
HAL Id: hal-00379118
https://hal.science/hal-00379118v1

Preprint submitted on 27 Apr 2009 (v1), last revised 6 Jun 2012 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A continuum-tree-valued Markov process
Romain Abraham, Jean-François Delmas

To cite this version:
Romain Abraham, Jean-François Delmas. A continuum-tree-valued Markov process. 2009. �hal-
00379118v1�

https://hal.science/hal-00379118v1
https://hal.archives-ouvertes.fr


A CONTINUUM-TREE-VALUED MARKOV PROCESS

ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

Abstract. We present a construction of a Lévy continuum random tree (CRT) associ-
ated with a super-critical continuous state branching process using the so-called exploration
process and a Girsanov’s theorem. We also extend the pruning procedure to this super-
critical case. Let ψ be a critical branching mechanism. We set ψθ(·) = ψ(· + θ) − ψ(θ).
Let Θ = (θ∞,+∞) or Θ = [θ∞,+∞) be the set of values of θ for which ψθ is a branch-
ing mechanism. The pruning procedure allows to construct a decreasing Lévy-CRT-valued
Markov process (Tθ, θ ∈ Θ), such that Tθ has branching mechanism ψθ. It is sub-critical if
θ > 0 and super-critical if θ < 0. We then consider the explosion time A of the CRT: the
smaller (negative) time θ for which Tθ has finite mass. We describe the law of A as well
as the distribution of the CRT just after this explosion time. The CRT just after explosion
can be seen as a CRT conditioned not to be extinct which is pruned with an independent
intensity related to A. We also study the evolution of the CRT-valued process after the
explosion time. This extends results from Aldous and Pitman on Galton-Watson trees. For
the particular case of the quadratic branching mechanism, we show that after explosion the
total mass of the CRT behaves like the inverse of a stable subordinator with index 1/2. This
result is related to the size of the tagged fragment for the fragmentation of Aldous’ CRT.

1. Introduction

Continuous state branching processes (CB in short) are non-negative real valued Markov
processes first introduced by Jirina [19] that satisfy a branching property: the process (Zt, t ≥
0) is a CB if its law when starting from x+x′ is equal to the law of the sum of two independent
copies of Z starting respectively from x and x′. The law of such a process is characterized by
the so-called branching mechanism ψ via its Laplace functionals. The branching mechanism
ψ of a CB is given by

ψ(λ) = α̃λ+ βλ2 +

∫

(0,+∞)
π(dℓ)

[

e−λℓ−1 + λℓ1{ℓ≤1}
]

,

where α̃ ∈ R, β ≥ 0 and π is a Radon measure on (0,+∞) such that
∫

(0,+∞)(1 ∧ ℓ2)π(dℓ) <

+∞. The CB is said to be respectively sub-critical, critical, super-critical when ψ′(0) > 0,
ψ′(0) = 0 or ψ′(0) < 0. We will write (sub)critical for critical or sub-critical. Notice that ψ
is smooth and strictly convex if β > 0 or π 6= 0.

It is shown in [20] that all these CBs can be obtained as the limit of renormalized sequences
of Galton-Watson processes. A genealogical tree is naturally associated with a Galton-Watson
process and the question of existence of such a genealogical structure for CB arises naturally.
This question has given birth to the theory of continuum random trees (CRT), first introduced
in the pioneer work of Aldous [7, 6, 8]. A continuum random tree (called Lévy CRT) that
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2 ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

codes the genealogy of a general (sub)critical branching process has been constructed in
[21, 22] and studied further in [16]. The main tool of this approach is the so-called exploration
process (ρs, s ∈ R

+), where ρs is a measure on R
+, which codes for the CRT. For (sub)critical

quadratic branching mechanism (π = 0), the measure ρs is just the Lebesgue measure over
an interval [0,Hs], and the so-called height process (Hs, s ∈ R

+) is a Brownian motion with
drift reflected at 0. In [15], a CRT is built for super-critical quadratic branching mechanism
using Girsanov theorem for Brownian motion.

We propose here a construction for general super-critical Lévy tree, using the exploration
process, based on ideas from [15]. We first build the super-critical tree up to a given level
a. This tree can be coded by an exploration process and its law is absolutely continuous
with respect to the law of a (sub)critical Lévy tree, whose leaves above level a are removed.
Moreover, this family of processes (indexed by parameter a) satisfies a compatibility property
and hence there exists a projective limit which can be seen as the law of the CRT associated
with the super-critical CB. This construction enables us to use most of the results known for
(sub)critical CRT. Notice that another construction of a Lévy CRT that does not make use
of the exploration process has been proposed in [18] as the limit, for the Gromov-Hausdorff
metric, of a sequence of discrete trees. This construction also holds in the super-critical case
but is not easy to use to derive properties for super-critical CRT.

In a second time, we want to construct a “decreasing” tree-valued Markov process. To
begin with, if ψ is (sub)critical, for θ > 0 we can construct, via the pruning procedure of [4],
from a Lévy CRT T associated with ψ a sub-tree Tθ associated with the branching mechanism
ψθ defined by

∀λ ≥ 0, ψθ(λ) = ψ(λ+ θ) − ψ(θ).

By [1, 23], we can even construct a “decreasing” family of Lévy CRTs (Tθ, θ ≥ 0) such that
Tθ is associated with ψθ for every θ ≥ 0.

In this paper, we consider a critical branching mechanism ψ and denote by Θ the set of
real numbers θ (including negative ones) for which ψθ is a well-defined branching mechanism
(see Section 5.3 for some examples). Notice that Θ = [θ∞,+∞) or (θ∞,+∞) for some
θ∞ ∈ [−∞, 0]. We then extend the pruning procedure of [4] to super-critical branching
mechanisms in order to define a Lévy CRT-valued process (Tθ, θ ∈ Θ) such that

• For every θ ∈ Θ, the Lévy CRT Tθ is associated with the branching mechanism ψθ.
• All the trees Tθ, θ ∈ Θ have a common root.
• The tree-valued process (Tθ, θ ∈ Θ) is decreasing in the sense that for θ < θ′, Tθ′ is a

sub-tree of Tθ.
Let ρθ be the exploration process that codes for Tθ. We denote by NNN

ψ the excursion measure
of the process (ρθ, θ ∈ Θ), that is under NNN

ψ, each ρθ is the excursion of an exploration process
associated with ψθ. Let σθ denote the length of this excursion. The quantity σθ corresponds
also to the total mass of the tree Tθ. We say that the tree Tθ is finite (under NNN

ψ) if σθ is
finite (or equivalently if the total mass of the associated CB is finite). By construction, we
have that the trees Tθ for θ ≥ 0 are associated with (sub)critical branching mechanisms and
hence are a.e. finite. On the other hand, the trees Tθ for negative θ are associated with
super-critical branching mechanisms. We define the explosion time

A = inf{θ ∈ Θ, σθ < +∞}.
For θ ∈ Θ, we define θ̄ as the unique non-negative real number such that ψ(θ̄) = ψ(θ) (notice

that θ̄ = θ if θ ≥ 0). We give the distribution of A under NNN
ψ (Theorem 6.5). In particular
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we have, for all θ ∈ [θ∞,+∞),

NNN
ψ[A > θ] = θ̄ − θ.

We also give the distribution of the trees after the explosion time (Tθ, θ ≥ A) (Theorem 6.7
and Corollary 8.2). Of particular interest is the distribution of the tree at its explosion time,
TA.

In [10], Aldous and Pitman constructed a tree-valued process by pruning a discrete Galton-
Watson tree. They also constructed another tree-valued process by pruning an infinite tree (a
(sub)critical Galton-Watson tree conditioned on non-extinction) and proved some identities
in law between these two processes in the case of Poisson offspring distributions. In the same
spirit, we also construct another tree-valued Markov process (T ∗θ , θ ≥ 0) associated with a

critical branching mechanism ψ. In the case of a.s. extinction (that is when

∫ +∞ dv

ψ(v)
<

+∞), T ∗0 is distributed as T0 conditioned to survival. The tree T ∗0 is constructed via a spinal
decomposition along an infinite spine. Then, we define the continuum-tree-valued Markov
process (T ∗θ , θ ≥ 0) again by a pruning procedure. Let θ ∈ (θ∞, 0). We prove that under the

excursion measure NNN
ψ, given A = θ, the process (Tθ+u, u ≥ 0) is distributed as the process

(T ∗
θ̄+u

, u ≥ 0) (Theorem 8.1).

When the branching mechanism is quadratic, ψ(λ) = λ2/2, some explicit computations
can be carried out. Let σ∗θ be the total mass of T ∗θ and τ = (τθ, θ ≥ 0) be the first passage
process of a standard Brownian motion, that is a stable subordinator with index 1/2. We
get (Proposition 9.1) that (σ∗θ , θ ≥ 0) is distributed as (1/τθ , θ ≥ 0) and that (σA+θ, θ ≥ 0)
is distributed as (1/(V + τθ), θ ≥ 0) for some random variable V independent of τ . Let us
recall that the pruning procedure of the tree can be used to construct some fragmentation
processes (see [5, 1, 23]) and the process (σθ, θ ≥ 0), conditionally on σ0 = 1, represents then
the evolution of a tagged fragment. We hence recover a well known result of Aldous-Pitman
[9]: conditionally on σ0 = 1, (σθ, θ ≥ 0) is distributed as (1/(1 + τθ), θ ≥ 0) (see Corollary
9.2).

The paper is organized as follows. In Section 2, we introduce an exponential martingale
of a CB and give a Girsanov formula for CBs. We recall in Section 3 the construction
of a (sub)critical Lévy CRT via the exploration process and some useful properties of this
exploration process. Then, we construct in Section 4 the super-critical Lévy CRT via a
Girsanov theorem involving the same martingale as in Section 2. We recall in Section 5 the
pruning procedure for critical or sub-critical CRTs and extend this procedure to super-critical
CRTs. We construct in Section 6 the tree-valued process (Tθ, θ ∈ Θ), or more precisely
the family of exploration processes (ρθ, θ ≥ 0) which codes for it. We also give the law
of the explosion time A and the law of the tree at this time. In Section 7, we construct
an infinite tree and the corresponding pruned sub-trees (T ∗θ , θ ≥ 0), which are given by a
spinal representation using exploration processes. We prove in Section 8 that the process
(TA+u, u ≥ 0) is distributed as the process (T ∗U+u, u ≥ 0) where U is a positive random time
independent of (T ∗θ , θ ≥ 0). We finally make the explicit computations for the quadratic case
in Section 9.

Notice that all the results in the following Sections are stated using exploration processes
which code for the CRT, instead of the CRT directly.



4 ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

2. Girsanov formula for continuous branching process

2.1. Continuous branching process. Let ψ be a branching mechanism of a CB: for λ ≥ 0,

(1) ψ(λ) = α̃λ+ βλ2 +

∫

(0,+∞)
π(dℓ)

[

e−λℓ−1 + λℓ1{ℓ≤1}
]

,

where α̃ ∈ R, β ≥ 0 and π is a Radon measure on (0,+∞) such that
∫

(0,+∞)(1 ∧ ℓ2) π(dℓ) <

+∞. We shall say that ψ has parameter (α̃, β, π).
We shall assume that β 6= 0 or π 6= 0. We have ψ(0) = 0 and ψ′(0+) = α̃−

∫

(1,+∞) ℓπ(dℓ) ∈
[−∞,+∞). In particular, we have ψ′(0+) = −∞ if and only if

∫

(1,+∞) ℓ π(dℓ) = +∞. We

say that ψ is conservative if for all ε > 0

(2)

∫ ε

0

1

|ψ(u)| du = +∞.

Notice that (2) is fulfilled if ψ′(0+) > −∞ that is if
∫

(1,+∞) ℓ π(dℓ) < +∞. If ψ is conservative,

the CB associated with ψ does not explode in finite time a.s.

Let Pψx be the law of a CB Z = (Za, a ≥ 0) started at x ≥ 0 and with branching mechanism

ψ, and let Eψx be the corresponding expectation. The process Z is a Feller process and thus
càd-làg. Let F = (Fa, a ≥ 0) be the filtration generated by Z completed the usual way. For
every λ > 0, for every a ≥ 0, we have

(3) Eψx

[

e−λZa
]

= e−xu(a,λ),

where function u is the unique non-negative solution of

(4) u(a, λ) +

∫ a

0
ψ
(

u(s, λ)
)

ds = λ, λ ≥ 0, a ≥ 0.

This equation is equivalent to

(5)

∫ λ

u(a,λ)

dr

ψ(r)
= a λ ≥ 0, a ≥ 0.

If (2) holds, then the process is conservative: a.s. for all a ≥ 0, Za < +∞.

It is easy to check that Eψx [Za] = x e−aψ
′(0+). The CB Z or the branching mechanism ψ is

called critical (resp. super-critical, resp. sub-critical) if ψ′(0+) = 0 (resp. ψ′(0+) < 0, resp.
ψ′(0+) > 0). We shall write ψ is (sub)critical if it is critical or sub-critical.

Let q0 be the largest root of ψ(q) = 0. Since ψ(0) = 0, we have q0 ≥ 0. If ψ is (sub)critical,
since ψ is strictly convex, we get that q0 = 0. If ψ is super-critical, if we denote by q∗ > 0
the only real number such that ψ′(q∗) = 0, we have q0 > q∗ > 0. See Lemma 2.4 for the
interpretation of q0.

If f is a function defined on [γ,+∞), then for θ ≥ γ, we set for λ ≥ γ − θ:

fθ(λ) = f(θ + λ) − f(θ).

If ν is a measure on (0,+∞), then for q ∈ R, we set

(6) ν(q)(dℓ) = e−qℓ ν(dℓ).

Remark 2.1. If π(q)((1,+∞)) < +∞ for some q < 0, then ψ given by (1) is well defined
on [q,+∞) and, for θ ∈ [q,+∞), ψθ is a branching mechanism with parameter (α̃ + 2βθ +
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∫

(0,1] π(dℓ) ℓ(1 − e−θℓ), β, π(θ)). Notice that for all θ > q, ψθ is conservative. And, if the

additional assumption
∫

(1,+∞)
ℓπ(q)(dℓ) =

∫

(1,+∞)
ℓ e|q|ℓ π(dℓ) < +∞

holds, then |(ψq)′(0+)| < +∞ and ψq is conservative.

2.2. Girsanov formula. Let Z = (Za, a ≥ 0) be a conservative CB with branching mech-
anism ψ given by (1) with β 6= 0 or π 6= 0, and let (Fa, a ≥ 0) be its natural filtration.

Let q ∈ R such that q ≥ 0 or q < 0 and
∫

(1,+∞) ℓ e|q|ℓ π(dℓ) < +∞. Then, thanks to Re-

mark 2.1, ψ(q) and ψq are well defined and ψq is conservative. Then we consider the process

Mψ,q = (Mψ,q
a , a ≥ 0) defined by

(7) Mψ,q
a = eqx−qZa−ψ(q)

R a
0 Zs ds .

Theorem 2.2. Let q ∈ R such that q ≥ 0 or q < 0 and
∫

(1,+∞) ℓ e|q|ℓ π(dℓ) < +∞.

(i) The process Mψ,q is a F-martingale under Pψx .

(ii) Let a, x ≥ 0. On Fa, the probability measure P
ψq
x is absolutely continuous with respect

to Pψx and

dP
ψq
x |Fa

dPψx |Fa
= Mψ,q

a .

Before going into the proof of this theorem, we recall Proposition 2.1 from [2]. For µ a
positive measure on R, we set

(8) H(µ) = sup{r ∈ R;µ([r,+∞)) > 0},
the maximal element of its support. For a < 0, we set Za = 0.

Proposition 2.3. Let µ be a finite positive measure on R with support bounded from above
(i.e. H(µ) is finite). Then we have for all s ∈ R, x ≥ 0,

(9) Eψx

[

e−
R

Zr−s µ(dr)
]

= e−xw(s),

where the function w is a measurable locally bounded non-negative solution of the equation

(10) w(s) +

∫ +∞

s
ψ(w(r))dr =

∫

[s,+∞)
µ(dr), s ≤ H(µ) and w(s) = 0, s > H(µ).

If ψ′(0+) > −∞ or if µ({H(µ)}) > 0, then (10) has a unique measurable locally bounded
non-negative solution.

Proof of Theorem 2.2. First case. We consider q > 0 such that ψ(q) ≥ 0.

We have 0 ≤Mψ,q
a ≤ eqx, thus Mψ,q is bounded. It is clear that Mψ,q is F-adapted.

To check that Mψ,q is a martingale, thanks to the Markov property, it is enough to check

that Eψx [Mψ,q
a ] = Eψx [Mψ,q

0 ] = 1 for all a ≥ 0. Consider the measure νq(dr) = qδa(dr) +
ψ(q)1[0,a](r)dr, where δa is the Dirac mass at point a. Notice that H(νq) = a and that

νq
(

{H(νq)}
)

= q > 0 hence, thanks to Proposition 2.3, there exists a unique non-negative

solution w of (10) with µ = νq, and Eψx [Mψ,q
a ] = e−x(w(0)−q). As q1[0,a] also solves (10) with

µ = νq, we deduce that w = q1[0,a] and that Ex[M
ψ,q
a ] = 1. Thus, we get that Mψ,q is a

bounded martingale.
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Let ν be a non-negative measure on R with support in [0, a] (i.e. H(ν) ≤ a). Thanks

to Proposition 2.3, we have that Eψx [Mψ,q
a e−

R

Zrν(dr)] = e−x(v(0)−q), where v is the unique

non-negative solution of (10) with µ = ν + νq. As Mψ,q
a e−

R

Zrν(dr) ≤ Mψ,q
a , we deduce that

e−x(v(0)−q) = Eψx [Mψ,q
a e−

R

Zrν(dr)] ≤ 1, that is v(0) ≥ q. We set u = v − q, and we deduce
that u is non-negative and solves

(11) u(s) +

∫ +∞

s
ψq(u(r)) dr =

∫

[s,+∞)
ν(dr), s ≤ H(ν) and u(s) = 0, s > H(ν).

As ψ(q) ≥ 0, we deduce from the convexity of ψ that ψ′q(0) = ψ′(q) ≥ 0. Thanks to
Proposition 2.3, we deduce that u is the unique non-negative solution of (11) and that

e−xu(0) = E
ψq
x [e−

R

Zrν(dr)]. In particular, we have that for all non-negative measure ν on
R with support in [0, a],

Eψx

[

Mψ,q
a e−

R

Zrν(dr)
]

= E
ψq
x

[

e−
R

Zrν(dr)
]

.

As e−
R

Zrν(dr) is Fa-measurable, we deduce from the monotone class theorem that for any
non-negative Fa-measurable random variable W ,

(12) Eψx

[

W eqx−qZa−ψ(q)
R a
0 Zr dr

]

= Eψx [WMψ,q
a ] = E

ψq
x [W ].

This proves the second part of the theorem.

Second case. We consider q ≥ 0 such that ψ(q) < 0. Let us remark that this only occurs
when ψ is super-critical.

Recall that q0 > q∗ > 0 are such that ψ(q0) = 0 and ψ′(q∗) = 0. Notice that ψ′q∗(0) =

ψ′(q∗) = 0, that is ψq∗ is critical. Let W be any non-negative random variable Fa-measurable.
From the first step, using (12) with q = q0, we get that

Eψx
[

W eq0x−q0Za
]

= E
ψq0
x [W ].

Thanks to (12) with ψq∗ instead of ψ and (q0−q∗) ≥ 0 instead of q, and using that (ψq∗)q0−q∗ =

ψq0 , we deduce that

E
ψq∗
x

[

W e(q0−q∗)x−(q0−q∗)Za−ψq∗ (q0−q∗)
R a
0 Zr dr

]

= E
(ψq∗)q0−q∗
x [W ] = E

ψq0
x [W ].

This implies that

Eψx [W ] = E
ψq0
x

[

W e−q0x eq0Za
]

= E
ψq∗
x

[

W e−q0x eq0Za e(q0−q∗)x−(q0−q∗)Za−ψq∗ (q0−q∗)
R a
0 Zr dr

]

= E
ψq∗
x

[

W e−q
∗x+q∗Za−ψq∗(q0−q∗)

R a
0 Zr dr

]

.

As ψq∗(q0 − q∗) = ψ(q0) − ψ(q∗) = −ψ(q∗) = ψq∗(−q∗), we finally obtain

(13) Eψx [W ] = E
ψq∗
x

[

W e−q
∗x+q∗Za−ψq∗(−q∗)

R a
0 Zr dr

]

.

If q < q∗, as (ψq)(q∗−q) = ψq∗ and ψ′q(q
∗ − q) = ψ′(q∗) = 0, we deduce from (13) with ψ

replaced by ψq and q∗ by q∗ − q that

(14) E
ψq
x [W ] = E

ψq∗
x

[

W e−(q∗−q)x+(q∗−q)Za−ψq∗ (q−q∗)
R a

0
Zr dr

]

.

If q > q∗, formula (12) holds with ψ replaced by ψq∗ and q replaced by q − q∗, which also
yields equation (14).
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Using (13), (14) and that ψq∗(−q∗) + ψ(q) = ψq∗(q − q∗), we get that

Eψx

[

W eqx−qZa−ψ(q)
R a

0
Zr dr

]

= E
ψq∗
x

[

W e−(q∗−q)x+(q∗−q)Za−(ψq∗ (−q∗)+ψ(q))
R a

0
Zr dr

]

(15)

= E
ψq∗
x

[

W e−(q∗−q)x+(q∗−q)Za−ψq∗ (q−q∗)
R a
0 Zr dr

]

= E
ψq
x [W ].

Since this holds for any non-negative Fa-measurable random variable W , this proves (i) and
(ii) of the theorem.

Third case. We consider q < 0 and assume that
∫

(1,+∞) ℓ e|q|ℓ π(dℓ) < +∞. In particular,

ψq is a conservative branching mechanism, thanks to Remark 2.1.
Let W be any non-negative Fa-measurable random variable . Using (12) if ψq(−q) ≥ 0 or

(15) if ψq(−q) < 0, with ψ replaced by ψq and q by −q, we deduce that

E
ψq
x [W e−qx+qZa−ψq(−q)

R a
0 Zr dr] = Eψx [W ].

This implies that

E
ψq
x [W ] = Eψx [W eqx−qZa+ψq(−q)

R a

0
Zr dr] = Eψx [W eqx−qZa−ψ(q)

R a

0
Zr dr].

Since this holds for any non-negative Fa-measurable random variable W , this proves (i) and
(ii) of the theorem. �

Finally, we recall some well known facts on CB. Recall that q0 is the largest root of ψ(q) = 0,
q0 = 0 if ψ is (sub)critical and that q0 > 0 if ψ is super-critical. We set

(16) σ =

∫ +∞

0
Za da.

For λ ≥ 0, we set

(17) ψ−1(λ) = sup{r ≥ 0; ψ(r) = λ}.
Lemma 2.4. Assume that ψ is given by (1) with β 6= 0 or π 6= 0 and is conservative.

(i) Then Pψx -a.s. Z∞ = lima→+∞Za exists, Z∞ ∈ {0,+∞},
(18) Pψx (Z∞ = 0) = e−xq0,

{Z∞ = 0} = {σ < +∞} and we have: for λ > 0,

(19) Eψx

[

e−λσ
]

= e−xψ
−1(λ) .

(ii) Let q ≥ 0 such that ψ(q) ≥ 0. Then, the probability measure P
ψq
x is absolutely contin-

uous with respect to Pψx with

dP
ψq
x

dPψx
= Mψ,q

∞ ,

where

(20) Mψ,q
∞ = eqx−ψ(q)σ 1{σ<+∞}.

(iii) If ψ is super-critical then, conditionally on {Z∞ = 0}, Z is distributed as Pψq0 : for
any non-negative random variable measurable w.r.t. σ(Za, a ≥ 0), we have

Eψx [W |Z∞ = 0] = E
ψq0
x [W ].
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Proof. For λ > 0, we set Na = e−λZa+xu(λ,a), where u is the unique non-negative solution
of (5). Thanks to (3) and the Markov property, (Na, a ≥ 0) is a bounded martingale under

Pψx . Hence, as a goes to infinity, it converges a.s. and in L1 to a limit, say N∞. From
(5), we get that lima→+∞ u(λ, a) = q0. This implies that Z∞ = lima→+∞ Za exists a.s. in

[0,+∞]. Since Eψx [N∞] = 1, we get Eψx [e−λZ∞ ] = e−q0x for all λ > 0. This implies that

Pψx -a.s. Z∞ ∈ {0,+∞} and (18).
Clearly, we have {Z∞ = +∞} ⊂ {σ = +∞}. For q ≥ 0 such that ψ(q) ≥ 0, we get that

(Mψ,q
a , a ≥ 0) is a bounded martingale under Pψx . Hence, as a goes to infinity, it converges

a.s. and in L1 to a limit, say Mψ,q
∞ . We deduce that

(21) Eψx

[

e−ψ(q)σ 1{Z∞=0}
]

= e−qx .

Letting q decrease to q0, we get that Pψx (σ < +∞, Z∞ = 0) = e−q0x = P(Z∞ = 0). This

implies that Pψx a.s. {σ = +∞} ⊂ {Z∞ = +∞}. We thus deduce that Pψx a.s. {Z∞ =
+∞} = {σ = +∞}. Notice also that (20) holds.

Notice that (21) readily implies (19). This proves Property (i) of the theorem and (20).
Property (ii) is then a consequence of Theorem 2.2, Property (ii) and the convergence in

L1 of the martingale (Mψ,q
a , a ≥ 0) towards Mψ,q

∞ .
Property (iii) is a consequence of (ii) with q = q0 and (18).

�

3. Lévy continuum random tree

We recall here the construction of the Lévy continuum random tree (CRT) introduced in
[22, 21] and developed later in [16] for critical or sub-critical branching mechanism. We will
emphasize on the height process and the exploration process which are the key tools to handle
this tree. The results of this section are mainly extracted from [16].

3.1. The underlying Lévy process. We assume that ψ given by (1) is (sub)critical, i.e.

(22) α := ψ′(0) = α̃−
∫

(1,+∞)
ℓ π(dℓ) ≥ 0

and that

(23) β > 0 and

∫

(0,1)
ℓπ(dℓ) = +∞.

We consider a R-valued Lévy processX = (Xt, t ≥ 0) with no negative jumps, starting from

0 and with Laplace exponent ψ under the probability measure P
ψ: for λ ≥ 0 E

ψ
[

e−λXt
]

=

etψ(λ). By assumption (23), X is of infinite variation P
ψ-a.s.

We introduce some processes related to X. Let J = {s ≥ 0;Xs 6= Xs−} be the set of
jumping times of X. For s ∈ J , we denote by

∆s = Xs −Xs−

the jump of X at time s and ∆s = 0 otherwise. Let I = (It, t ≥ 0) be the infimum process
of X, It = inf0≤s≤tXs, and let S = (St, t ≥ 0) be the supremum process, St = sup0≤s≤tXs.
We will also consider for every 0 ≤ s ≤ t the infimum of X over [s, t]:

Ist = inf
s≤r≤t

Xr.



A CONTINUUM-TREE-VALUED MARKOV PROCESS 9

The point 0 is regular for the Markov process X− I, and −I is the local time of X− I at 0
(see [11], chap. VII). Let N

ψ be the associated excursion measure of the process X − I away
from 0. Let σ = inf{t > 0;Xt− It = 0} be the length of the excursion of X− I under N

ψ (we
shall see after Proposition 3.6 that the notation σ is consistent with (16)). By assumption
(23), we have X0 = I0 = 0 N

ψ-a.e.
Since X is of infinite variation, 0 is also regular for the Markov process S −X. The local

time, L = (Lt, t ≥ 0), of S −X at 0 will be normalized so that

E
ψ[e
−λS

L
−1
t ] = e−tψ(λ)/λ,

where L−1
t = inf{s ≥ 0;Ls ≥ t} (see also [11] Theorem VII.4 (ii)).

3.2. The height process and the Lévy CRT. For each t ≥ 0, we consider the reversed

process at time t, X̂(t) = (X̂
(t)
s , 0 ≤ s ≤ t) by:

X̂(t)
s = Xt −X(t−s)− if 0 ≤ s < t,

and X̂
(t)
t = Xt. The two processes (X̂

(t)
s , 0 ≤ s ≤ t) and (Xs, 0 ≤ s ≤ t) have the same law.

Let Ŝ(t) be the supremum process of X̂(t) and L̂(t) be the local time at 0 of Ŝ(t) − X̂(t) with
the same normalization as L.

Definition 3.1 ([16], Definition 1.2.1, Lemma 1.2.1 and Lemma 1.2.4). There exists a
[0,+∞]-valued lower semi-continuous process H = (Ht, t ≥ 0), called the height process,

such that H0 = 0 and for all t ≥ 0, a.s. Ht = L̂
(t)
t . And a.s. for all s < t such that Xs− ≤ Ist

and for s = t if ∆t > 0 then Ht < +∞ and for all t′ > t ≥ 0, the process H takes all the
values between Ht and Ht′ on the time interval [t, t′].

The height process (Ht, t ∈ [0, σ]) under N
ψ codes a continuous genealogical structure, the

Lévy CRT, via the following procedure.

(i) To each t ∈ [0, σ] corresponds a vertex at generation Ht.
(ii) Vertex t is an ancestor of vertex t′ if Ht = Ht,t′ , where

(24) Ht,t′ = inf{Hu, u ∈ [t ∧ t′, t ∨ t′]}.

In general Ht,t′ is the generation of the last common ancestor of t and t′.
(iii) We put d(t, t′) = Ht +Ht′ − 2Ht,t′ and identify t and t′ (t ∼ t′) if d(t, t′) = 0.

The Lévy CRT coded by H is then the quotient set [0, σ]/ ∼, equipped with the distance
d and the genealogical relation specified in (ii).

3.3. The exploration process. The height process is not Markov in general. But it is a
very simple function of a measure-valued Markov process, the so-called exploration process.

If E is a polish space, let B(E) (resp. B+(E)) be the set of real-valued measurable (resp.
and non-negative) functions defined on E endowed with its Borel σ-field, and let M(E) (resp.
Mf (E)) be the set of σ-finite (resp. finite) measures on E, endowed with the topology of
vague (resp. weak) convergence. For any measure µ ∈ M(E) and f ∈ B+(E), we write

〈µ, f〉 =

∫

f(x)µ(dx).
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The exploration process ρ = (ρt, t ≥ 0) is a Mf (R+)-valued process defined as follows: for
every f ∈ B+(R+), 〈ρt, f〉 =

∫

[0,t] dsI
s
t f(Hs), or equivalently

(25) ρt(dr) =
∑

0<s≤t

Xs−<Ist

(Ist −Xs−)δHs(dr) + β1[0,Ht](r)dr.

In particular, the total mass of ρt is 〈ρt, 1〉 = Xt − It.
Recall (8) and set by convention H(0) = 0.

Proposition 3.2 ([16], Lemma 1.2.2 and formula (1.12)). Almost surely, for every t > 0,

• H(ρt) = Ht,
• ρt = 0 if and only if Ht = 0,
• if ρt 6= 0, then Supp ρt = [0,Ht].
• ρt = ρt− + ∆tδHt , where ∆t = 0 if t 6∈ J .

In the definition of the exploration process, as X starts from 0, we have ρ0 = 0 a.s. To state
the Markov property of ρ, we must first define the process ρ started at any initial measure
µ ∈ Mf (R+).

For a ∈ [0, 〈µ, 1〉], we define the erased measure kaµ by

kaµ([0, r]) = µ([0, r]) ∧ (〈µ, 1〉 − a), for r ≥ 0.

If a > 〈µ, 1〉, we set kaµ = 0. In other words, the measure kaµ is the measure µ erased by a
mass a backward from H(µ).

For ν, µ ∈ Mf (R+), and µ with compact support, we define the concatenation [µ, ν] ∈
Mf (R+) of the two measures by:

〈

[µ, ν], f
〉

=
〈

µ, f
〉

+
〈

ν, f(H(µ) + ·)
〉

, f ∈ B+(R+).

Finally, we set for every µ ∈ Mf (R+) and every t > 0, ρµt =
[

k−Itµ, ρt]. We say that
(ρµt , t ≥ 0) is the process ρ started at ρµ0 = µ. Unless there is an ambiguity, we shall write ρt
for ρµt . Unless it is stated otherwise, we assume that ρ is started at 0.

Proposition 3.3 ([16], Proposition 1.2.3). The process (ρt, t ≥ 0) is a càd-làg strong Markov
process in Mf (R+).

Remark 3.4. From the construction of ρ, we get that a.s. ρt = 0 if and only if −It ≥ 〈ρ0, 1〉
and Xt − It = 0. This implies that 0 is also a regular point for ρ. Notice that N

ψ is also the
excursion measure of the process ρ away from 0, and that σ, the length of the excursion, is
N
ψ-a.e. equal to inf{t > 0; ρt = 0}.

3.4. Notations. We consider the set D of càd-làg processes in Mf (R+), endowed with the
Skorohod topology and the Borel σ-field. In what follows, we denote by ρ = (ρt, t ≥ 0) the
canonical process on this set. We still denote by P

ψ the probability measure on D such that
the canonical process is distributed as the exploration process associated with the branching
mechanism ψ, and by N

ψ the corresponding excursion measure.

3.5. Local time of the height process. The local time of the height process is defined
through the next result.

Proposition 3.5 ([16], Lemma 1.3.2 and Proposition 1.3.3). There exists a jointly measurable
process (Las , a ≥ 0, s ≥ 0) which is continuous and non-decreasing in the variable s such that:

• For every t ≥ 0, lim
ε→0

sup
a≥0

E
ψ

[

sup
s≤t

∣

∣

∣

∣

ε−1

∫ s

0
1{a<Hr≤a+ε} dr − Las

∣

∣

∣

∣

]

= 0.
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• For every t ≥ 0, lim
ε→0

sup
a≥ε

E
ψ

[

sup
s≤t

∣

∣

∣

∣

ε−1

∫ s

0
1{a−ε<Hr≤a} dr − Las

∣

∣

∣

∣

]

= 0.

• P
ψ-a.s., for every t ≥ 0, L0

t = −It.
• The occupation time formula holds: for any non-negative measurable function g on

R+ and any s ≥ 0,

∫ s

0
g(Hr) dr =

∫

(0,+∞)
g(a)Las da.

Let Tx = inf{t ≥ 0; It ≤ −x}. We have the following Ray-Knight theorem.

Proposition 3.6 ([16], Theorem 1.4.1). The process (LaTx , a ≥ 0) is distributed under P
ψ as

Z under Pψx (i.e. is a CB with branching mechanism ψ starting at x).

Let P
ψ
x be the distribution of (ρt∧Tx , t ≥ 0) under P

ψ. We set Za = LaTx under P
ψ
x and

Za = La∞ under N
ψ and (under P

ψ
x or N

ψ)

(26) σ(ρ) =

∫ ∞

0
1{ρt 6=0} dt.

The occupation time formula implies that σ(ρ) =
∫ +∞
0 Zada, which is consistent with notation

(16). When there is no confusion, we shall write σ for σ(ρ).
Exponential formula for the Poisson point process of jumps of the inverse subordinator of

−I gives (see also the beginning of Section 3.2.2. [16]) that for λ > 0

(27) N
ψ
[

1 − e−λσ
]

= ψ−1(λ).

We also recall Lemma 1.6 of [1].

Lemma 3.7. Let θ > 0. The excursion measure N
ψθ is absolutely continuous w.r.t. N

ψ with
density e−ψ(θ)σ : for any non-negative measurable function F on the space of excursions, we
have

N
ψθ [F (ρ)] = N

ψ
[

F (ρ) e−ψ(θ)σ
]

.

We recall the Poisson representation of P
ψ
x based on the excursion measure N

ψ. Let
(α̃i, β̃i)i∈Ĩ be the excursion intervals of ρ away from 0. For every i ∈ Ĩ, t ≥ 0, we set

ρ̃
(i)
t = ρ(α̃i+t)∧β̃i .

We deduce from Lemma 4.2.4 of [16] the following lemma.

Lemma 3.8. The point measure
∑

i∈Ĩ

δρ̃(i)(dµ) is under P
ψ
x a Poisson measure with intensity

xNψ(dµ).

3.6. The dual process and representation formula. We shall need the Mf (R+)-valued
process η = (ηt, t ≥ 0) defined by

(28) ηt(dr) =
∑

0<s≤t
Xs−<Ist

(Xs − Ist )δHs(dr) + β1[0,Ht](r)dr.

The process η is the dual process of ρ under N
ψ (see Corollary 3.1.6 in [16]).

We recall the Poisson representation of (ρ, η) under N
ψ. Let N (dx dℓ du) be a Poisson

point measure on [0,+∞)3 with intensity

dx ℓπ(dℓ)1[0,1](u)du.
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For every a > 0, let us denote by M
ψ
a the law of the pair (µa, νa) of measures on R+ with

finite mass defined by: for any f ∈ B+(R+)

〈µa, f〉 =

∫

N (dx dℓ du)1[0,a](x)uℓf(x) + β

∫ a

0
f(x) dx,(29)

〈νa, f〉 =

∫

N (dx dℓ du)1[0,a](x)ℓ(1 − u)f(x) + β

∫ a

0
f(x) dx.(30)

Remark 3.9. In particular µa(dr) + νa(dr) is defined as 1[0,a](r)drWr, where W is a subordi-

nator with Laplace exponent ψ′ − α where α = ψ′(0) is defined by (22).

We finally set M
ψ =

∫ +∞
0 da e−αa M

ψ
a .

Proposition 3.10 ([16], Proposition 3.1.3). For every non-negative measurable function F
on Mf (R+)2,

N
ψ

[
∫ σ

0
F (ρt, ηt) dt

]

=

∫

M
ψ(dµ dν)F (µ, ν),

where σ = inf{s > 0; ρs = 0} denotes the length of the excursion.

4. Super-critical Lévy continuum random tree

We shall construct a Lévy CRT with super-critical branching mechanism using a Girsanov
formula.

Let ψ̃ be a (sub)critical branching mechanism. The process Z = (Za, a ≥ 0), where

Za = LaTx , is a CB with branching mechanism ψ̃. We have P
ψ̃
x -a.s. Z∞ = lima→+∞ Za = 0.

We shall call x the initial mass of the ψ̃-CRT under P
ψ̃
x . The occupation time formula (see

Proposition 3.5) and (26) imply that P
ψ̃
x -a.s. and N

ψ̃-a.e., we have

(31) σ =

∫ +∞

0
Za da.

This readily implies the following Girsanov formula: for any non-negative measurable function
F , and q ≥ 0,

(32) E
ψ̃
x

[

M ψ̃,q
∞ F (ρ)

]

= E
ψ̃q
x [F (ρ)] ,

where M ψ̃,q
∞ is given by (20).

We will use a similar formula (with q < 0) to define the exploration process for a super-
critical Lévy CRT with branching mechanism ψ. Because super-critical branching process
may have an infinite mass, we shall cut it at a given level to construct the corresponding
genealogical continuum random tree, see [15] when π = 0.

For a ≥ 0, let Ma
f = Mf ([0, a]) be the set of non-negative measures on [0, a] and let

Da be the set of càd-làg Ma
f -valued process defined on [0,+∞) endowed with the Skorohod

topology. We now define a projection from D to Da. For ρ = (ρt, t ≥ 0) ∈ D, we consider

the time spent below level a up to time t: Γρ,a(t) =
∫ t
0 1{H(ρs)≤a} ds and its right continuous

inverse

(33) Cρ,a(t) = inf{r ≥ 0; Γρ,a(r) > t} = inf{r ≥ 0;

∫ r

0
1{H(ρs)≤a} ds > t},

with the convention that inf ∅ = +∞. We define the projector πa from D to Da by

(34) πa(ρ) = (ρCρ,a(t), t ≥ 0),



A CONTINUUM-TREE-VALUED MARKOV PROCESS 13

with the convention ρ+∞ = 0. By construction we have the following compatibility relation:
πa ◦ πb = πa for 0 ≤ a ≤ b.

Let ψ be a super-critical branching mechanism which we suppose to be conservative, i.e.
(2) holds. Recall q∗ is the unique (positive) root of ψ′(q) = 0. In particular the branching
mechanism ψq is critical if q = q∗ and sub-critical if q > q∗.

We consider the filtration H = (Ha, a ≥ 0) where Ha is the σ-field generated by the càd-

làg process πa(ρ) and the class of P
ψq∗
x negligible sets. Thanks to the second statement of

Proposition 3.5, we get that Z is H-adapted. Furthermore the proof of Theorem 1.4.1 in [16]
yields that Z is a Markov process w.r.t. the filtration H. In particular the process Mψq∗ ,−q∗

defined by (7) is thanks to Theorem 2.2 a H-martingale under P
ψq∗
x .

Let q ≥ q∗. We define the distribution P
ψ,a
x (resp. N

ψ,a) of the ψ-CRT cut at level a with

initial mass x, as the distribution of πa(ρ) under M
ψq,−q
a dP

ψq
x (resp. eqZa+ψ(q)

R a
0 Zr dr dNψq):

for any measurable non-negative function F ,

E
ψ,a
x [F (ρ)] = E

ψq
x

[

M
ψq,−q
a F (πa(ρ))

]

,(35)

N
ψ,a [F (ρ)] = N

ψq
[

eqZa+ψ(q)
R a
0 Zr dr F (πa(ρ))

]

.(36)

Lemma 4.1. The distributions P
ψ,a
x and N

ψ,a do not depend on the choice of q ≥ q∗.

Proof. Let q > q∗. For any non-negative measurable function F , we have

E
ψq
x

[

M
ψq ,−q
a F (πa(ρ))

]

= E
ψq
x

[

e−qx+qZa+ψ(q)
R a

0
Zs ds F (πa(ρ))

]

.

As ψq = (ψq∗)q−q∗ , we apply Girsanov formula (32) and the fact thatMψq∗ ,q−q∗ is a martingale
to get

E
ψq
x

[

M
ψq,−q
a F (πa(ρ))

]

= E
ψq∗
x

[

M
ψq∗ ,q−q∗
a e−qx+qZa+ψ(q)

R a

0
Zs ds F (πa(ρ))

]

= E
ψq∗
x

[

e(q−q∗)x−(q−q∗)Za−ψq∗(q−q∗)
R a

0
Zs ds e−qx+qZa+ψ(q)

R a

0
Zs ds F (πa(ρ))

]

= E
ψq∗
x

[

e−q
∗x+q∗Za−(ψ(q)−ψ(q∗))

R a

0
Zs ds eψ(q)

R a

0
Zs ds F (πa(ρ))

]

= E
ψq∗
x

[

M
ψq∗ ,−q∗
a F (πa(ρ))

]

.

Excursion theory then gives the result for the excursion measures. �

Let W be the set of D-valued processes endowed with the σ-field generated by the coordi-
nate applications.

Proposition 4.2. Let (ρa, a ≥ 0) be the canonical process on W. There exists a probabil-

ity measure P̄
ψ
x (resp. an excursion measure N̄

ψ) on W, such that, for every a ≥ 0, the

distribution of ρa under P̄
ψ
x (resp. N̄

ψ) is P
ψ,a
x (resp. N

ψ,a) and such that, for 0 ≤ a ≤ b

(37) πa(ρ
b) = ρa P̄

ψ
x -a.s. (resp. N̄

ψ-a.e.).

Proof. To prove the existence of such a projective limit, it is enough to check the compatibility

relation between P
ψ,b
x and P

ψ,a
x for every b ≥ a ≥ 0.
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Let 0 ≤ a ≤ b. We get

E
ψ,b
x [F (πa(ρ))] = E

ψq∗
x

[

M
ψq∗ ,−q∗
b F (πa ◦ πb(ρ))

]

= E
ψq∗
x

[

M
ψq∗ ,−q∗
b F (πa(ρ))

]

= E
ψq∗
x

[

M
ψq∗ ,−q∗
a F (πa(ρ))

]

= E
ψ,a
x [F (ρ)] ,

where we used the compatibility relation of the projectors for the second equality and the

fact that Mψq∗ ,−q∗ is a H-martingale for the third equality. We deduce that P
ψ,b
x ◦πa = P

ψ,a
x .

This compatibility relation implies the existence of a projective limit P̄
ψ
x . The result is

similar for the excursion measure. �

Let us remark that the definitions of P̄
ψ
x and N̄

ψ are also valid for a (sub)critical branching
mechanism ψ, with the convention q∗ = 0. In particular, we get the following corollary.

Corollary 4.3. If ψ is (sub)critical, then the law of the process (πa(ρ), a ≥ 0) under P
ψ
x

(resp. N
ψ) is P̄

ψ
x (resp. N̄

ψ).

By construction the local time at level a of ρb for b ≥ a does not depend on b, we denote

by Za its value. Property (ii) of Theorem 2.2 implies that Z = (Za, a ≥ 0) is under P̄
ψ
x a CB

with branching mechanism ψ. Hence, the probability measure P̄
ψ
x can be seen as the law of

the exploration process that codes the super-critical CRT associated with ψ.
We get the following direct consequence of Properties (i) and (ii) of Lemma 2.4 and of the

theory of excursion measures.

Corollary 4.4. Let q ≥ 0 such that ψ(q) ≥ 0. Then, the probability measure P̄
ψq
x is absolutely

continuous with respect to P̄
ψ
x with

dP̄
ψq
x

dP̄ψx
= Mψ,q

∞ = eqx−ψ(q)σ 1{σ<+∞}.

The measure N̄
ψq is absolutely continuous with respect to N̄

ψ with

dN̄ψq

dN̄ψ
= e−ψ(q)σ 1{σ<+∞}.

If the total mass of Z, σ =
∫ +∞
0 Za da, is finite, then ρa is the projection of a well defined

exploration process.

Lemma 4.5. On {σ < +∞}, there exists ρ∞ ∈ D such that ρa = πa(ρ∞) for all a ≥ 0,

P̄
ψ
x -a.s. or N̄

ψ-a.e.

Proof. It is enough to get the result under P̄
ψ
x .

First we assume that ψ is (sub)critical. Proposition 3.5 implies that
∫ t
0 1{H(ρs)≤a} ds

increases to t as a goes to infinity. Using (33), (34) and the right continuity of ρ, we deduce

that P
ψ
x -a.s. for all t ≥ 0, lim

a→+∞
πa(ρ)t = ρt.

Thanks to Corollary 4.3, we deduce that P̄
ψ
x -a.s. for all t ≥ 0, ρ∞t = lima→+∞ πa(ρ)t exists

and that πa(ρ
∞) = ρa.

The case ψ super-critical is then a consequence of Corollary 4.4. �
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Without confusion, we shall always write P
ψ instead of P̄

ψ and N
ψ instead of N̄

ψ and call
them the law or the excursion measure of the exploration process of the CRT, whether ψ is
super-critical or (sub)critical. And we shall write ρ for the projective limit (ρa, a ≥ 0) on W,
and make the identification ρ = ρ∞ ∈ D when the latter exists that is when σ defined by
(31) is finite.

Recall ψ−1 is given by (17). We now extend formula (27) for general branching mechanism.

Lemma 4.6. Let σ be given by (31). We have for λ ≥ 0:

E
ψ
x

[

e−λσ
]

= exp
(

−xN
ψ[1 − e−λσ]

)

= e−xψ
−1(λ) .

Proof. Let q ≥ q∗. We have

E
ψ
x

[

e−λ
R a
0 Zr dr

]

= E
ψq
x

[

M
ψq ,−q
a e−λ

R a
0 Zr dr

]

= e−qx E
ψq
x

[

eqZa+(ψ(q)−λ)
R a
0 Zr dr

]

= e−qx e
−xN

ψq
h

1−eqZa+(ψ(q)−λ)
R a
0 Zr dr

i

= e−qx e
−xN

ψq
h

1−eqZa+ψ(q)
R a
0 Zr dr

i

e
−xN

ψq
h

eqZa+ψ(q)
R a
0 Zr dr

“

1−e−λ
R a
0 Zr dr

”i

= E
ψq
x

[

M
ψq ,−q
a

]

e
−xNψ

h

1−e−λ
R a
0 Zr dr

i

= e
−xNψ

h

1−e−λ
R a
0 Zr dr

i

,

where we used (35) for the first equality, (7) for the second, Lemma 3.8 for the third, (36)
for the fifth, and (1) of Theorem 2.2 for the last. We then let a goes to infinity to get the
first equality of the lemma, and use (19) to get the second. �

5. Pruning

We keep notations from Section 3. Recall D is the set of càd-làg Mf (R+)-valued process,

and W is the set of D-valued processes. Let R = (ρθ, θ ≥ 0) be the canonical process on W.
Let ψ be a (sub)critical branching mechanism. The pruning procedure developed in [5]

when π = 0, [1] when β = 0 and in [4] or [23] for the general case, yields a probability measure

on W, P̃
ψ
x , such that R is Markov and the law ρθ under P̃

ψ
x is P

ψθ
x for all θ ≥ 0. Furthermore

ρθ codes for a sub-tree of ρθ
′
if θ ≥ θ′. We recall the construction of P̃

ψ
x in Section 5.1.

5.1. Pruning of (sub)critical CRT. The main idea of the pruning procedure of a tree
coded by an exploration ρ is to put marks on a leaf t (or a branch labeled by t) and more
precisely on the measure ρt. There are two types of marks: the first ones only lay on the
nodes of the tree whereas the other ones lay on the skeleton of the tree; and each mark
appears at a random time. At time θ, we get ρθ by removing all the leaves from ρ which
received a mark by time θ. We explain more precisely the pruning procedure.

5.1.1. Marks on the nodes. Let (Xt, t ≥ 0) be the Lévy process with branching mechanism
ψ and let ρ be the corresponding exploration process. We denote by (∆s, s ∈ I) the set of
jumps of X. Conditionally on X, we consider a family

(Ts, s ∈ I)
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of independent exponential random variables with respective parameter ∆s. We define the

M(R2
+)-valued process M (nod) = (M

(nod)
t , t ≥ 0) by

M
(nod)
t (dr, dv) =

∑

0<s≤t
Xs−<I

s
t

δTs(dv)δHs(dr).

For fixed θ ≥ 0, we will consider the M(R+)-valued process M
(nod)
t (dr, [0, θ]) whose atoms

give the marked nodes : each node is marked independently from the others with probability
1 − e−θ∆s where ∆s is the mass (i.e. the height of the jump) associated with the node.

Remark 5.1. Although different from the measure process that defines the marks on the nodes
in [1] (formula (12)), this construction gives the same marks (see Introduction of [1]).

5.1.2. Marks on the skeleton. Let M (ske) = (M
(ske)
t , t ≥ 0) be a Lévy snake with lifetime H

and spatial motion a Poisson point process with intensity

2β1{u>0}du.

(See [16] for the definition of a Lévy snake and [4] for the extension to a discontinuous height
process H, see also [23]).

In other words, M (ske) is a M(R2
+)-valued process such that, conditionally on the explo-

ration process ρ,

• For every t ≥ 0, M
(ske)
t (dr, du) is a Poisson point measure with intensity

2β1[0,Ht](r)dr1{u>0}du,

• For every 0 ≤ t ≤ t′, with Ht,t′ := inf
s∈[t,t′]

Hs, then:

– The measures M
(ske)
t (dr, du)1r∈[0,Ht,t′ ] and M

(ske)
t′ (dr, du)1r∈[0,Ht,t′ ] are equal,

– The random measures M
(ske)
t (dr, du)1r∈[Ht,t′ ,Ht] and M

(ske)
t′ (dr, du)1r∈[Ht,t′ ,Ht′ ]

are independent.

5.1.3. Definition of the pruned processes. We define the mark process as

(38) M (mark) = M (nod) +M (ske).

The process ((ρt,M
(mark)
t ), t ≥ 0) is called the marked exploration process. It is Markovian,

see [23] for its properties. We denote by P̂
ψ
x its law and by N̂

ψ the corresponding excursion
measure.

For every θ > 0 and t > 0, we set

m
(θ)
t = M

(mark)
t

(

[0,Ht] × [0, θ]
)

.

The random variable m
(θ)
t is the number of marks at time θ that lay on the branch labeled

by t. We will only consider the branches without marks. Therefore, we set

(39) A
(θ)
t =

∫ t

0
1{m(θ)

s =0}ds and C
(θ)
t = inf{r ≥ 0;A(θ)

r ≥ t}
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its right-continuous inverse. Finally, we define ρθ = (ρθt , t ≥ 0), M (mark),θ = (M
(mark),θ
t , t ≥ 0)

by

ρθt = ρ
C

(θ)
t

,

M
(mark),θ
t ([0, h] × [0, q]) = M

(mark)

C
(θ)
t

([0, h] × (θ, q + θ]).

We shall use in Section 7 the pruning operator Λθ defined on the marked exploration process
by

(40) Λθ(ρ,M
(mark)) = (ρθ,M (mark),θ).

Using the lack of memory of the exponential random variables and of properties of Poisson
point measure, it is easy to get that

Lemma 5.2. The process R = (ρθ, θ ≥ 0) is Markov.

The W-valued process R codes for a decreasing family of CRT, which we shall call a
ψ-family of pruned CRT. A direct application of Theorem 1.1 of [4] gives the marginal dis-
tribution.

Proposition 5.3. The marked exploration process (ρθ,M (mark),θ) under P
ψ
x (resp. N

ψ) is

distributed as (ρ,M (mark)) under P
ψθ
x (resp. N

ψθ).

We shall now concentrate on the process R. Let P̃
ψ
x be the law of R and Ñ

ψ be the
corresponding excursion measure.

We deduce the following compatibility relation from the Markov property of R and Propo-
sition 5.3.

Corollary 5.4. Let θ0 ≥ 0. The law under P̃
ψ
x (resp. Ñ

ψ) of the process (ρθ0+θ, θ ≥ 0) is

P̃
ψθ0
x (resp. Ñ

ψθ).

Let us now recall the special Markov property, Theorem 4.2 of [4], stated for the present
context. We fix θ > 0. We want to describe the law of the excursions of ρ “above” the marks,
given the process “under” the marks. More precisely, we define O as the interior of the set

{s ≥ 0, m
(θ)
s = 0} and write O =

⋃

i∈I
(αi, βi). For every i ∈ I, we define the exploration

process ρ(i) by: for every f ∈ B+(R+), t ≥ 0,

〈ρ(i)
t , f〉 =

∫

[Hαi ,+∞)
f(x−Hαi)ρ(αi+t)∧βi(dx).

We have the following theorem.

Theorem 5.5 (Special Markov Property). Let θ > 0 and let (Zθt , t ≥ 0) be the CSBP coded
by ρθ. The point measure

∑

i∈I
δ(Hαi ,ρ(i))

(dh, dµ)

under P
ψ
x (or N

ψ) conditionally given (ρθt , t ≥ 0), is a Poisson point measure of intensity

1[0,+∞)(h)Z
θ
h dh

(

2βθNψ(dµ) +

∫

(0,+∞)
π(dr)(1 − e−θr)Pψr (dµ)

)

.
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5.2. Pruning of super-critical CRT. We now use the same Girsanov techniques of Section
4 to define a ψ-family of pruned CRT when ψ is super-critical.

Let ψ be a super-critical branching mechanism which we suppose to be conservative, i.e.
(2) holds. Recall q∗ is the unique (positive) root of ψ′(q) = 0. In particular the branching
mechanism ψq is critical if q = q∗ and sub-critical if q > q∗.

Let q ≥ q∗. Let R = (ρθ, θ ≥ 0) be the canonical process on W. We set Z = (La∞(ρ0), a ≥ 0)

which is under P̃
ψq
x (dR) a CB with branching mechanism ψq. The process Z is also well defined

under the excursion measure Ñ
ψq(dR). We write πa(R) = (πa(ρ

θ), θ ≥ 0). Notice that given

the marks (i.e. given M (nod) and M (ske)), we have πa(ρ
θ) = (πa(ρ))

θ.

Let a ≥ 0. We define the distribution P̃
ψ,a
x (resp. excursion measure Ñ

ψ,a) of a ψ-family of

pruned CRT cut at level a with initial mass x, as the distribution of πa(R) under M
ψq ,−q
a dP̃

ψq
x

(resp. eqZa+ψ(q)
R a
0 Zr dr dÑψq): for any measurable non-negative function F , we have:

P̃
ψ,a
x [F (R)] = P̃

ψq
x

[

M
ψq ,−q
a F (πa(R))

]

and

Ñ
ψ,a [F (ρ)] = Ñ

ψq
[

eqZa+ψ(q)
R a
0 Zr dr F (πa(ρ))

]

.

Same arguments as for Lemma 4.1 give the following result.

Lemma 5.6. The distributions P̃
ψ,a
x and Ñ

ψ,a do not depend on the choice of q ≥ q∗.

As in Section 4, see Proposition 4.2, the families of measures (P̃ψ,ax , x ≥ 0) and (Ñψ,a, a ≥ 0)
fulfill a compatibility relation. Hence there exists a projective limit (Ra, a ≥ 0) defined on
the space of W-valued process such that

• For every a ≥ 0, Ra is distributed as P̃
ψ,a
x ,

• For every a < b, πa(R
b) = Ra.

We write P̃
ψ
x for the distribution of this projective limit and Ñ

ψ for the corresponding excur-
sion measure.

By construction the local time at level a of πb(ρ
θ) for b ≥ a does not depend on b, we denote

by Zθa its value. Proposition 5.3 and Property (ii) of Theorem 2.2 imply that Zθ = (Zθa , a ≥ 0)

is under P̃
ψ
x a CB with branching mechanism ψθ started at x. Following (31), we define

σθ =
∫∞
0 Zθa da. And, when there is no confusion, we write σ for σ0.

Following Corollaries 4.3, 4.4 and Lemma 4.5, we easily get the following theorem.

Theorem 5.7. Let ψ be a conservative branching mechanism. Let (Ra, a ≥ 0) be a W-valued

process under P̃
ψ
x (resp. Ñ

ψ).

(1) If ψ is (sub)critical, then (Ra, a ≥ 0) under P̃
ψ
x is distributed as ((πa(ρ

θ), θ ≥ 0), a ≥ 0)

under P
ψ
x .

(2) Let q ≥ 0 such that ψ(q) ≥ 0. Then, the probability measure P̃
ψq
x is absolutely contin-

uous with respect to P̃
ψ
x with

dP̃
ψq
x

dP̃ψx
= Mψ,q

∞ = eqx−ψ(q)σ 1{σ<+∞}.

The measure Ñ
ψq is absolutely continuous with respect to Ñ

ψ with

dÑψq

dÑψ
= e−ψ(q)σ 1{σ<+∞}.
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(3) On {σ < +∞}, there exists R∞ ∈ W such that Ra = πa(R∞) for all a ≥ 0, P̃
ψ
x -a.s.

or Ñ
ψ-a.e.

Without confusion, we shall always write P
ψ instead of P̃

ψ and N
ψ instead of Ñ

ψ and call
them the law or the excursion measure of ψ-pruned family of exploration processes, whether
ψ is super-critical or (sub)critical. The ψ-pruned family of exploration processes codes for a
ψ-pruned family of continuum random sub-trees.

And we shall write (ρθ, θ ≥ 0) for the projective limit (Ra, a ≥ 0), and identify it with
R∞ ∈ W when the latter exists, that is when σ defined by (31) is finite. Notice that if σθ is
finite then the exploration process ρθ codes for a CRT with finite mass.

5.3. Properties of the branching mechanism. Let ψ be a branching mechanism with
parameter (α, β, π). Let Θ′ be the set of θ ∈ R such that

(41)

∫

(1,+∞)
e−θℓ π(dℓ) < +∞.

We set θ∞ = inf Θ′. Notice that we have either Θ′ = [θ∞,+∞) or Θ′ = (θ∞,+∞) and that
θ∞ ≤ 0. Notice that ψθ exists for every θ ∈ Θ′ and is conservative for every θ > θ∞. We set
Θ = {θ ∈ Θ′;ψθ is conservative}. Notice that Θ ⊂ Θ′ ⊂ Θ ∪ {θ∞}.

For instance, we have the following examples of critical branching mechanisms:

i) Quadratic case: ψ(u) = βu2, Θ = Θ′ = R.
ii) Stable case: ψ(u) = cuα with α ∈ (1, 2), Θ = Θ′ = [0,+∞).
iii) ψ(u) = (u+ e−1) log(u+ e−1) + e−1: Θ = Θ′ = [− e−1,+∞). (Notice that ψθ∞(u) =

u log(u), ψ′θ∞(0+) = −∞ and ψθ∞ is conservative.)

iv) ψ(u) = u − 1 + 1
1+u is associated with (α̃, β, π) where α̃ = 2/ e, β = 0 and π(dℓ) =

e−ℓ 1{ℓ>0}dℓ: Θ = Θ′ = (−1,+∞).

For the end of this subsection, we assume that ψ is CRITICAL and that β > 0 or π 6= 0.
Remark that ψ is a one-to-one function from [0,+∞) onto [0,+∞) and we denote by ψ−1 its
inverse function. For θ < 0 such that θ ∈ Θ′, we define θ̄ = ψ−1(ψ(θ)) or equivalently θ̄ is
the unique positive real number such that

(42) ψ(θ̄) = ψ(θ).

Since ψ is continuous and strictly convex, if θ∞ ∈ Θ′, we have

(43) θ̄∞ = lim
θ↓θ∞

θ̄.

Notice that in this case θ̄∞ is finite. If θ∞ 6∈ Θ′, we define θ̄∞ using (43).

Lemma 5.8. Let ψ be CRITICAL with parameters (α̃, β, π) such that β > 0 or π 6= 0. If
θ∞ 6∈ Θ′ then θ̄∞ = +∞.

Proof. We assume that θ∞ 6∈ Θ′. It is enough to check that limθ↓θ∞ ψ(θ) = +∞ to get
θ̄∞ = +∞.

We first consider the case θ∞ = −∞. Since ψ′(0) = 0 and ψ is strictly convex, we get that
limθ↓θ∞ ψ(θ) = +∞.

If θ∞ > −∞, then using that (41) does not hold for θ∞ and monotone convergence theorem,
we get that limθ↓θ∞ ψ(θ) = +∞. �
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6. A tree-valued process

Let ψ be a branching mechanism. We assume θ∞ < 0. We write Rq = (ργ+q, γ ≥ 0).

We deduce from Corollary 5.4 that the families of measures (Pψθ , θ ∈ Θ) and (Nψθ , θ ∈ Θ)
satisfy the following compatibility property: if θ′ < θ, θ′ ∈ Θ, the process Rθ−θ′ under P

ψθ′

(resp. N
ψθ′ ) is distributed as R0 under P

ψθ (resp. N
ψθ).

Hence, there exists a projective limit R = (ργ , γ ∈ Θ) such that, for every θ ∈ Θ, the

process (ρθ+γ , γ ≥ 0) is distributed as (ργ , γ ≥ 0) under P
ψθ . We denote by PPP

ψ the distribution

of the projective limit R, and by NNN
ψ the corresponding excursion measure. We still write Rθ

for (ρθ+γ , γ ≥ 0) for all θ ∈ Θ.
The process R = (ρθ, θ ∈ Θ) is Markovian, thanks to Lemma 5.2. It codes for a tree-

valued Markov process, which evolves according to a pruning procedure. At time θ, ρθ has
distribution P

ψθ . Recall σθ is the mass of the CRT coded by ρθ. It is not difficult to check
that Σ = (σθ, θ ∈ Θ) is a non-increasing Markov process taking values in [0,+∞] and we
shall consider a version of R such that the process Σ is càd-làg. From the continuity of ψ,
we deduce that the Laplace transform of σθ given in Lemma 4.6 is continuous, and thus the
process Σ is continuous in probability.

See [14] for the distribution of the decreasing rearrangement of the jumps of (σθ, θ ≥ 0).
We deduce from the pruning procedure that a.s. limθ→+∞ σθ = 0. Notice that by considering
the time returned process (ρ−θ, θ < θ∞), we get a Markovian family of exploration processes
coding for a family of increasing CRTs.

Remark 6.1. Recall q∗ is the unique root of ψ′(q) = 0 and that ψq∗ is critical. Using a shift
on θ by q∗, that is replacing ψ by ψq∗ , one sees that it is enough, when studying R, to assume
that ψ is critical.

Lemma 6.2. Let ψ be a critical branching mechanism with parameter (α, β, π). For any
θ ∈ Θ, and any non-negative measurable function F defined on the state space of R0, we
have

(44) NNN
ψ
[

F (Rθ)1{σθ<∞}
]

= NNN
ψθ
[

F (R0)1{σ0<∞}
]

= NNN
ψ
[

F (R0) e−ψ(θ)σ0

]

.

Proof. The first equality is just the ’compatibility property’ stated at the beginning of section.
For θ ≥ 0, the second equality is a direct consequence of (ii) from Theorem 5.7.
For θ < 0, let q = θ̄ − θ. Notice that ψθ(q) = ψ(θ̄)− ψ(q) = 0 and (ψθ)q = ψθ̄. We deduce

from (ii) of Theorem 5.7 that

NNN
ψθ̄ [F (R0)] = NNN

ψθ
[

F (R0)1{σ0<∞}
]

.

Since θ̄ > 0 and ψ(θ) = ψ(θ̄), we get from (2) of Theorem 5.7 that

NNN
ψθ̄ [F (R0)] = NNN

ψ
[

F (R0) e−ψ(θ̄)σ0

]

= NNN
ψ
[

F (R0) e−ψ(θ)σ0

]

.

This ends the proof. �

We deduce directly from this lemma the following result on the conditional distribution of
the exploration process knowing the total mass of the CRT.

Corollary 6.3. Let ψ be a branching mechanism with parameter (α, β, π) such that (41)
holds. The distribution of (ρθ+γ , γ ≥ 0) conditionally on {σθ = r} does not depend on θ ∈ Θ.

We assume from now-on that ψ is CRITICAL and that θ∞ < 0. The first assumption is
not restrictive thanks to Remark 6.1.
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Notice that ρθ codes for a critical (resp. sub-critical, resp. super-critical) CRT if θ = 0
(resp. θ > 0, resp. θ < 0). In particular, we have σθ < +∞ a.s. if θ ≥ 0.

We consider the explosion time

A = inf{θ ∈ Θ, σθ < +∞},

with the convention that inf ∅ = θ∞. In particular, we have A ≤ 0 PPP
ψ
x -a.s. and NNN

ψ-a.e.
Moreover, since the process (σθ, θ ∈ Θ) is càd-làg, we have, on {A > θ∞}, σθ = +∞ for every
θ < A and σθ < +∞ for every θ ≥ A. For the time returned process, A is the random time
at which the tree gets an infinite mass.

We first give a lemma on the conditional distribution of σ.

Lemma 6.4. Let q ∈ Θ, q ≤ θ. We have, for λ ≥ 0,

NNN
ψ[e−λσq |ρθ] = e−σθψθ(ψ

−1
q (λ))

and NNN
ψ[σq < +∞|ρθ] = e−σθψθ(q̄−q), where q̄ = ψ−1(ψ(q)).

Proof. Let λ > 0 and F be a non-negative measurable function defined on W. We write Zqa
for the local time at level a of the exploration process ρq. Using (16), we have

(45) NNN
ψ[e−λσq F (ρθ)] = lim

a→∞
NNN
ψ[e−λ

R a

0
Zqr dr F (ρθ)].

We set

Ia = NNN
ψ[e−λ

R a
0 Zqr dr F (ρθ)].

Let G(πa(ρ
θ)) = EEE

ψ[F (ρθ)|πa(ρθ)]. We have, with θ′ = θ − q ≥ 0,

Ia = NNN
ψ[e−λ

R a
0
Zqr drG(πa(ρ

θ))]

= NNN
ψq [e−λ

R a

0
Z0
r dr G(πa(ρ

θ′))]

= NNN
ψ[e−qZ

0
a−(ψ(q)+λ)

R a

0
Z0
r dr G(πa(ρ

θ′))]

= NNN
ψ[e−qZ

θ′

a −(ψ(q)+λ)
R a
0 Zθ

′

r dr−
R a
0 Ka

hZ
θ′

h dhG(πa(ρ
θ′))],

where for the first equality we conditioned with respect to σ(πa(ρ
q)), used Girsanov formula

for the third equality and Theorem 5.5 for the last equality with

Ka
h = 2βθ′Nψ

[

1 − e−qZa−h−(ψ(q)+λ)
R a−h

0
Zr dr

]

+

∫

(0,+∞)
π(du)(1 − e−θ

′u)Eψu

[

1 − e−qZa−h−(ψ(q)+λ)
R a−h

0
Zr dr

]

.

We set

K̃a
h = 2βθ′Nψ

[

e−qZa−h−ψ(q)
R a−h

0
Zr dr(1 − e−λ

R a−h

0
Zr dr)

]

+

∫

(0,+∞)
π(du)(1 − e−θ

′u)Eψu

[

e−qZa−h−ψ(q)
R a−h
0 Zr dr(1 − e−λ

R a−h
0 Zr dr)

]

.
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Using again Theorem 5.5 and Girsanov formula, we get

Ia = NNN
ψ[e−qZ

0
a−ψ(q)

R a

0
Z0
r dr e−

R a

0
(K̃a

h+λ)Zθ
′

h dhG(πa(ρ
θ′))]

= NNN
ψq [e−

R a

0
(K̃a

h
+λ)Zθ

′

h
dhG(πa(ρ

θ′))]

= NNN
ψ[e−

R a

0
(K̃a

h+λ)Zθh dhG(πa(ρ
θ))]

= NNN
ψ[e−

R a
0 (K̃a

h+λ)Zθh dh F (ρθ)].(46)

Notice also that, thanks to Girsanov formula,

K̃a
h = 2βθ′Nψq

[

1 − e−λ
R a−h
0 Zr dr

]

+

∫

(0,+∞)
π(du)(e−qu− e−θu)Eψqu

[

1 − e−λ
R a−h
0 Zr dr

]

= 2βθ′NNNψ
[

1 − e−λ
R a−h
0 Zqr dr

]

+

∫

(0,+∞)
π(du)(e−qu− e−θu)EEEψu

[

1 − e−λ
R a−h
0 Zqr dr

]

.

Using Lemma 4.6, we get

lim
a→∞

K̃a
h = 2βθ′NNNψ

[

1 − e−λσq
]

+

∫

(0,+∞)
π(du)(e−qu− e−θu)EEEψu

[

1 − e−λσq
]

= ψθ(ψ
−1
q (λ)) − ψq(ψ

−1
q (λ))

= ψθ(ψ
−1
q (λ)) − λ.

We deduce from (45) and (46), that

NNN
ψ[e−λσq F (ρθ)] = NNN

ψ[e−ψθ(ψ
−1
q (λ))σθ F (ρθ)].

Letting then λ goes down to 0, we deduce, with q̄ = ψ−1(ψ(q)), that

NNN
ψ[1{σq<+∞}F (ρθ)] = NNN

ψ[e−ψθ(q̄−q)σθ F (ρθ)].

�

The next theorem gives the distribution of the explosion time A under the measure NNN
ψ.

Theorem 6.5. We have, for all θ ∈ [θ∞,+∞),

(47) NNN
ψ[A > θ] = θ̄ − θ

and

NNN
ψ[A = θ∞] =

{

0 if θ∞ 6∈ Θ′,

+∞ if θ∞ ∈ Θ′.

Proof. We have for all θ > θ∞

NNN
ψ[A > θ] = NNN

ψ[σθ = +∞]

= N
ψθ [σ = +∞]

= lim
λ→0

N
ψθ
[

1 − e−λσ
]

= lim
λ→0

ψ−1
θ (λ)

= ψ−1
θ (0),

where we used (4.6) for the fourth equality. We get, for t > 0,

ψθ(t) = 0 ⇐⇒ ψ(t+ θ) = ψ(θ) ⇐⇒ t+ θ = θ̄,
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and thus ψ−1
θ (0) = θ̄ − θ, which gives the first part of the theorem for θ > θ∞. Making θ

decrease to θ∞ gives the result for θ∞.
For the second part of the theorem, we apply the second assertion of Lemma 6.4 with

θ = 0. We have, for every q ≤ 0,

NNN
ψ[σq < +∞|ρ] = e−σψ(q̄−q) .

Then, we have

NNN
ψ[A = θ∞|ρ] = NNN

ψ[∀q > θ∞, σq < +∞|ρ]
= lim

q→θ∞
NNN
ψ[σq < +∞|ρ]

= lim
q→θ∞

e−σψ(q̄−q)

=

{

0 if θ∞ 6∈ Θ′

e−σψ(θ̄∞−θ∞) if θ∞ ∈ Θ′, with ψ(θ̄∞ − θ∞) < +∞,

where the last equality is a consequence of Lemma 5.8. Then, integrating with respect to ρ
gives the theorem. �

Remark 6.6. Since ψ−1 is smooth, we deduce that the mapping q 7→ q̄ is differentiable with

dq̄

dq
=
ψ′(q)
ψ′(q̄)

·

Thus, when θ∞ 6∈ Θ, we have that the law of A under NNN
ψ has a density with respect to the

Lebesgue measure on R given by

1{r∈(θ∞,0)}

(

1 − ψ′(r)
ψ′(r̄)

)

.

Theorem 6.7. (i) Let θ ∈ (θ∞, 0). Under NNN
ψ, conditionally on {A = θ}, we have for

any non-negative measurable function F

(48) NNN
ψ[F (RA)|A = θ] = ψ′(θ̄)NNNψ[F (R0)σ0 e−ψ(θ)σ0 ],

and the law of σA is given by: for λ ≥ 0

NNN
ψ[e−λσA |A = θ] =

ψ′(θ̄)
ψ′(ψ−1(λ+ ψ(θ)))

·

(ii) If θ∞ ∈ Θ, we have for any non-negative measurable function F

(49) NNN
ψ
[

F (RA)1{A=θ∞}
]

= NNN
ψθ̄∞ [F (R0)] .

In particular, the law of σA on the event {A = θ∞} is given by

NNN
ψ
[(

1 − e−λσA
)

1{A=θ∞}
]

= ψ−1 (λ+ ψ(θ∞)) − θ̄∞.

Proof. Let F be a non-negative measurable function defined on the state space of R0. Using
Lemma 6.4, we get for every θ∞ < q ≤ θ < 0,

NNN
ψ[F (Rθ)1{A>q}] = NNN

ψ[F (Rθ)1{σq=+∞}]

= NNN
ψ[F (Rθ)NNN

ψ[σq = +∞|ρθ]]
= NNN

ψ[F (Rθ)(1 − e−σθψθ(q̄−q))]

= NNN
ψ[F (Rθ)(1 − e−σθ(ψ(θ+q̄−q)−ψ(θ)))].



24 ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

Thus, we get that the mapping

q 7→ NNN
ψ[F (Rθ)1{A>q}]

is differentiable if it is finite. As dq̄/dq = ψ′(q)/ψ′(q̄), we get

d

dq
NNN
ψ[F (Rθ)1{A>q}] = ψ′(q̄ − q + θ)

(

dq̄

dq
− 1

)

NNN
ψθ [F (R0)σ0 e−σ0(ψ(q̄−q+θ)−ψ(θ))]

= ψ′(q̄ − q + θ)
ψ′(q) − ψ′(q̄)

ψ′(q̄)
NNN
ψθ [F (R0)σ0 e−σ0(ψ(q̄−q+θ)−ψ(θ))].

Finally, using that σ is right continuous, we have

NNN
ψ[F (RA), A ∈ dθ]

dθ
= − d

dq

(

NNN
ψ[F (Rθ)1{A>q}]

)

|q=θ

=
(

ψ′(θ̄) − ψ′(θ)
)

NNN
ψθ [F (R0)σ01{σ0<+∞}].

We deduce from Lemma 6.2 that

NNN
ψ[F (RA)|A = θ] =

NNN
ψθ [F (R0)σ01{σ0<+∞}]

NNN
ψθ [σ01{σ0<+∞}]

=
NNN
ψ[F (R0)σ0 e−ψ(θ)σ0 ]

NNN
ψ[σ0 e−ψ(θ)σ0 ]

·

This proves (48) but for the normalizing constant. It also implies that

NNN
ψ[e−λσA |A = θ] =

N
ψθ [σ e−λσ]

Nψθ [σ1{σ<+∞}]
·

Notice that ψ−1
θ (r) = ψ−1(r + ψ(θ)) − θ for r ≥ 0. We get from Lemma 4.6 that, for r ≥ 0,

N
ψθ [σ e−rσ] =

d

dr
N
ψθ [1 − e−rσ] = (ψ−1

θ )′(r) =
1

ψ′(ψ−1(r + ψ(θ)))
·

In particular, we deduce the value of the normalizing constant:

NNN
ψ[σ0 e−ψ(θ)σ0 ] = N

ψθ [σ1{σ<+∞}] = 1/ψ′(θ̄).

We also get

NNN
ψ[e−λσA |A = θ] =

ψ′(θ̄)
ψ′(ψ−1(λ+ ψ(θ)))

·

This ends the proof of the first part.
For the second part of the theorem, we consider the case θ∞ ∈ Θ. Let us first remark that,

since the process (σθ, θ ∈ Θ) is continuous in probability, we have

{A = θ∞} = {σθ∞ < +∞}.
We then apply Girsanov formula (44) twice to get

NNN
ψ
[

F (RA)1{A=θ∞}
]

= NNN
ψ
[

F (Rθ∞)1{σθ∞<+∞}
]

= NNN
ψ
[

F (R0) e−ψ(θ∞)σ0

]

= NNN
ψ
[

F (R0) e−ψ(θ̄∞)σ0

]

= NNN
ψ
[

F (Rθ̄∞)1{σθ̄∞<+∞}
]

= NNN
ψθ̄∞ [F (R0)] ,

where we used for the last equality that σθ̄∞ < +∞ NNN
ψ-a.e. and (44).
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For F (R) = 1 − e−λσ, we obtain

NNN
ψ
[(

1 − e−λσA
)

1{A=θ∞}
]

= NNN
ψθ̄∞

[

1 − e−λσ0

]

= ψ−1
θ̄∞

(λ)

= ψ−1(λ+ ψ(θ̄∞)) − θ̄∞.

�

We deduce the next corollary from (48).

Corollary 6.8. Let θ∞ < θ < 0. The distribution of RA = (ρA+γ , γ ≥ 0) conditionally on
{σA = r,A = θ} does not depend on θ.

7. Pruning of an infinite tree

7.1. Bismut decomposition of a Lévy tree. Let ψ be a (sub)critical branching mecha-

nism. Recall definition of mark process M (mark) of Section 5.1.3. For a marked exploration

process (ρ,Mmark) recall that η is defined by (28) and notice that (η(σ−t)−,M
(mark)
σ−t , t ∈ [0, σ])

is distributed as (ρ,M (mark)) under the excursion measure thanks to Corollary 3.1.6 in [16]
and definition of M (mark).

We recall that the family of pruned exploration processes R = (ρθ, θ ≥ 0) is constructed

from the exploration process ρ (which is equal to ρ0) and the measure-valued processM (mark).

Let T ≥ 0. We define under N
ψ the processes (ρT→,M (mark),T→) and (ρ←T ,M (mark),←T )

by: for every t ≥ 0,

(ρT→t ,M
(mark),T→
t ) = (ρ(T+t)∧σ ,M

(mark)
(T+t)∧σ),

(ρ←Tt ,M
(mark),←T
t ) = (η(T−t)∨0,M

(mark)
(T−t)∨0)

where ρ is the canonical exploration process and η its dual process.
Bismut decomposition describes in terms of Poisson point process the former processes

when T is “uniformly distributed” on [0, σ].
First we must extend the definition of the measure M

ψ(dµ, dν) of (29) and (30) to get into
account the marks. Let

N (dx, dℓ, du) =
∑

i∈I
δ(xi,ℓi,ui)(dx, dℓ, du)

be a Poisson point measure with intensity

dx ℓπ(dℓ)1[0,1](u)du.

Conditionally on N , let (Ti, i ∈ I) be a family of independent exponential random variables of

respective parameter ℓi. Finally, let Ñ (dk, db) =
∑

j∈J δ(kj ,bj)(dk, db) be an independent Pois-

son point measure on [0,+∞)2 with intensity 2βdk db. We then define the spine (µa, νa,ma)
which are three measures given by

µa(dx) =
∑

i∈I
1[0,a](xi)uiℓiδxi(dx) + 1[0,a](x)βdx,

νa(dx) =
∑

i∈I
1[0,a](xi)(1 − ui)ℓiδxi(dx) + 1[0,a](x)βdx,

ma(dx, dq) =
∑

i∈I
1[0,a](xi)δxi(dx)δTi(dq) +

∑

j∈J
1[0,a](kj)δkj (dx)δbj (dq).
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We denote by M̃
ψ
a the law of the triple (µa, νa,ma) and we set M̃

ψ =

∫ +∞

0
da e−ψ

′(0)a
M
ψ
a .

Let us denote by P
ψ,∗
µ,m the law of the pair (ρ,M (mark)) starting from (µ,m) where ρ is an

exploration process associated with ψ and stopped when it first reaches 0. It is easy to adapt
Lemma 3.4 of [17] to get the following theorem.

Theorem 7.1 (Bismut decomposition). For every non-negative measurable functionals F
and G,
(50)

N
ψ

[
∫ σ

0
dsF (ρs→,M (mark),s→)G(ρ←s,M (mark),←s)

]

=

∫

M̃
ψ(dµ, dν, dm)Eψ,∗µ,m[F ]Eψ,∗ν,m[G].

Let us now state the Poisson representation of the probability measure P
ψ,∗
µ,m. Let (αi, βi)i∈I

be the excursion intervals of the total mass process (〈ρt, 1〉, t ≥ 0) above its minimum under

P
ψ,∗
µ,m. Let (Ui, i ∈ I) be a family of independent random variables, independent of ρ and

uniformly distributed on [0, 1]. For every i ∈ I, we set xi = Hαi . Then we define ui by

ui =

{

ραi({xi})/µ({xi}) if µ({xi}) > 0

Ui if µ({xi}) = 0.

Finally, we define the measure-valued process ρi by: for every t ≥ 0 and every f ∈ B+(R+),

〈ρit, f〉 =

∫

(xi,+∞)
f(x− xi)ρ(αi+t)∧βi(dx)

and the measure valued-process M (mark),i by: for every t ≥ and every f ∈ B+(R2
+),

〈M (mark),i
t , f〉 =

∫

(xi,+∞)×R+

f(x− xi, θ)M
(mark)
(αi+t)∧βi(dx, dθ).

It is easy to adapt Lemma 4.2.4 from [16] to get the following proposition.

Proposition 7.2. The point measure
∑

i∈I
δ(xi,ui,ρi,M (mark),i) is under P

ψ,∗
µ,m a Poisson point

measure with intensity

µ(dx)du1[0,1](u)N
ψ(dρ, dM (mark)).

7.2. Reconstruction of the exploration process from a spinal decomposition. Con-
versely, given the spinal decomposition of Bismut theorem, we reconstruct the initial explo-
ration process, but we must add the time indices of the excursions at the node (which in the
previous Section are called ui). We shall also add the mark process (see its definition (38)).

Let µ and ν be two finite measures such that Suppµ = Suppν = [0,H] and m a point

measure on [0,H] × R+. Let {(ρi,M (mark),i), i ∈ Jg} and {(ρi,M (mark),i), i ∈ Jd} be two
families of marked exploration processes (see Section 5.1.3). Let {(xi, ui), i ∈ Jg ∪ Jd} be a
family of non-negative real numbers. The measures µ and ν must be seen as the measures
ρs→0 and ρ←s0 of Theorem 7.1, the xi’s are the heights of the branching points along the
chosen branch, the ρi’s are the exploration processes that arise from the decomposition of
the processes ρs→ and ρ←s above their minimum, and the ui’s are additional features that
order the excursions that are attached at the same level. The measure m and the processes
M (mark),i will allow us to reconstruct the mark process.
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For every i ∈ Jg ∪ Jd, we set σi the length of the process ρi. We define

(51) Lg =
∑

i∈Jg
σi, Ld =

∑

i∈Jd
σi and L = Lg + Ld.

The variable L represents the total length of the excursion whereas Lg plays the same role
as s in the left hand-side of (7.1). For every i ∈ Jg, we set

ti =
∑

j∈Jg,xj<xi
σj +

∑

j∈Jg,xj=xi and uj>ui

σj,

and, for every i ∈ Jd, we set

ti = Lg +
∑

j∈Jd,xj>xi
σj +

∑

j∈Jd,xj=xi and uj>ui

σj,

which is the time of the beginning of the excursion ρi.
For every t > 0, we define the measure ρt by

ρt(dx) =







































ρit−ti(xi + dx) + µ(dx)1[0,xi)(x)

+(uiν({xi}) + µ({xi}))δxi(dx) if t < Lg, ti ≤ t < ti + σi,

µ if t = Lg,
ρit−ti(xi + dx)

+µ(dx)1[0,xi)(x) + uiµ({xi})δxi(dx) if Lg < t < L, ti ≤ t < ti + σi,

0 if t ≥ L.
We also define the mark process M (mark)(dx, dv) by










M
(mark),i
t−ti (xi + dx, dv) +m(dx, dv)1[0,xi](x) if t < Lg or Lg < t < L, ti ≤ t < ti + σi,

m if t = Lg,
0 if t ≥ L.

We say that the process (ρ,M (mark)) = ((ρt,M
(mark)
t ), t ≥ 0) is the marked exploration

process associated with the family

(52) G = (µ, ν,m, (xi, ui, (ρ
i,M (mark),i), i ∈ Jg), (xi, ui, (ρ

i,M (mark),i), i ∈ Jd)).

From Bismut decomposition, Theorem 7.1, Proposition 7.2 and the construction of the
mark process, Section 5.1.3, we get the following reconstruction corollary.

Corollary 7.3. Let ψ be a (sub)critical branching mechanism. Let (µ, ν,m) be distributed

according to M̃
ψ. Let

∑

i∈Jg δ(xi,ui,ρi,M (mark),i) and
∑

i∈Jd δ(xi,ui,ρi,M (mark),i) be conditionally

on (µ, ν,m) independent Poisson point measures with respective intensity

µ(dx) 1[0,1](u)du N
ψ(dρ, dM (mark)) and ν(dx) 1[0,1](u)du N

ψ(dρ, dM (mark)).

Then the marked exploration process associated with the family G given by (52) is distributed

as (ρ,M (mark)) under N
ψ[σd(ρ,M)].

Remark 7.4. If we start with an exploration process ρ, pick s at random (conditionally on ρ)
on [0, σ], then the decomposition of ρs→ and ρ←s as excursions above their minimum gives a
family G. The exploration process ρ̃ associated with G given by the previous construction is
not ρ. Indeed, each excursion of ρ̃ “on the left” of s is time-reversed with respect to those of
ρ. However, the trees coded by ρ and ρ̃ are the same.
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We can also reconstruct the pruned exploration process by pruning G. Let θ > 0. We
define the lowest mark lying on the spine as

(53) ξθ = sup{x;m([0, x] × [0, θ]) = 0}.
We set µθ = µ1[0,ξθ), ν

θ = ν1[0,ξθ), m
θ(dx, dq) = m(dx, θ + dq)1[0,ξθ)(x), for δ ∈ {g, d}

Jθδ = {i ∈ Jδ;xi < ξθ} and

(54) Gθ = (µθ, νθ,mθ, (xi, ui,Λθ(ρ
i,M (mark),i), i ∈ Jθg ), (xi, ui,Λθ(ρ

i,M (mark),i), i ∈ Jθd )),

where the pruning operator Λθ is defined in (40).

Proposition 7.5. Under the hypothesis of Corollary 7.3, let (ρθ,M (mark),θ) be the marked
exploration process associated with the family Gθ given by (54). The process (ρθ, θ ≥ 0) is

distributed as R0 under NNN
ψ[σ0dR].

Proof. Let us remark that, by construction, (ρθ,M (mark),θ) = Λθ(ρ,M
(mark)). The proposi-

tion now follows from Corollary 7.3. �

7.3. The infinite tree and its pruning. Let ψ be a critical branching mechanism.
In [3], another spinal decomposition, called Williams decomposition, of the exploration

process is given where the spine is not chosen randomly as for Bismut decomposition but
corresponds to the highest branch of the tree. Inspired by this decomposition we build a
marked continuum random tree with an infinite spine. Intuitively, if the CRT dies in finite
time (which corresponds to the case H continuous) this infinite CRT can be seen as the CRT
conditioned to non-extinction.

Let

N (dx, dℓ, du) =
∑

i∈I
δ(xi,ℓi,ui)(dx, dℓ, du)

be a Poisson point measure with intensity

dx ℓπ(dℓ)1[0,1](u)du.

Conditionally on N , let (Ti, i ∈ I) be a family of independent exponential random variables

of respective parameter ℓi. Finally, let Ñ (dk, db) =
∑

j∈J δ(kj ,bj)(dk, db) be an independent

Poisson point measure on [0,+∞)2 with intensity 2βdk db. We define the following random
measures:

µ∗(dx) =
∑

i∈I
uiℓiδxi(dx) + βdx,

ν∗(dx) =
∑

i∈I
(1 − ui)ℓiδxi(dx) + βdx,

m∗(dx, dq) =
∑

i∈I
δxi(dx)δTi(dq) +

∑

j∈J
δkj (dx)δbj (dq).

The measure (µ∗, ν∗,m∗) corresponds to the the measure (µa, νa,ma) of Section 7.1 but for
an infinite spine. Let

∑

i∈Jg δ(xi,ui,ρi,M (mark),i) and
∑

i∈Jd δ(xi,ui,ρi,M (mark),i) be conditionally

on (µ∗, ν∗,m∗) independent Poisson point measures with intensity

ν∗(dx) 1[0,1](u)du N
ψ(dρ, dM (mark)) and µ∗(dx) 1[0,1](u)du N

ψ(dρ, dM (mark)).

We set

G∗ = (µ∗, ν∗,m∗, (xi, ui, (ρ
i,M (mark),i, i ∈ Jg), (xi, ui, (ρ

i,M (mark),i), i ∈ Jd)),
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which describes the decomposition of an infinite marked tree as marked sub-trees that are
attached along its infinite spine. Let θ > 0. Following the end of Section 7.2, we now extend
the pruning procedure to this infinite tree by letting G∗θ be constructed from G∗ as Gθ given
by (54) from G given by (52):

ξ∗θ = sup{x;m∗([0, x] × [0, θ]) = 0}, Jθδ = {i ∈ Jδ ;xi < ξ∗θ} for δ ∈ {g, d},
µ∗,θ = µ∗1[0,ξ∗

θ
), ν∗,θ = ν∗1[0,ξ∗

θ
), m∗,θ(dx, dq) = m∗(dx, θ + dq)1[0,ξ∗

θ
)(x),

G∗θ = (µ∗,θ, ν∗,θ,m∗,θ, (xi, ui,Λθ(ρ
i,M (mark),i), i ∈ Jθg ), (xi, ui,Λθ(ρ

i,M (mark),i), i ∈ Jθd )).

We have the following lemma.

Lemma 7.6. Let θ > 0. The probability distribution of the spine (µ∗,θ, ν∗,θ,m∗,θ) is ψ′(θ)M̃ψθ .

Proof. As ψ is critical, we deduce from (22) that

ψ′(θ) = 2βθ +

∫

(0,+∞)
(1 − e−θℓ)ℓπ(dℓ).

We deduce from the theory of marked Poisson point measure that

N θ(dx, dℓ, du) =
∑

i∈I
1{Ti>θ}δ(xi,ℓi,ui)(dx, dℓ, du)

is a Poisson point measure with intensity dx ℓ e−θℓ π(dℓ)1[0,1](u)du. Notice then that ξ∗θ is
the minimum of T1 = inf{xi;Ti ≤ θ, i ∈ I} and T2 = inf{kj ; bj ≤ θ, j ∈ J}, which are two

independent exponential random variable, which are also independent of N θ. The exponential
distribution of T1 has parameter

∫

(0,+∞)(1 − e−θℓ)ℓπ(dℓ) and the exponential distribution of

T2 has parameter 2βθ. Thus ξ∗θ has an exponential distribution with parameter ψ′(θ). Since

ξ∗θ is independent of N θ we get the result. �

Let (ρθ,∗,M (mark),θ,∗) be the marked exploration process associated with G∗θ . We set R∗θ =

(ρθ+q,∗, q ≥ 0) and denote by EEE
ψ its law. The next proposition tells us that R∗θ under EEE

ψ is,

up to a normalizing constant, the size biased “distribution” of Rθ under NNN
ψ.

Proposition 7.7. Let ψ be a critical branching mechanism. For every positive measurable
functional F and every θ > 0, we have

ψ′(θ)NNNψ[σθF (Rθ)] = EEE
ψ[F (R∗θ)].

Proof. Let F be a positive measurable functional. As R is constructed from (ρ,M (mark)),
there exists a positive measurable functional G such that

F (R) = G(ρ,M (mark)).

Moreover, there exists an other positive functional G̃ such that, for every s ≥ 0,

G(ρ,M (mark)) = G̃((ρs→,M (mark),s→), (ρ←s,M (mark),←s)).

Then by Bismut decomposition, we have

ψ′(θ)NNNψ[σθF (Rθ)] = ψ′(θ)NNNψθ [σF (R)]

= ψ′(θ)NNNψθ

[
∫ σ

0
ds G̃((ρs→,M (mark),s→), (ρ←s,M (mark),←s))

]

=

∫

ψ′(θ)M̃ψθ (dµ, dν, dm)Eψθ ,∗µ,m ⊗ E
ψθ,∗
ν,m [G̃].
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Then we conclude using Lemma 7.6 and the fact that N
ψθ(dρ,M (mark)) is the distribution of

Λθ(ρ,M
(mark)) under N

ψ(dρ, dM (mark)). �

8. Distribution identity

Let ψ be a critical branching mechanism with parameter (α, β, π). We assume that θ∞ < 0.
Recall R = (Rθ, θ ∈ Θ) is defined in Section 6 and R∗θ in Section 7.3.

Theorem 8.1. Let θ ∈ (θ∞, 0). Conditionally on {A = θ}, RA is distributed as R∗
θ̄
.

Proof. Let F be a non-negative measurable function defined on W. We have, for θ < 0,

NNN
ψ[F (RA)|A = θ] = ψ′(θ̄)NNNψ[F (R0)σ0 e−ψ(θ)σ0 ]

= ψ′(θ̄)NNNψθ̄ [σ0F (R0)]

= ψ′(θ̄)NNNψ[σθ̄F (Rθ̄)]

= EEE
ψ[F (R∗θ̄)],

where we used (48) for the first equality, Girsanov formula (44) (with θ replaced by θ̄) for
the second, the invariance of the distribution of R by the shift for the third and Proposition
7.7 for the last one. �

If u ∈ (0, θ̄∞), let ǔ be the unique negative real number such that

¯̌u = u.

We deduce from Theorem 6.5 and Remark 6.6 the following corollary.

Corollary 8.2. Let us suppose that θ∞ 6∈ Θ.
Let U be a positive “random” variable with (non-negative) “density” w.r.t. the Lebesgue

measure given by
(

1 − ψ′(r)
ψ′(ř)

)

1{r∈(0,θ̄∞)}.

Assume that U is independent of G∗. Then RA is distributed under NNN
ψ as R∗U .

This corollary can be viewed as a continuous analogue of Proposition 26 of [10].

9. The quadratic case

We consider ψ(λ) = βλ2 for some β > 0. We have Θ = Θ′ = R, see definition in Section
5.3, and ψθ(λ) = βλ2 + 2θλ. Recall θ̄ is defined by (43). So we have θ̄ = |θ|. From Theorem

6.5, we get NNN
ψ[A ≥ θ] = θ̄ − θ = 2|θ|. Thus under NNN

ψ, the explosion time A is distributed
as 2 times the Lebesgue measure on (−∞, 0). We deduce from Theorem 6.7 the Laplace
transform of the total mass of the CRT before explosion: for λ ≥ 0,

NNN
ψ[e−λσA |A = θ] =

√

βθ2

√

λ+ βθ2
·

In particular the distribution of σA conditionally on {A = θ} is the gamma distribution with
parameter (βθ2, 1/2).

Very similar computations as those in the proof of Theorem 6.7 yield that for all s, t ≥ 0,
θ < 0, λ, κ ≥ 0

(55) NNN
ψ[e−λσA+s−κσA+s+t |A = θ] =

√

β(|θ| + s)2
√

λ+ β(|θ| + s)2

√

βt2 +
√

λ+ β(|θ| + s)2
√

κ+ (
√

βt2 +
√

λ+ β(|θ| + s)2)2
·
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We denote by σ∗θ the total mass or length (see definition (51) of L) of the pruned infinite
tree G∗θ . Notice that, thanks to Proposition 7.7, σ∗θ has the size biased distribution of σθ (the

total mass of the CRT with branching mechanism ψθ) under NNN
ψ. More precisely, we have for

any non-negative measurable function: for θ > 0,

(56) 2βθNNNψ[σθF (σθ+q, q ≥ 0)] = EEE
ψ[F (σ∗θ+q, q ≥ 0)].

As the process Σ = (σθ, θ ∈ R) is Markov, we get that Σ∗ = (σ∗θ , θ ≥ 0) is Markov. Notice
that a.s. σ∗0 = +∞. Direct computations or using (55) and Theorem 8.1 yield that for all
θ, q, λ, κ ≥ 0

EEE
ψ[e−λσ

∗
θ
−κσ∗

θ+q ] =

√

βθ2

√

λ+ βθ2

√

βq2 +
√

λ+ βθ2

√

κ+ (
√

βq2 +
√

λ+ βθ2)2
·

Let τ = (τθ, θ ≥ 0) be the first passage process of a standard Brownian motion (Bu, u ≥ 0):
τθ = inf{u ≥ 0, Bu ≥ θ}. It is a stable subordinator with index 1/2, and more precisely with

no drift, no killing, and Lévy measure (2πx3)−1/2dx on (0,∞): for λ ≥ 0, E[e−λτθ ] = e−θ
√

2λ.
The distribution of τθ has density

θ√
2πx3

e−θ
2/2x 1{x>0}.

We get the following result.

Proposition 9.1. We have:

• Under EEE
ψ, (2βσ∗θ , θ ≥ 0) is distributed as (1/τθ, θ ≥ 0).

• Under NNN
ψ, (2βσA+θ, θ ≥ 0) is distributed as (1/(V + τθ), θ ≥ 0) where V is inde-

pendent of τ and its “distribution” has density w.r.t. the Lebesgue measure given by
√

2/(πv)1{v>0}.

The proof of this result is postponed to the end of this Section.
Notice that (44) implies that for θ ≥ 0,

NNN
ψ
[

F (σq, q ≥ 0) e−ψ(θ)σ0

]

= NNN
ψ [F (σq+θ, q ≥ 0)] .

In particular, we deduce from this, (56) and the fact that τ is a process with independent
and stationary increments the following result (notice that the size bias effect vanish, as we
condition by σ0 = 1).

Corollary 9.2. Let β = 1/2. Conditionally on σ0 = 1, we have that (σθ, θ ≥ 0) is under the

excursion measure NNN
ψ distributed as (1/(1 + τθ), θ ≥ 0).

We thus recover a well-known result from Aldous and Pitman [9] on the size process of
a tagged fragment for a self-similar fragmentation (see [13]) with index 1/2, no erosion and

binary dislocation measure ν(s1 ∈ dx) = (2πx3(1 − x)3)−1/21{x∈(0,1/2)}dx, which correspond
to the the fragmentation of the CRT, see also the end of [12], [5] or [14].

Proof of Proposition 9.1. Let λ, κ, θ, q be positive. As we didn’t find any reference for the
computation of

I = E[e−λ/τθ−κ/τθ+q ],

we shall give it here. Using that τ is a subordinator, we have

I = E[e−λ/τθ−κ/(τθ+τ
′
q)].
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where τ ′ is an independent copy of τ . We set p =
√

2λ+ θ2 and J = 2π
p

θ
I. We get

J = 2π
p

θ

θq

2π

∫

R2
+

e−λ/x−κ/(x+y)−θ
2/2x−q2/2y dxdy

(xy)3/2

= pq

∫

R2
+

e−κ/(x+y)−p
2/2x−q2/2y dxdy

(xy)3/2

= pq

∫

R2
+

e−κzu/(1+u)−zup2/2−zq2/2 dzdu√
u

= pq

∫

R+

u+ 1

u2p2/2 + u(p2/2 + q2/2 + κ) + q2/2

du√
u

= 2γ

∫

R+

u+ 1

u2 + u(1 + γ2 + κ′) + γ2

du√
u
,

where we used the change of variable zu = 1/x and z = 1/y for the third equality, κ′ = 2κ/p2

and γ = q/p for the last. Let a, b such that a+ b = 1 + γ2 + κ′ and ab = γ2. Notice that

u+ 1

u2 + u(1 + γ2 + κ′) + γ2
=
a− 1

a− b

1

u+ a
+

1 − b

a− b

1

u+ b
.

Then we get

J = 2γ
a− 1

a− b

∫

R+

du√
u(u+ a)

+ 2γ
1 − b

a− b

∫

R+

du√
u(u+ b)

= 2γ
1

a− b

(

a− 1√
a

+
1 − b√
b

)
∫

R+

du√
u(u+ 1)

= 2γ

√
ab+ 1√
ab

1
√
a+

√
b
π

= 2π
γ + 1

√

(1 + γ)2 + κ′
·

Therefore, we obtain

I =
θ

p

γ + 1
√

(1 + γ)2 + κ′
=

θ√
θ2 + 2λ

q +
√
θ2 + 2λ

√

2κ+ (q +
√
θ2 + 2λ)2

.

We deduce that the two processes (2βσ∗θ , θ ≥ 0) and (1/τθ, θ ≥ 0) have the same two-
dimensional marginals. Since they are Markov process, they have the same distribution.
This proves the first part of the theorem.

Let U be a positive “random” variable “distribution” given by 2 times the Lebesgue mea-
sure on (0,+∞) which is independent of τ . The “distribution” of V = τU has density w.r.t.

the Lebesgue measure given by
√

2/(πv)1{v>0}. The second part is then a direct consequence
of Corollary 8.2. �
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