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We present a construction of a Lévy continuum random tree (CRT) associated with a super-critical continuous state branching process using the so-called exploration process and a Girsanov theorem. We also extend the pruning procedure to this super-critical case. Let ψ be a critical branching mechanism. We set ψ θ (•) = ψ(• + θ) -ψ(θ). Let Θ = (θ∞, +∞) or Θ = [θ∞, +∞) be the set of values of θ for which ψ θ is a conservative branching mechanism. The pruning procedure allows to construct a decreasing Lévy-CRT-valued Markov process (T θ , θ ∈ Θ), such that T θ has branching mechanism ψ θ . It is sub-critical if θ > 0 and super-critical if θ < 0. We then consider the explosion time A of the CRT: the smallest (negative) time θ for which the continuous state branching process (CB) associated with T θ has finite total mass (i.e., the length of the excursion of the exploration process that codes the CRT is finite). We describe the law of A as well as the distribution of the CRT just after this explosion time. The CRT just after explosion can be seen as a CRT conditioned not to be extinct which is pruned with an independent intensity related to A. We also study the evolution of the CRT-valued process after the explosion time. This extends results from Aldous and Pitman on Galton-Watson trees. For the particular case of the quadratic branching mechanism, we show that after explosion the total mass of the CB behaves like the inverse of a stable subordinator with index 1/2. This result is related to the size of the tagged fragment for the fragmentation of Aldous's CRT.

1. Introduction. Continuous state branching processes (CB in short) are nonnegative real valued Markov processes first introduced by Jirina [START_REF] Jiřina | Stochastic branching processes with continuous state space[END_REF] that satisfy a branching property: the process (Z t , t ≥ 0) is a CB if its law when starting from x + x ′ is equal to the law of the sum of two independent copies of Z starting respectively from x and x ′ . The law of such a process is characterized by the so-called branching mechanism ψ via its Laplace functionals. The branching mechanism ψ of a CB is given by

ψ(λ) = αλ + βλ 2 + (0,+∞) π(dℓ)[e -λℓ -1 + λℓ1 {ℓ≤1} ],
where α ∈ R, β ≥ 0 and π is a Radon measure on (0, +∞) such that (0,+∞) (1∧ ℓ 2 )π(dℓ) < +∞. The CB is said to be respectively sub-critical, critical, supercritical when ψ ′ (0) > 0, ψ ′ (0) = 0 or ψ ′ (0) < 0. We will write (sub)critical for critical or sub-critical. Notice that ψ is smooth and strictly convex if β > 0 or π = 0.

It is shown in [START_REF] Lamperti | The limit of a sequence of branching processes[END_REF] that all these CBs can be obtained as the limit of renormalized sequences of Galton-Watson processes. A genealogical tree is naturally associated with a Galton-Watson process and the question of existence of such a genealogical structure for CB arises naturally. This question has given birth to the theory of continuum random trees (CRT), first introduced in the pioneer work of Aldous [START_REF] Aldous | The continuum random tree. II. An overview[END_REF][START_REF] Aldous | The continuum random tree[END_REF][START_REF] Aldous | The continuum random tree[END_REF]. A continuum random tree (called Lévy CRT) that codes the genealogy of a general (sub)critical branching process has been constructed in [START_REF] Gall | Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses[END_REF][START_REF] Gall | Branching processes in Lévy processes: The exploration process[END_REF] and studied further in [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF]. The main tool of this approach is the so-called exploration process (ρ s , s ∈ R + ), where ρ s is a measure on R + , which codes for the CRT. For (sub)critical quadratic branching mechanism (π = 0), the measure ρ s is just the Lebesgue measure over an interval [0, H s ], and the so-called height process (H s , s ∈ R + ) is a Brownian motion with drift reflected at 0. In [START_REF] Delmas | Height process for super-critical continuous state branching process[END_REF], a CRT is built for super-critical quadratic branching mechanism using the Girsanov theorem for Brownian motion.

We propose here a construction for general super-critical Lévy tree, using the exploration process, based on ideas from [START_REF] Delmas | Height process for super-critical continuous state branching process[END_REF]. We first build the supercritical tree up to a given level a. This tree can be coded by an exploration process, and its law is absolutely continuous with respect to the law of a (sub)critical Lévy tree, whose leaves above level a are removed. Moreover, this family of processes (indexed by parameter a) satisfies a compatibility property, and hence there exists a projective limit which can be seen as the law of the CRT associated with the super-critical CB. This construction enables us to use most of the results known for (sub)critical CRT. Notice that another construction of a Lévy CRT that does not make use of the exploration process has been proposed in [START_REF] Duquesne | Growth of Lévy trees[END_REF] as the limit, for the Gromov-Hausdorff metric, of a sequence of discrete trees. This construction also holds in the super-critical case but is not easy to use to derive properties for super-critical CRT.

In a second time, we want to construct a "decreasing" tree-valued Markov process. To begin with, if ψ is (sub)critical, for θ > 0 we can construct, via the pruning procedure of [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF], from a Lévy CRT T associated with ψ, a sub-tree T θ associated with the branching mechanism ψ θ defined by ∀λ ≥ 0 ψ θ (λ) = ψ(λ + θ)ψ(θ).

By [START_REF] Abraham | Fragmentation associated with Lévy processes using snake[END_REF][START_REF] Voisin | Dislocation measure of the fragmentation of a general Lévy tree[END_REF], we can even construct a "decreasing" family of Lévy CRTs (T θ , θ ≥ 0) such that T θ is associated with ψ θ for every θ ≥ 0.

In this paper, we consider a critical branching mechanism ψ and denote by Θ the set of real numbers θ (including negative ones) for which ψ θ is a well-defined conservative branching mechanism (see Section 5.3 for some examples). Notice that Θ = [θ ∞ , +∞) or (θ ∞ , +∞) for some θ ∞ ∈ [-∞, 0]. We then extend the pruning procedure of [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF] to super-critical branching mechanisms in order to define a Lévy CRT-valued process (T θ , θ ∈ Θ) such that:

• for every θ ∈ Θ, the Lévy CRT T θ is associated with the branching mechanism ψ θ ; • all the trees T θ , θ ∈ Θ have a common root;

• the tree-valued process (T θ , θ ∈ Θ) is decreasing in the sense that for θ < θ ′ , T θ ′ is a sub-tree of T θ .

Let ρ θ be the exploration process that codes for T θ . We denote by N ψ the excursion measure of the process (ρ θ , θ ∈ Θ), that is under N ψ , each ρ θ is the excursion of an exploration process associated with ψ θ . Let σ θ denote the length of this excursion. The quantity σ θ corresponds also to the total mass of the CB associated with the tree T θ . We say that the tree T θ is finite (under N ψ ) if σ θ is finite (or equivalently if the total mass of the associated CB is finite). By construction, we have that the trees T θ for θ ≥ 0 are associated with (sub)critical branching mechanisms and hence are a.e. finite. On the other hand, the trees T θ for negative θ are associated with super-critical branching mechanisms. We define the explosion time

A = inf{θ ∈ Θ, σ θ < +∞}.
For θ ∈ Θ, we define θ as the unique nonnegative real number such that

ψ( θ) = ψ(θ) (1) 
(notice that θ = θ if θ ≥ 0). If θ ∞ /
∈ Θ, we set θ∞ = lim θ↓θ∞ θ. We give the distribution of A under N ψ (Theorem 6.5). In particular we have, for all θ ∈ [θ ∞ , +∞),

N ψ [A > θ] = θ -θ.
We also give the distribution of the trees after the explosion time (T θ , θ ≥ A) (Theorem 6.7 and Corollary 8.2). Of particular interest is the distribution of the tree at its explosion time, T A .

The pruning procedure can been viewed, from a discrete point of view, as a percolation on a Galton-Watson tree. This idea has been used in [START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF] (percolation on branches) and in [START_REF] Abraham | Pruning Galton-Watson trees and tree-valued Markov processes[END_REF] (percolation on nodes) to construct tree-valued Markov processes from a Galton-Watson tree. The CRT-valued Markov process constructed here can be viewed as the continuous analog of the discrete models of [START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF] and [START_REF] Abraham | Pruning Galton-Watson trees and tree-valued Markov processes[END_REF] (or maybe a mixture of both constructions). However, no link is actually pointed out between the discrete and the continuous frameworks.

In [START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF] and [START_REF] Abraham | Pruning Galton-Watson trees and tree-valued Markov processes[END_REF], another representation of the process up to the explosion time is also given in terms of the pruning of an infinite tree [a (sub)critical Galton-Watson tree conditioned on nonextinction]. In the same spirit, we also construct another tree-valued Markov process (T * θ , θ ≥ 0) associated with a critical branching mechanism ψ. In the case of a.s. extinction (i.e., when +∞ dv ψ(v) < +∞), T * 0 is distributed as T 0 conditioned to survival. The tree T * 0 is constructed via a spinal decomposition along an infinite spine. Then we define the continuum-tree-valued Markov process (T * θ , θ ≥ 0) again by a pruning procedure. Let θ ∈ (θ ∞ , 0). We prove that under the excursion measure N ψ , given A = θ, the process (T θ+u , u ≥ 0) is distributed as the process (T * θ+u , u ≥ 0) (Theorem 8.1). When the branching mechanism is quadratic, ψ(λ) = λ 2 /2, some explicit computations can be carried out. Let σ * θ be the total mass of T * θ and τ = (τ θ , θ ≥ 0) be the first passage process of a standard Brownian motion, that is a stable subordinator with index 1/2. We get (Proposition 9.1) that (σ * θ , θ ≥ 0) is distributed as (1/τ θ , θ ≥ 0) and that (σ A+θ , θ ≥ 0) is distributed as (1/(V + τ θ ), θ ≥ 0) for some random variable V independent of τ . Let us recall that the pruning procedure of the tree can be used to construct some fragmentation processes (see [START_REF] Abraham | Fragmentation associated with Lévy processes using snake[END_REF][START_REF] Abraham | Poisson snake and fragmentation[END_REF][START_REF] Voisin | Dislocation measure of the fragmentation of a general Lévy tree[END_REF]) and the process (σ θ , θ ≥ 0), conditionally on σ 0 = 1, represents then the evolution of a tagged fragment. We hence recover a well-known result of Aldous-Pitman [START_REF] Aldous | The standard additive coalescent[END_REF]: conditionally on

σ 0 = 1, (σ θ , θ ≥ 0) is distributed as (1/(1 + τ θ ), θ ≥ 0) (see Corollary 9.2).
The paper is organized as follows. In Section 2, we introduce an exponential martingale of a CB and give a Girsanov formula for CBs. We recall in Section 3 the construction of a (sub)critical Lévy CRT via the exploration process and some useful properties of this exploration process. Then we construct, in Section 4, the super-critical Lévy CRT via a Girsanov theorem involving the same martingale as in Section 2. We recall in Section 5 the pruning procedure for critical or sub-critical CRTs and extend this procedure to super-critical CRTs. We construct in Section 6 the tree-valued process (T θ , θ ∈ Θ), or more precisely the family of exploration processes (ρ θ , θ ∈ Θ) which codes for it. We also give the law of the explosion time A and the law of the tree at this time. In Section 7, we construct an infinite tree and the corresponding pruned sub-trees (T * θ , θ ≥ 0), which are given by a spinal representation using exploration processes. We prove in Section 8 that the process (T A+u , u ≥ 0) is distributed as the process (T * U +u , u ≥ 0)

where U is a positive random time independent of (T * θ , θ ≥ 0). We finally make the explicit computations for the quadratic case in Section 9.

Notice that all the results in the following sections are stated using exploration processes which code for the CRT, instead of the CRT directly. An informal description of the links between the CRT and the exploration process is given at the end of Section 3.6.

2. Girsanov's formula for continuous branching process.

Continuous branching process.

Let ψ be a branching mechanism of a CB: for λ ≥ 0,

ψ(λ) = αλ + βλ 2 + (0,+∞) π(dℓ)[e -λℓ -1 + λℓ1 {ℓ≤1} ], (2) 
where α ∈ R, β ≥ 0, and π is a Radon measure on (0, +∞) such that (0,+∞) (1 ∧ ℓ 2 )π(dℓ) < +∞. We shall say that ψ has parameter (α, β, π). We shall assume that β = 0 or π = 0. We have ψ(0) = 0 and ψ ′ (0

+ ) = α -(1,+∞) ℓπ(dℓ) ∈ [-∞, +∞). In particular, we have ψ ′ (0 + ) = -∞ if and only if (1,+∞) ℓπ(dℓ) = +∞. We say that ψ is conservative if for all ε > 0 ε 0 1 |ψ(u)| du = +∞. (3) Notice that (3) is fulfilled if ψ ′ (0+) > -∞, that is, if (1,+∞) ℓπ(dℓ) < +∞.
If ψ is conservative, the CB associated with ψ does not explode in finite time a.s.

Let P ψ x be the law of a CB Z = (Z a , a ≥ 0) started at x ≥ 0 and with branching mechanism ψ, and let E ψ x be the corresponding expectation. The process Z is a Feller process and thus has a càd-làg version. Let F = (F a , a ≥ 0) be the filtration generated by Z completed the usual way. For every λ > 0, for every a ≥ 0, we have

E ψ x [e -λZa ] = e -xu(a,λ) , (4) 
where function u is the unique nonnegative solution of u(a, λ)

+ a 0 ψ(u(s, λ)) ds = λ, λ ≥ 0, a ≥ 0. ( 5 
)
This equation is equivalent to

λ u(a,λ) dr ψ(r) = a, λ ≥ 0, a ≥ 0. ( 6 
)
If (3) holds, then the process is conservative: a.s. for all a ≥ 0, Z a < +∞. Let q 0 be the largest root of ψ(q) = 0. Since ψ(0) = 0, we have q 0 ≥ 0. If ψ is (sub)critical, since ψ is strictly convex, we get that q 0 = 0. If ψ is supercritical, if we denote by q * > 0 the only real number such that ψ ′ (q * ) = 0, we have q 0 > q * > 0. See Lemma 2.4 for the interpretation of q 0 . If f is a function defined on [γ, +∞), then for θ ≥ γ, we set for λ ≥ γθ

f θ (λ) = f (θ + λ) -f (θ).
If ν is a measure on (0, +∞), then for q ∈ R, we set

ν (q) (dℓ) = e -qℓ ν(dℓ). ( 7 
)
Remark 2.1. If π (q) ((1, +∞)) < +∞ for some q < 0, then ψ given by ( 2) is well defined on [q, +∞) and, for θ ∈ [q, +∞), ψ θ is a branching mechanism with parameter (α + 2βθ + (0,1] π(dℓ)ℓ(1e -θℓ ), β, π (θ) ). Notice that for all θ > q, ψ θ is conservative. And, if the additional assumption

(1,+∞) ℓπ (q) (dℓ) = (1,+∞) ℓe |q|ℓ π(dℓ) < +∞ holds, then |(ψ q ) ′ (0+)| < +∞ and ψ q is conservative.
2.2. Girsanov's formula. Let Z = (Z a , a ≥ 0) be a conservative CB with branching mechanism ψ given by (2) with β = 0 or π = 0, and let (F a , a ≥ 0) be its natural filtration. Let q ∈ R such that q ≥ 0 or q < 0 and

(1,+∞) ℓe |q|ℓ π(dℓ) < +∞. Then, thanks to Remark 2.1, ψ(q) and ψ q are well defined and ψ q is conservative. Then we consider the process M ψ,q = (M ψ,q a , a ≥ 0) defined by M ψ,q a = e qx-qZa-ψ(q) a 0 Zs ds . (8) Theorem 2.2. Let q ∈ R such that q ≥ 0 or q < 0 and (1,+∞) ℓe |q|ℓ π(dℓ) < +∞.

(i) The process M ψ,q is a F -martingale under P ψ

x . (ii) Let a, x ≥ 0. On F a , the probability measure P ψq x is absolutely continuous with respect to P ψ x and

dP ψq x | Fa dP ψ x | Fa = M ψ,q a .
Before going into the proof of this theorem, we recall Proposition 2.1 from [START_REF] Abraham | Changing the branching mechanism of a continuous state branching process using immigration[END_REF]. For µ a positive measure on R, we set

H(µ) = sup{r ∈ R; µ([r, +∞)) > 0}, (9) 
the maximal element of its support. For a < 0, we set Z a = 0. Proposition 2.3. Let µ be a finite positive measure on R with support bounded from above [i.e., H(µ) is finite]. Then we have for all s ∈ R, x ≥ 0, E ψ

x [e -R Z r-s µ(dr) ] = e -xw(s) , [START_REF] Aldous | The standard additive coalescent[END_REF] where the function w is a measurable locally bounded nonnegative solution of the equation [START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF] has a unique measurable locally bounded nonnegative solution.

w(s) + +∞ s ψ(w(r)) dr = [s,+∞) µ(dr), s ≤ H(µ) and (11) w(s) = 0, s > H(µ). If ψ ′ (0 + ) > -∞ or if µ({H(µ)}) > 0, then
Proof of Theorem 2.2. First case. We consider q > 0 such that ψ(q) ≥ 0. We have 0 ≤ M ψ,q a ≤ e qx , thus M ψ,q is bounded. It is clear that M ψ,q is F -adapted.

To check that M ψ,q is a martingale, thanks to the Markov property, it is enough to check that E ψ

x [M ψ,q a ] = E ψ x [M ψ,q 0 ] = 1 for all a ≥ 0 and all x ≥ 0. Consider the measure ν q (dr) = qδ a (dr) + ψ(q)1 [0,a] (r) dr, where δ a is the Dirac mass at point a. Notice that H(ν q ) = a and that ν q ({H(ν q )}) = q > 0. Hence, thanks to Proposition 2.3, there exists a unique nonnegative solution w of (11) with µ = ν q , and E ψ x [M ψ,q a ] = e -x(w(0)-q) . As q1 [0,a] also solves [START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF] with µ = ν q , we deduce that w = q1 [0,a] and that E x [M ψ,q a ] = 1. Thus, we get that M ψ,q is a bounded martingale.

Let ν be a nonnegative measure on R with support in [0, a] [i.e., H(ν) ≤ a]. Thanks to Proposition 2.3, we have that E ψ x [M ψ,q a e -R Zrν(dr) ] = e -x(v(0)-q) , where v is the unique nonnegative solution of [START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF] with µ = ν + ν q . As M ψ,q a e -R Zrν(dr) ≤ M ψ,q a , we deduce that e -x(v(0)-q) = E ψ x [M ψ,q a e -R Zrν(dr) ] ≤ 1, that is, v(0) ≥ q. We set u = v -q1 [0,a] , and we deduce that u is nonnegative and solves

u(s) + +∞ s ψ q (u(r)) dr = [s,+∞) ν(dr), s ≤ H(ν) and (12) u(s) = 0, s > H(ν).
As ψ(q) ≥ 0, we deduce from the convexity of ψ that ψ ′ q (0) = ψ ′ (q) ≥ 0. Thanks to Proposition 2.3, we deduce that u is the unique nonnegative solution of [START_REF] Bertoin | Lévy Processes[END_REF] and that e -xu(0) = E ψq x [e -R Zrν(dr) ]. In particular, we have that for all nonnegative measure ν on R with support in [0, a],

E ψ x [M ψ,q a e -R Zrν(dr) ] = E ψq x [e -R Zrν(dr) ].
As e -R Zrν(dr) is F a -measurable, we deduce from the monotone class theorem that for any nonnegative F a -measurable random variable W ,

E ψ x [W e qx-qZa-ψ(q) a 0 Zr dr ] = E ψ x [W M ψ,q a ] = E ψq x [W ]. ( 13 
)
This proves the second part of the theorem.

Second case. We consider q ≥ 0 such that ψ(q) < 0. Let us remark that this only occurs when ψ is super-critical.

Recall that q 0 > q * > 0 are such that ψ(q 0 ) = 0 and ψ ′ (q * ) = 0. Notice that ψ ′ q * (0) = ψ ′ (q * ) = 0, that is, ψ q * is critical. Let W be any nonnegative random variable F a -measurable. From the first step, using [START_REF] Bertoin | Self-similar fragmentations[END_REF] with q = q 0 , we get that E ψ

x [W e q 0 x-q 0 Za ] = E ψq 0

x [W ]. Thanks to [START_REF] Bertoin | Self-similar fragmentations[END_REF] with ψ q * instead of ψ and (q 0q * ) ≥ 0 instead of q, and using that (ψ q * ) q 0 -q * = ψ q 0 , we deduce that E ψ q *

x [W e (q 0 -q * )x-(q 0 -q * )Za-ψ q * (q 0 -q * ) a 0 Zr dr ] = E

(ψ q * ) q 0 -q * x [W ] = E ψq 0 x [W ]. This implies that E ψ x [W ] = E ψq 0
x [W e -q 0 x e q 0 Za ] = E

ψ q *
x [W e -q 0 x e q 0 Za e (q 0 -q * )x-(q 0 -q * )Za-ψ q * (q 0 -q * ) a 0 Zr dr ] = E

ψ q *
x [W e -q * x+q * Za-ψ q * (q 0 -q * ) a 0 Zr dr ]. As ψ q * (q 0q * ) = ψ(q 0 )ψ(q * ) = -ψ(q * ) = ψ q * (-q * ), we finally obtain

E ψ x [W ] = E ψ q *
x [W e -q * x+q * Za-ψ q * (-q * ) a 0 Zr dr ]. [START_REF] Bertoin | Random Fragmentation and Coagulation Processes[END_REF] If q < q * , as (ψ q ) (q * -q) = ψ q * and ψ ′ q (q *q) = ψ ′ (q * ) = 0, we deduce from [START_REF] Bertoin | Random Fragmentation and Coagulation Processes[END_REF] with ψ replaced by ψ q and q * by q *q that

E ψq x [W ] = E ψ q *
x [W e -(q * -q)x+(q * -q)Za-ψ q * (q-q * ) a 0 Zr dr ]. [START_REF] Delmas | Height process for super-critical continuous state branching process[END_REF] If q > q * , formula [START_REF] Bertoin | Self-similar fragmentations[END_REF] holds with ψ replaced by ψ q * and q replaced by qq * , which also yields equation [START_REF] Delmas | Height process for super-critical continuous state branching process[END_REF].

Using [START_REF] Bertoin | Random Fragmentation and Coagulation Processes[END_REF], [START_REF] Delmas | Height process for super-critical continuous state branching process[END_REF] and that ψ q * (-q * ) + ψ(q) = ψ q * (qq * ), we get that

E ψ x [W e qx-qZa-ψ(q) a 0 Zr dr ] = E ψ q *
x [W e -(q * -q)x+(q * -q)Za-(ψ q * (-q * )+ψ(q)) a 0 Zr dr ] (16) = E

ψ q *
x [W e -(q * -q)x+(q * -q)Za-ψ q * (q-q * ) a 0 Zr dr ] = E ψq x [W ]. Since this holds for any nonnegative F a -measurable random variable W , this proves (i) and (ii) of the theorem. Third case. We consider q < 0 and assume that (1,+∞) ℓe |q|ℓ π(dℓ) < +∞. In particular, ψ q is a conservative branching mechanism, thanks to Remark 2.1.

Let W be any nonnegative F a -measurable random variable. Using (13) if ψ q (-q) ≥ 0 or (16) if ψ q (-q) < 0, with ψ replaced by ψ q and q by -q, we deduce that

E ψq x [W e -qx+qZa-ψq(-q) a 0 Zr dr ] = E ψ x [W ]. This implies that E ψq x [W ] = E ψ
x [W e qx-qZa+ψq(-q) a 0 Zr dr ] = E ψ x [W e qx-qZa-ψ(q) a 0 Zr dr ]. Since this holds for any nonnegative F a -measurable random variable W , this proves (i) and (ii) of the theorem.

Finally, we recall some well-known facts on CB. Recall that q 0 is the largest root of ψ(q) = 0, q 0 = 0 if ψ is (sub)critical and that q 0 > 0 if ψ is super-critical. We set

σ = +∞ 0 Z a da. (17) 
For λ ≥ 0, we set ψ -1 (λ) = sup{r ≥ 0; ψ(r) = λ}, [START_REF] Duquesne | Growth of Lévy trees[END_REF] and we call σ the total mass of the CB. Lemma 2.4. Assume that ψ is given by ( 2) with β = 0 or π = 0 and is conservative.

(i) Then P ψ x -a.s. Z ∞ = lim a→+∞ Z a exists, Z ∞ ∈ {0, +∞}, P ψ x (Z ∞ = 0) = e -xq 0 , (19) 
{Z ∞ = 0} = {σ < +∞}, and we have, for λ > 0,

E ψ x [e -λσ ] = e -xψ -1 (λ) . (20) 
(ii) Let q > 0 such that ψ(q) ≥ 0. Then, the probability measure P ψq x is absolutely continuous with respect to P ψ x with dP

ψq x dP ψ x = M ψ,q
∞ , where M ψ,q ∞ = e qx-ψ(q)σ 1 {σ<+∞} .

(iii) If ψ is super-critical then, conditionally on {Z ∞ = 0}, Z is distributed as P ψq 0 : for any nonnegative random variable measurable w.r.t. σ(Z a , a ≥ 0), we have

E ψ x [W |Z ∞ = 0] = E ψq 0 x [W ].
Proof. For λ > 0, we set N a = e -λZa+xu(a,λ) , where u is the unique nonnegative solution of [START_REF] Abraham | Poisson snake and fragmentation[END_REF]. Thanks to (4) and the Markov property, (N a , a ≥ 0) is a bounded martingale under P ψ

x . Hence, as a goes to infinity, it converges a.s. and in L 1 to a limit, say N ∞ . From (6), we get that lim a→+∞ u(a, λ) = q 0 . This implies that

Z ∞ = lim a→+∞ Z a exists a.s. in [0, +∞]. Since E ψ x [N ∞ ] = 1, we get E ψ
x [e -λZ∞ ] = e -q 0 x for all λ > 0. This implies that P ψ x -a.s. Z ∞ ∈ {0, +∞} and [START_REF] Jiřina | Stochastic branching processes with continuous state space[END_REF].

Clearly, we have {Z ∞ = +∞} ⊂ {σ = +∞}. For q > 0 such that ψ(q) ≥ 0, we get that (M ψ,q a , a ≥ 0) is a bounded martingale under P ψ x . Hence, as a goes to infinity, it converges a.s. and in L 1 to a limit, say M ψ,q ∞ . We deduce that E ψ

x [e -ψ(q)σ 1 {Z∞=0} ] = e -qx . [START_REF] Gall | Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses[END_REF] Letting q decrease to q 0 , we get that P ψ x (σ < +∞, Z ∞ = 0) = e -q 0 x = P ψ

x (Z ∞ = 0). This implies that P ψ x a.s. {σ = +∞} ⊂ {Z ∞ = +∞}. We thus deduce that P ψ x a.s. {Z ∞ = +∞} = {σ = +∞}. Notice also that (21) holds. Notice that [START_REF] Gall | Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses[END_REF] readily implies [START_REF] Lamperti | The limit of a sequence of branching processes[END_REF]. This proves Property (i) of the lemma and [START_REF] Gall | Random real trees[END_REF].

Property (ii) is then a consequence of Theorem 2.2, Property (ii) and the convergence in L 1 of the martingale (M ψ,q a , a ≥ 0) towards M ψ,q ∞ . Property (iii) is a consequence of (ii) with q = q 0 and (19).

3. Lévy continuum random tree. We recall here the construction of the Lévy continuum random tree (CRT) introduced in [START_REF] Gall | Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses[END_REF][START_REF] Gall | Branching processes in Lévy processes: The exploration process[END_REF] and developed later in [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] for critical or sub-critical branching mechanism. We will emphasize on the height process and the exploration process which are the key tools to handle this tree. The results of this section are mainly extracted from [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF], except for the next subsection which is extracted from [START_REF] Gall | Random real trees[END_REF].

Real trees and their coding by a continuous function. Let us first

define what a real tree is. A rooted real tree is a real tree (T , d) with a distinguished vertex v ∅ called the root.

Definition 3.1. A metric space (T , d) is a real tree if the following two properties hold for every v 1 , v 2 ∈ T : (i) (unique geodesic) There is a unique isometric map f v 1 ,v 2 from [0, d(v 1 , v 2 )] into T such that f v 1 ,v 2 (0) = v 1 and f v 1 ,v 2 (d(v 1 , v 2 )) = v 2 . (ii) (no loop) If q is a continuous injective map from [0, 1] into T such that q(0) = v 1 and q(1) = v 2 , we have q([0, 1]) = f v 1 ,v 2 ([0, d(v 1 , v 2 )]).
Let (T , d) be a rooted real tree. The range of the mapping

f v 1 ,v 2 is denoted by [[v 1 , v 2 ,
]] (this is the line between v 1 and v 2 in the tree). In particular, for every vertex v ∈ T , [[v ∅ , v]] is the path going from the root to v which we call the ancestral line of vertex v. More generally, we say that a vertex v is an ancestor of a vertex

v ′ if v ∈ [[v ∅ , v ′ ]]. If v, v ′ ∈ T , there is a unique a ∈ T such that [[v ∅ , v]] ∩ [[v ∅ , v ′ ]] = [[v ∅ , a]].
We call a the most recent common ancestor to v and v ′ . By definition, the degree of a vertex v ∈ T is the number of connected components of T \ {v}. A vertex v is called a leaf if it has degree 1. Finally, we set λ the one-dimensional Hausdorff measure on T .

The coding of a compact real tree by a continuous function is now well known and is a key tool for defining random real trees (see Figure 1). We consider a continuous function g : [0, +∞) -→ [0, +∞) with compact support and such that g(0) = 0. We also assume that g is not identically 0. For every 0 ≤ s ≤ t, we set

m g (s, t) = inf u∈[s,t] g(u)
and

d g (s, t) = g(s) + g(t) -2m g (s, t).
We then introduce the equivalence relation s ∼ t if and only if d g (s, t) = 0. Let T g be the quotient space [0, +∞)/ ∼. It is easy to check that d g induces a distance on T g . Moreover, (T g , d g ) is a compact real tree (see [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF], Theorem 2.1). We say that g is the height process of the tree T g .

In order to define a random tree, instead of taking a tree-valued random variable (which implies defining a σ-field on the set of real trees), it suffices to take a continuous stochastic process for g. For instance, when g is a normalized Brownian excursion, the associated real tree is Aldous's CRT (up to a factor 2) [START_REF] Aldous | The continuum random tree[END_REF]. We present now how we can define a height process that codes a random real trees describing the genealogy of a (sub)critical CB with branching mechanism ψ. This height process is defined via a Lévy process that we first introduce.

3.2.

The underlying Lévy process. We assume that ψ given by ( 2) is (sub)critical, that is,

α := ψ ′ (0) = α - (1,+∞) ℓπ(dℓ) ≥ 0 (23)
and that

β > 0 or (0,1) ℓπ(dℓ) = +∞. ( 24 
)
We consider a R-valued Lévy process X = (X t , t ≥ 0) with no negative jumps, starting from 0 and with Laplace exponent ψ under the probability measure P ψ : for λ ≥ 0 E ψ [e -λXt ] = e tψ(λ) . By assumption [START_REF] Uribe Bravo | The falling apart of the tagged fragment and the asymptotic disintegration of the Brownian height fragmentation[END_REF], X is of infinite variation P ψ -a.s.

We introduce some processes related to X. Let J = {s ≥ 0; X s = X s-} be the set of jump times of X. For s ∈ J , we denote by

∆ s = X s -X s-
the size of the jump of X at time s and ∆ s = 0 otherwise. Let I = (I t , t ≥ 0) be the infimum process of X,

I t = inf 0≤s≤t X s ,
and let S = (S t , t ≥ 0) be the supremum process,

S t = sup 0≤s≤t X s .
We will also consider for every 0 ≤ s ≤ t the infimum of X over [s, t],

I s t = inf s≤r≤t X r .
The point 0 is regular for the Markov process X -I, and -I is the local time of X -I at 0 (see [START_REF] Bertoin | Lévy Processes[END_REF], Chapter VII). Let N ψ be the associated excursion measure of the process X -I away from 0. Let σ = inf{t > 0; X t -I t = 0} be the length of the excursion of X -I under N ψ [we shall see after Proposition 3.7 that the notation σ is consistent with [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF]]. By assumption (24), we have

X 0 = I 0 = 0 N ψ -a.e.
Since X is of infinite variation, 0 is also regular for the Markov process S -X. The local time, L = (L t , t ≥ 0), of S -X at 0 will be normalized so that

E ψ [e -λS L -1
t ] = e -tψ(λ)/λ , where L -1 t = inf{s ≥ 0; L s ≥ t} (see also [START_REF] Bertoin | Lévy Processes[END_REF] Theorem VII.4(ii)).

3.3.

The height process and the Lévy CRT. For each t ≥ 0, we consider the reversed process at time t,

X(t) = ( X(t) s , 0 ≤ s ≤ t) by X(t) s = X t -X (t-s)- if 0 ≤ s < t,
and X(t) t = X t . The two processes ( X(t) s , 0 ≤ s ≤ t) and (X s , 0 ≤ s ≤ t) have the same law. Let Ŝ(t) be the supremum process of X(t) and L(t) be the local time at 0 of Ŝ(t) -X(t) with the same normalization as L.

Definition 3.2 ([16], Definition 1.2.1)

. There exists a lower semi-continuous modification of the process ( L(t) , t ≥ 0). We denote by (H t , t ≥ 0) this modification.

We can also define this process H by approximation: it is a modification of the process

H 0 t = lim inf ε→0 1 ε t 0 1 {Xs<I s t +ε} ds (25) 
(see [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF], Lemma 1.1.3). In general, H takes its values in [0, +∞], but we have that, a.s. for every t ≥ 0:

• H s < +∞ for every s < t such that X s-≤ I s t ; • H t < +∞ if ∆X t > 0
(see [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF], Lemma 1.2.1).

We use this process to define a random real-tree that we call the ψ-Lévy CRT via the procedure described above. We will see that this CRT does represent the genealogy of a ψ-CB.

3.4.

The exploration process. The height process is not Markov in general. But it is a very simple function of a measure-valued Markov process, the so-called exploration process.

If E is a locally compact polish space, let B(E) [resp., B + (E)] be the set of real-valued measurable (resp., and nonnegative) functions defined on E endowed with its Borel σ-field, and let M(E) [resp., M f (E)] be the set of σ-finite (resp., finite) measures on E, endowed with the topology of vague (resp., weak) convergence. For any measure µ ∈ M(E) and f ∈ B + (E), we write

µ, f = E f (x)µ(dx).
The exploration process ρ = (ρ t , t ≥ 0) is a M f (R + )-valued process defined as follows: for every In particular, the total mass of ρ t is ρ t , 1 = X t -I t .

f ∈ B + (R + ), ρ t , f = [0,t] d s I s t f (H s ) (
Recall the definition ( 9) of H(µ) for a measure µ with compact support and set by convention H(0) = 0. Proposition 3.3 ([16], Lemma 1.2.2 and formula (1.12)). Almost surely, for every t > 0:

• H(ρ t ) = H t ; • ρ t = 0 if and only if H t = 0; • if ρ t = 0, then Supp ρ t = [0, H t ]; • ρ t = ρ t -+ ∆ t δ Ht , where ∆ t = 0 if t / ∈ J .
In the definition of the exploration process, as X starts from 0, we have ρ 0 = 0 a.s. To state the Markov property of ρ, we must first define the process ρ started at any initial measure µ ∈ M f (R + ).

For a ∈ [0, µ, 1 ], we define the erased measure k a µ by

k a µ([0, r]) = µ([0, r]) ∧ ( µ, 1 -a) for r ≥ 0.
If a > µ, 1 , we set k a µ = 0. In other words, the measure k a µ is the measure µ erased by a mass a backward from H(µ).

For ν, µ ∈ M f (R + ), and µ with compact support, we define the concatenation [µ, ν] ∈ M f (R + ) of the two measures by

[µ, ν], f = µ, f + ν, f (H(µ) + •) , f ∈ B + (R + ).
Finally, we set for every µ ∈ M f (R + ) and every t > 0,

ρ µ t = [k -It µ, ρ t ].
We say that (ρ µ t , t ≥ 0) is the process ρ started at ρ µ 0 = µ. Unless there is an ambiguity, we shall write ρ t for ρ µ t . Unless it is stated otherwise, we assume that ρ is started at 0.

Proposition 3.4 ([16], Proposition 1.2.3). The process (ρ t , t ≥ 0) is a càd-làg strong Markov process in M f (R + ).
Remark 3.5. From the construction of ρ, we get that a.s. ρ t = 0 if and only if -I t ≥ ρ 0 , 1 and X t -I t = 0. This implies that 0 is also a regular point for ρ. Notice that N ψ is also the excursion measure of the process ρ away from 0, and that σ, the length of the excursion, is N ψ -a.e. equal to inf{t > 0; ρ t = 0}. 3.5. Notations. We consider the set D of càd-làg processes in M f (R + ), endowed with the Skorohod topology and the Borel σ-field. In what follows, we denote by ρ = (ρ t , t ≥ 0) the canonical process on this set. We still denote by P ψ the probability measure on D such that the canonical process is distributed as the exploration process associated with the branching mechanism ψ, and by N ψ the corresponding excursion measure. 

.3).

There exists a jointly measurable process (L a s , a ≥ 0, s ≥ 0) which is continuous and nondecreasing in the variable s such that:

• for every t ≥ 0, lim ε→0 sup a≥0 E ψ [sup s≤t |ε -1 s 0 1 {a<Hr ≤a+ε} dr -L a s |] = 0; • for every t ≥ 0, lim ε→0 sup a≥ε E ψ [sup s≤t |ε -1 s 0 1 {a-ε<Hr≤a} dr -L a s |] = 0; • P ψ -a.s., for every t ≥ 0, L 0 t = -I t ;
• the occupation time formula holds: for any nonnegative measurable function g on R + and any s ≥ 0,

s 0 g(H r ) dr = (0,+∞) g(a)L a s da. Let T x = inf{t ≥ 0; I t ≤ -x}.
We have the following Ray-Knight theorem which links the ψ-Lévy CRT with the ψ-CB. 

1). The process (L a

Tx , a ≥ 0) is distributed under P ψ as Z under P ψ x (i.e., is a CB with branching mechanism ψ starting at x).

Let P ψ

x be the distribution of (ρ t∧Tx , t ≥ 0) under P ψ . We set Z a = L a Tx under P ψ x and Z a = L a ∞ under N ψ and (under

P ψ x or N ψ ) σ(ρ) = ∞ 0 1 {ρt =0} dt. (27)
The occupation time formula implies that

σ(ρ) = +∞ 0 Z a da, (28) 
which is consistent with notation [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF]. When there is no confusion, we shall write σ for σ(ρ). We call σ(ρ) the total mass of the CRT as it represents the total population of the associated CB.

Exponential formula for the Poisson point process of jumps of the inverse subordinator of -I gives (see also the beginning of Section 3.2.2. [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF]) that for λ > 0

N ψ [1 -e -λσ ] = ψ -1 (λ). ( 29 
)
We also recall Lemma 1.6 of [START_REF] Abraham | Fragmentation associated with Lévy processes using snake[END_REF]. Lemma 3.8. Let θ > 0. The excursion measure N ψ θ is absolutely continuous w.r.t. N ψ with density e -ψ(θ)σ : for any nonnegative measurable func- tion F on the space of excursions, we have

N ψ θ [F (ρ)] = N ψ [F (ρ)e -ψ(θ)σ ].
We recall the Poisson representation of P ψ

x based on the excursion measure N ψ . Let (α i , βi ) i∈ Ĩ be the excursion intervals of ρ away from 0. For every i ∈ Ĩ, t ≥ 0, we set

ρ(i) t = ρ (α i +t)∧ βi .
We deduce from Lemma 4.2.4 of [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] the following lemma.

Lemma 3.9. The point measure i∈ Ĩ δ ρ(i) (dµ) is under P ψ x a Poisson measure with intensity xN ψ (dµ).

To better understand the links between the Lévy CRT and the exploration process, we can combine the Markov property with the other Poisson decomposition of [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF], Lemma 4.2.4. Informally speaking, the measure ρ t is a measure placed on the ancestral line of the individual labelled t which describes how the sub-trees "on the right" of t (i.e., containing individuals s ≥ t) are grafted along that ancestral line. More precisely, if we denote (T i ) i∈I the family of these subtrees and we set h i the height where the subtree T i branches from the ancestral line of t, then the family (h i , I i ) i∈I given ρ t is distributed as the atoms of a Poisson measure with intensity ρ t (dh)N ψ [dT ] (see Figure 2).

As the measure N ψ is an infinite measure, we see that the branching points along the ancestral line of t are of two types (see [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF], Theorem 4.6):

• binary nodes (i.e., vertex of degree 3) which are given by the regular part of ρ t , • infinite nodes (i.e., vertex of infinite degree) which are given by the atomic part of ρ t .

By the definition of ρ t , we see that these infinite nodes are associated with the jumps of the Lévy process X. If such a node corresponds to a jump time s of X, we call ∆X s the size of the node.

3.7.

The dual process and representation formula. We shall need the M f (R + )-valued process η = (η t , t ≥ 0) defined by

η t (dr) = 0<s≤t X s-<I s t (X s -I s t )δ Hs (dr) + β1 [0,Ht] (r) dr. (30)
The process η is the dual process of ρ under N ψ (see Corollary 3.1.6 in [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF]). It represents how the trees "on the left" of t branch along the ancestral line of t.

We recall the Poisson representation of (ρ, η) under N ψ . Let N (dx dℓ du) be a Poisson point measure on [0, +∞) 3 with intensity

dxℓπ(dℓ)1 [0,1] (u) du.
For every a > 0, let us denote by M ψ a the law of the pair (µ a , ν a ) of measures on R + with finite mass defined by the following: for any f ∈ B + (R + )

µ a , f = N (dx dℓ du)1 [0,a] (x)uℓf (x) + β a 0 f (x) dx, (31) ν a , f = N (dx dℓ du)1 [0,a] (x)ℓ(1 -u)f (x) + β a 0 f (x) dx. ( 32 
)
Remark 3.10. In particular µ a (dr) + ν a (dr) is defined as 1 [0,a] (r)d r W r , where W is a subordinator with Laplace exponent ψ ′α where α = ψ ′ (0) is defined by [START_REF] Gall | Branching processes in Lévy processes: The exploration process[END_REF].

We finally set M ψ = +∞ 0 dae -αa M ψ a .

Proposition 3.11 ([16], Proposition 3.1.3). For every nonnegative measurable function

F on M f (R + ) 2 , N ψ σ 0 F (ρ t , η t ) dt = M ψ (dµ dν)F (µ, ν),
where σ = inf{s > 0; ρ s = 0} denotes the length of the excursion.

4. Super-critical Lévy continuum random tree. We shall construct a Lévy CRT with super-critical branching mechanism using a Girsanov formula.

Let ψ be a (sub)critical branching mechanism. The process Z = (Z a , a ≥ 0), where Z a = L a Tx , is a CB with branching mechanism ψ. We have P ψ x -a.s. Z ∞ = lim a→+∞ Z a = 0. We shall call x the initial mass of the ψ-CRT under P ψ

x . Formula (28) readily implies the following Girsanov's formula: for any nonnegative measurable function F , and q ≥ 0,

E ψ x [M ψ,q ∞ F (ρ)] = E ψq x [F (ρ)], (33) 
where M ψ,q ∞ is given by ( 21). We will use a similar formula (with q < 0) to define the exploration process for a super-critical Lévy CRT with branching mechanism ψ. Because supercritical branching process may have an infinite mass, we shall cut it at a given level to construct the corresponding genealogical continuum random tree (see [START_REF] Delmas | Height process for super-critical continuous state branching process[END_REF] when π = 0).

For a ≥ 0, let M a f = M f ([0, a]) be the set of nonnegative measures on [0, a], and let D a be the set of càd-làg M a f -valued process defined on [0, +∞) endowed with the Skorohod topology. We now define a projection from D to D a . For ρ = (ρ t , t ≥ 0) ∈ D, we consider the time spent below level a up to time t: Γ ρ,a (t) = Let ψ be a super-critical branching mechanism which we suppose to be conservative, that is, (3) holds. Recall q * is the unique (positive) root of ψ ′ (q) = 0. In particular the branching mechanism ψ q is critical if q = q * and sub-critical if q > q * . We consider the filtration H = (H a , a ≥ 0) where H a is the σ-field generated by the càd-làg process π a (ρ) and the class of P ψ q * x negligible sets. Thanks to the second statement of Proposition 3.6, we get that Z is Hadapted. Furthermore the proof of Theorem 1.4.1 in [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] yields that Z is a Markov process w.r.t. the filtration H. In particular the process M ψ q * ,-q * defined by ( 8) is thanks to Theorem 2.2 a H-martingale under P ψ q *

x . Let q ≥ q * . We define the distribution P ψ,a x (resp., N ψ,a ) of the ψ-CRT cut at level a with initial mass x, as the distribution of π a (ρ) under M ψq,-q a dP ψq x [resp., e qZa+ψ(q) a 0 Zr dr dN ψq ]: for any measurable nonnegative function F ,

E ψ,a x [F (ρ)] = E ψq x [M ψq,-q a F (π a (ρ))], (36) N ψ,a [F (ρ)] = N ψq [e qZa+ψ(q) a 0 Zr dr F (π a (ρ))]. ( 37 
)
Lemma 4.1. The distributions P ψ,a x and N ψ,a do not depend on the choice of q ≥ q * . Proof. Let q > q * . For any nonnegative measurable function F , we have

E ψq x [M ψq,-q a F (π a (ρ))] = E ψq
x [e -qx+qZa+ψ(q) a 0 Zs ds F (π a (ρ))]. As ψ q = (ψ q * ) q-q * , we apply Girsanov's formula (33) and the fact that M ψ q * ,q-q * is a martingale to get

E ψq x [M ψq,-q a F (π a (ρ))] = E ψ q * x [M ψ q * ,q-q * a e -qx+qZa+ψ(q) a 0 Zs ds F (π a (ρ))] = E ψ q *
x [e (q-q * )x-(q-q * )Za-ψ q * (q-q * ) a 0 Zs ds e -qx+qZa+ψ(q) a 0 Zs ds F (π a (ρ))]

= E ψ q *
x [e -q * x+q * Za-(ψ(q)-ψ(q * )) a 0 Zs ds e ψ(q) a 0 Zs ds F (π a (ρ))] = E

ψ q * x [M ψ q * ,-q * a F (π a (ρ))].
Excursion theory then gives the result for the excursion measures.

Let W be the set of D-valued processes endowed with the σ-field generated by the coordinate applications. Proposition 4.2. Let (ρ a , a ≥ 0) be the canonical process on W. There exists a probability measure Pψ

x (resp., an excursion measure Nψ ) on W, such that, for every a ≥ 0, the distribution of ρ a under Pψ x (resp., Nψ ) is P ψ,a x (resp., N ψ,a ) and such that, for 0

≤ a ≤ b π a (ρ b ) = ρ a Pψ x -a.s. (resp., Nψ -a.e

.). (38)

Proof. To prove the existence of such a projective limit, it is enough to check the compatibility relation between P ψ,b

x and P ψ,a

x for every b ≥ a ≥ 0. Let 0 ≤ a ≤ b. We get

E ψ,b x [F (π a (ρ))] = E ψ q * x [M ψ q * ,-q * b F (π a • π b (ρ))] = E ψ q * x [M ψ q * ,-q * b F (π a (ρ))] = E ψ q * x [M ψ q * ,-q * a F (π a (ρ))] = E ψ,a x [F (ρ)],
where we used the compatibility relation of the projectors for the second equality and the fact that M ψ q * ,-q * is a H-martingale for the third equality. We deduce that P ψ,b x • π a = P ψ,a x . This compatibility relation implies the existence of a projective limit Pψ

x . The result is similar for the excursion measure.

Let us remark that the definitions of Pψ

x and Nψ are also valid for a (sub)critical branching mechanism ψ, with the convention q * = 0. In particular, we get the following corollary.

Corollary 4.3. If ψ is (sub)critical, then the law of the process (π a (ρ), a ≥ 0) under P ψ x (resp., N ψ ) is Pψ x (resp., Nψ ).
By construction the local time at level a of ρ b for b ≥ a does not depend on b, we denote by Z a its value. Property (ii) of Theorem 2.2 implies that Z = (Z a , a ≥ 0) is under Pψ

x a CB with branching mechanism ψ. Hence, the probability measure Pψ

x can be seen as the law of the exploration process that codes the super-critical CRT associated with ψ.

We get the following direct consequence of Properties (i) and (ii) of Lemma 2.4 and of the theory of excursion measures. Corollary 4.4. Let q > 0 such that ψ(q) ≥ 0. Then, the probability measure Pψq

x is absolutely continuous with respect to Pψ x with d Pψq

x d Pψ x = M ψ,q ∞ = e qx-ψ(q)σ 1 {σ<+∞} .
The measure Nψq is absolutely continuous with respect to Nψ with d Nψq d Nψ = e -ψ(q)σ 1 {σ<+∞} .

If the total mass of Z, σ = +∞ 0 Z a da, is finite, then ρ a is the projection of a well-defined exploration process. Lemma 4.5. On {σ < +∞}, there exists ρ ∞ ∈ D such that ρ a = π a (ρ ∞ ) for all a ≥ 0, Pψ

x -a.s. or Nψ -a.e.

Proof. It is enough to get the result under Pψ

x . First we assume that ψ is (sub)critical. Proposition 3.6 implies that t 0 1 {H(ρs)≤a} ds increases to t as a goes to infinity. Using (34), (35) and the right continuity of ρ, we deduce that P ψ x -a.s. for all t ≥ 0, lim a→+∞ π a (ρ) t = ρ t . Thanks to Corollary 4.3, we deduce that Pψ

x -a.s. for all t ≥ 0, ρ ∞ t = lim a→+∞ π a (ρ) t exists and that π a (ρ ∞ ) = ρ a .

The case ψ super-critical is then a consequence of Corollary 4.4.

Without confusion, we shall always write P ψ instead of Pψ and N ψ instead of Nψ and call them the law or the excursion measure of the exploration process of the CRT, whether ψ is super-critical or (sub)critical. And we shall write ρ for the projective limit (ρ a , a ≥ 0) on W, and make the identification ρ = ρ ∞ ∈ D when the latter exists, that is, when σ defined by (28) is finite.

Recall ψ -1 is given by [START_REF] Duquesne | Growth of Lévy trees[END_REF]. We now extend formula (29) for general branching mechanism. Lemma 4.6. Let σ be given by ( 28). We have, for λ ≥ 0,

E ψ x [e -λσ ] = exp (-xN ψ [1 -e -λσ ]) = e -xψ -1 (λ) .
Proof. Let q ≥ q * . We have where we used (36) for the first equality, (8) for the second, Lemma 3.9 for the third, (37) for the fifth and (1) of Theorem 2.2 for the last. We then let a goes to infinity to get the first equality of the lemma, and use [START_REF] Lamperti | The limit of a sequence of branching processes[END_REF] to get the second.

E ψ x [e -

5.

Pruning. We keep notations from Section 3. Recall that D is the set of càd-làg M f (R + )-valued process, and W is the set of D-valued processes. Let R = (ρ θ , θ ≥ 0) be the canonical process on W.

Let ψ be a (sub)critical branching mechanism. The pruning procedure developed in [START_REF] Abraham | Poisson snake and fragmentation[END_REF] when π = 0, [START_REF] Abraham | Fragmentation associated with Lévy processes using snake[END_REF] when β = 0 and in [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF] or [START_REF] Voisin | Dislocation measure of the fragmentation of a general Lévy tree[END_REF] for the general case, yields a probability measure on W, Pψ

x , such that R is Markov and the law ρ θ under Pψ

x is P ψ θ x for all θ ≥ 0. Furthermore ρ θ codes for a sub-tree of ρ θ ′ if θ ≥ θ ′ . We recall the construction of Pψ

x in Section 5.1.

Pruning of (sub)critical CRT.

The main idea of the pruning procedure of a tree coded by an exploration ρ is to put marks on a leaf t (or a branch labeled by t) and more precisely on the measure ρ t . There are two types of marks: the first ones only lay on the nodes of the tree whereas the other ones lay on the skeleton of the tree; each mark appears at a random time. At time θ, we remove all the vertex of the initial tree that contains a mark on their lineage. In terms of exploration processes, we get ρ θ by a time change of the process ρ that skips all the times t representing individuals that received a mark on their lineage by time θ. We explain more precisely the pruning procedure. 5.1.1. Marks on the nodes. Let (X t , t ≥ 0) be the Lévy process with branching mechanism ψ and let ρ be the corresponding exploration process. Recall (∆ s , s ∈ J ) denotes the set of the sizes of jumps of X. Conditionally on X, we consider a family (T s , s ∈ J ) of independent exponential random variables with respective parameter ∆ s . We define the M(R 2 + )-valued process

M (nod) = (M (nod) t , t ≥ 0) by M (nod) t (dr, dv) = 0<s≤t X s-<I s t
δ Ts (dv)δ Hs (dr).

For fixed θ ≥ 0, we will consider the M(R + )-valued process M (nod) t

(dr, [0, θ]) whose atoms give the marked nodes: each node of infinite degree is marked independently from the others with probability 1e -θ∆s , where ∆ s is the mass (i.e., the height of the jump) associated with the node. Remark 5.1. Although different from the measure process that defines the marks on the nodes in [START_REF] Abraham | Fragmentation associated with Lévy processes using snake[END_REF] [formula [START_REF] Bertoin | Lévy Processes[END_REF]], this construction gives the same marks (see Introduction of [START_REF] Abraham | Fragmentation associated with Lévy processes using snake[END_REF]).

Remark 5.2. The time parameter introduced here allows us to construct a coherent family of marks. Indeed, for θ ′ > θ, the atoms of M (nod) t (dr, [0, θ]) are still atoms of M (nod) t (dr, [0, θ ′ ]). In other words, there are more and more marked nodes as θ increases, which allows us to construct a "decreasing" tree-valued process in Section 5.1.3.

Marks on the skeleton. Let M

(ske) = (M (ske) t
, t ≥ 0) be a Lévy snake with lifetime H and spatial motion a Poisson point process with intensity 2β1 {u>0} du.

(See [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] for the definition of a Lévy snake and [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF] for the extension to a discontinuous height process H; see also [START_REF] Voisin | Dislocation measure of the fragmentation of a general Lévy tree[END_REF].)

In other words, M (ske) is a M(R 2 + )-valued process such that, conditionally on the exploration process ρ: 

• for every t ≥ 0, M ( 
M (mark) = M (nod) + M (ske) . ( 39 
)
The process ((ρ t , M (mark) t ), t ≥ 0) is called the marked exploration process. It is Markovian (see [START_REF] Voisin | Dislocation measure of the fragmentation of a general Lévy tree[END_REF] for its properties). We denote by Pψ

x its law and by Nψ the corresponding excursion measure.

For every θ > 0 and t > 0, we set

m (θ) t = M (mark) t ([0, H t ] × [0, θ]).
The random variable m

(θ)
t is the number of marks at time θ that lay on the lineage of the individual labeled by t. We will only consider the individuals without marks on their lineage. Therefore, we set

A (θ) t = t 0 1 {m (θ)
s =0} ds and C

(θ) t = inf{r ≥ 0; A (θ) r ≥ t}, (40) its right-continuous inverse. Finally, we define ρ θ = (ρ θ t , t ≥ 0), M (mark),θ = (M (mark),θ t , t ≥ 0) by

ρ θ t = ρ C (θ) t , M (mark),θ t ([0, h] × [0, q]) = M (mark) C (θ) t ([0, h] × (θ, q + θ]).
We shall use in Section 7 the pruning operator Λ θ defined on the marked exploration process by

Λ θ (ρ, M (mark) ) = (ρ θ , M (mark),θ ). ( 41 
)
Using the lack of memory of the exponential random variables and of properties of Poisson point measure, it is easy to get Lemma 5.3. The process R = (ρ θ , θ ≥ 0) is Markov.

The W-valued process R codes for a decreasing family of CRT, which we shall call a ψ-family of pruned CRT. A direct application of Theorem 1.1 of [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF] gives the marginal distribution.

Proposition 5.4. The marked exploration process (ρ θ , M (mark),θ ) under P ψ x (resp., N ψ ) is distributed as (ρ, M (mark) ) under P ψ θ x (resp., N ψ θ ).

We shall now concentrate on the process R. Let Pψ x be the law of R, and Ñψ be the corresponding excursion measure.

We deduce the following compatibility relation from the Markov property of R and Proposition 5.4.

Corollary 5.5. Let θ 0 ≥ 0. The law under Pψ

x (resp., Ñψ ) of the process

(ρ θ 0 +θ , θ ≥ 0) is Pψ θ 0 x (resp., Ñψ θ ).
Let us now recall the special Markov property, Theorem 4.2 of [START_REF] Abraham | Pruning a Lévy continuum random tree[END_REF], stated for the present context. We fix θ > 0. We want to describe the law of the excursions of ρ "above" the marks, given the process "under" the marks. More precisely, we define O as the interior of the set {s ≥ 0, m (θ) s = 0} and write O = i∈I (α i , β i ). For every i ∈ I, we define the exploration process ρ (i) by: for every

f ∈ B + (R + ), t ≥ 0, ρ (i) t , f = [Hα i ,+∞) f (x -H α i )ρ (α i +t)∧β i (dx).
We have the following theorem.

Theorem 5.6 (Special Markov property). Let θ > 0, and let (Z θ t , t ≥ 0) be the CSBP coded by ρ θ . The point measure δ (Hα i ,ρ (i) ) (dh, dµ)

under P ψ x (or N ψ ) conditionally given (ρ θ t , t ≥ 0), is a Poisson point measure of intensity 1 [0,+∞) (h)Z θ h dh 2βθN ψ (dµ) + (0,+∞) π(dr)(1 -e -θr )P ψ r (dµ) .
This theorem describes in fact the joint law of (ρ (θ) , ρ (θ ′ ) ) for θ < θ ′ and hence the transition probabilities of the process R and of the time-reversed process. In terms of trees, by definition, the tree T (θ ′ ) is obtained from the tree T (θ) by pruning it with the pruning operator Λ θ ′ -θ . Conversely, to get the tree T (θ) from the tree T (θ ′ ) , we pick some individuals of the tree T (θ ′ ) according to a Poisson point measure and add at these points either a Lévy tree associated with the branching mechanism ψ θ (first part of the intensity of the Poisson measure), or an infinite node of size r and trees distributed as P ψ θ r (second part of the intensity of the Poisson measure).

Pruning of super-critical CRT.

We now use the same Girsanov techniques of Section 4 to define a ψ-family of pruned CRT when ψ is supercritical.

Let ψ be a super-critical branching mechanism which we suppose to be conservative, that is, (3) holds. Recall q * is the unique (positive) root of ψ ′ (q) = 0. In particular the branching mechanism ψ q is critical if q = q * and sub-critical if q > q * . Let q ≥ q * . Let R = (ρ θ , θ ≥ 0) be the canonical process on W. We set Z = (L a ∞ (ρ 0 ), a ≥ 0) which is under Pψq x (dR) a CB with branching mechanism ψ q . The process Z is also well defined under the excursion measure Ñψq (dR). We write π a (R) = (π a (ρ θ ), θ ≥ 0). Notice that given the marks (i.e., given M (nod) and M (ske) ), we have π a (ρ θ ) = (π a (ρ)) θ .

Let a ≥ 0. We define the distribution Pψ,a x (resp., excursion measure Ñψ,a ) of a ψ-family of pruned CRT cut at level a with initial mass x, as the distribution of π a (R) under M ψq,-q a d Pψq x [resp., e qZa+ψ(q) a 0 Zr dr d Ñψq ]: for any measurable nonnegative function F , we have Pψ,a

x [F (R)] = Pψq x [M ψq,-q a F (π a (R))]
and Ñψ,a [F (ρ)] = Ñψq [e qZa+ψ(q) a 0 Zr dr F (π a (ρ))]. Same arguments as for Lemma 4.1 give the following result.

Lemma 5.7. The distributions Pψ,a

x and Ñψ,a do not depend on the choice of q ≥ q * . As in Section 4 (see Proposition 4.2) the families of measures ( Pψ,a

x , x ≥ 0) and ( Ñψ,a , a ≥ 0) fulfill a compatibility relation. Hence there exists a projective limit (R a , a ≥ 0) defined on the space of W-valued process such that:

• for every a ≥ 0, R a is distributed as Pψ,a

x ; • for every a < b, π a (R b ) = R a .

We write Pψ

x for the distribution of this projective limit and Ñψ for the corresponding excursion measure.

By construction the local time at level a of π b (ρ θ ) for b ≥ a does not depend on b, we denote by Z θ a its value. Proposition 5.4 and Property (ii) of Theorem 2.2 imply that Z θ = (Z θ a , a ≥ 0) is under Pψ x a CB with branching mechanism ψ θ started at x. Following (28), we define σ θ = ∞ 0 Z θ a da. And, when there is no confusion, we write σ for σ 0 .

Following Corollaries 4.3, 4.4 and Lemma 4.5, we easily get the following theorem.

Theorem 5.8. Let ψ be a conservative branching mechanism. Let (R a , a ≥ 0) be a W-valued process under Pψ

x (resp., Ñψ ).

(

) If ψ is (sub)critical, then (R a , a ≥ 0) under Pψ x is distributed as ((π a (ρ θ ), θ ≥ 0), a ≥ 0) under P ψ x . 1 
(2) Let q > 0 such that ψ(q) ≥ 0. Then, the probability measure Pψq x is absolutely continuous with respect to Pψ

x with d Pψq

x d Pψ x = M ψ,q ∞ = e qx-ψ(q)σ 1 {σ<+∞} .
The measure Ñψq is absolutely continuous with respect to Ñψ with d Ñψq d Ñψ = e -ψ(q)σ 1 {σ<+∞} .

(3) On {σ < +∞}, there exists R ∞ ∈ W such that R a = π a (R ∞ ) for all a ≥ 0, Pψ

x -a.s. or Ñψ -a.e.

Without confusion, we shall always write P ψ instead of Pψ and N ψ instead of Ñψ and call them the law or the excursion measure of ψ-pruned family of exploration processes, whether ψ is super-critical or (sub)critical. The ψ-pruned family of exploration processes codes for a ψ-pruned family of continuum random sub-trees.

And we shall write (ρ θ , θ ≥ 0) for the projective limit (R a , a ≥ 0), and identify it with R ∞ ∈ W when the latter exists, that is, when σ defined by (28) is finite. Notice that if σ θ is finite, then the exploration process ρ θ codes for a CRT with finite mass.

Properties of the branching mechanism.

Let ψ be a branching mechanism with parameter (α, β, π). Let Θ ′ be the set of θ ∈ R such that

(1,+∞) e -θℓ π(dℓ) < +∞. (42) We set θ ∞ = inf Θ ′ . Notice that we have either Θ ′ = [θ ∞ , +∞) or Θ ′ = (θ ∞ , +∞) and that θ ∞ ≤ 0. Notice that ψ θ exists for every θ ∈ Θ ′ and is conservative for every θ > θ ∞ . We set Θ = {θ ∈ Θ ′ ; ψ θ is conservative}. No- tice that Θ ⊂ Θ ′ ⊂ Θ ∪ {θ ∞ }.
For instance, we have the following examples of critical branching mechanisms:

(i) quadratic case: ψ(u) = βu 2 , Θ = Θ ′ = R; (ii) stable case: ψ(u) = cu α with α ∈ (1, 2), Θ = Θ ′ = [0, +∞); (iii) ψ(u) = (u + e -1 ) log(u + e -1 ) + e -1 : Θ = Θ ′ = [-e -1 , +∞) [Notice that ψ θ∞ (u) = u log(u), ψ ′ θ∞ (0+) = -∞ and ψ θ∞ is conservative.]; (iv) ψ(u) = u -1 + 1
1+u is associated with (α, β, π) where α = 2/e, β = 0 and π(dℓ) = e -ℓ 1 {ℓ>0} dℓ: Θ = Θ ′ = (-1, +∞).

For the end of this subsection, we assume that ψ is CRITICAL and that β > 0 or π = 0. Remark that ψ is a one-to-one function from [0, +∞) onto [0, +∞), and we denote by ψ -1 its inverse function. For θ < 0 such that θ ∈ Θ ′ , we define θ = ψ -1 (ψ(θ)), or, equivalently, θ is the unique positive real number such that

ψ( θ) = ψ(θ). (43) Since ψ is continuous and strictly convex, if θ ∞ ∈ Θ ′ , we have θ∞ = lim θ↓θ∞ θ. ( 44 
)
Notice that in this case θ∞ is finite. If θ ∞ / ∈ Θ ′ , we define θ∞ using (44).

Lemma 5.9. Let ψ be CRITICAL with parameters (α, β, π) such that

β > 0 or π = 0. If θ ∞ / ∈ Θ ′ then θ∞ = +∞.
Proof. We assume that θ ∞ / ∈ Θ ′ . It is enough to check that lim θ↓θ∞ ψ(θ) = +∞ to get θ∞ = +∞.

We first consider the case θ ∞ = -∞. Since ψ ′ (0) = 0 and ψ is strictly convex, we get that lim θ↓θ∞ ψ(θ) = +∞.

If θ ∞ > -∞, then using that (42) does not hold for θ ∞ and monotone convergence theorem, we get that lim θ↓θ∞ ψ(θ) = +∞.

6. A tree-valued process. Let ψ be a branching mechanism. We assume θ ∞ < 0. We write R q = (ρ γ+q , γ ≥ 0).

We deduce from Corollary 5.5 that the families of measures (P ψ θ , θ ∈ Θ) and (N ψ θ , θ ∈ Θ) satisfy the following compatibility property: if θ ′ < θ, θ ′ ∈ Θ, the process R θ-θ ′ under P ψ θ ′ (resp., N ψ θ ′ ) is distributed as R 0 under P ψ θ (resp., N ψ θ ).

Hence, there exists a projective limit R = (ρ γ , γ ∈ Θ) such that, for every θ ∈ Θ, the process (ρ θ+γ , γ ≥ 0) is distributed as (ρ γ , γ ≥ 0) under P ψ θ . We denote by P ψ the distribution of the projective limit R, and by N ψ the corresponding excursion measure. We still write R θ for (ρ θ+γ , γ ≥ 0) for all θ ∈ Θ.

The process R = (ρ θ , θ ∈ Θ) is Markovian, thanks to Lemma 5.3. It codes for a tree-valued Markov process, which evolves according to a pruning procedure. At time θ, ρ θ has distribution P ψ θ . Recall σ θ is the mass of the CRT coded by ρ θ . It is not difficult to check that Σ = (σ θ , θ ∈ Θ) is a nonincreasing Markov process taking values in [0, +∞] and we shall consider a version of R such that the process Σ is càd-làg. From the continuity of ψ, we deduce that the Laplace transform of σ θ given in Lemma 4.6 is continuous, and thus the process Σ is continuous in probability.

See [START_REF] Uribe Bravo | The falling apart of the tagged fragment and the asymptotic disintegration of the Brownian height fragmentation[END_REF] for the distribution of the decreasing rearrangement of the jumps of (σ θ , θ ≥ 0) in the case of stable trees. We deduce from the pruning procedure that a.s. lim θ→+∞ σ θ = 0. Notice that by considering the time returned process (ρ -θ , θ < θ ∞ ), we get a Markovian family of exploration processes coding for a family of increasing CRTs. R. ABRAHAM AND J.-F. DELMAS Remark 6.1. Recall q * is the unique root of ψ ′ (q) = 0 and that ψ q * is critical. Using a shift on θ by q * , that is replacing ψ by ψ q * , one sees that it is enough, when studying R, to assume that ψ is critical. Lemma 6.2. Let ψ be a critical branching mechanism with parameter (α, β, π). For any θ ∈ Θ, and any nonnegative measurable function F defined on the state space of R 0 , we have

N ψ [F (R θ )1 {σ θ <∞} ] = N ψ θ [F (R 0 )1 {σ 0 <∞} ] = N ψ [F (R 0 )e -ψ(θ)σ 0 ]. ( 45 
)
Proof. The first equality is just the "compatibility property" stated at the beginning of this section.

For θ ≥ 0, the second equality is a direct consequence of (ii) from Theorem 5.8.

For θ < 0, let q = θθ. Notice that ψ θ (q) = ψ( θ)ψ(q) = 0 and (ψ θ ) q = ψθ. We deduce from (ii) of Theorem 5.8 that

N ψθ [F (R 0 )] = N ψ θ [F (R 0 )1 {σ 0 <∞} ].
Since θ > 0 and ψ(θ) = ψ( θ), we get from (2) of Theorem 5.8 that

N ψθ [F (R 0 )] = N ψ [F (R 0 )e -ψ( θ)σ 0 ] = N ψ [F (R 0 )e -ψ(θ)σ 0 ].
This ends the proof.

We deduce directly from this lemma the following result on the conditional distribution of the exploration process knowing the total mass of the CRT. Corollary 6.3. Let ψ a branching mechanism with parameter β, π) such that (42) holds. The distribution of (ρ θ+γ , γ ≥ 0) conditionally on {σ θ = r} does not depend on θ ∈ Θ.

From this point forward, we assume that ψ is CRITICAL and that θ ∞ < 0. The first assumption is not restrictive thanks to Remark 6.1.

Notice that ρ θ codes for a critical (resp., sub-critical, resp., super-critical) CRT if θ = 0 (resp., θ > 0, resp., θ < 0). In particular, we have σ θ < +∞ a.s. if θ ≥ 0.

We consider the explosion time

A = inf{θ ∈ Θ, σ θ < +∞},
with the convention that inf ∅ = θ ∞ . In particular, we have A ≤ 0 P ψ x -a.s. and N ψ -a.e. Moreover, since the process (σ θ , θ ∈ Θ) is càd-làg, we have, on {A > θ ∞ }, σ θ = +∞ for every θ < A and σ θ < +∞ for every θ > A. For the time reversed process, A is the random time at which the tree gets an infinite mass.

We first give a lemma on the conditional distribution of σ.

Lemma 6.4. Let q ∈ Θ, q ≤ θ. We have, for λ ≥ 0,

N ψ [e -λσq |ρ θ ] = e -σ θ ψ θ (ψ -1 q (λ))
and N ψ [σ q < +∞|ρ θ ] = e -σ θ ψ θ (q-q) , where q = ψ -1 (ψ(q)).

Proof. Let λ > 0 and F be a nonnegative measurable function defined on W. We write Z q a for the local time at level a of the exploration process ρ q . Using (17), we have

N ψ [e -λσq F (ρ θ )] = lim a→∞ N ψ [e -λ a 0 Z q r dr F (ρ θ )]. ( 46 
)
We set

I a = N ψ [e -λ a 0 Z q r dr F (ρ θ )]. Let G(π a (ρ θ )) = E ψ [F (ρ θ )|π a (ρ θ )]. We have, with θ ′ = θ -q ≥ 0, I a = N ψ [e -λ a Z q r dr G(π a (ρ θ ))] = N ψq [e -λ a 0 Z 0 r dr G(π a (ρ θ ′ ))] = N ψ [e -qZ 0 a -(ψ(q)+λ) a 0 Z 0 r dr G(π a (ρ θ ′ ))] = N ψ [e -qZ θ ′ a -(ψ(q)+λ) a 0 Z θ ′ r dr-a 0 K a h Z θ ′ h dh G(π a (ρ θ ′ ))],
where for the first equality we conditioned with respect to σ(π a (ρ q )), used Girsanov's formula for the third equality and Theorem 5.6 for the last equality with

K a h = 2βθ ′ N ψ [1 -e -qZ a-h -(ψ(q)+λ) a-h 0 Zr dr ] + (0,+∞) π(du)(1 -e -θ ′ u )E ψ u [1 -e -qZ a-h -(ψ(q)+λ) a-h 0 Zr dr ]. We set Ka h = 2βθ ′ N ψ [e -qZ a-h -ψ(q) a-h 0 Zr dr (1 -e -λ a-h 0 Zr dr )] + (0,+∞) π(du)(1 -e -θ ′ u )E ψ u [e -qZ a-h -ψ(q) a-h 0 Zr dr (1 -e -λ a-h 0 Zr dr )].
Using again Theorem 5.6 and Girsanov's formula, we get

I a = N ψ [e -qZ 0 a -ψ(q) a 0 Z 0 r dr e -a 0 ( Ka h +λ)Z θ ′ h dh G(π a (ρ θ ′ ))] = N ψq [e -a 0 ( Ka h +λ)Z θ ′ h dh G(π a (ρ θ ′ ))] (47) = N ψ [e -a 0 ( Ka h +λ)Z θ h dh G(π a (ρ θ ))] = N ψ [e -a 0 ( Ka h +λ)Z θ h dh F (ρ θ )].
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Notice also that, thanks to Girsanov's formula,

Ka h = 2βθ ′ N ψq [1 -e -λ a-h 0 Zr dr ] + (0,+∞) π(du)(e -qu -e -θu )E ψq u [1 -e -λ a-h 0 Zr dr ] = 2βθ ′ N ψ [1 -e -λ a-h 0 Z q r dr ] + (0,+∞) π(du)(e -qu -e -θu )E ψ u [1 -e -λ a-h 0 Z q r dr ].
Using Lemma 4.6, we get

lim a→∞ Ka h = 2βθ ′ N ψ [1 -e -λσq ] + (0,+∞) π(du)(e -qu -e -θu )E ψ u [1 -e -λσq ] = ψ θ (ψ -1 q (λ)) -ψ q (ψ -1 q (λ)) = ψ θ (ψ -1
q (λ))λ. We deduce from ( 46) and (47) that

N ψ [e -λσq F (ρ θ )] = N ψ [e -ψ θ (ψ -1 q (λ))σ θ F (ρ θ )].
Letting then λ go down to 0, we deduce, with q = ψ -1 (ψ(q)), that

N ψ [1 {σq<+∞} F (ρ θ )] = N ψ [e -ψ θ (q-q)σ θ F (ρ θ )].
The next theorem gives the distribution of the explosion time A under the measure N ψ . Recall the definition of θ in (43) and (44). Theorem 6.5. We have, for all θ ∈ [θ ∞ , +∞),

N ψ [A > θ] = θ -θ (48) and N ψ [A = θ ∞ ] = 0, if θ ∞ / ∈ Θ ′ , +∞, if θ ∞ ∈ Θ ′ . Proof. We have for all θ > θ ∞ N ψ [A > θ] = N ψ [σ θ = +∞] = N ψ θ [σ = +∞] = lim λ→0 N ψ θ [1 -e -λσ ] = lim λ→0 ψ -1 θ (λ) = ψ -1 θ (0),
where we used (4.6) for the fourth equality. We get, for t > 0,

ψ θ (t) = 0 ⇐⇒ ψ(t + θ) = ψ(θ) ⇐⇒ t + θ = θ,
and thus ψ -1 θ (0) = θθ, which gives the first part of the theorem for θ > θ ∞ . Making θ decrease to θ ∞ gives the result for θ ∞ .

For the second part of the theorem, we apply the second assertion of Lemma 6.4 with θ = 0. We have, for every q ≤ 0, N ψ [σ q < +∞|ρ] = e -σψ(q-q) . Then we have

N ψ [A = θ ∞ |ρ] = N ψ [∀q > θ ∞ , σ q < +∞|ρ] = lim q→θ∞ N ψ [σ q < +∞|ρ] = lim q→θ∞ e -σψ(q-q) = 0, if θ ∞ / ∈ Θ ′ , e -σψ( θ∞-θ∞) , if θ ∞ ∈ Θ ′ , with ψ( θ∞ -θ ∞ ) < +∞,
where the last equality is a consequence of Lemma 5.9. Then integrating with respect to ρ gives the theorem. Remark 6.6. Since ψ -1 is smooth, we deduce that the mapping q → q is differentiable with dq dq = ψ ′ (q) ψ ′ (q) .

Thus, when θ ∞ / ∈ Θ, we have that the law of A under N ψ has a density with respect to the Lebesgue measure on R given by

1 {r∈(θ∞,0)} 1 - ψ ′ (r) ψ ′ (r) .
Theorem 6.7. (i) Let θ ∈ (θ ∞ , 0). Under N ψ , conditionally on {A = θ}, we have for any nonnegative measurable function

F N ψ [F (R A )|A = θ] = ψ ′ ( θ)N ψ [F (R 0 )σ 0 e -ψ(θ)σ 0 ], ( 49 
)
and the law of σ A is given by the following: for λ ≥ 0

N ψ [e -λσ A |A = θ] = ψ ′ ( θ) ψ ′ (ψ -1 (λ + ψ(θ)))
.

In particular, we have

N ψ [σ A < ∞|A = θ] = 1.
(ii) If θ ∞ ∈ Θ, we have for any nonnegative measurable function

F N ψ [F (R A )1 {A=θ∞} ] = N ψθ ∞ [F (R 0 )]. (50) R. ABRAHAM AND J.-F. DELMAS
In particular, the law of σ A on the event {A = θ ∞ } is given by

N ψ [(1 -e -λσ A )1 {A=θ∞} ] = ψ -1 (λ + ψ(θ ∞ )) -θ∞ .
Proof. Let F be a nonnegative measurable function defined on the state space of R 0 . Using Lemma 6.4, we get for every θ ∞ < q ≤ θ < 0,

N ψ [F (R θ )1 {A>q} ] = N ψ [F (R θ )1 {σq =+∞} ] = N ψ [F (R θ )N ψ [σ q = +∞|ρ θ ]] = N ψ [F (R θ )(1 -e -σ θ ψ θ (q-q) )] = N ψ [F (R θ )(1 -e -σ θ (ψ(θ+q-q)-ψ(θ)) )].
Thus, we get that the mapping

q → N ψ [F (R θ )1 {A>q} ] is differentiable if it is finite. As dq/dq = ψ ′ (q)/ψ ′ (q), we get d dq N ψ [F (R θ )1 {A>q} ] = ψ ′ (q -q + θ) dq dq -1 N ψ θ [F (R 0 )σ 0 e -σ 0 (ψ(q-q+θ)-ψ(θ)) ]
= ψ ′ (qq + θ) ψ ′ (q)ψ ′ (q) ψ ′ (q) N ψ θ [F (R 0 )σ 0 e -σ 0 (ψ(q-q+θ)-ψ(θ)) ].

Finally, using that σ is right continuous, we have

N ψ [F (R A ), A ∈ dθ] dθ = - d dq (N ψ [F (R θ )1 {A>q} ]) | q=θ = (ψ ′ ( θ) -ψ ′ (θ))N ψ θ [F (R 0 )σ 0 1 {σ 0 <+∞} ].
We deduce from Lemma 6.2 that

N ψ [F (R A )|A = θ] = N ψ θ [F (R 0 )σ 0 1 {σ 0 <+∞} ] N ψ θ [σ 0 1 {σ 0 <+∞} ] = N ψ [F (R 0 )σ 0 e -ψ(θ)σ 0 ] N ψ [σ 0 e -ψ(θ)σ 0 ] .
This proves (49) but for the normalizing constant. It also implies that

N ψ [e -λσ A |A = θ] = N ψ θ [σe -λσ ] N ψ θ [σ1 {σ<+∞} ]
.

Notice that ψ -1 θ (r) = ψ -1 (r + ψ(θ))θ for r ≥ 0. We get from Lemma 4.6 that, for r ≥ 0,

N ψ θ [σe -rσ ] = d dr N ψ θ [1 -e -rσ ] = (ψ -1 θ ) ′ (r) = 1 ψ ′ (ψ -1 (r + ψ(θ)))
.

In particular, we deduce the value of the normalizing constant,

N ψ [σ 0 e -ψ(θ)σ 0 ] = N ψ θ [σ1 {σ<+∞} ] = 1/ψ ′ ( θ).
We also get

N ψ [e -λσ A |A = θ] = ψ ′ ( θ) ψ ′ (ψ -1 (λ + ψ(θ)))
.

This ends the proof of the first part.

For the second part of the theorem, we consider the case θ ∞ ∈ Θ. Let us first remark that, since the process (σ θ , θ ∈ Θ) is continuous in probability, we have

{A = θ ∞ } = {σ θ∞ < +∞}.
We then apply Girsanov's formula (45) twice to get

N ψ [F (R A )1 {A=θ∞} ] = N ψ [F (R θ∞ )1 {σ θ∞ <+∞} ] = N ψ [F (R 0 )e -ψ(θ∞)σ 0 ] = N ψ [F (R 0 )e -ψ( θ∞)σ0 ] = N ψ [F (Rθ ∞ )1 {σθ ∞ <+∞} ] = N ψθ ∞ [F (R 0 )],
where we used for the last equality that σθ ∞ < +∞ N ψ -a.e. and (45).

For F (R) = 1e -λσ , we obtain

N ψ [(1 -e -λσ A )1 {A=θ∞} ] = N ψθ ∞ [1 -e -λσ 0 ] = ψ -1 θ∞ (λ) = ψ -1 (λ + ψ( θ∞ )) -θ∞ .
We deduce the next corollary from (49).

Corollary 6.8. Let θ ∞ < θ < 0. The distribution of R A = (ρ A+γ , γ ≥ 0) conditionally on {σ A = r, A = θ} does not depend on θ.

7. Pruning of an infinite tree. We want here to define an infinite tree via a spinal description of this tree. What we call a spinal description of a tree is a representation of the tree where a particular branch is considered (the spine) and the subtrees that are grafted along that branch are then described. The usual, well-known spinal descriptions of a CRT are Bismut decomposition (see [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF]) where the spine is picked "at random" among all the possible branches, and Williams decomposition (see [START_REF] Abraham | Williams' decomposition of the Lévy continuum random tree and simultaneous extinction probability for populations with neutral mutations[END_REF]) where the spine is chosen to be the highest branch of the tree. We describe next the Bismut decomposition and show how such a decomposition can uniquely define a tree. Then we define the infinite tree by such a decomposition. 7.1. Bismut decomposition of a Lévy tree. Let ψ be a (sub)critical branching mechanism. Recall the definition of the mark process M (mark) of Sec-tion 5.1.3. For a marked exploration process (ρ, M mark ) recall that η is defined by (30) and notice that (η (σ-t)-, M (mark) σ-t , t ∈ [0, σ]) is distributed as (ρ, M (mark) ) under the excursion measure thanks to Corollary 3.1.6 in [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] and definition of M (mark) .

We recall that the family of pruned exploration processes R = (ρ θ , θ ≥ 0) is constructed from the exploration process ρ (which is equal to ρ 0 ) and the measure-valued process M (mark) .

Let T ≥ 0. We define under N ψ the processes (ρ T → , M (mark),T → ) and (ρ ←T , M (mark),←T ) by the following: for every t ≥ 0,

(ρ T → t , M (mark),T → t ) = (ρ (T +t)∧σ , M (mark) 
(T +t)∧σ ), (ρ ←T t , M (mark),←T t ) = (η (T -t)∨0 , M (mark) 
(T -t)∨0 ), where ρ is the canonical exploration process and η its dual process.

Bismut decomposition describes in terms of Poisson point processes the former processes when T is "uniformly distributed" on [0, σ].

First we must extend the definition of the measure M ψ (dµ, dν) of ( 31) and (32) to get the marks into account. Let

N (dx, dℓ, du) = i∈I δ (x i ,ℓ i ,u i ) (dx, dℓ, du)
be a Poisson point measure with intensity dxℓπ(dℓ)1 [0,1] (u) du.

Conditionally on N , let (T i , i ∈ I) be a family of independent exponential random variables of respective parameter ℓ i . Finally, let Ñ (dk, db) = j∈J δ (k j ,b j ) (dk, db) be an independent Poisson point measure on [0, +∞) 2 with intensity 2βdk db. We then define the spine (µ a , ν a , m a ) which are three measures given by

µ a (dx) = i∈I 1 [0,a] (x i )u i ℓ i δ x i (dx) + 1 [0,a] (x)βdx, ν a (dx) = i∈I 1 [0,a] (x i )(1 -u i )ℓ i δ x i (dx) + 1 [0,a] (x)βdx, m a (dx, dq) = i∈I 1 [0,a] (x i )δ x i (dx)δ T i (dq) + j∈J 1 [0,a] (k j )δ k j (dx)δ b j (dq).
We denote by Mψ a the law of the triple (µ a , ν a , m a ), and we set Mψ = +∞ 0 dae -ψ ′ (0)a Mψ a . Let us denote by P ψ, * µ,m the law of the pair (ρ, M (mark) ) starting from (µ, m) where ρ is an exploration process associated with ψ and stopped when it first reaches 0. It is easy to adapt Lemma 3.4 of [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF] to get the following theorem.

Theorem 7.1 (Bismut decomposition). For every nonnegative measurable functionals F and G,

N ψ σ 0 dsF (ρ s→ , M (mark),s→ )G(ρ ←s , M (mark),←s ) (51) = Mψ (dµ, dν, dm)E ψ, * µ,m [F ]E ψ, * ν,m [G].
Informally speaking, the latter theorem describes a spinal decomposition of the tree. We first pick an individual s "uniformly." The height of that individual is "distributed" as dae -ψ ′ (0)a . Then, conditionally on that height, the measures ρ s , η s and m s have law Mψ a . Eventually, conditionally on those measures, the marked exploration processes on the right and on the left (reversed in time for that one) of the individual s are independent and distributed as marked exploration processes started respectively from (ρ s , m s ) and (η s , m s ), stopped when they first reach 0.

Let us now state the Poisson representation of the probability measure P ψ, * µ,m . Let (α i , β i ) i∈I be the excursion intervals of the total mass process ( ρ t , 1 , t ≥ 0) above its minimum under P ψ, * µ,m . Let (U i , i ∈ I) be a family of independent random variables, independent of ρ and uniformly distributed on [0, 1]. For every i ∈ I, we set x i = H α i . Then we define u i by

u i = ρ α i ({x i })/µ({x i }), if µ({x i }) > 0, U i , if µ({x i }) = 0.
Finally, we define the measure-valued process ρ i by the following: for every t ≥ 0 and every f ∈ B + (R + ),

ρ i t , f = (x i ,+∞) f (x -x i )ρ (α i +t)∧β i (dx),
and we define the measure valued-process M (mark),i by the following: for every t ≥ and every f

∈ B + (R 2 + ), M (mark),i t , f = (x i ,+∞)×R + f (x -x i , θ)M (mark) (α i +t)∧β i (dx, dθ).
It is easy to adapt Lemma 4.2.4 from [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] to get the following proposition.

Proposition 7.2. The point measure i∈I δ (x i ,u i ,ρ i ,M (mark),i ) is under P ψ, * µ,m a point measure with intensity µ(dx) du1 [0,1] (u)N ψ (dρ, dM (mark) ).

7.2. Reconstruction of the exploration process from a spinal decomposition. Conversely, given the spinal decomposition of Bismut theorem, we reconstruct the initial exploration process, but we must add the time indices 7.3. The infinite tree and its pruning. Let ψ be a critical branching mechanism.

We build a marked continuum random tree associated with the branching mechanism ψ using a spine decomposition with an infinite spine. Intuitively, if the CRT dies in finite time (which corresponds to the case H continuous) this infinite CRT can be seen as the CRT conditioned to nonextinction.

Let

N (dx, dℓ, du) = i∈I δ (x i ,ℓ i ,u i ) (dx, du)
be a Poisson point measure with intensity

dxℓπ(dℓ)1 [0,1] (u) du.
Conditionally on N , let (T i , i ∈ I) be a family of independent exponential random variables of respective parameter ℓ i . Finally, let Ñ (dk, db) = j∈J δ (k j ,b j ) (dk, db) be an independent Poisson point measure on [0, +∞) 2 with intensity 2βdk db. We define the following random measures:

µ * (dx) = i∈I u i ℓ i δ x i (dx) + βdx, ν * (dx) = i∈I (1 -u i )ℓ i δ x i (dx) + βdx, m * (dx, dq) = i∈I δ x i (dx)δ T i (dq) + j∈J δ k j (dx)δ b j (dq).
The measure (µ * , ν * , m * ) corresponds to the the measure (µ a , ν a , m a ) of Section 7.1 but for an infinite spine. Let i∈Jg δ (x i ,u i ,ρ i ,M (mark),i ) and

i∈J d δ (x i ,u i ,ρ i ,M (mark),i ) be conditionally on (µ * , ν * , m * ) independent Poisson point measures with intensity ν * (dx)1 [0,1] (u) duN ψ (dρ, dM (mark) ) and µ * (dx)1 [0,1] (u) duN ψ (dρ, dM (mark) ).
We set

G * = (µ * , ν * , m * , (x i , u i , (ρ i , M (mark),i ), i ∈ J g ), (x i , u i , (ρ i , M (mark),i ), i ∈ J d )),
which describes the decomposition of an infinite marked tree as marked subtrees that are attached along its infinite spine. Let θ > 0. Following the end of Section 7.2, we now extend the pruning procedure to this infinite tree by Proof. Let F be a positive measurable functional. As R is constructed from (ρ, M (mark) ), there exists a positive measurable functional G such that

F (R) = G(ρ, M (mark) ).
Moreover, there exists another positive functional G such that, for every s ≥ 0, G(ρ, M (mark) ) = G((ρ s→ , M (mark),s→ ), (ρ ←s , M (mark),←s )).

Then by Bismut decomposition, we have Then we conclude using Lemma 7.6 and the fact that N ψ θ (dρ, M (mark) ) is the distribution of Λ θ (ρ, M (mark) ) under N ψ (dρ, dM (mark) ).

ψ ′ (θ)N ψ [σ θ F (R θ )] = ψ ′ (θ)N ψ θ [σF (R)] = ψ ′ (θ)N ψ θ
8. Distribution identity. Let ψ be a critical branching mechanism with parameter (α, β, π). We assume that θ ∞ < 0. Recall R = (R θ , θ ∈ Θ) is defined in Section 6 and R * θ in Section 7.3.

Theorem 8.1. Let θ ∈ (θ ∞ , 0). Conditionally on {A = θ}, R A is distributed as R * θ .

Proof. Let F be a nonnegative measurable function defined on W. We have, for θ < 0,

N ψ [F (R A )|A = θ] = ψ ′ ( θ)N ψ [F (R 0 )σ 0 e -ψ(θ)σ 0 ] = ψ ′ ( θ)N ψθ [σ 0 F (R 0 )] = ψ ′ ( θ)N ψ [σθF (Rθ)] = E ψ [F (R * θ )
], where we used (49) for the first equality, Girsanov's formula (45) (with θ replaced by θ) for the second, the invariance of the distribution of R by the shift for the third and Proposition 7.7 for the last.

If u ∈ (0, θ∞ ), let ǔ be the unique negative real number such that ū = u.

We deduce from Theorem 6.5 and Remark 6.6 the following corollary.

Corollary 8.2. Let us suppose that θ ∞ / ∈ Θ.

Let U be a positive "random" variable with (nonnegative) "density" w.r.t., the Lebesgue measure given by 1 -ψ ′ (r) ψ ′ (ř) 1 {r∈(0, θ∞)} .

Assume that U is independent of G * . Then R A is distributed under N ψ as R * U .

This corollary can be viewed as a continuous analog of Proposition 26 of [START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF]. 9. The quadratic case. We consider ψ(λ) = βλ 2 for some β > 0. We have Θ = Θ ′ = R (see the definition in Section 5.3) and ψ θ (λ) = β(λ 2 + 2θλ). Recall θ is defined by (1). So we have θ = |θ|. From Theorem 6.5, we get N ψ [A ≥ θ] = θθ = 2|θ| for θ < 0 and N ψ [A ≥ θ] = 0 for θ ≥ 0. Thus under N ψ , the explosion time A is distributed as 2 times the Lebesgue measure on (-∞, 0). We deduce from Theorem 6.7 the Laplace transform of the total mass of the CRT before explosion: for λ ≥ 0,

N ψ [e -λσ A |A = θ] = βθ 2 λ + βθ 2 .
In particular the distribution of σ A conditionally on {A = θ} is the gamma distribution with parameter (βθ 2 , 1/2). Very similar computations as those in the proof of Theorem 6.7 yield that for all s, t ≥ 0, θ < 0, λ, κ ≥ 0 .

We denote by σ * θ the total mass or length (see definition (52) of L) of the pruned infinite tree G * θ . Notice that, thanks to Proposition 7.7, σ * θ has the size biased distribution of σ θ (the total mass of the CRT with branching mechanism ψ θ ) under N ψ . More precisely, we have for any nonnegative measurable function, for θ > 0, 2βθN ψ [σ θ F (σ θ+q , q ≥ 0)] = E ψ [F (σ * θ+q , q ≥ 0)]. (57)

As the process Σ = (σ θ , θ ∈ R) is Markov, we get that Σ * = (σ * θ , θ ≥ 0) is Markov. Notice that a.s. σ * 0 = +∞. Direct computations or using (56) and Theorem 8.1 yield that for all θ, q, λ, κ ≥ 0 We get the following result.

Proposition 9.1. We have:

• under E ψ , (2βσ * θ , θ ≥ 0) is distributed as (1/τ θ , θ ≥ 0); • under N ψ , (2βσ A+θ , θ ≥ 0) is distributed as (1/(V + τ θ ), θ ≥ 0) where V is independent of τ and its "distribution" has density w.r.t. the Lebesgue measure given by 2/(πv)1 {v>0} .

The proof of this result is postponed to the end of this section. Notice that (45) implies that for θ ≥ 0, N ψ [F (σ q , q ≥ 0)e -ψ(θ)σ 0 ] = N ψ [F (σ q+θ , q ≥ 0)].

In particular, we deduce from this, (57) and the fact that τ is a process with independent and stationary increments the following result (notice that the size bias effect vanish, as we condition by σ 0 = 1).

Corollary 9.2. Let β = 1/2. Conditionally on σ 0 = 1, we have that (σ θ , θ ≥ 0) is under the excursion measure N ψ distributed as (1/(1 + τ θ ), θ ≥ 0).

We thus recover a well-known result from Aldous and Pitman [START_REF] Aldous | The standard additive coalescent[END_REF] on the size process of a tagged fragment for a self-similar fragmentation (see [START_REF] Bertoin | Random Fragmentation and Coagulation Processes[END_REF]) with index 1/2, no erosion and binary dislocation measure ν defined on pairs (s 1 , s 2 ) such that s 1 ≥ s 2 ≥ 0 and s 1 + s 2 = 1 by ν(s 1 ∈ dx) = (2πx 3 (1x) 3 ) -1/2 1 {x>1/2} dx, which correspond to the fragmentation of the CRT (see also the end of [START_REF] Abraham | Poisson snake and fragmentation[END_REF][START_REF] Bertoin | Self-similar fragmentations[END_REF] or [START_REF] Uribe Bravo | The falling apart of the tagged fragment and the asymptotic disintegration of the Brownian height fragmentation[END_REF]).

Proof of Proposition 9.1. Let λ, κ, θ, q be positive. As we did not find any reference for the computation of I = E[e -λ/τ θ -κ/τ θ+q ],

we shall give it here. Using that τ is a subordinator, we have

I = E[e -λ/τ θ -κ/(τ θ +τ ′ q ) ],
where τ ′ is an independent copy of τ . We set p = √ 2λ + θ 2 and J = 2π p θ I. We get

J = 2π p θ θq 2π R 2 +
e -λ/x-κ/(x+y)-θ 2 /2x-q 2 /2y dx dy (xy) 3/2 = pq R 2 + e -κ/(x+y)-p 2 /2x-q 2 /2y dx dy (xy) 3/2 = pq R 2 + e -κzu/(1+u)-zup 2 /2-zq 2 /2 dz du √ u

= pq R + u + 1 u 2 p 2 /2 + u(p 2 /2 + q 2 /2 + κ) + q 2 /2 du √ u = 2γ R + u + 1 u 2 + u(1 + γ 2 + κ ′ ) + γ 2 du √ u ,
where we used the change of variable zu = 1/x and z = 1/y for the third equality, κ ′ = 2κ/p 2 and γ = q/p for the last. Let a, b such that a + b = 1 + γ 2 + κ ′ and ab = γ 2 . Notice that u + 1

u 2 + u(1 + γ 2 + κ ′ ) + γ 2 = a -1 a -b 1 u + a + 1 -b a -b 1 u + b .
Then we get

J = 2γ a -1 a -b R + du √ u(u + a) + 2γ 1 -b a -b R + du √ u(u + b) = 2γ 1 a -b a -1 √ a + 1 -b √ b R + du √ u(u + 1) = 2γ √ ab + 1 √ ab 1 √ a + √ b π = 2π γ + 1 (1 + γ) 2 + κ ′ .
Therefore, we obtain

I = θ p γ + 1 (1 + γ) 2 + κ ′ = θ √ θ 2 + 2λ q + √ θ 2 + 2λ 2κ + (q + √ θ 2 + 2λ) 2
.

We deduce that the two processes, (2βσ * θ , θ ≥ 0) and (1/τ θ , θ ≥ 0), have the same two-dimensional marginals. Since they are Markov processes, they have the same distribution. This proves the first part of the theorem.

Let U be a positive "random" variable whose "distribution" given by 2 times the Lebesgue measure on (0, +∞) which is independent of τ . The
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 2 Fig. 2. The measure ρt and the family (hi, Ii)i∈I .

t 0 1 0 1

 10 {H(ρs)≤a} ds and its right continuous inverse C ρ,a (t) = inf{r ≥ 0; Γ ρ,a (r) > t} = inf r ≥ 0; r {H(ρs)≤a} ds > t , (34) with the convention that inf ∅ = +∞. We define the projector π a from D to D a by π a (ρ) = (ρ Cρ,a(t) , t ≥ 0), (35) with the convention ρ +∞ = 0. By construction we have the following compatibility relation: π a • π b = π a for 0 ≤ a ≤ b.
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 0 Zr dr ] = E ψq x [M ψq,-q a e -λ a 0 Zr dr ] = e -qx E ψqx [e qZa+(ψ(q)-λ) a 0 Zr dr ] = e -qx e -xN ψq [1-e qZa+(ψ(q)-λ) a Zr dr ]= e -qx e -xN ψq [1-e qZa+ψ(q) a Zr dr ] × e -xN ψq [e qZa+ψ(q) a Zr dr (1-e -λ a 0 Zr dr )] xN ψ [1-e -λ a Zr dr ] = e -xN ψ [1-e -λ a 0 Zr dr ] ,

  σ 0 ds G((ρ s→ , M (mark),s→ ), (ρ ←s , M (mark),←s )) = ψ ′ (θ) Mψ θ (dµ, dν, dm)E ψ θ , * µ,m ⊗ E ψ θ , * ν,m [ G].
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  ψ [e -λσ A+s -κσ A+s+t |A = θ] (56) = β(|θ| + s) 2 λ + β(|θ| + s) 2 βt 2 + λ + β(|θ| + s) 2 κ + ( βt 2 + λ + β(|θ| + s) 2 ) 2

E 2 λ + βθ 2 βq 2 + λ + βθ 2 κ 2 .

 22222 ψ [e -λσ * θ -κσ * θ+q ] = βθ + ( βq 2 + λ + βθ 2 ) Let τ = (τ θ , θ ≥ 0) be the first passage process of a standard Brownian motion (B u , u ≥ 0): τ θ = inf{u ≥ 0, B u ≥ θ}. It is a stable subordinator with index 1/2, and more precisely with no drift, no killing and Lévy measure (2πx 3 ) -1/2 dx on (0, ∞): for λ ≥ 0, E[e -λτ θ ] = e -θ √ 2λ . The distribution of τ θ has density θ √ 2πx 3 e -θ 2 /2x 1 {x>0} .

  • for every 0 ≤ t ≤ t ′ , with H t,t ′ := inf s∈[t,t ′ ] H s , then: Definition of the pruned processes. We define the mark process as

	-the measures M t (ske)	(dr, du)1 r∈[0,H t,t ′ ] and M t ′ (ske)	(dr, du)1 r∈[0,H t,t ′ ] are
	equal;		
	-the random measures M t (ske) 1 r∈[H t,t ′ ,H t ′ ] are independent.	(dr, du)1 r∈[H t,t ′ ,Ht] and M t ′ (ske)	(dr, du) ×
	5.1.3.		

ske) t (dr, du) is a Poisson point measure with intensity 2β1 [0,Ht] (r) dr1 {u>0} du;

of the excursions at the node (which in the previous Section are called u i ). We shall also add the mark process [see its definition (39)].

Let µ and ν be two finite measures such that Supp µ = Supp ν = [0, H] and m a point measure on [0, H] × R + . Let {(ρ i , M (mark),i ), i ∈ J g } and {(ρ i , M (mark),i ), i ∈ J d } be two families of marked exploration processes (see Section 5.1.3). Let {(x i , u i ), i ∈ J g ∪ J d } be a family of nonnegative real numbers. The measures µ and ν must be seen as the measures ρ s→ 0 and ρ ←s 0 of Theorem 7.1, the x i 's are the heights of the branching points along the chosen branch, the ρ i 's are the exploration processes that arise from the decomposition of the processes ρ s→ and ρ ←s above their minimum and the u i 's are additional features that order the excursions that are attached at the same level. The measure m and the processes M (mark),i will allow us to reconstruct the mark process.

For every i ∈ J g ∪ J d , we set σ i the length of the process ρ i . We define

The variable L represents the total length of the excursion whereas L g plays the same role as s in the left-hand side of Theorem 7.1. For every i ∈ J g , we set

and, for every i ∈ J d , we set

which is the time of the beginning of the excursion ρ i .

For every t > 0, we define the measure ρ t by

We also define the mark process M (mark) (dx, dv) by

We say that the process (ρ, M (mark) ) = ((ρ t , M

), t ≥ 0) is the marked exploration process associated with the family

From Bismut decomposition, Theorem 7.1, Proposition 7.2 and the construction of the mark process, Section 5.1.3, we get the following reconstruction corollary.

Corollary 7.3. Let ψ be a (sub)critical branching mechanism. Let (µ, ν, m) be distributed according to Mψ . Let i∈Jg δ (x i ,u i ,ρ i ,M (mark),i ) and i∈J d δ (x i ,u i ,ρ i ,M (mark),i ) be conditionally on (µ, ν, m) independent Poisson point measures with respective intensity

Then the marked exploration process associated with the family G given by ( 53) is distributed as

Remark 7.4. If we start with an exploration process ρ, pick s at random (conditionally on ρ) on [0, σ], then the decomposition of ρ s→ and ρ ←s as excursions above their minimum gives a family G. The exploration process ρ associated with G given by the previous construction is not ρ. Indeed, each excursion of ρ "on the left" of s is time-reversed with respect to those of ρ. However, the trees coded by ρ and ρ are the same.

We can also reconstruct the pruned exploration process by pruning G. Let θ > 0. We define the lowest mark lying on the spine as

, where the pruning operator Λ θ is defined in (41). Proposition 7.5. Under the hypothesis of Corollary 7.3, let (ρ θ , M (mark),θ ) be the marked exploration process associated with the family G θ given by (55). The process (ρ θ , θ ≥ 0) is distributed as R 0 under N ψ [σ 0 dR].

Proof. Let us remark that, by construction, (ρ θ , M (mark),θ ) = Λ θ (ρ, M (mark) ). The proposition now follows from Corollary 7.3. R. ABRAHAM AND J.-F. DELMAS "distribution" of V = τ U has density w.r.t. the Lebesgue measure given by 2/(πv)1 {v>0} . The second part is then a direct consequence of Corollary 8.2.