1) =

∑m
i=0 ai

∑i−1
j=0(

j
i )n

j .2

Clearly, v ∈ S2 since it is N-rational (Proposition 1) and Σv = u.

Proposition 5:

Proof. Let s be a strictly increasing sequence. We consider the sequence u de-
fined by: u(0) = 0 and for all n ≥ 0, u(n+1) = 1 if n+1 ∈ s(N+) and u(n+1) = 0

if n+ 1 /∈ s(N+). Clearly v ∈ S
s(N+)
2 and Σv = u.

Corollary 3:

Proof. From Proposition 4, Proposition 5 and Theorem 8(6), the sequence t

belongs to S
s(IN+)
3 . Then, from Theorem 6, the structure 〈IN,+1, t(IN)〉 has a

decidable MSO-theory.

Corollary 2:

2 here (j

i ) denotes the binomial coefficient



Proof.

1. Let ui = 0 and ui(n + 1) =
∑ki−1

j=0 (j
ki

)nj . Clearly, Σui(n) = nki and from
Theorem 4, ui ∈ S2 since ui is IN-rational. Then, for every i ∈ [1,m], the
sequence (nki)n∈IN belongs to ΣS2. Applying Corollary 1, the MSO-theory
of 〈IN,+1, {nkm}n≥0, {nkmkm−1}n≥0, . . . , {nkm···k1}n≥0〉 is decidable.

2. Let u the sequence defined by u(0) = 1 and u(n + 1) = 2n for n ≥ 0.
Clearly, u ∈ S2 since it is N-rational (Proposition 1) and Σv1 = u. Applying
Corollary 1, the MSO-theory of 〈IN,+1, vm(IN), vm−1(IN), . . . , v1(IN)〉, with
v1(n) = 2n and vi+1(n) = 2vi(n) is decidable.

5 Proof of Theorem 8

Fact 1 Let k ≥ 2 and u ∈ NN. The sequence u belongs to ΣSN
k iff ∆u belongs

to SN
k .

This follow easily from point (0) of Theorem 4.

Lemma 7. Let k ≥ 1 and U ∈ ΣSN
k+1. Then EU ∈ ΣSN

k+1.

Proof. Suppose that U ∈ ΣSN
k+1. We notice that ∆EU = E∆U . Using Fact 1

and stability of SN
k+1 by shift, we obtain that EU ∈ ΣSN

k+1.

Lemma 8. Let k ≥ 1 and U, V ∈ ΣSN
k+1. Then U + V ∈ ΣSN

k+1.

Lemma 9. Let k ≥ 2 and U, V ∈ ΣSN
k+1. Then U ⊙ V ∈ ΣSN

k+1.

Proof. Let U, V ∈ ΣSN
k+1. The following identity is well-known:

∆(U ⊙ V ) = ∆(U ⊙ EV ) + U ⊙ (∆V ).

By Theorem 4, the sequences U, V,EV all belong to SN
k+1, and the righthand side

of the above identity must belong to SN
k+1. By Fact 1, U ⊙ V ∈ ΣSN

k+1.

Lemma 10. Let k ≥ 2 and U ∈ ΣSN
k+1, V ∈ ΣSk. Then U × V ∈ ΣSN

k+1.

Proof. Let U = Σu and V = Σv for some u ∈ SN
k+1 and v ∈ Sk. Let us transform

the expression ∆(U × V ) into an expression which does not use the operator ∆

any more.

∆(Σu× Σv) =
(Σu× Σv)(1 −X)− Σu(0) ·Σv(0)

X

=
u×v
1−X

− u(0)·v(0)
1−0

X

= E(
u× v
1−X )

= EΣ(u× v).

By Theorem 4(3), the final expression obtained belongs to SN
k+1, hence Σu×Σv

belongs to ΣSN
k+1.



Lemma 11. Let V ∈ ΣSk, k ≥ 2, such that V (0) ≥ 1. Let U be the sequence
defined by

U(0) = 1 and for all n ≥ 0, U(n+ 1) =

n
∑

k=0

U(k) · V (n− k).

Then U ∈ ΣSk+1.

Proof. Let v ∈ Sk+1 such that V = Σv. as asserted in 3

U =
1

1− Xv
1−X

.

Let us compute the series ∆U .

∆U = ∆(
1

1− Xv
1−X

) = ∆(
1−X

1−X −Xv ) =
1

X
[

(1−X)2

1−X −Xv − 1]

hence

∆U =
1

X
[
(−X +X2 +Xv)

1−X −Xv ] (20)

Let us compute the series U × v − 1:

U × v − 1 =
(1 −X)v

1−X −Xv − 1 =
1

X
[
(−X +X2 +Xv)

1−X −Xv ] (21)

From Equations (20),(21) we get the identity:

∆U = U × v − 1. (22)

By the stability properties established in Theorem 4, U belongs to Sk+1 and
U × v belongs to Sk+1too. The hypothesis that U(0) = 1 and V (0) ≥ 1 ensures
that U × v − 1 belongs to Sk+1. Formula (22) shows that U ∈ ΣSk+1.

Lemma 12. Let k1 ≥ 1, k2 ≥ 1, U ∈ ΣSk1+1 and V ∈ ΣSN
k2+1. Then U◦V ∈

ΣSN
k1+k2+1.

Sketch of proof: Let U = Σu, V = Σv for some u ∈ Sk1+1, v ∈ SN
k2+1. Then

U◦V =
∑m=V (n)

m=0 u(m). Hence

(∆(U◦V ))(n) =

m=V (n+1)
∑

m=V (n)+1

um

Let us prove that
∑m=V (n+1)

m=V (n)+1 um belongs to SN
k1+k2+1.

Let k = k1 + k2 + 1. Some k-DCPDA computing U◦V can be constructed
along the following lines.
Let us notice that, by Theorem 4, point (6), V belongs also to Sk2+1. By



Lemma 3, there exists A ∈ k1 + 1-DCPDA over pushdown alphabets Ak1+1 ⊇
{ak1+1,ak1+1} andAi ⊇ {ai} for i ∈ [1, k1], and there exists B ∈ k2 + 1-DCPDAN

over pushdown alphabets Bk2+1 ⊇ {bk2+1,bk2+1} and Bi ⊇ {bi} and there ex-
ists C ∈ k2 + 1-DCPDAN over pushdown alphabets Ck2+1 ⊇ {ck2+1,ck2+1} and
Ci ⊇ {ci} for i ∈ [1, k], b1 = c1 with sets of states QA ∋ q0, QB, QC, chosen in
such way as:

QB ∩QC = {r0}
(q0ak[ak−1[· · · [ak2+1

n]] · · · ]]q0) ⊢∗A (q0ak[ε]q0)
u(n) (23)

(r0bk2+1[bk2 [· · · [b2[b1n]] · · · ]]r0) ⊢∗B (r0bk2+1[ε]r0)
v(n) (24)

(r0ck2+1[ck2 [· · · [c2[c1n]] · · · ]]r0) ⊢∗C (r0ck2+1[ε]r0)
V (n). (25)

Derivation (24) shows the existence of a sequence H1, . . . , Hv(n) of (k2 + 1)-
terms fulfilling:

Hv(n+1) = bk2+1[bk2 [· · · [b2[b1n+1]] · · · ]Ωk2 ], H1 = bk2+1[Ωk2 ],

(r0Hi+1r0) ⊢B (r0bk2+1[Ωk2 ]r0)(r0Hi[Ωk2 ]r0).

Let γn = dk1+1[· · · [d2[d1
n]] · · · ]. By a construction analogous with that of Propo-

sition 17, we obtain D ∈ k-DCPDAN , over the pushdown alphabetsDi ⊇ Bi∪Ci,
for all i ∈ [1, k2 + 1], Dk2+i ⊇ Ai, for i ∈ [1, k1 + 1] and Dk contains the new
symbols dk and dk, and over the set of states QD ⊇ QA × (QB ∪ QC), making
the following rules valid:
argument generation, (G1): for every n ≥ 0

((q0, r0)dk[Tk−1,k1+1[γn]](q0, r0))⊢∗D
v(n+1)
∏

i=1

((q0, r0)Tk,k1+1[Hi·Tk1+1,2[a1
n]](q0, r0)),

u◦v-computation, (C2): for every n ≥ 0, v(n+ 1) ≥ i ≥ 1

(q0, r0)Tk,k1+2[Hi · Tk1+1,2[a1
n]](q0, r0)⊢∗D((q0, r0)dk[ε](q0, r0))

u(i+V (n)).

Combining (G1) and (C2) we finally obtain:

(q0, r0)dk[Tk−1,k1 [γn]](q0, r0) ⊢∗D
v(n+1)
∏

i=1

((q0, r0)dk[ε](q0, r0))
u(i+V (n))

= ((q0, r0)dk[ε](q0, r0))
∆(U◦V )(n).

Lemma 13. Let k ≥ 2. Let U1, U2, . . . , Up be sequences of integers, P1, P2, . . . , Pp

be polynomials in ΣSN
k+1[X1, X2, . . . , Xp], c1, c2, . . . , cp ∈ N such that: for all

1 ≤ i ≤ p

Ui(n+ 1) = Pi(n,U1(n), U2(n), . . . , Up(n)) and ci = Ui(0) ≤ Ui(1).

Then U1 ∈ ΣSN
k+1.



Proof. Let Ui, Pi, ci fulfilling the hypothesis of the lemma. Let a0(n), a1(n), . . . , aq(n)
be a sequence enumerating all the coefficients of the polynomials P1, P2, . . . , Pp.

There exists polynomials Qi ∈ N[X0, . . . , Xq+p], such that for all i ∈ [1, p]:

Pi(n,U1(n), U2(n), . . . , Up(n)) = Qi(a0(n), . . . , aq(n), U1(n), . . . , Up(n)).

The Euler-Mac-Laurin formula applied to polynomials Qi expresses the differ-
ence

Qi(X0, . . . , Xq+p)−Qi(Y0, . . . , Yq+p)

under the form:

∑

k̄

1

k̄!

∂k̄Qi

(∂X0)k0 . . . (∂Xq+p)kq+p
(Y0, . . . , Yq+p) · (X0−Y0)

k0 · · · (Xq+p−Yq+p)
kq+p ,

(26)
where k̄ = (k1, k2, . . . , kq+p) varies over all the (q + p)-tuples with sum k1 +
k2 + . . . + kq+p smaller of equal to the degree Qi. For every monomial M =

Xd0
0 Xd1

1 · · ·X
dq+p

q+p the partial derivative

1

k̄!

∂k̄M

(∂X0)k0 . . . (∂Xq+p)kq+p
(Y0, . . . , Yq+p),

is equal to
(

d0

k0

)(

d1

k1

)

· · ·
(

dq+p

kq+p

)

· Y d0−k0
0 Y d1−k1

1 · · ·Y dq+p−kq+p

q+p . (27)

Every partial derivative

Ri,k̄ =
∂k̄Qi

(∂X0)k0 . . . (∂Xq+p)kq+p
(Y0, . . . , Yq+p)

is a linear combination, with coefficients in N, of monomial of the form (27),
hence it has only non-negative integer coefficients:

Ri,k̄ ∈ N[Y0, . . . , Yq+p].

Let us apply the following substitution to the indeterminatesX0, . . . , Xq+p, Y0, . . . , Yq+p,

Xj ← aj(n+ 1) pour 0 ≤ j ≤ q; Xq+ℓ ← Uℓ(n+ 1) pour 0 ≤ ℓ ≤ p,

Yj ← aj(n) pour 0 ≤ j ≤ q; Yq+ℓ ← Uℓ(n) pour 0 ≤ ℓ ≤ p.
We obtain: (∆Ui)(n+ 1) =

∑

k̄

Ri,k̄(a0(n+ 1), . . . , aq(n+ 1), U1(n), . . . , Up(n)) · (∆ā(n))k̄ · (∆Ū(n))k̄ (28)

where the expression (∆ā)k̄(n) means:

(∆a0)
k0(n) · · · (∆aq)

kq (n)



and the expression (∆Ū)k̄(n) means:

(∆U1)
kq+1 (n) · · · (∆Up)

kq+p (n).

By the closure properties established in Theorem 4, every sequence
Ri,k̄(a0(n+ 1), . . . , aq(n+ 1), U1(n), . . . , Up(n)) belongs to SN

k+1.


