
HAL Id: hal-00379175
https://hal.science/hal-00379175

Submitted on 11 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardening description for FCC materials under complex
loading paths

Céline Gérard, Brigitte Bacroix, Michel Bornert, Georges Cailletaud, Jérôme
Crépin, Sylvain Leclercq

To cite this version:
Céline Gérard, Brigitte Bacroix, Michel Bornert, Georges Cailletaud, Jérôme Crépin, et al.. Hardening
description for FCC materials under complex loading paths. Computational Materials Science, 2009,
45, pp.751-755. �10.1016/j.commatsci.2008.08.027�. �hal-00379175�

https://hal.science/hal-00379175
https://hal.archives-ouvertes.fr


Hardeningdescription forFCCmaterials under complex

loadingpaths

C. Gérard a,b,c B. Bacroix c M. Bornert b G. Cailletaud a J. Crépin b S. Leclercq d
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Abstract

The present work aims at exploring self and latent hardening for FCC polycrystals under complex loading paths at room temperature.

Combinations of simple loading paths sequences, such as tension and simple shear, with different orientations with regard to rolling

direction, are considered. Experimental results are compared to finite element computations of polycrystalline aggregates taking

into account the material microstructure, and to simulations based on mean field models.
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1. Introduction

The plastic properties of face-centred cubic (FCC) crys-

tals are experimentally well documented. They are related

to dislocation arrangement and microstructure formations

but little is known experimentally about a quantitative

description of the slip system interaction. Only indirect

and approximate estimates can be obtained through latent
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hardening tests on single crystals [6], [18].

Mandel [11] proposed to describe the interaction between

slip systems by a matrix separating self and latent hard-

ening. Later, Franciosi [6] defined an interaction matrix to

consider the interactions in FCC crystals. The number of

distinct interaction coefficients between the twelve mutu-

ally interacting slip systems in the FCC structure is reduced

to only six for symmetry reasons. In the past, the interac-

Preprint submitted to Elsevier 1 August 2008



tion matrix has been introduced either in phenomenological

models, following for instance Asaro [1], or in dislocation-

based models. A phenomenological approach will be used

in the present paper [12]. It has already been applied to

copper bicrystals [13]. Dislocation densities are classically

introduced in ”dislocation driven” plasticity models, for in-

stance in [17]. This class of model was also used in our work,

but is not presented here due to the lack of space. In fact,

the conclusions concerning the interaction matrix are the

same with both model types. On the other hand, the nature

of the interactions is naturally represented in lower scale

approaches, like discrete dislocation dynamics simulation

(DDD). The shape of the matrix can be then investigated.

Recent results [5] report innovative values of the interac-

tion coefficients, specially for the collinear systems. The

motivations of our study is then: to perform discriminat-

ing tests using multiaxial loading paths, to trigger system

interaction; to calibrate the crystal plasticity model with

respect to the global responses ; to check the values used

in the interaction matrix with respect to the DDD results.

2. Methodology

Method of identification. The identification process

uses finite element computations to calibrate the mate-

rial parameters of the crystal plasticity model, so that

the description does not involve any questionnable scale

transition rule. Periodic boundary conditions are adopted.

As overall stress conditions cannot be imposed on parallel

periodic computations in the present implementation, the

overall strain tensor has been prescribed. The definition

of the transverse loading is a classical issue for this case

of problem [8]. In order to simulate uniaxial tension (with

vanishing overall stress components except along the ten-

sile direction), an overall strain history induced by uniaxial

tension was first determined by using a mean field model

described below (the β-rule). The transverse components

obtained in this computation are imposed to the finite

element calculation, and iteratively adjusted if necessary,

in order to reach a zero transverse stress. In the final com-

putations, the perturbation on the value of the transverse

stress components were less than 5 MPa, and considered

negligible with respect to the tensile stress. Such a proce-

dure ensures that loading conditions in the finite element

simulations and the mean field models described hereafter

are similar, so that the two types of approaches can be

compared.

Material and experimental procedure. Four load-

ing paths are studied: two tension tests and two combina-

tions of shear and tensile loadings. The material used is a

0.5 mm sheet of hot rolled copper OFHC.

The texture was measured by X-ray diffraction. The diffrac-

tometer used is a 4 circle goniometer located at the exit of

a monochromatic cobalt beam. Pole figures are corrected

of background noise, defocalisation, and then normalised.

Texture measurements are realised on the most intensive

hkl plane families: {111}, {200}, {220}. Orientations dis-

tributions functions are then calculated with the harmonic

method. Pole figures are presented in Fig.3. A marked cu-

bic texture is obtained.

The shear direction axis 1 in Fig.1 is parallel to the rolling

direction of the sheet. The prestrain device and the sample

geometry (see Fig.1 for dimensions) have already been de-

scribed in [2], [7]. The displacement is precisely measured

by a digital image correlation technique making use of a

2 mm-step grid serigraphied at the surface of the sample.

The macroscopic shear strain is ε12 = 1.4%. Smaller ten-

sile specimens were cut out from the large homogeneously
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prestrained sample at two different angles α from the pre-

strain direction: 0˚and 45˚. All specimens were realised by

electrical discharge machining. During tensile loading, the

displacement is measured by a 14 mm base extensometer.

Fig. 1. Geometry of the samples used in the prestrain by simple
shear device.

The macroscopic tensile curves (Fig.5) show that the

texture effect seems quite negligible (no difference between

the tensile tests on specimens at 0˚and 45˚). On the other

hand, over-hardening in tension at 45˚after pre-shear is

11 MPa, and the over-hardening of the orthogonal loading

is 34 MPa. The uncertainty of stress evaluation is about

5%.

Single crystal model. The single crystal constitutive

equations are written in the framework of a phenomeno-

logical crystal plasticity approach [12] with isotropic hard-

ening on slip systems. The strain rate γ̇s on system s is

described by a power function:

γ̇s =

⌊

|τ s| − rs

K

⌋n

sign(τ s), (1)

where ⌊a⌋ is the positive part of a, and where K and n are

material parameters. The evolution of the isotropic harden-

ing variable rs takes into account slip system interactions

by means of an interaction matrix, with components hrs:

rs = r0 + Q
∑

hsr{1 − e(−bvr)}, (2)

where r0 is the initial critical resolved shear stress, Q the

hardening capacity, b a material coefficient, and vr the ac-

cumulated slip on system r, such that v̇r =
∣

∣γ̇s
∣

∣.

The orientation tensor for the system s, m
∼

s, is defined by

means of the normal to the slip plane, ns, and the slip di-

rection, ls.

m
∼

s = (ns ⊗ ls + ls ⊗ ns)/2 (3)

It is used to compute the resolved stress, and also for the

evaluation of the plastic strain rate tensor, in a small strain

framework:

τ s = m
∼

s : σ
∼

ε̇
∼

p =
∑

s

γ̇sm
∼

s (4)

Evaluation of the scale transition by finite ele-

ment analysis (FEA). A polycrystal computation is

performed on 200-grain periodic aggregates (Fig.2). The

elements used are quadratic tetrahedra that respect grain

boundaries. FEA is performed by means of a parallel com-

putation, with the code ZéBuLon, using 12 sub-domains.

Fig. 2. The periodic 3D mesh used (236312 elements, 332894 nodes).
Geometry is composed of Voronöı polyedra. The mesh respects grain
boundaries.

The crystallographic orientations randomly assigned to

the 200 grains are selected so as to represent the measured

texture (Fig.3). Starting from the initial 2016 orientations

referenced by the software, and after elimination of the

orientations with a too small volume fraction, a tolerance
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cone is associated to each texture vector in order to decrease

the number of orientations taken into account.

Fig. 3. On the top, texture measured by X-Ray diffraction on a sheet
of hot rolled copper OFHC. On the bottom, simplified texture used
for finite element computations.

Macroscopic curves obtained by means of FEA are pre-

sented in Fig.4.

Mean field scale transition schemes. The total

macroscopic strain E
∼

is classically split into its elastic

E
∼

e and inelastic E
∼

p parts, while the overall stress Σ
∼

is

obtained from :






















E
∼

= E
∼

e + E
∼

p

Σ
∼

= C
∼

∼

: (E
∼

− E
∼

p),

(5)

where C
∼

∼

is the tensor of the macroscopic elastic moduli.

For the sake of simplicity, the individual grains are also

supposed to have an isotropic elasticity. Uniform elastic-

ity was used to make sure that the internal stresses come

from plasticity only. On the other hand, this assumption

is consistent with the description by the chosen uniform

field models. This introduces a simplification during elastic

loading and at the onset of plastic flow.

In the considered classical elastoviscoplastic scale tran-

sition models, the description of the local stress and strain

fields is restricted to the set of average stresses σ
∼

and strains

ε
∼

over grains having same crystal orientation, the latter be-

ing similarly decomposed into their elastic ε
∼

e and inelastic

ε
∼

p parts with σ
∼

= C
∼

∼

: (ε
∼

− ε
∼

p). Classical average relations

< σ
∼

>= Σ
∼

, < ε
∼

>= E
∼

hold, with in addition < ε
∼

p >= E
∼

p

as a consequence of the homogeneity of the elastic moduli.

The same local viscoplastic flow rule as in the FEA is used.

It is assumed that it applies also at the scale of the per-

phase averages to link the evolution of ε
∼

p to σ
∼

, ignoring,

again for simplicity, the influence of possible intra-phase

field fluctuations.

In order to close the set of equations which determine the

local stresses from the imposed macroscopic loading his-

tory, an additional accomodation equation is required. Fol-

lowing a self-consistent framework, Eshelby-type solutions

are used, based on an infinite medium exhibiting the effec-

tive properties of the polycrystal, with an embedded inclu-

sion obeying the local constitutive relation of the grains and

the shape of which representing the average grain shape.

According to Kröner’s rule [10], which introduces a purely

elastic accomodation, one has :

σ
∼

= Σ
∼

+ C
∼

∼

: (I
∼

∼

− S
∼

∼

) : (E
∼

p − ε
∼

p) (6)

where S
∼

∼

is Eshelby’s tensor relative to an ellipsoidal inclu-

sion embedded in an elastic medium with moduli C
∼

∼

. In the

present simulations, grains in the polycrystal are equiaxed,

consistently with the FEA, and are represented by a sphere.

Since inelastic strains are trace free, and assuming uniform

isotropic elastic properties, the equation reduces to :

σ
∼

= Σ
∼

+ 2µ(1 − β)(E
∼

p − ε
∼

p) (7)

where β = 2(4−5ν)
15(1−ν) is close to 0.5 with a Poisson’s ratio ν
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close to 0.3. Since µ ≫ ||σ
∼

||, this rules leads to predictions

close to Taylor’s uniform strain model and overestimates

the stress levels.

Improved predictions are obtained when elastoplastic ac-

commodation is taken into account in the accomodation re-

lation, as in Hill’s incremental self-consistent model [9] and

other schemes derived from it, among which the Berveiller-

Zaoui [3] estimate to which it reduces in the case of spher-

ical inclusions, uniform isotropic elasticity, monotonic and

radial loading paths, and when the elastoplastic behaviour

of the infinite medium is replaced by a linear isotropic se-

cant approximation, characterised by the secant moduli

µsec = Σeq/3Eeq. The accomodation relation reads then :

σ
∼

= Σ
∼

+ 2µ(1 − β)α(E
∼

p − ε
∼

p) (8)

with
1

α
=

1

2

(

1 +
µ

µsec

)

It coincides with Kröner’s rule at the beginning of plasticity

but leads to softer predictions at higher strains.

In a third model, the β-rule [15], the accomodation re-

lation is reformulated by means of a phenomenological ac-

commodation variable β
∼

which has a non linear evolution

with respect to plastic strain. In the case of spherical in-

clusions and uniform isotropic elasticity, the expression is:

σ
∼

= Σ
∼

+ 2µ(1 − β)(B
∼

− β
∼

) (9)

with B
∼

=< β
∼

>

and β̇
∼

= ε̇
∼

p − D(β
∼

− δε
∼

p)‖ε̇p‖

where D and δ are not free material parameters. They are

constants that are used to calibrate the scale transition

rule. They can for instance be adjusted in such a way that

the model coincides with Berveiller–Zaoui’s approach in the

case of a monotonic load. This provides a way to extend this

model to more general loading paths, as those considered

in the present study; appropriate values are D = 425 and

δ = 0.035.

Both models (Kröner and β-rule adjusted on Berveiller-

Zaoui’s estimate) were used to simulate the experimen-

tal non-proportional tests. The experimental texture is de-

scribed. The resulting curves are presented in Fig.5 and

Fig.6.

3. Results and comments

The material parameters used for the single crystal

model are given in table 1. The identification is performed

by taking all the tests together, and by minimizing the

”distance” between experiment and simulation [4]. The

viscosity parameter cannot really be identified here. They

were taken in agreement with an other identification re-

alised on dislocation-based single crystal model, but not

presented here because of the lack of space. The parame-

ters R0, Q, and b are in good agreement with recent result

on copper [14]: the initial critical resolved shear stress is

relatively low (4 MPa), meanwhile the hardening capac-

ity is rather high (7 MPa times the numer of active slip

systems). A value of 9 for b allows the hardening to be

spread on several dozen of cycles, as currently observed in

copper[13].

K (s.MPa
1

n ) n R0 (MPa) Q (MPa) b

8 20 4 7 9

h0 h1 h2 h3 h4 h5

1 1 0,2 90 3 2,5
Table 1
Material parameters of the single crystal model.

The parameters in the interaction matrix correspond re-

spectively to: self hardening (h0), coplanar interaction (h1),

Hirth lock (h2), collinear interaction (h3), glissile junction

(h4), Lomer lock (h5). Only some of the slip system in-

teractions are active in pure tension, so that all the terms
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cannot be identified using such a type of test. On the other

hand, the simulation of the cross hardening tests is really

sensitive to both h2 and h3. The low (0.2) and very high

(90) values chosen for these two parameters are mandatory

to correctly represent the tension tests (0˚and 45˚) after

initial shear. In fact, the very high value of h3 prevents any

collinear slip to occur: this observation is in agreement with

values recently obtained by DDD [5].

The set of parameters is used both in FEA (Fig.4) and with

the β-rule (Fig.5). For each case, the simulation is in good

agreement with experiment, for the four loading paths. On

the other hand, simulations with Kröner’s rule (Fig.6) over-

estimate the macroscopic stress levels, as expected, since

the residual stresses are too high in this approach. It is not

surprising to observe that the β–rule is a little better than

FEA, in Fig.4. In fact, by definition, the result provided by

uniform field models in one simulation involve an equiva-

lent medium around each phase ; as a consequence, the re-

sponse of this model will be reached by averaging a series

of FEA results, where the geometrical distribution of the

phases is changed, in order to install a sort of equivalent

medium around each grain.

4. Conclusion and prospects

The phenomenological crystal plasticity model used in

this study [12] provides a rather good agreement between

experiments and simulations, made by FEA or by means

of an uniform field model (β–rule). As expected, Kröner’s

model over-estimates the macroscopic stress levels.

The most remarkable result deals with the interaction ma-

trix. Following recent DDD computations [5], it has been

found that collinear slip is a critical phenomenon, specially

in non proportional loadings. A very high value of the re-

lated parameter has then been used in the interaction ma-

trix, preventing any collinear slip to occur. This choice is

mandatory to be able to correctly describe the mechanical

response obtained with two orthogonal loading paths.

The result obtained for the matrix interaction coefficients

shows that a very high value for collinear slip systems coeffi-

cients is necessary to describe the orthogonal loading path.

This very high value prevents two collinear slip systems to

be activated simultaneously : this observation is in agree-

ment with values recently obtained by discrete dislocation

dynamics [5].
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Fig. 4. Macroscopic behaviour simulated by periodic FEA.

Fig. 5. Macroscopic behaviour modelled with the β-rule scheme [15].
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Fig. 6. Macroscopic behaviour modelled with Kröner’s model [10].
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