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Reliable Fast Frequency Sweep for Microwave Devices via the

Reduced Basis Method

Valent́ın de la Rubia, Ulrich Razafison and Yvon Maday

Abstract

In this paper, a reduced basis approximation-based model order reduction for fast and

reliable frequency sweep in the time-harmonic Maxwell’s equations is detailed. Contrary to

what one may expect by observing the frequency response of different microwave circuits,

the electromagnetic field within these devices does not drastically vary as frequency changes

in a band of interest. Thus, instead of using computationally inefficient, large dimension,

numerical approximations such as finite element or boundary element methods for each fre-

quency in the band, the point in here is to approximate the dynamics of the electromagnetic

field itself as frequency changes. A much lower dimension, reduced basis approximation sorts

this problem out. Not only rapid frequency evaluation of the reduced order model is carried

out within this approach, but also special emphasis is placed on a fast determination of the

error measure for each frequency in the band of interest. This certifies the accurate response

of the reduced order model. The same scheme allows us, in an offline stage, to adaptively

select the basis functions in the reduced basis approximation and automatically select the

model order reduction process whenever a preestablished accuracy is required throughout the

band of interest. Finally, real-life applications will illustrate the capabilities of this approach.

Keywords: Admittance matrix, computer aided engineering, design automation, error anal-

ysis, finite element methods, Galerkin method, reduced basis methods, reduced order sys-

tems.

1 Introduction

Current industrial needs are pushing microwave engineering to carry out even more complex

electrical designs, requiring computer-aided design (CAD). Most numerical methods in electro-

magnetics were initially conceived merely as analysis tools due to their rather time-consuming

characteristics. However, computational electromagnetics plays nowadays an important role on

either qualified assistance for experienced engineers that are able to carry out an electrical de-

sign by means of trial and error, or global optimization techniques that automatically modify

a given structure until some target electrical behaviour is achieved. The finite element method
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(FEM) is an appealing numerical method for its geometrical versatility and robutness, but its

CPU time reduces its attraction whenever dense meshing and high frequency resolution over a

wide band are required. However, two-dimensional (2-D) FEM analysis can reduce its rather

time-consuming characteristics and makes it compatible with CAD [33]. Moreover, some three-

dimensional (3-D) FEM strategies can be taken into account and make certain CAD possible

[32]. The use of adaptive mesh refinement may further alleviate dense mesh requirement. An-

other strategy lies in reduced order models as these may determine the frequency behaviour of

a microwave device with ease. It is paradoxical that even though there are reduced order mod-

els for fast frequency sweep, rather conservative strategies, namely, time-consuming frequency

point-wise analyses, are prefered for design automation. The rationale of this being in a lack of

trust on reduced order models, especially in broadband applications.

The philosophy under model ordel reduction consists of replacing a rather complex mathe-

matical model by a much simpler approximated one still maintaining certain aspects of the orig-

inal model. This work concentrates on model order reduction for fast frequency sweep. Previous

efforts on this issue in the electromagnetic community are mainly twofold: widespread moment-

matching techniques and incoming singular-value decomposition (SVD) procedures. The former

draw upon expanding the complex mathematical model into a Taylor series and building up an

approximated model matching Taylor coefficients or moments. The latter starts with a large

collection of field solutions at different frequencies. SVD is then applied to capture the essential

dynamics of the original system by means of dominant singular value basis functions. A model

of reduced complexity is finally obtained by Galerkin projection onto a subspace spanned by

these basis functions.

On the one hand, asymptotic waveform evaluation (AWE) is proposed in [39]. AWE car-

ries out a Padé approximation to increase the accuracy of a Taylor expansion whenever poles

appear in the system response. However, its major drawback is the explicit computation of

the moments to match. This results in numerical stagnation, since this procedure relies on a

power method that quickly converges to the dominant eigenvector, giving rise to ill-conditioned

projection matrices. Taking into account the same approximation strategy, a numerically sta-

ble Padé approximation via the Lanczos process is detailed in [15]. This result stems from

the connection of the Lanczos process to Padé approximation, which states that the number of

matching moments in the Lanczos algorithm is maximal. Further efforts for robust AWE are

taken into account. [46] details how to orthogonalize the expansion vectors in the projection ma-

trix and still match the moments in the system. This results in a well-conditioned reduced order

model and prevents AWE from stagnation. In an attempt to increase the accuracy of moment-

matching reduced order models over a wider frequency band, different expansion points are

taken into account. Thus far, the new strategy is that each expansion vector not only preserves

its own moment-matching properties, i.e., associated to its corresponding expansion point, but
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also captures the moments in every expansion point considered [44]. Critical aspects for appro-

priate model order reduction then arises: how many expansion points should be chosen, where

to pick them, how many moments at each expansion point should be matched. [45] addresses

these issues. An error estimate between the original system and its reduced order model for

PVL-based techniques is proposed in [3] for single-input single-output systems, and extended

for matrix-valued transfer functions in [4]. [42] uses PVL to carry out a fast frequency sweep

in a domain decomposition framework. Further use of moment-matching approaches is taken

into account in commercial software [48]. Notorious extension to multi-parameter configura-

tions of these techniques is addressed in [14, 13], where not only a frequency sweep is carried

out but also dielectric properties of different materials are swept. On the other hand, there

is an increasing interest in SVD approaches. The determination of the dispersion diagram in

inhomogeneous waveguides is addressed in [7]. Reduction of the large generalized eigenvalue

problem to the subspace spanned by modal eigenvectors at evenly spaced frequency points and

its derivates is considered. A similar strategy is taken into account for fast frequency sweep of

microwave circuits in [23, 40]. These works propose to adaptively select the number of sample

points by explicitly computing the residual error at specific frequency points. This approach

is further applied to domain decomposition in [24]. SVD techniques can take into account not

only frequency as variable but also dielectric material properties and geometrical parameters.

[1] addresses this in dielectric waveguide eigenanalysis. The major drawback of these techniques

is that the number of sample points to achieve a given accuracy is unknown unless we explicitly

compute the residual error in every single frequency to be evaluated. There are on-going efforts

in this issue. Indeed, based on high frequency electromagnetics arguments, [47] points out an a

priori estimate of the minimum number of sample points in scattering problems that, by nature,

should be considered to provide proper results.

The reduced basis method was introduced in late 1970s for nonlinear structural analysis

[2, 38]. Since then, a large amount of developments has increased its efficiency and accuracy

as well as spread out its range of applicability [6, 27, 5, 17, 28, 18, 43, 26, 37, 30, 36, 49, 29].

Previous reduced basis results in electromagnetics should be noticed. Rapid prediction of the

radar cross section of conducting objects either in 2D or 3D problems is considered in [22, 21].

Further efforts on efficient yet sharp a posteriori error bounds in reduced basis approximations

for the Maxwell’s system is addressed in [10], [51].

In this work, we propose a rapid and reliable frequency parameter sweep in microwave circuits

based on the reduced basis method. This approach draws upon noting that the electromagnetic

field does not arbitrarily vary as a function of frequency. On the contrary, it evolves on a

very low dimensional subspace induced by the frequency variation. Instead of using a rather

large dimensional finite element or boundary element approximation for every single frequency

analysis, we change this approximation strategy to a much lower dimensional approximation
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framework –a reduced basis approximation. This concentrates on the evolution of the electro-

magnetic field as a function of the frequency parameter, rather than the approximation of the

electromagnetic field itself earlier stated. Thus, we choose field solutions at different frequencies

as the new approximation reduced basis. This settles down the new discretization framework.

Galerkin procedure then reduces the large original system to a very low dimensional one, so

the frequency response of the device under analysis can be obtained with ease. No miracle

though, we still need to determine the new approximation basis (reduced basis) by some large

dimension computations, but this is carried out only once. In this work, we pay special atten-

tion to decoupling those operations involving the large dimension of the original system from

those computations in the many queries frequency evaluation stage of the reduced system. All

time-consuming operations are carried out only once in the preliminary stage –offline. Once

the reduced system is obtained, every single frequency evaluation has a negligible cost. Thus,

we ensure a rapid frequency response evaluation. In addition, special emphasis is placed on a

posteriori residual error determination. This certifies the accuracy of the response obtained in

this approach. Contrary to previous efforts, the goal is to achieve a reduced order model where

the numerical complexity of both, the frequency response evaluation and the a posteriori error

estimate, no longer involves the large dimension of the original system. The same scheme allows

us, in an offline stage, to adaptively select the basis functions in the reduced basis approximation

and automatically select the model order reduction process whenever a preestablished accuracy

is achieved throughout the band of interest.

This paper is organized as follows. In Section 2, we review the time-harmonic Maxwell’s

equations in variational form, establish the FEM formulation of the boundary value problem

and define the frequency-parameterized variational problem that should be solved. Section

3 deals with the reduced basis approximation for the parameterized variational problem. A

posteriori error considerations for reliable reduced basis approximations are discussed in Section

4. Section 5 sets out a generalized admittance matrix-based transfer function approach and its

reduced basis counterpart that completely describes the electromagnetics in a given structure.

Section 6 shows numerical examples and is conceived to illustrate the capabilities of the proposed

approach as well as its accuracy. Finally, in Section 7, we comment on the conclusions.

2 Problem Statement

The time-harmonic Maxwell’s equations can be written in a classical weak formulation over an

appropriate admissible function space X , viz.

Find H ∈ X such that

a(H,w) = ϕ(w) ∀w ∈ X
. (2.1)
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The bilinear form being

a(H,w) =

∫

Ω

(
1

εr
∇×H · ∇ × w − k2µrh · w

)
dv, (2.2)

and the linear form ϕ(w) = − jk
η0

∫
∂Ω Φ · wds, where εr and µr are the relative permittivity and

permeability of the medium respectively, k = ω
√
µ0ε0 is the wavenumber and η0 =

√
µ0/ε0.

Ω ⊂ R
3 is a source-free bounded domain. Here, the admissible space X represents H(curl; Ω)

defined by:

H(curl; Ω) =
{
h ∈ (L2(Ω))3| ∇ × h ∈ (L2(Ω))3

}
. (2.3)

We refer to [16] for a thorough explanation of this space. Let us denote as nΩ the unit outward

normal vector on the boundary ∂Ω of Ω, the boundary condition involves Φ = nΩ × E related

to the tangential electric field on ∂Ω that is imposed as an excitation. Finally E and H are the

electric and magnetic fields [19].

The solution to problem (2.1) can be approximated by means of the finite element method

provided a tetrahedral mesh of the domain Ω is given and, for instance, a second order first

family of Nédélec’s elements are defined in the reference tetrahedron [35, 50]. A finite element

space XN arises, approximating the solution space X , thus

Find H
N ∈ XN such that

a(H
N
, w) = ϕ(w) ∀w ∈ XN

. (2.4)

H
N

=
∑N

i=1 hiwi, where (wi)i is the set of all finite element basis functions and h = (hi)i

denotes the associated degrees of freedom of the discrete magnetic field. In order to obtain the

field solution, a large sparse system of equations of dimension N ≡ dim(XN ) should be solved:

(
K − k2M

)
h = ϕ. (2.5)

It should be noted that system (2.5) is a straighforward translation of (2.4) into matrix form.

If we denote
aK(u,w) =

∫
Ω

(
1
εr
∇× u · ∇ × w

)
dv

aM (u,w) =
∫
Ω (µru · w) dv

, (2.6)

the matrices K and M are defined as follows: Kij = aK(wi, wj) and Mij = aM (wi, wj). Finally

ϕ denotes a vector of coefficients ϕi = ϕ(wi). In the framework we are dealing with, where the

frequency behaviour of a given device is to be determined, many FEM frequency analyses may

result in a rather time-consuming task. Actually, the problem we aim at solving is the following:

Find H(k) ∈ X such that

a(H(k), w; k) = ϕ(w; k) ∀w ∈ X
(2.7)

for every frequency point k in a band of interest D, where D is a bounded interval of the real axis.

Throughout this work, we deliberately refer to the wavenumber k as frequency. It should be
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Figure 1: Low n-width set in which the magnetic field resides as frequency parameter changes.

noted that both, the bilinear form a(·, ·) and the linear functional ϕ(·), are modified as frequency

changes. It is clear from the previous discussion that solving problem (2.7) by the finite element

method may not be appropriate for every single frequency in the band.

3 Reduced Basis Method

The key feature upon which the reduced basis method stands is based on the following obser-

vation. The electromagnetic field in a given domain does not arbitrarily vary as a function of

frequency, in other words, it is not an arbitrary element in X . Instead, it evolves in a simple set

induced by the frequency parameter Mk = {H(k), k ∈ D}. In order to measure the complexity

of the set of all solutions, the notion of n-width following Kolmogorov [20] can be of help (see

also [27] for details in the reduced basis framework). This measures, for every integer n, the

extent to which Mk may be approximated by a n-dimensional subspace of X .

The key point in here is to provide an approximation of Mk instead of an approximation for

an arbitrary member of X , such as the finite element method proposes, since the field solution

do not cover the entire space X . Fig. 1 illustrates this situation.

3.1 Reduced Basis Approximation

By the preceeding arguments, the following space –reduced basis space– is proposed as an

approximation of the set Mk of all solutions:

WN = span{ζ1 ≡ H(k1), . . . , ζN ≡ H(kN )}. (3.8)

The discretization proceeds by approximating the field solutionH(k) at any frequency parameter

by a Galerkin projection onto this space WN spanned by few, well chosen solutions, viz.

Find H̃(k) ∈ WN such that

a(H̃(k), w; k) = ϕ(w; k) ∀w ∈ WN
. (3.9)
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H(k) ≃ H̃(k) ≡ ∑N
i=1 h̃i(k)ζi, where h̃ = (h̃i(k))i stands for the reduced basis approximation

coefficient vector of the magnetic field. In order to obtain the reduced basis (3.8), we still need

to rely on a finite element approximation, where large dimension N computations arise, but

only at those N selected frequency points, k1, . . . , kN . Once this is carried out, the field solution

at any frequency is obtained by solving a very small dense system of dimension N ≡ dim(WN ),

(N ≪ N ): (
K̃ − k2M̃

)
h̃ = ϕ̃(k). (3.10)

K̃ and M̃ matrices are given as follows: either K̃ij = aK(ζi, ζj) and M̃ij = aM (ζi, ζj), or

K̃ = ZTKZ and M̃ = ZTMZ, where Z is the matrix col{ζ1, . . . , ζN}. Note that Z is an N ×N

matrix. ϕ̃ denotes a vector of coefficients ϕ̃i = ϕ(ζi) , i.e., ϕ̃ = ZTϕ.

The great advantage in the reduced basis approximation is that, even though N ≪ N ,

we are still able to achieve very good approximation results. The rationale of this being at

approximating the evolution of the field as the parameter varies, rather than the field solution

itself.

3.2 Offline-Online Decomposition

Even though solution to system (3.10) may seem straightforward to compute, there are some

issues that should be addressed as regards the efficiency. In the reduced basis approach, we

accept preliminary time-consuming computations, based on the finite element approximation.

These are the construction of the reduced basis. But, once the reduced system is built, a fast

computation is desired for the many frequency evaluations are to be carried out.

As is now standard, see [37, 49, 29], we decompose the reduced basis procedure into two

stages:

1. Off-line stage – the preprocessing stage which may be time-consuming is carried out only

once. Here we can afford computations with complexity depending on N , since they are

just a few.

2. On-line stage – the other stage concerns the many queries frequency analysis stage and,

therefore, we cannot afford any time-consuming operation online. We must remove any

N -contamination since only complexity depending on N is desired in this stage.

Looking carefully at the reduced system (3.10) some questions arise. The system (3.10)

can be solved in O(N3) operations, but what effort is required to assemble this system for a

new frequency k? The left hand side can be assembled in O(N2) operations since the reduced

stiffness and mass matrices K̃, M̃ can be computed offline and stored in memory. This is the

result of an affine dependence on the frequency parameter of the bilinear form, i.e., it is a sum of

products of frequency-dependent functions and frequency-independent bilinear forms, namely,
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a(ζi, ζj ; k) = aK(ζi, ζj) − k2aM (ζi, ζj). Concerning the right hand side, in all what follows, we

make a simplifying assumption: taking into account homogeneous waveguide modal fields as

excitation, we can actually know the frequency variation of the tangential electric field [42] and

obtain an affine frequency dependency in the functional, viz.

ϕ(w; k) = −jk
η0
g(k)

∫

∂Ω
Φ(k0) · wds = −jk

η0
g(k)f(w), (3.11)

where k0 is a specific frequency and

g(k) =





1, for TEM and spherical modes

4

√
(

kci
k0

)2−1

(
kci
k

)2−1
, for TE modes

4

√
(

kci
k

)2−1

(
kci
k0

)2−1
, for TM modes

(3.12)

with kc being the cutoff frequency of the mode. This way, the right hand side in equation (3.10)

ϕ̃(k) exhibits an offline-online decomposition that makes it possible to assemble it in O(N)

operations. Let us be more precise. ϕ̃(k) = ZTϕ(k) and since ϕ(k) has now an affine dependence

on frequency, ϕ(k) = − jk
η0
g(k)f (see equation (3.11)), it can be computed as ϕ̃(k) = − jk

η0
g(k)f̃ ,

where f̃ = ZT f is carried out and stored offline only once.

In the more general case, when the previous assumption on the right hand side cannot be

made, this contribution suffers from N -contamination. Each time a new frequency k is taken

into account, ϕ̃(k) = ZTϕ(k) has to be evaluated online involving O(NN) operations. The

reason of this is that the functional ϕ(w; k) = − jk
η0

∫
∂Ω Φ(k) · wds shows a nonaffine parameter

dependency in general. Recall that Φ = nΩ ×E is related to the tangential electric field used as

excitation. An alternative approximation has to be made in order to break the complexity also

in this less favorable case. An affine parameter dependency can be invented via an empirical

interpolation method [5, 17, 28]. We shall not elaborate on this in this paper and leave it for

future work.

Although it may seem as we have removed all the numerical complexities depending on N
in the online stage, note that there is still an underlying N dependency. It comes from the

fact that the reduced basis functions themselves ζi are written in terms of N finite element

basis functions. Section 5.1 will deal with this in greater depth and completely remove the N
dependency in the online stage.

Let us conclude this section by stating that, for the sake of accuracy in the numerical solution

of the variational problem (3.9), an Hcurl-orthonormal basis of the reduced basis functions in

WN is actually used in the Galerkin procedure. Thus, (3.10) results in a better conditioned

system of equations. This prevents from numerical stagnation
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4 A Posteriori Error estimate

The fundamental distinctive feature upon which this approach stands is discussed in this section.

Once the reduced basis approximation is obtained, we carry out an a posteriori error estimate

based on the residual error. This can certify whether a reduced basis solution is close enough

to the actual field solution and thus ensures the reliability of the current approach. The goal

in this work is that the residual error is computed with an operation count independent of N ,

where only O(N) operations arise (N ≪ N ).

Let H̃(k) ≡ ∑N
i=1 h̃i(k)ζi be the reduced basis approximation (see Subsection 3.1) to the

actual field solution H(k), which we may be identified with the finite element field solution. The

residual error a(H(k) − H̃(k), w; k) is then given as follows:

ϕ(w; k) − a(H̃(k), w; k) ≡ ψ(H̃(k), w; k) (4.13)

for every w in X . It should be noted that the residual error ψ(H̃(k), ·; k) is an element of X ′,

the dual space of X ≡H(curl; Ω). We quantify this residual by its norm:

∥∥∥ψ(H̃(k), ·; k)
∥∥∥
X ′

= sup
w∈X

∣∣∣ψ(H̃(k), w; k)
∣∣∣

‖w‖X
(4.14)

Taking advantage of fundamental results in functional analysis, since X is a Hilbert space with

inner product (·, ·)X and norm ‖·‖X , the Riesz Representation Theorem applies. Then, there

exists a unique element e(k) in X such that

(e(k), w)X = ψ(H̃(k), w; k) ∀w ∈ X . (4.15)

Furthermore,
∥∥∥ψ(H̃(k), ·; k)

∥∥∥
X ′

= ‖e(k)‖X . For a detailed explanation of dual spaces as well as

the Riesz Representation Theorem we refer to [9].

Nevertheless, the residual error determination by means of either (4.14) or (4.15) lacks of

practical interest. In both approaches the direct residual error operation count depends on N in

the finite element context. With this constraint, only limited use of the a posteriori analysis can

be performed, for very few frequencies, otherwise the global algorithm efficiency is compromised.

4.1 Offline-Online Procedure

The critical observation [26, 37] is that, under assumption (3.11), the right hand side of (4.15)

shows an affine parameter dependency, i.e., it is a sum of products of frequency-dependent

functions and frequency-independent functionals, viz.

ψ(H̃(k), w; k) = − jk
η0
g(k)f(w)

−∑N
i=1 h̃i(k)a

K(ζi, w) + k2
∑N

i=1 h̃i(k)a
M (ζi, w)

(4.16)

9



for every w in X . Applying linear superposition to (4.15) we can write e(k) in X as:

e(k) =
jk

η0
g(k)C +

N∑

i=1

h̃i(k)LK
i − k2

N∑

i=1

h̃i(k)LM
i (4.17)

for C ∈ X satisfying (C, w)X = −f(w), ∀w ∈ X , and Lp
i ∈ X satisfying (Lp

i , w)X = −ap(ζi, w),

∀w ∈ X , i = 1, . . . , N , p ≡ K or M . Note that once again the Riesz Representation Theorem

is applied. In this work, we use (u,w)X =
∫
Ω

(
1
εr
∇× u · (∇× w)∗ + µru · (w)∗

)
dv as inner

product in Hcurl, where ∗ denotes complex conjugate and εr, µr are assumed to be positive real

values. Thus, we can concentrate on solving just a few finite element problems offline, namely,

(K + M) c = −f

(K + M) lK
i

= −aK

i

(K + M) lM
i

= −aM

i

. (4.18)

and be ready to obtain e(k) at any frequency k by a simple operation (see equation (4.17)). K

and M are the FEM stiffness and mass matrices. f , aK

i
and aM

i
stand for vectors of coefficients

fn = f(wn), aK
in = aK(ζi, wn) and aM

in = aM (ζi, wn), where ζi is a reduced basis function. c, lK
i

and lM
i

represent the coefficient vector of C, LK
i and LM

i . C ≃∑N
n=1 cnwn, LK

i ≃∑N
n=1 a

K
inwn

and LM
i ≃∑N

n=1 a
M
inwn, where wn is a finite element basis function. Note that problem (4.18)

implies solving the same system of equations for different right hand sides. However, we are not

interested on e(k) itself, but on its norm, which serves to quantify the residual error (‖e(k)‖X =∥∥∥ψ(H̃(k), ·; k)
∥∥∥
X ′

). This norm can be readily obtained at any frequency k simply by having

computed the inner products (C, C)X , (C,Lp
i )X , (Lp

i ,L
q
i )X , p, q ≡ K or M , i = 1, . . . , N , in the

offline stage. This is the only information that must be stored from the offline stage. Thus,

‖e(k)‖2
X = k2

η2

0

|g(k)|2 (C, C)X

+2Re[ jk
η0
g(k)

∑N
i=1(h̃i(k))

∗(C,LK
i )X ]

−2k2Re[ jk
η0
g(k)

∑N
i=1(h̃i(k))

∗(C,LM
i )X ]

+
∑N

i=1 h̃i(k)
∑N

n=1(h̃n(k))∗(LK
i ,L

K
n )X

+k4
∑N

i=1 h̃i(k)
∑N

n=1(h̃n(k))∗(LM
i ,L

M
n )X

−k2
∑N

i=1 h̃i(k)
∑N

n=1(h̃n(k))∗{(LK
i ,L

M
n )X + ((LK

n ,L
M
i )X )∗}

(4.19)

This makes it possible to promptly evaluate the residual error at any frequency k, just involving

O(N2) operations. As previously stated, it is essential to obtain an online complexity indepen-

dent of N . Note that ‖e(k)‖2
X = (e(k), e(k))X . No miracle though, we still need to solve an

additional system of equations in the offline stage. However, this strategy allows us to actually

certify the wide band frequency response of the device so that we can completely rely on the

reduced basis solution. This is crucial in a fast frequency sweep scheme, otherwise the reduced

order model process is academic rather than of practical interest.
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4.2 Adaptive Reduced Basis Selection: The Greedy Algorithm

So far, we have not mentioned neither how many reduced basis functions are necessary to achieve

a given accuracy nor how to choose them. A good strategy may be to choose field solutions at

N evenly spaced frequency points in the band of interest as reduced basis. However, we do not

know a priori how many points should be selected to find a reasonable accuracy, although current

efforts in this regard are taken into account [47]. As a result of our inexpensive a posteriori error

estimate, we are now able to certify that the reduced order model is accurate enough throughout

the band of interest, otherwise the dimension of the reduced basis should be increased to achieve

a given accuracy. Nevertheless, we use a better strategy: an adaptive reduced basis selection.

This adaptive selection is based on a greedy algorithm [49], [27]. Let [kmin, kmax] be the frequency

band of interest, and let K be a dense collection of frequency points in [kmin, kmax] to recover the

frequency response of the device under analysis in the band of interest. The following algorithm

is proposed:

set N = 1

choose k1 in K randomly

set WN = span{H(k1)}
while

(
max
k∈K

∥∥∥ψ(H̃(k), ·; k)
∥∥∥
X ′

> ǫtol

)

/*Residual not below a threshold throughout the band*/

choose kN+1 = arg max
k∈K

∥∥∥ψ(H̃(k), ·; k)
∥∥∥
X ′

set WN+1 = WN ⊕ span{H(kN+1)}
set N = N + 1

end while

Note that this process requires no human interaction and the algorithm not only adaptively

selects in some sense the best reduced basis functions but also automatically exits as soon as

the preestablished accuracy ǫtol is obtained throughout the whole frequency band [kmin, kmax].

Thus, we can completely rely on our reduced basis approximation.

5 Generalized Admittance Matrix Approach

Very often, the quantity of interest in the device under analysis is not the electromagnetic field

itself, but an output that depends on the field solution. This section establishes an admittance

matrix FEM formulation that completely describes the electromagnetics in the analysis domain

[41]. For the sake of understanding, we take into account a specific radiating structure, namely,

a wide band planar monopole. Fig. 2 shows the analysis domain Ω. A coaxial port Γ1 and a

spherical port Γ2 stand for the exciting and radiating ports respectively. It should be noted that

spherical modal field expansion accounts for appropriate boundary truncation in the analysis
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domain. Therefore, a two-port network arises describing the electromagnetic behaviour in the

analysis domain Ω. As a result of the inclusion of the modal boundary conditions in problem

(2.1), the tangential electric field on the modal ports may be written as a linear combination of

waveguides modes et1i
and et2i

. Thus,

Φ =
∑m1

i=1 v1i

(
n× et1i

)
on Γ1

Φ =
∑m2

i=1 v2i

(
n× et2i

)
on Γ2

. (5.20)

So far, the finite element discretization (2.5) turns into

(
K − k2M

)
h = −jk

η0
(B1 B2 )

(
v1

v2

)
, (5.21)

where v1 and v2 are the coefficient vectors of the tangential electric field on Γ1 and Γ2, respec-

tively. B1 and B2 are matrices with elements

B1ij
=
∫
Γ1

(
n× et1j

)
· wi ds

B2ij
=
∫
Γ2

(
n× et2j

)
· wi ds

. (5.22)

Equation (5.21) determines the magnetic field H in the domain Ω in response to a superposition

of modal tangential electric fields on the modal ports Γ1 and Γ2. Therefore, we know the

tangential magnetic field on the modal ports and it can be established as a linear combination

of modal tangential magnetic fields ht1i
and ht2i

, viz.

n×H = n×∑m1

i=1 i1i
ht1i

on Γ1

n×H = n×∑m2

i=1 i2i
ht2i

on Γ2

. (5.23)

Working on this expression, the following integral relationship holds by using the finite element

approximation of the magnetic field

∑N
i=1 hi

∫
Γ1

(n× wi) · et1j
ds =

∑m1

i=1 i1i

∫
Γ1

(
n× ht1i

)
· et1j

ds
∑N

i=1 hi

∫
Γ2

(n× wi) · et2j
ds =

∑m2

i=1 i2i

∫
Γ2

(
n× ht2i

)
· et2j

ds
, (5.24)

which in matrix form reads
BT

1
h = ∆1i1

BT
2
h = ∆2i2

. (5.25)

i1, i2 denoting the coefficient vectors of the modal tangential magnetic field on the modal ports

and ∆1, ∆2 being diagonal matrices with elements

∆1ij
=
∫
Γ1

(
n× et1j

)
· ht1i

ds, i, j = 1, . . . ,m1

∆2ij
=
∫
Γ2

(
n× et2j

)
· ht2i

ds, i, j = 1, . . . ,m2

. (5.26)

Finally, manipulating (5.21) and (5.25) appropriately, a matrix relationship between the modal

tangential electric and magnetic fields on the modal ports is obtained. Thus,
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Figure 2: Wide band planar monopole antenna. Analysis domain and two-port network describ-

ing the electromagnetics in the antenna.

i = −jk
η0

∆−1BT
(
K − k2M

)−1
Bv, (5.27)

where i = (i
1

i2)T , v = (v
1

v2)T , B = (B
1

B2) and ∆ =diag(∆1,∆2). Note that an amount

of m = m1 +m2 modes are taken into account. Insofar as a modal field normalization to obtain

an identity ∆ matrix is accomplished, a symmetric m×m matrix relationship results.

Y ≡ −jk
η0

BT
(
K − k2M

)−1
B. (5.28)

This is the generalized admittance matrix (GAM). It should be noted that the GAM is a matrix-

valued transfer function since it determines the system response to a given field excitation.

5.1 Reduced Basis Approximation

The problem we actually have to address is to obtain the GAM (5.28) for every single frequency

in the band of interest. We set out the reduced basis approximation in this context. First of all,

let us make all frequency dependence explicit in the GAM

Y(k) = −jk
η0

BT (k)
(
K − k2M

)−1
B(k). (5.29)

As previously stated (see Subsection 3.2), an analytical frequency variation arises in matrix B

whenever homogeneous waveguides are taking into account [42]. Thus

B(k) = FJ(k) (5.30)

with F = B(k0), k0 being a specific frequency and J(k) denoting a diagonal matrix with elements

(J(k))ii = g(k), where g(k) is already defined in (3.12) for corresponding mode i. Equation (5.29)

then reads

Y(k) = −jk
η0

JT (k)X(k)J(k) (5.31)
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with

X(k) = FT
(
K − k2M

)−1
F. (5.32)

We then concentrate in reducing system (5.32) via the reduced basis method instead of (5.31).

The actual GAM Y(k) is straightforwardly obtained from the pseudo-GAM X(k) by means of

analytical operations (5.31) [42].

In order to obtain the pseudo-GAM we should address the following finite element problem,

which resembles solution to problem (2.4) for m different excitations:

Find H(k) ∈ XN× . . .(m−1×XN such that

A(H(k),W; k) = F(W) ∀W ∈ XN× . . .(m−1×XN
, (5.33)

where H(k) =
(
H1(k), . . .,Hm(k)

)
and W = (w1, . . ., wm), the bilinear form A(H(k),W; k) =

∑m
i=1 a(H i(k), wi; k) and the linear functional F(W; k) =

∑m
i=1 fi(wi), with fi(w) =

∫
∂Ω (n× eti(k0))·

wds. Note that this variational problem reads in matrix form either

diag
(
K − k2M,. . .(m−1,K − k2M

)



h1

...

hm


 =




f1
...

fm


 (5.34)

or
(
K − k2M

)
H = F, (5.35)

where H = col{h1, . . . ,hm} and F = col{f
1
, . . . , fm} are N ×m matrices. fi denotes a vector

of coefficients fij = fi(wj) and hi represents the coefficient vector of the magnetic field for the

i-th excitation problem. Therefore, in order to obtain the pseudo-GAM we just need to carry

out

X(k) = FTH(k). (5.36)

Let us propose the following reduced basis approximation to problem (5.33).

Find H(k) ∈ WN such that

A(H(k),W; k) = F(W) ∀W ∈ WN
, (5.37)

where we have chosen as reduced basis

WN = span{ζ1 ≡ H(k1), . . . , ζN ≡ H(kN )}. (5.38)

Then, H(k) ≃ H̃(k) ≡ ∑N
i=1 h̃i(k)ζi. ζi being a reduced basis function and h̃i(k) denoting its

associated coefficient. As a result, the field solution for all the m excitation problems is obtained

at any frequency by solving a very small reduced system of dimension N ≡ dim(WN ), (N ≪ N ):

(
K̃ − k2M̃

)
h̃ = F̃ . (5.39)
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K̃ and M̃ matrices are given as follows: K̃ij = AK(ζi, ζj) and M̃ij = AM (ζi, ζj). Note that

A(ζi, ζj ; k) = AK(ζi, ζj) − k2AM (ζi, ζj). F̃ denotes a vector of coefficients F̃i = F(ζi) , and h̃

stands for the reduced basis approximation coefficient vector. Remember that we still have all

previouly developed reduced basis potential available, namely, offline-online decomposition, a

posteriori error estimate and reduced basis construction via a greedy algorithm. The offline-

online decomposition deserves now further discussion. Recall that we had to deal with an

underlying N -contamination in the online stage in preceeding sections, since the reduced basis

functions themselves are written in terms of N finite element basis functions. Here, we sort this

problem out. Indeed, we are not interested on the field itself, but on the generalized admittance

matrix describing the electromagnetics of the device under analysis. Once we have the reduced

basis approximation for the multiple excitation problem H(k) ≃∑N
i=1 h̃i(k)ζi, the pseudo-GAM

then reads

X(k) ≃
N∑

i=1

h̃i(k)Xi. (5.40)

Xi = FTH(ki) are the pseudo-GAM (m×m matrices) at those frequency points used to obtain

the reduced basis functions. Recall ζi ≡ H(ki) and see (5.36). Thus, we only need to compute

and store Xi offline to remove all N dependence in the online stage. Insofar as the pseudo-GAM

at any frequency point is ready, the GAM is straightforwardly computed (5.31).

6 Numerical Results

In this section we apply the proposed model order reduction methodology to different challenging

structures, namely, a dual-mode circular waveguide filter, a cylindrical dielectric resonator filter

and band-notched planar monopole antennas. The capabilities and realiability of the proposed

technique will be apparent throughout these examples. All computations were carried out on a

64-bit workstation with 2.00 GHz Intel E5405 processor and 8 GB RAM.

6.1 Dual-Mode Circular Waveguide Filter

We take into account a four-pole elliptic dual-mode circular cavity filter in this example. Fig. 3

shows the filter setout as well as its dimensions. The two circular cavities are connected to corre-

sponding input and output WR75 rectangular waveguides through identical slots. Furthermore,

both cavities are connected by a cross-shaped iris. Finally, each cavity has got a horizontal

tunning screw and a π/4 tilt coupling screw. Although two physical cavities are considered, two

degenerated modes are excited in each cavity. This gives rise to four electrical cavities reducing

filter size and weight.

The electrical specifications of the filter are as follows: better than 20 dB return losses in a

bandwidth of 100 MHz centred at 11.8 GHz and better than 15 dB out of band rejection. This

15



filter was designed in [34] by means of mode-matching method and was further studied in [12]

in a domain decomposition method framework. Instead of analyzing the whole analysis domain,

we carried out the same modal domain decomposition strategy carried out in [12]: the analysis

domain is decomposed into subdomains according the availability of modal field description

[41]. This gives rise to analytical subdomains (circular waveguide sections) and subdomains

where FEM resolution is mandatory. Fig. 4 illustrates this scheme. Since both input and

output rectangular waveguide transitions to circular waveguide (transitions 1 and 2 in Fig. 4)

are identical, it is only necessary to analyze one of these. A reduced basis-based reliable fast

frequency sweep is taken into account in corresponding building blocks. Fig. 5 compares the

results of this approach with measurements in [34]. Good agreement is achieved. Note that we

carry out two overall model order reduction processes. On the one hand, we are just interested

in the filter band response. Thus, we specify the 11.6-12 GHz band as the band of interest to

our fast frequency sweep algorithm. As previously stated, the algorihm itself adaptively selects

the reduced basis functions based on a greedy strategy. This minimizes the residual error of the

reduced basis approximation at every single frequency in the band of interest. Fig. 6(a) shows

the residual error behaviour in the rectangular to circular waveguide transition subdomain as

the reduced basis approximation order increases in the greedy framework. Similar results are

obtained in the remaining building blocks. This procedure goes on until a preestablished error

tolerance is achieved throughout the whole frequency band. This gives rise to a reliable reduced

order model. Note that the residual error as well as the reduced solution at any frequency

are easily computed due to the offline-online decomposition strategy. This makes it possible

to compute the residual error and reduced solution for all frequencies in O(N2) and O(N3)

operations each, respectively, where N is the dimension of the reduced basis approximation. On

the other hand, we are interested in the wide band response of the filter. Then, we specify the

10-15 GHz band as the band of interest to our fast frequency sweep. Once again, our algorithm

adaptively chooses the reduced basis functions until the residual error throughout the band goes

under a preestablished threshold. Fig. 6(b) details the residual error behaviour over the band

of interest as the dimension of the reduced basis approximation increases. We emphasize that

a reliable filter band response is also ensured in the wide band analysis. Nevertheless, a larger

reduced basis dimension N is required this time since not only the filter band is of interest but

also the out of band filter rejection. Table 1 summarizes the final dimension of the reduced

basis approximation in corresponding analysis subdomains within each approximation context,

namely, filter band and wide band responses.

There is still an issue that deserves further discussion. Looking carefully at Fig. 6(b), two

residual error peaks are noticed around 12.2 and 13 GHz. These belongs to interior resonances in

the analysis subdomain. Indeed, the formulation we are using in this work is deliberately an E-

wall formulation, thus there are some forbidden frequencies at which the FEM matrix K− k2M
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Figure 3: Dual-mode circular waveguide filter geometry. Cavity length 43.87 mm, radius 14 mm,

iris thicknesses 1.5 mm, slot lengths 10.05 mm, slot widths 3 mm, arm widths 2 mm, horizontal

arm length 7.65 mm, vertical arm length 8.75 mm, tunning screw depth 3.66 mm and coupling

screw depth 3.35 mm.

Transition 1 Transition 2Screws 1 Screws 2
Cross-shaped

iris

A B C D A

Figure 4: Side view of the dual-mode circular waveguide filter. Modal domain decomposition

framework.

is singular. As a result, interior resonances do appear in the generalized admittance matrix

approach. It should be noticed that the smaller the analysis domain is the higher these interior

resonances are. The interior resonance problem can be sorted out by inclusion of dissipative

radiation conditions in the formulation, which ensures solvability of the Maxwell’s system at any

frequency. In this work, we get rid of the interior resonance contanimation in the residual error

by neglecting the residual error in a neighbourhood of each reduced basis sample point, where

it is assumed to be small. Thus far, interior resonance residual error peaks have no effect on the

greedy algorithm apart from forcing sampling around interior resonance frequencies whenever

required.

6.2 Cylindrical Dieletric Resonator Filter

In this example, we address a coaxial-fed dielectric resonator filter made up of two cylindrical

dielectric resonators with a concentric cylindrical hole. The geometry of this structure is shown

in Fig. 7. This filter was considered in [8], where all dimensions and materials can be found,

and was designed to perform a bandstop from 5 to 6.8 GHz. This time we take into account the
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Figure 5: Dual-mode circular waveguide filter reduced order model results are compared with

measurements. (a) Filter Band. (b) Wide band response.
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Figure 6: Evolution of the residual error in the rectangular to circular waveguide transition

subdomain in the dual-mode filter analysis as a result of the greedy algorithm. (a) Filter band.

(b) Wide band.

Table 1: Dimension of the Reduced Basis Approximation in

the Dual-Mode Circular Waveguide Filter

Subdomain
Reduced Basis Dimension N

11.6-12 GHz band 10-15 GHz band

Transitions 1 and 2 5 9

Cross-shaped Iris 5 14

Screws 1 5 14

Screws 2 5 14
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Figure 7: Geometry of the cylindrical dielectric resonator filter.
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Figure 8: Cylindrical dielectric resonator filter reduced order model results are compared with

measurements.

whole filter as analysis domain and apply our fast frequency sweep in the 4-8 GHz band. Fig.

8 compares the measurements and FEM simulation carried out in [8] with current formulation

results for the transmission coefficient. Reasonable agreement is obtained. Fig. 9 shows the

evolution of the residual error throughout the band of interest. On this occasion, we need a

reduced order model of dimension N = 17 until good results are certified in the whole band.

Note that frequency sample points as well as the dimension of the reduced basis approximation

are adaptively selected and no human interaction is required apart from the specification of the

band of interest. Furthermore, the fast frequency sweep automatically exits whenever a realiable

frequency response is obtained throughout the band of interest.
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Figure 9: Greedy algorithm-based residual error evolution in the construction of the reduced

basis functions for the cylindrical dielectric resonator filter.
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6.3 Band-notched Planar Monopole Antennas

Finally, we deal with different band-notched wide band planar monopole antennas. On the

one hand, we take into account a wide band planar monopole where multiple band rejection

is allowed. Thus, a multiband radiating structure arises rejecting inteference from narrowband

communication systems as well as preventing interference to them. Fig. 10 details the radiating

structure as well as its dimensions. Both ∪ and ∩-shaped slots are symmetrically inserted in

the wide band planar monopole, giving rise to two notch filters. These slots avoid any radiating

mode on the planar monopole at frequencies where their length becomes half a wavelength.

This multiple band-notched monopole is addressed in [25]. We carry out a fast frequency sweep

analysis with the proposed approach in the 1-7 GHz band. A reduced order model of dimension

N = 15 is required to provide a reliable response throughout the whole band. In addition, we

carry out an FEM analysis at 15 evenly spaced frequency points in the band of interest. Fig.

11 compares the reflection coefficient results with measurements carried out in [25], as well as

details the reduced basis adaptive sample points in the frequency axis. Note that some antenna

dimensions are not provided in [25]. Reasonable agreement is found. It should be noted that

the FEM analysis does not account for the sharp frequency notches in the antenna response.

On the other hand, we deal with an ultra wide band (UWB) antenna with band-rejection

requirements. Typically, UWB systems (2-11 GHz band) should coexist with other services

such as WLAN systems (5-6 GHz band). Here, we analyze an UWB antenna with WLAN band

rejection shown in Fig. 12. Based on the topology characteristics of the previous radiating

structure, this antenna was designed in [31], where all dimensions are detailed. An profile-

optimized UWB planar monopole antena was initially considered [32] and conformal-shaped

slots were then optimized by a genetic algorithm within the methodology proposed in [11]. So

far, a good rejection in the WLAN band is achieved while keeping good radiation characteristics

in the remaining UWB band. Fig. 13 compares reduced basis method and FEM VSWR results

with measurements carried out in [31]. Good agreement is obtained.

Since the electrical size of the UWB planar monopole is rather large in terms of wavelengths

in the upper UWB band, the actual analysis domain, which should enclose the planar monopole

with a sphere (see Fig. 12), is rather large too. Thus far, we may expect a large number of

interior resonances in the upper UWB band, which, in turn, may increase the actual dimension

of the reduced basis approximation as the band of interest for the reduced order model increases.

Fig. 14 illustrates this situation.

7 Conclusion

A reduced basis method approach for reliable fast frequency sweep in the time-harmonic Maxwell’s

equations has been presented. This methodology is based on approximating the electromagnetic
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field as a member in the evolution of the electromagnetic field as frequency changes, rather than

an arbitrary member in the field solution space. Crucial aspects from the computational point

of view have been addressed. An offline-online decomposition strategy has been carried out to

completely decouple those time-consuming parts from the many queries frequency evaluation

stage. Special emphasis has been placed on an easily-computable error measure that actually

serves to certify whether a frequency response via the reduced order model is accurate enough.

As a result, a completely reliable model order reduction process has been presented. Based

on these ingredients, a fast frequency sweep algorithm that automatically exits as soon as an

accurate response is obtained throughout the large frequency band of interest has been detailed.

Note that the band of interest should avoid the resonances in the current implementation of the

method, but we refer to [10], [51] for improvements that allow to incorporate more closely these

cases as well. Finally, some challenging microwave devices have shown the capabilities of the

proposed approach.
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