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REGULARITY ON THE BOUNDARY IN SPACES OF HOLOMORPHIC

FUNCTIONS ON THE UNIT DISK

EMMANUEL FRICAIN & ANDREAS HARTMANN

ABSTRACT. We review some results on regularity on the boundary in spaces of analytic functions

on the unit disk connected with backward shift invariant subspaces in Hp.

1. INTRODUCTION

Fatou’s theorem shows that every function of the Nevanlinna class N := {f ∈ Hol(D) :
sup0<r<1

∫ π

−π
log+ |f(reit)|dt < ∞} admits non tangential limits at almost every point ζ of

the unit circle T = ∂D, D = {z ∈ C : |z| < 1} being the unit disk. One can easily construct

functions (even contained in smaller classes) which do not admit non-tangential limits on a dense

set of T. The question that arises from such an observation is whether one can gain regularity

of the functions at the boundary when restricting the problem to interesting subclasses of N .

We will discuss two kinds of subclasses corresponding to two different ways of generalizing

the class of standard backward shift invariant subspaces in H2 := {f ∈ Hol(D) : ‖f‖2
2 :=

limr→1
1
2π

∫ π

−π
|f(reit)|2dt < ∞}. Recall that backward shift invariant subspaces have shown to

be of great interest in many domains in complex analysis and operator theory. In H2, they are

given by K2
I := H2 ⊖ IH2, where I is an inner function, that is a bounded analytic function in D

the boundary values of which are in modulus equal to 1 a.e. on T. Another way of writing K2
I is

K2
I = H2 ∩ IH2

0 ,

whereH2
0 = zH2 is the subspace of functions inH2 vanishing in 0. The bar sign means complex

conjugation here. This second writing K2
I = H2 ∩ IH2

0 does not appeal to the Hilbert space

structure and thus generalizes to Hp (which is defined as H2 but replacing the integration power

2 by p ∈ (0,∞); it should be noted that for p ∈ (0, 1) the expression ‖f‖p
p defines a metric; for

p = ∞, H∞ is the Banach space of bounded analytic functions on D with obvious norm). When

p = 2, then these spaces are also called model spaces because they arise in the construction of

a universal model for Hilbert space contractions developped by Sz.-Nagy–Foias (see [SNF67]).

Note that if I is a Blaschke product associated with a sequence (zn)n≥1 of points in D, then

Kp
I coincides with the closed linear span of simple fractions with the poles of corresponding

multiplicities at the points 1/zn.
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Many questions concerning regularity on the boundary for functions in standard backward

shift invariant subspaces were investigated in the extensive existing literature. In particular, it is

natural to ask whether one can find points in the boundary where every function f in Kp
I and

its derivatives up to a given order have non tangential limits; or even can one find some arc

on the boundary where every function f in Kp
I can be continued analytically? Those questions

were investigated by Ahern–Clark, Cohn, Moeller,... Another interest in backward shift invariant

subspaces concerns embedding questions, especially when Kp
I embeds into some Lp(µ). This

question is related to the famous Carleson embedding theorem and was investigated for instance

by Aleksandrov, Cohn, Treil, Volberg and many others (see below for some results).

In this survey, we will first review the important results in connection with regularity questions

in standard backward shift invariant subspaces. Then we will discuss these matters in the two

generalizations we are interested in: de Branges-Rovnyak spaces on the one hand, and weighted

backward shift invariant subspaces — which occur naturally in the context of kernels of Toeplitz

operators — on the other hand. Results surveyed here are mainly not followed by proofs. How-

ever, some of the material presented in Section 4 is new. In particular Theorem 18 for which we

provide a proof and Example 4.1 that we will discuss in more detail. The reader will notice that

for the de Branges–Rovnyak situation there now exists a quite complete picture analogous to that

in the standard Kp
I spaces whereas the weighted situation has not been investigated very much

yet. The example 4.1 should convince the reader that the weighted situation is more intricated

in that the Ahern-Clark condition even under strong conditions on the weight — that ensure e.g.

analytic continuation off the spectrum of the inner function — is not sufficient.

2. BACKWARD SHIFT INVARIANT SUBSPACES

We will need some notation. Recall that the spectrum of an inner function I is defined as

σ(I) = {ζ ∈ clos D : lim infz→ζ I(z) = 0}. This set corresponds to the zeros in D and their

accumulation points on T = ∂D, as well as the closed support of the singular measure µS of the

singular factor of I .

The first important result goes back to Moeller [Mo62] (see also [AC69] for a several variable

version):

Theorem 1 (Moeller, 1962). Let Γ be an open arc of T. Then every function f ∈ Kp
I can be

continued analytically through Γ if and only if Γ ∩ σ(I) = ∅.

Moeller also establishes a link with the spectrum of the compression of the backward shift

operator to Kp
I .

It is of course easy to construct inner functions the spectrum of which on T is equal to T so that

there is no analytic continuation possible. Take for instance for I the Blaschke product associated

with the sequence Λ = {(1− 1/n2)ein}n, the zeros of which accumulate at every point on T. So

it is natural to ask what happens in points which are in the spectrum, and what kind of regularity

can be expected there. Ahern–Clark and Cohn gave an answer to this question in [AC70, Co86a].

Recall that an arbitrary inner function I can be factored into a Blaschke product and a singular
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inner function: I = BS, where B =
∏

n ban , ban(z) = |an|
an

an−z
1−anz

,
∑

n(1 − |an|
2) <∞, and

S(z) = exp

(
−

∫

T

ζ + z

ζ − z
dµS(ζ)

)
,

where µS is a finite positive measure on T singular with respect to Lebesgue measure. The

regularity of functions in K2
I is then related with the zero distribution of B and the measure µS

as indicated in the following result.

Theorem 2 (Ahern–Clark, 1970, Cohn, 1986). Let I be an inner function and let 1 < p < +∞
and q its conjugated exponent. If N is a non-negative integer and ζ ∈ T, then the following are

equivalent:

(i) for every f in Kp
I , the functions f (j), 0 ≤ j ≤ N , have finite non-tangential limits at ζ;

(ii) the following condition holds:

(1) SI
q,N(ζ) :=

∞∑

n=1

(1 − |an|
2)

|1 − ζan|(N+1)q
+

∫ 2π

0

1

|1 − ζeiθ|(N+1)q
dµS(θ) < +∞.

Moreover in that case, the function (kI
ζ )

N+1 belongs to Kq
I and we have

(2) f (N)(ζ) = N !

∫

T

z̄Nf(z)kI
ζ (z)

N+1
dm(z),

for every function f ∈ Kp
I .

Here kI
ζ is the reproducing kernel of the space K2

I corresponding to the point ζ and defined by

(3) kI
ζ (z) =

1 − I(ζ)I(z)

1 − ζ̄z
.

The case p = 2 is due to Ahern–Clark and Cohn generalizes the result to p > 1. Another way to

read into the results of Ahern–Clark, Cohn and Moeller is to introduce the representing measure

of the inner function I , µI = µS + µB, where

µB :=
∑

n≥1

(1 − |an|
2)δ{an}.

Then Theorems 1 and 2 allow us to formulate the following general principle: if the measure µI

is “small” near a point ζ ∈ T, then the functions f in Kp
I must be smooth near that point.

Another type of regularity questions in backward shift invariant subspaces was studied by A.

Aleksandrov, K. Dyakonov and D. Khavinson. It consists in asking if Kp
I contains a nontrivial

smooth function. More precisely, Aleksandrov in [Al81] proved that the set of functions f ∈ Kp
I

continuous in the closed unit disc is dense inKp
I . It should be noted nevertheless that the result of

Aleksandrov is not constructive and indeed we do not know how to construct explicit examples

of functions f ∈ Kp
I continuous in the closed unit disc. In the same direction, Dyakonov and

Khavinson, generalizing a result by Shapiro on the existence of Cn-functions in Kp
I [Sh67],

proved in [DK06] that the space K2
I contains a nontrivial function of class A∞ if and only if

either I has a zero in D or there is a Carleson set E ⊂ T with µS(E) > 0; here A∞ denotes

the space of analytic functions on D that extend continuously to the closed unit disc and that are
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C∞(T); recall that a set E included in T is said to be a Carleson set if the following condition

holds ∫

T

log dist(ζ, E) dm(ζ) > −∞.

In [Dy08a, Dy02b, Dy00, Dy91], Dyakonov studied some norm inequalities in coinvariant

backward shift subspaces of Hp(C+); here Hp(C+) is the Hardy space of the upper half-plane

C+ := {z ∈ C : Im z > 0} and if Θ is an inner function for the upper half-plane, then the

corresponding backward shift invariant subspace of Hp(C+) is also denoted by Kp
Θ and defined

to be

Kp
Θ = Hp(C+) ∩ ΘHp(C+).

In the special case where Θ(z) = eiaz (a > 0), the space Kp
Θ is equal to PW p

a ∩Hp(C+), where

PW p
a is the Paley-Wiener space of entire functions of exponential type at most a that belong

to Lp on the real axis. Dyakonov shows that several classical regularity inequalities pertaining

to PW p
a apply also to Kp

Θ provided Θ′ is in H∞(C+) (and only in that case). In particular, he

proved the following result.

Theorem 3 (Dyakonov, 2000 & 2002). Let 1 < p < +∞ and let Θ be an inner function in

H∞(C+). The following are equivalent:

(i) Kp
Θ ⊂ C0(R).

(ii) Kp
Θ ⊂ Lq(R), for some (or all) q ∈ (p,+∞).

(iii) The differentiation operator is bounded as an operator from Kp
Θ to Lp(R), that is

(4) ‖f ′‖p ≤ C(p,Θ)‖f‖p, f ∈ Kp
Θ.

(iv) Θ′ ∈ H∞(C+).

Notice that in (4) one can takeC(p,Θ) = C1(p)‖Θ
′‖∞, whereC1(p) depends only on p but not

on Θ. Moreover, Dyakonov also showed that the embeddings in (i), (ii) and the differentiation

operator on Kp
Θ are compact if and only if Θ satisfies (iv) and Θ′(x) → 0 as |x| → +∞ on the

real line. In [Dy02a], the author discusses when the differentiation operator is in Schatten-von

Neumann ideals. Finally in [Dy08a], Dyakonov studied coupled with (4) the reverse inequality.

More precisely, he characterized those Θ for which the differentiation operator f 7−→ f ′ provides

an isomorphism between Kp
Θ and a closed subspace of Hp, with 1 < p < +∞; namely he

showed that such Θ’s are precisely the Blaschke products whose zero-set lies in some horizontal

strip {a < Im z < b}, with 0 < a < b < +∞ and splits into finetely many separated sequences.

The inequality (4) corresponds for the case Θ(z) = eiaz to a well-known inequality of S. Bern-

stein (see [Bern26, Premier lemme, p.75] or [Le96, Lecture 28]). For p = +∞, a beautiful gen-

eralization of Bernstein’s inequality was obtained by Levin: let x ∈ R and |Θ′(x)| < +∞; then

for each f ∈ K∞
Θ , the derivative f ′(x) exists in the sense of non-tangential boundary values and

∣∣∣∣
f ′(x)

Θ′(x)

∣∣∣∣ ≤ ‖f‖∞, f ∈ K∞
Θ .

Recently, differentiation in the backward shift invariant subspaces Kp
Θ was studied extensively

by A. Baranov. In [Ba03, Ba05b], he proved for a general inner function Θ estimates of the form

(5) ‖f (n)ωp,n‖Lp(µ) ≤ C‖f‖p, f ∈ Kp
Θ,
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where n ≥ 1, µ is a Carleson measure in the closed upper half-plane and ωp,n is some weight

related to the norm of reproducing kernels of the space K2
Θ which compensates for possible

growth of the derivative near the boundary. More precisely, put

ωp,n(z) =
∥∥(kΘ

z )n+1
∥∥− p

p+1

q
, (z ∈ clos(C+)),

where q is the conjugate exponent of p ∈ [1,+∞). We assume that ωp,n(x) = 0, whenever

SΘ
q,N(x) = +∞, x ∈ R (here we omit the exact formula of kΘ

z and SΘ
N,q in the upper half-plane

but it is not difficult to imagine what will be the analogue of (1) and (3) in that case).

Theorem 4 (Baranov, 2005). Let µ be a Carleson measure in clos(C+), 1 ≤ p < +∞. Then the

operator

(Tp,nf)(z) = f (n)(z)ωp,n(z)

is of weak type (p, p) as an operator from Kp
Θ to Lp(µ) and is bounded as an operator from Kr

Θ

to Lr(µ) for any r > p; moreover there is a constant C = C(µ, p, r, n) such that
∥∥f (n)ωp,n

∥∥
Lr(µ)

≤ C‖f‖r, f ∈ Kr
Θ.

To apply Theorem 4, one should have effective estimates of the considered weights, that is, of

the norms of reproducing kernels. Let

Ω(Θ, ε) := {z ∈ C+ : |Θ(z)| < ε}

be the level sets of the inner function Θ and let dε(x) = dist(x,Ω(Θ, ε)), x ∈ R. Then Baranov

showed in [Ba05b] the following estimates

(6) dn
ε (x) . ωp,n(x) . |Θ′(x)|−n, x ∈ R.

In fact, the inequality (6) is proved in [Ba05b, Lemma 4.5] for n = 1; but the argument extends

to general n in an obvious way. In [Al99], A. Aleksandrov proved that for the special class of

inner functions Θ ∈ CLS (see below for the definition), then we have

ωp,n(x) ≍ |Θ′(x)|−n (x ∈ R).

We should mention that Theorem 4 implies Theorem 3 on boundeness of differentiation operator.

Indeed if Θ′ ∈ L∞(R), then it is clear (and well known) that supx∈R ‖k2
x‖q < +∞, for any

q ∈ (1,∞). Thus the weights ωr = ωr,1 are bounded from below and thus inequality

‖f ′ωr‖p ≤ C‖f‖p (f ∈ Kp
Θ)

implies inequality (4). The proof of Baranov’s result is based on the integral representation

(2) which reduces the study of differentiation operators to the study of certain integral singular

operators.

Another type of results concerning regularity on the boundary for functions in standard back-

ward shift invariant subspaces is related to Carleson’s embedding theorem. Recall that Car-

leson proved (see [Ca58] and [Ca62]) that Hp(C+) embeds continuously in Lp(µ) (where µ is

a Borel measure on clos(C+)) if and only if µ is a Carleson measure, that is there is a constant

C = C(µ) > 0 such that

µ(S(x, h)) ≤ Ch,
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for every square S(x, h) = [x, x + h] × [0, h] = {t + iu : x ≤ t ≤ x + h, 0 ≤ u ≤ h}, x ∈ R,

h > 0. The motivation of Carleson comes from interpolation problems but his result acquired

wide importance in a larger context of singular integrals of Calderon–Zygmund type. In [Co82],

Cohn studied a similar question for model subspacesK2
Θ. More precisely, he asked the following

question: given an inner function Θ in C+ and p ≥ 1, can we describe the class of Borel measure

µ in the closed upper half-plane such that Kp
Θ is embedded into Lp(µ)? In spite of a number of

beautiful and deep (partial) results, this problem is still open. Of course, due to the closed graph

theorem, the embedding Kp
Θ ⊂ Lp(µ) is equivalent to the estimate

(7) ‖f‖Lp(µ) ≤ C‖f‖p (f ∈ Kp
Θ).

Cohn solved this question for a special class of inner functions. We recall that Θ is said to satisfy

the connected level set condition (and we write Θ ∈ CLS) if the set Ω(Θ, ε) is connected for

some ε ∈ (0, 1).

Theorem 5 (Cohn, 1982). Let µ be a Borel measure on clos(C+). Let Θ be a an inner function

such that Θ ∈ CLS. The following are equivalent:

(i) K2
Θ embedds continuously in L2(µ).

(ii) There is c > 0 such that

(8)

∫

clos(C+)

Im z

|ζ − z̄|2
dµ(ζ) ≤

C

1 − |Θ(z)|
, z ∈ C+.

The Theorem of Cohn can be reformulated in the following: the inequality (8) means exactely

that the inequality 7 is satisfied for the reproducing kernels of the space K2
Θ. Thus to get in-

equality 7, it is sufficient to show it on reproducing kernels. Recently, F. Nazarov and A. Volberg

[NV02] showed that this is no longer true in the general case. We should compare this property

of the embedding operator Kp
Θ ⊂ Lp(µ) (for CLS inner functions) to the ”reproducing kernel

thesis”, which is shared by Toeplitz or Hankel operators in H2 for instance. The reproducing

kernel thesis says roughly that in order to show the boundeness of an operator on a reproducing

kernel Hilbert space, it is sufficient to test its boundeness only on reproducing kernels (see e.g.

[Ni02, Vol 1, p.131, 204, 244, 246] for some discussions of this remarkable property).

A geometric condition on µ sufficient for the embedding of Kp
Θ is due to Volberg–Treil

[TV96].

Theorem 6 (Treil–Volberg, 1995). Let µ be a Borel measure on clos(C+), let Θ be a an inner

function and let 1 ≤ p < +∞. Assume that there is C > 0 such that

(9) µ(S(x, h)) ≤ Ch,

for every square S(x, h) satisfying S(x, h) ∩ Ω(Θ, ε) 6= ∅. Then Kp
Θ embedds continuously in

Lp(µ).

Moreover they showed that for the case where Θ satisfies the connected level set condition,

then the sufficient condition (9) is also necessary. In [Al99], Aleksandrov proved that the condi-

tion of Treil–Volberg is necessary if and only if Θ ∈ CLS. Moreover, if Θ does not satisfy the

connected level set condition, then the class of measures µ such that the inequality (7) is valid

depend essentially on the exponent p (in contrast to the classical theorem of Carleson).
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Of special interest is the case when µ =
∑

n∈N
anδ{λn} is a discrete measure; then embedding

is equivalent to the Bessel property for the system of reproducing kernels {kΘ
λn
}.

Also the particular case when µ is a measure on the real line is of great importance. In contrast

to the embeddings of the whole Hardy space Hp (note that Carleson measures on R are measures

with bounded density with respect to Lebesgue measure m), the class of Borel measures µ such

that Kp
Θ ⊂ Lp(µ) always contains nontrivial examples of singular measures on R; in particular,

for p = 2, the Clark measures [Cl72] for which the embeddings K2
Θ ⊂ L2(µ) are isometric.

The situation changes for p 6= 2 as shown by Aleksandrov [Al89]. See also the nice survey by

Poltoratski and Sarason on what they call Aleksandrov-Clark measures [PS06]. On the other

hand, if µ = wm, w ∈ L2(R), then the embedding problem is related to the properties of the

Toeplitz operator Tw (see [Co86b]).

In [Ba03, Ba05a], Baranov developped a new approach based on the (weighted norm) Bern-

stein inequalities and he got some extensions of Cohn and Volberg–Treil results. Compactness

of the embedding operator Kp
Θ ⊂ L2(µ) is also of interest and is considered in [Vo81, Co86b,

CM03, Ba05a, Ba08].

Another important result in connection withKp
I -spaces is that of Douglas, Shapiro and Shields

([DSS70], see also [CR00, Theorem 1.0.5]) and concerns pseudocontinuation. Recall that a func-

tion holomorphic in De := Ĉ \ clos D — closE means the closure of a set E — is a pseudocon-

tinuation of a function f meromorphic in D if ψ vanishes at ∞ and the outer nontangential limits

of ψ on T coincide with the inner nontangential limits of f on T in almost every point of T. Note

that f ∈ K2
I = H2 ∩ IH2

0 implies that f = Iψ with ψ ∈ H2
0 . Then the meromorphic function

f/I equals ψ a.e. T, and writing ψ(z) =
∑

n≥1 bnz
n, it is clear that ψ̃(z) :=

∑
n≥1 bn/z

n is a

holomorphic function in De, vanishing at ∞, and being equal to f/I almost everywhere on T (in

fact, ψ̃ ∈ H2(De)). The converse is also true: if f/I has a pseudocontinuation in De, where f
is a Hp-function and I some inner function I , then f is in Kp

I . This can be resumed this in the

following result.

Theorem 7 (Douglas-Shapiro-Shields, 1972). Let I be an inner function. Then a function f ∈
Hp is in Kp

I if and only if f/I has a pseudocontinuation to a function in Hp(De) which vanishes

at infinity.

Note that there are functions analytic on C that do not admit a pseudocontinuation. An exam-

ple of such a function is f(z) = ez which has an essential singularity at infinity.

As already mentioned, we will be concerned with two generalizations of the backward shift

invariant subspaces. One direction is to consider weighted versions of such spaces. The other

direction is to replace the inner function by more general functions. The appropriate definition

of K2
I in this setting is that of de Branges-Rovnyak spaces (requiring that p = 2).

Our aim is to discuss some of the above results in the context of these spaces. For analytic

continuation it turns out that the conditions in both cases are quite similar to the original K2
I -

situation. However in the weighted situation some additional condition is needed. For boundary

behaviour in points in the spectrum the situation changes. In the de Branges-Rovnyak spaces

the Ahern-Clark condition generalizes naturally, whereas in weighted backward shift invariant



8 EMMANUEL FRICAIN & ANDREAS HARTMANN

subspaces the situation is not clear and awaits further investigation. This will be illustrated in

Example 4.1.

3. DE BRANGES-ROVNYAK SPACES

Let us begin with defining de Branges-Rovnyak spaces. We will be essentially concerned with

the special case of Toeplitz operators. Recall that for ϕ ∈ L∞(T), the Toeplitz operator Tϕ is

defined on H2(D) by

Tϕ(f) := P+(ϕf) (f ∈ H2(D)),

where P+ denotes the orthogonal projection of L2(T) onto H2(D). Then, for ϕ ∈ L∞(T),
‖ϕ‖∞ ≤ 1, the de Branges–Rovnyak space H(ϕ), associated with ϕ, consists of those H2(D)
functions which are in the range of the operator (Id − TϕTϕ)1/2. It is a Hilbert space when

equipped with the inner product

〈(Id− TϕTϕ)1/2f, (Id− TϕTϕ)1/2g〉ϕ = 〈f, g〉2,

where f, g ∈ H2(D) ⊖ ker (Id− TϕTϕ)1/2.

These spaces (and more precisely their general vector-valued version) appeared first in L.

de Branges and J. Rovnyak [dBR66a, dBR66b] as universal model spaces for Hilbert space

contractions. As a special case, when b = I is an inner function (that is |b| = |I| = 1 a.e. on

T), the operator (Id − TITI) is an orthogonal projection and H(I) becomes a closed (ordinary)

subspace of H2(D) which coincides with the model spaces KI = H2(D) ⊖ IH2(D). Thanks

to the pioneering work of Sarason, e.g. [Sa89, Sa89, Sa94, Sa95], we know that de Branges-

Rovnyak spaces play an important role in numerous questions of complex analysis and operator

theory. We mention a recent paper by the second named author and Sarason and Seip [HSS04]

who gave a characterization of surjectivity of Toeplitz operator the proof of which involves de

Branges-Rovnyak spaces. We also refer to work of J. Shapiro [Sh01, Sh03] concerning the notion

of angular derivative for holomorphic self-maps of the unit disk. See also a paper of J. Anderson

and J. Rovnyak [AR06], where generalized Schwarz-Pick estimates are given and a paper of M.

Jury [Ju07], where composition operators are studied by methods based on H(b) spaces.

In what follows we will assume that b is in the unit ball of H∞. We recall here that since H(b)
is contained contractively in H2, it is a reproducing kernel Hilbert space. More precisely, for all

function f in H(b) and every point λ in D, we have

f(λ) = 〈f, kb
λ〉b,(10)

where kb
λ = (Id− TbTb̄)kλ. Thus

kb
λ(z) =

1 − b(λ)b(z)

1 − λ̄z
, z ∈ D.

We also recall that H(b) is invariant under the backward shift operator and in the following, we

denote by X the contraction X := S∗
|H(b). Its adjoint satisfies the important formula

X∗h = Sh− 〈h, S∗b〉bb, h ∈ H(b).
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In the case where b is inner, then X coincides with the so-called model operator of Sz.-Nagy–

Foias which serves as a model to Hilbert space contractions (in fact, those contractions T which

are C·0 and with ∂T = ∂T ∗ = 1; for the general case, the model operator is quite complicated).

Finally, let us recall that a point λ ∈ D is said to be regular (for b) if either λ ∈ D and b(λ) 6= 0,

or λ ∈ T and b admits an analytic continuation across a neighbourhood Vλ = {z : |z−λ| < ε} of

λ with |b| = 1 on Vλ ∩T. The spectrum of b, denoted by σ(b), is then defined as the complement

in D of all regular points of b.
In this section we will summarize the results corresponding to Theorems 1 and 2 above in

the setting of de Branges-Rovnyak spaces. It turns out that Moeller’s result remains valid in the

setting of de Branges-Rovnyak spaces. Concerning the result by Ahern-Clark, it turns out that if

we replace the inner function I by a general function b in the ball of H∞, meaning that b = Ib0
where b0 is now outer, then we have to add to condition (ii) in Theorem 2 the term corresponding

to the absolutely continuous part of the measure: | log |b0||.

In [FM08a], E. Fricain and J. Mashreghi studied the continuity and analyticity of functions in

the de Branges–Rovnyak spaces H(b) on an open arc of T. As we will see the theory bifurcates

into two opposite cases depending on whether b is an extreme point of the unit ball of H∞(D)
or not. Let us recall that if X is a linear space and S is a convex subset of X , then an element

x ∈ S is called an extreme point of S if it is not a proper convex combination of any two distinct

points in S. Then, it is well known (see [Du70, page 125]) that a function f is an extreme point

of the unit ball of H∞(D) if and only if
∫

T

log(1 − |f(ζ)|) dζ = −∞.

The following result is a generalization of Theorem 1 of Moeller.

Theorem 8 (Fricain–Mashreghi, 2008). Let b be in the unit ball of H∞(D) and let I be an open

arc of T. Then the following are equivalent:

(i) b has an analytic continuation across I and |b| = 1 on I;

(ii) I is contained in the resolvent set of X∗;

(iii) any function f in H(b) has an analytic continuation across I;

(iv) any function f in H(b) has a continuous extension to D ∪ I;

(v) b has a continuous extension to D ∪ I and |b| = 1 on I .

The equivalence of (i), (ii) and (iii) were proved in [Sa95, page 42] under the assumption that

b is an extreme point. The contribution of Fricain–Mashreghi concerns the the last two points.

The mere assumption of continuity implies analyticity and this observation has interesting appli-

cation as we will see below. Note that this implication is true also in the weighted situation (see

Theorem 18).

The proof of Theorem 8 is based on reproducing kernel of H(b) spaces. More precisely, we

use the fact that given ω ∈ D, then kb
ω = (Id− ω̄X∗)−1kb

0 and thus

f(ω) = 〈f, kb
ω〉b = 〈f, (Id− ω̄X∗)−1kb

0〉b,
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for every f ∈ H(b). Another key point in the proof of Theorem 8 is the theory of Hilbert spaces

contractions developped by Sz.-Nagy–Foias. Indeed, if b is an extreme point of the unit ball of

H∞, then the characteristic function of the contraction X∗ is b (see [Sa86]) and then we know

that σ(X∗) = σ(b). Therefore the proof of Theorem 8 differs from the proof of the original proof

of Moeller for the inner case.

It is easy to see that condition (i) in the previous result implies that b is an extreme point of

the unit ball of H∞. Thus, the continuity (or equivalently, the analytic continuation) of b or of

the elements of H(b) on the boundary completely depends on whether b is an extreme point or

not. If b is not an extreme point of the unit ball of H∞(D) and if I is an open arc of T, then

there exists necessarily a function f ∈ H(b) such that f has not a continuous extension to D∪ I .

On the opposite case, if b is an extreme point such that b has continuous extension to D ∪ I with

|b| = 1 on I , then all the functions f ∈ H(b) are continuous on I (and even can be continued

analytically across I).

As in the inner case (see Ahern–Clark’s result, Theorem 2), it is natural to ask what happens in

points which are in the spectrum and what kind of regularity can be expected there. In [FM08a],

E. Fricain and J. Mashreghi gave an answer to this question and this result generalizes the Ahern–

Clark result.

Theorem 9 (Fricain–Mashreghi, 2008). Let b be a point in the unit ball of H∞(D) and let

(11) b(z) = γ
∏

k

(
|ak|

ak

ak − z

1 − akz

)
exp

(
−

∫

T

ζ + z

ζ − z
dµ(ζ)

)
exp

(∫

T

ζ + z

ζ − z
log |b(ζ)| dm(ζ)

)

be its canonical factorization. Let ζ0 ∈ T and let n be a non-negative integer. Then the following

are equivalent.

(i) for every function f ∈ H(b), f(z), f ′(z), . . . , f (n)(z) have finite limits as z tends radially

to ζ0;

(ii)
∥∥∂nkb

z/∂z
n
∥∥

b
is bounded as z tends radially to ζ0;

(iii) X∗nkb
0 belongs to the range of (Id− ζ0X

∗)n+1;

(iv) we have

(12)
∑

k

1 − |ak|
2

|ζ0 − ak|2n+2
+

∫ 2π

0

dµ(eit)

|ζ0 − eit|2n+2
+

∫ 2π

0

∣∣ log |b(eit)|
∣∣

|ζ0 − eit|2n+2
dm(eit) < +∞.

The proof of Theorem 9 is based on a generalization of technics of Ahern–Clark. However,

we should mention that the general case is a little bit more complicated than the inner case.

Indeed for the equivalence of (iii) and (iv) (which is the hard part of the proof), Ahern–Clark

noticed that the condition (iii) is equivalent to the following interpolation problem: there exists

k, g ∈ H2 such that

(1 − ζ0z)
n+1k(z) −N !zn = b(z)g(z).

This reformulation, based on the orthogonal decomposition H2 = H(b) ⊖ bH2, is crucial in the

proof of Ahern–Clark. In the general case, this is no longer true because H(b) is not a closed

subspace of H2 and we cannot have such an orthogonal decomposition. This induces a real

difficulty that we can overcome using other arguments: In particular, we use (in the proof) the
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fact that if ζ0 satisfies the condition (12), then, for 0 ≤ j ≤ 2n+ 1, the limits

lim
r→1−

b(j)(r) and lim
R→1+

b(j)(R)

exist and are equal. Here we extend the function b outside the unit disk by the formula (11),

which represents an analytic function for |z| > 1, z 6= 1/an. We denote this function also by b
and it is easily verified that it satisfies

b(z) =
1

b(1/z)
, ∀z ∈ C.(13)

Maybe we should compare condition (iv) of Theorem 9 and condition (ii) of Theorem 8.

For the question of analytic continuation through a point ζ0 ∈ T, we impose that the operator

Id − ζ̄0X
∗ is bijective (or onto which is equivalent because it is always one-to-one as noted in

[Fr05, Lemma 2.2]) whereas for the question of the existence of radial limits for the derivative

up to a given order N , we impose only that the range of the operator (Id − ζ0X
∗)n+1 contains

the function X∗nkb
0. We also mention that Sarason has obtained another criterion in terms of the

measure µλ whose Poisson integral is the real part of
λ+ b

λ− b
with λ ∈ T.

Theorem 10 (Sarason, 1995). Let ζ0 be a point of T and let n be a nonnegative integer. The

following conditions are equivalent.

(i) Each function in H(b) and all its derivatives up to order n have nontangential limits at

z0.

(ii) There is a point λ ∈ T such that
∫

T

|eiθ − z0|
−2n−2 dµλ(e

iθ) < +∞.

(iii) The last inequality holds for all λ ∈ T \ {b(z0)}.

(iv) There is a point λ ∈ T such that µλ has a point mass at z0 and
∫

T\{z0}

|eiθ − z0|
−2n dµλ(e

iθ) <∞.

Recently, Bolotnikov and Kheifets [BK06] gave a third criterion (in some sense more alge-

braic) in terms of the Schwarz-Pick matrix. Recall that if b is a function in the unit ball of H∞,

then the matrix P
ω
n(z), which will be refered to as to a Schwarz-Pick matrix and defined by

P
b
n(z) :=

[
1

i!j!

∂i+j

∂zi∂z̄j

1 − |b(z)|2

1 − |z|2

]n

i,j=0

,

is positive semidefinite for every n ≥ 0 and z ∈ D. We extend this notion to boundary points as

follows: given a point z0 ∈ T, the boundary Schwarz-Pick matrix is

P
b
n(ζ0) = lim

z−→z0
∢

P
b
n(z) (n ≥ 0),

provided this non tangential limit exists.
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Theorem 11 (Bolotnikov–Kheifets, 2006). Let b be a point in the unit ball of H∞, let z0 ∈ T

and let n be a nonnegative integer. Assume that the boundary Schwarz-Pick matrix P
b
n(z0) exists.

Then each function in H(b) and all its derivatives up to order n have nontangential limits at z0.

Further it is shown in [BK06] that the boundary Schwarz-Pick matrix P
b
n(z0) exists if and only

if

(14) lim
z−→z0

∢

db,n(z) < +∞,

where

db,n(z) :=
1

(n!)2

∂2n

∂zn∂z̄n

1 − |b(z)|2

1 − |z|2
.

We should mention that it is not clear to show direct connections between conditions (12), (14)

and (ii)–(iv) of Theorem 10.

Theorems 9,10 and 11 have of course an analogue in the setting of the upper half plane C+.

In the following, Θ will denote a function in the unit ball of H∞(C+) and H(Θ) will be the

associated de Branges–Rovnyak spaces (the definition of de Branges–Rovnyak spaces of the

upper half-plane is similar to its counterpart for the unit disc). Once we know the points x0

of the real line where f (n)(x0) exists (in a non-tangential sense) for every function f ∈ H(Θ),
it is natural to ask if we can obtain an integral formulae for this derivative similar to (2) for

the inner case. However, if one tries to generalize techniques used in the model spaces K2
Θ in

order to obtain such a representation for the derivatives of functions in H(Θ), some difficulties

appear mainly due to the fact that the evaluation functional in H(Θ) (contrary to the model space

K2
Θ) is not a usual integral operator. To overcome this difficulty and nevertheless provide an

integral formula similar to (2) for functions in H(Θ), Fricain–Mashreghi used in [FM08b] two

general facts about the de Branges–Rovnyak spaces that we recall now. The first one concerns

the relation between H(Θ) and H(Θ̄). For f ∈ H2(C+), we have [Sa95, page 10]

f ∈ H(Θ) ⇐⇒ TΘf ∈ H(Θ).

Moreover, if f1, f2 ∈ H(Θ), then

〈f1, f2〉Θ = 〈f1, f2〉2 + 〈TΘf1, TΘf2〉Θ.(15)

We also mention an integral representation for functions in H(Θ) [Sa95, page 16]. Let ρ(t) :=
1 − |Θ(t)|2, t ∈ R, and let L2(ρ) stand for the usual Hilbert space of measurable functions

f : R → C with ‖f‖ρ <∞, where

‖f‖2
ρ :=

∫

R

|f(t)|2ρ(t) dt.

For eachw ∈ C+, the Cauchy kernel kw belongs to L2(ρ). Hence, we defineH2(ρ) to be the span

in L2(ρ) of the functions kw (w ∈ C+). If q is a function in L2(ρ), then qρ is in L2(R), being

the product of qρ1/2 ∈ L2(R) and the bounded function ρ1/2. Finally, we define the operator

Cρ : L2(ρ) −→ H2(C+) by

Cρ(q) := P+(qρ).
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Then Cρ is a partial isometry from L2(ρ) onto H(Θ) whose initial space equals to H2(ρ) and it

is an isometry if and only if Θ is an extreme point of the unit ball of H∞(C+).
Now let ω ∈ C+ and let n be a non-negative integer. In order to get an integral representation

for the nth derivative of f at point ω for functions in the de-Branges-Rovnyak spaces, we need

to introduce the following kernels

(16) kΘ
ω,n(z) :=

1 − Θ(z)
n∑

p=0

Θ(p)(ω)

p!
(z − ω)p

(z − ω)n+1
, (z ∈ C+),

and

(17) kρ
ω,n(t) :=

n∑

p=0

Θ(p)(ω)

p!
(t− ω)p

(t− ω)n+1
, (t ∈ R).

Of course, for ω = x0 ∈ R, these formulae have a sense only if Θ has derivatives (in a radial or

nontangential sense) up to order n; as we have seen this is the case if x0 satisfies the condition

∑

k

Im(zk)

|x0 − zk|p
+

∫

R

dµ(t)

|x0 − t|p
+

∫

R

| log |Θ(t)||

|x0 − t|p
dt < +∞,(18)

for p = n + 1, where (zk)k is the sequence of the zeros of Θ, and µ is the singular measure

associated to Θ in its canonical factorization. The condition (18) is the analogue of (12) for the

upper half-plane. In the following, we denote by Ep(Θ) the set of real points x0 which satisfy

the condition (18).

For n = 0, we see that kΘ
ω,0 = kΘ

ω is the reproducing kernel of H(Θ) and kρ
ω,0 = Θ(ω)kω is

(up to a constant) the Cauchy kernel. Moreover (at least formally) the function kΘ
ω,n (respectively

kρ
ω,n) is the n-th derivative of kΘ

ω,0 (respectively of kρ
ω,0) with respect to ω̄.

Theorem 12 (Fricain–Mashreghi, 2008). Let Θ be a function in the unit ball of H∞(C+) and let

n be a non-negative integer. Then for every point z0 ∈ C+ ∪ E2n+2(Θ) and for every function

f ∈ H(Θ), we have kΘ
z0,n ∈ H(Θ), kρ

z0,n ∈ L2(ρ) and

f (n)(z0) =
n!

2iπ

(∫

R

f(t)kΘ
z0,n(t) dt+

∫

R

g(t)ρ(t)kρ
z0,n(t) dt

)
,(19)

where g ∈ H2(ρ) satisfies TΘf = Cρg.

We see that if Θ is inner, then it is clear that the second integral in (19) is zero (because ρ ≡ 0)

and we obtain the formula (2) of Ahern–Clark (more precisely the analogue in the upper half-

plane). We should mention that in the case where z0 ∈ C+, the formula (19) follows easily from

the formulae (15) and (10). For z0 ∈ En(Θ), the result is more delicate and the key point of the

proof is to show that

f (n)(z0) = 〈f, kΘ
z0,n〉Θ,(20)

for every function f ∈ H(Θ) and then show that TΘ̄k
Θ
z0,n = Cρk

ρ
z0,n to use once again (15).



14 EMMANUEL FRICAIN & ANDREAS HARTMANN

A consequence of (20) and Theorem 9 is that if z0 ∈ E2n+2(Θ), then kΘ
ω,n tends weakly to

kΘ
z0,n as ω approaches radially to x0. It is natural to ask if this weak convergence can be replaced

by norm convergence. In other words, is it true that ‖kΘ
ω,n − kΘ

x0,n‖Θ → 0 as ω tends radially to

x0?

In [AC70], Ahern and Clark claimed that they can prove this result for the case where Θ is

inner and n = 0. For general functions Θ in the unit ball of H∞(C+), Sarason [Sa95, Chap.

V] got this norm convergence for the case n = 0. In [FM08b], we answer this question in the

general case and get the following result.

Theorem 13 (Fricain–Mashreghi, 2008). Let Θ be a point in the unit ball of H∞(C+), let n be

a non-negative integer and let x0 ∈ R satisfying the condition (18). Then
∥∥kΘ

ω,n − kΘ
x0,n

∥∥
Θ
−→ 0, as ω tends radially to x0.

The proof is based on explicit computations of ‖kΘ
ω,n‖Θ and ‖kΘ

x0,n‖Θ and we use a non trivial

formula of combinatorics for sums of binomial coefficient. We should mention that we have

obtained this formula by hypergeometric series. Let us also mention that Bolotnikov–Kheifets

got a similar result in [BK06] using different techniques and under their condition (14).

We will now discuss the weighted norm inequalities obtained in [BFM09]. The main goal was

to get an analogue of Theorem 4 in the setting of the de Branges–Rovnyak spaces. To get these

weighted Bernstein type inequalities, we first used a slight modified formula of (19).

Proposition 1 (Baranov–Fricain–Mashreghi, 2009). Let Θ be in the unit ball of H∞(C+). Let

z0 ∈ C+ ∪ E2n+2(Θ), n ∈ N, and let

(21) K
ρ
z0,n(t) := Θ(z0)

∑n
j=0

(
n+1
j+1

)
(−1)j Θj(z0) Θj(t)

(t− z0)n+1
, t ∈ R.

Then (kΘ
z0

)
n+1

∈ H2(C+) and K
ρ
z0,n ∈ L2(ρ). Moreover, for every function f ∈ H(Θ), we have

f (n)(z0) =
n!

2πi

(∫

R

f(t)(kΘ
z0

)n+1(t) dt+

∫

R

g(t)ρ(t)Kρ
z0,n(t) dt

)
,(22)

where g ∈ H2(ρ) is such that TΘf = Cρg.

We now introduce the weight involved in our Bernstein-type inequalities. Let 1 < p ≤ 2 and

let q be its conjugate exponent. Let n ∈ N. Then, for z ∈ C+, we define

wp,n(z) := min
{
‖(kΘ

z )
n+1

‖−pn/(pn+1)
q , ‖ρ1/q

K
ρ
z,n‖

−pn/(pn+1)
q

}
;

we assume wp,n(x) = 0, whenever x ∈ R and at least one of the functions (kΘ
x )n+1 or ρ1/q

K
ρ
x,n

is not in Lq(R).
The choice of the weight is motivated by the representation (22) which shows that the quantity

max
{
‖(kΘ

z )
n+1

‖2, ‖ρ
1/2

K
ρ
z,n‖2

}
is related to the norm of the functional f 7→ f (n)(z) on H(Θ).

Moreover, we strongly believe that the norms of reproducing kernels are an important character-

istic of the space H(Θ) which captures many geometric properties of Θ. Using similar arguments

as in the proof of proposition 1, it is easy to see that ρ1/q
K

ρ
x,n ∈ Lq(R) if x ∈ Eq(n+1)(Θ). It
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is also natural to expect that (kΘ
x )n+1 ∈ Lq(R) for x ∈ Eq(n+1)(Θ). This is true when b is an

inner function, by a result of Cohn [Co86a]; for a general function Θ with q = 2 it was noticed

in [BFM09]. However, it seems that the methods of [Co86a] and [BFM09] do not apply in the

general case.

If f ∈ H(Θ) and 1 < p ≤ 2, then (f (n)wp,n)(x) is well-defined on R. Indeed it follows from

[FM08a] that f (n)(x) and wp,n(x) are finite if x ∈ E2n+2(Θ). On the contrary if x 6∈ E2n+2(Θ).
then ‖(kΘ

x )n+1‖2 = +∞. Hence, ‖(kΘ
x )n+1‖q = +∞ which, by definition, implies wp,n(x) = 0,

and thus we may assume (f (n)wp,n)(x) = 0.

In the inner case, we have ρ(t) ≡ 0 and the second term in the definition of the weight

wp,n disappears. It should be emphasized that in the general case both terms are essential: in

[BFM09] we give an example where the norm ‖ρ1/q
K

ρ
z,n‖q cannot be majorized uniformly by the

norm ‖(kΘ
z )

n+1
‖q.

Theorem 14 (Baranov–Fricain–Mashreghi, 2009). Let µ be a Carleson measure on clos(C+) ,

let n ∈ N, let 1 < p ≤ 2, and let

(Tp,nf)(z) = f (n)(z)wp,n(z), f ∈ H(Θ).

If 1 < p < 2, then Tp,n is a bounded operator from H(Θ) to L2(µ), that is, there is a constant

C = C(µ, p, n) > 0 such that

(23) ‖f (n)wp,n‖L2(µ) ≤ C‖f‖b, f ∈ H(Θ).

If p = 2, then T2,n is of weak type (2, 2) as an operator from H(Θ) to L2(µ).

The proof of this result is based on the representation (22) which reduces the problem of

Bernstein type inequalities to estimates on singular integrals. In particular, we use the following

estimates on the weight: for 1 < p ≤ 2 and n ∈ N, there exists a constant A = A(n, p) > 0 such

that

wp,n(z) ≥ A
(Im z)n

(1 − |Θ(z)|)
pn

q(pn+1)

, z ∈ C+.

To apply Theorem 14 one should have effective estimates for the weight wp,n, that is, for the

norms of the reproducing kernels. In the following, we relate the weight wp,n to the distances to

the level sets of |Θ|. We start with some notations. Denote by σi(Θ) the boundary spectrum of

Θ, i.e.

σi(Θ) :=
{
x ∈ R : lim inf

z−→x
z∈C+

|Θ(z)| < 1
}
.

Then closσi(Θ) = σ(Θ)∩R where σ(Θ) is the spectrum defined at the begining of this section.

For ε ∈ (0, 1), we put

Ω(Θ, ε) := {z ∈ C+ : |Θ(z)| < ε},

and

Ω̃(Θ, ε) := σi(Θ) ∪ Ω(Θ, ε).
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Finally, for x ∈ R, we introduce the following three distances

d0(x) := dist (x, σi(b)),

dε(x) := dist (x,Ω(b, ε)),

d̃ε(x) := dist (x, Ω̃(b, ε)).

Note that whenever b = Θ is an inner function, for all x ∈ σi(Θ), we have

lim inf
z−→x
z∈C+

|Θ(z)| = 0,

and thus dε(t) = d̃ε(t), t ∈ R. However, for an arbitrary function Θ in the unit ball of H∞(C+),

we have to distinguish between the distance functions dε and d̃ε.

Using fine estimates on the derivatives |Θ′(x)|, we got in [BFM09] the following result.

Lemma 1. For each p > 1, n ≥ 1 and ε ∈ (0, 1), there exists C = C(ε, p, n) > 0 such that

(24)
(
d̃ε(x)

)n
≤ C wp,n(x+ iy),

for all x ∈ R and y ≥ 0.

This lemma combined with Theorem 14 imply immediately the following.

Corollary 1 (Baranov–Fricain–Mashreghi, 2009). For each ε ∈ (0, 1) and n ∈ N, there exists

C = C(ε, n) such that

‖f (n)d̃n
ε‖2 ≤ C‖f‖Θ, f ∈ H(Θ).

As we have said in section 2, weighted Bernstein-type inequalities of the form (23) turned

out to be an efficient tool for the study of the so-called Carleson-type embedding theorems for

the shift-coinvariant subspaces Kp
Θ. Notably, methods based on the Bernstein-type inequalities

allow to give unified proofs and essentially generalize almost all known results concerning these

problems (see [Ba05a, Ba08]). Here we obtain an embedding theorem for de Branges–Rovnyak

spaces. In the case of an inner function the first statement coincides with a well-known theorem

due to Volberg and Treil [TV96].

Theorem 15. Let µ be a Borel measure in C+, and let ε ∈ (0, 1).

(a) Assume that µ(S(x, h)) ≤ Kh for all Carleson squares S(x, h) satisfying

S(x, h) ∩ Ω̃(Θ, ε) 6= ∅.

Then H(Θ) ⊂ L2(µ), that is, there is a constant C > 0 such that

‖f‖L2(µ) ≤ C‖f‖Θ, f ∈ H(Θ).

(b) Assume that µ is a vanishing Carleson measure for H(Θ), that is, µ(S(x, h))/h → 0

whenever S(x, h) ∩ Ω̃(b, ε) 6= ∅ and h → 0 or dist(S(x, h), 0) → +∞. Then the

embedding H(Θ) ⊂ L2(µ) is compact.
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In Theorem 15 we need to verify the Carleson condition only on a special subclass of squares.

Geometrically this means that when we are far from the spectrum σ(Θ), the measure µ in The-

orem 15 can be essentially larger than standard Carleson measures. The reason is that functions

in H(Θ) have much more regularity at the points x ∈ R \ closσ(Θ) where |Θ(x)| = 1. On the

other hand, if |Θ(x)| ≤ δ < 1, almost everywhere on some interval I ⊂ R, then the functions in

H(Θ) behave on I essentially the same as a general element of H2(C+) on that interval, and for

any Carleson measure for H(Θ) its restriction to the square S(I) is a standard Carleson measure.

For a class of functions Θ the converse to Theorem 15 is also true. As in the inner case, we

say that Θ satisfies the connected level set condition if the set Ω(Θ, ε) is connected for some

ε ∈ (0, 1). Our next result is analogous to certain results from [Co82] and to [TV96, Theorem

3].

Theorem 16. Let Θ satisfy the connected level set condition for some ε ∈ (0, 1). Assume that

Ω(Θ, ε) is unbounded and σ(Θ) ⊂ clos Ω(Θ, ε). Let µ be a Borel measure on C+. Then the

following statements are equivalent:

(a) H(Θ) ⊂ L2(µ).
(b) There exists C > 0 such that µ(S(x, h)) ≤ Ch for all Carleson squares S(x, h) such

that S(x, h) ∩ Ω̃(Θ, ε) 6= ∅.

(c) There exists C > 0 such that

(25)

∫

C+

Im z

|ζ − z|2
dµ(ζ) ≤

C

1 − |Θ(z)|
, z ∈ C+.

In [BFM09], we also discuss another application of our Bernstein type inequalities to the

problem of stability of Riesz bases consisting of reproducing kernels in H(Θ).

4. WEIGHTED BACKWARD SHIFT INVARIANT SUBSPACES

Let us now turn to weighted backward shift invariant subspaces. In Subsection 4.1 we will

present an example showing that the generalization of the Ahern-Clark result to the weighted

situation is far from being immediate. For this reason we will focus on analytic continuation in

this section.

For an outer function g in Hp, we define weighted Hardy spaces in the following way:

Hp(|g|p) :=
1

g
Hp = {f ∈ Hol(D) : ‖f‖p

|g|p = sup
0<r<1

1

2π

∫ π

−π

|f(reit)|p|g(reit)|pdt

=

∫ π

−π

|f(eit)|p|g(eit)|pdt <∞}.

Clearly f 7−→ fg induces an isometry from Hp(|g|p) onto Hp. Let now I be any inner function.

We shall discuss the situation when p = 2. There are at least two ways of generalizing the

backward shift invariant subspaces to the weighted situation. We first discuss the simple one.

As in the unweighted situation we can consider the orthogonal complement of shift invariant

subspaces IH2(|g|2), the shift S : H2(|g|2) −→ H2(|g|2) being given as usual by Sf(z) =
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zf(z). The weighted scalar product is defined by

〈f, h〉|g|2 =
1

2π

∫ π

−π

f(eit)h(eit)|g(eit)|2dt = 〈fg, hg〉.

Then

〈Sf, h〉|g|2 = 〈zfg, hg〉 = 〈fg, zhg〉 = 〈fg, P+(zhg)〉 = 〈f,
1

g
P+(gzh)〉|g|2 .

In other words, with respect to the scalar product 〈·, ·〉|g|2 the adjoint shift is given by S∗
g :=

1
g
P+gz, and

K2,g
I := (IH2(|g|2))⊥ = {f ∈ H2(|g|2) : 〈fg, Ihg〉 = 0, h ∈ H2(|g|2)}

= {f ∈ H2(|g|2) : 〈fg, Ih〉 = 0, h ∈ H2}

= {f ∈ H2(|g|2) : 〈P+(Ifg), h〉 = 0, h ∈ H2}

= {f ∈ H2(|g|2) : 〈
1

g
P+Ifg, h〉|g|2 = 0, h ∈ H2(|g|2)}

So, K2,g
I = ker(1

g
P+Ig) = ker( I

g
P+Ig). Setting P g

I := I
g
P−Ig we get a selfadjoint projection

such that

K2,g
I = P g

I H
2(|g|2) =

1

g
PI(gH

2(|g|2)) =
1

g
PIH

2 =
1

g
K2

I ,

where PI is the unweighted orthogonal projection onto K2
I . Hence, in this situation continuation

is completely determined by that in K2
I and that of 1/g.

Note also that the following simple example shows that in general K2,g
I is different from

K2
I (|g|2). Let I(z) = z be the simplest Blaschke factor. ThenH2(|g|2)∩IH2

0 (|g|2) = H2(|g|2)∩

H2(|g|) = C whenever g is rigid (more on rigidity follows later). On the other hand, 1
g
K2

I is the

one-dimensional space spanned by 1/g which is different from C when g is not a constant.

We will thus rather consider the second approach. The spaces to be discussed now appear in

the context of kernels of Toeplitz operators. Set

Kp
I (|g|p) = Hp(|g|p) ∩ IHp

0 (|g|p),

where now Hp(|g|p) = zHp(|g|p).
The connection with Toeplitz operators arises in the following way: if ϕ = Ig/g is a unimod-

ular symbol, then kerTϕ = gK2
I (|g|2) (see [HS03]). Conversely, whenever 0 6= f ∈ kerTϕ,

where ϕ is unimodular and f = Jg is the inner-outer factorization of f , then there exists an inner

function I such that ϕ = Ig/g (see also [HS03]).

The representation kerTϕ = gKp
I (|g|p) is particularly interesting when g is the extremal func-

tion of kerTϕ. Then we know from a result by Hitt [Hi88] (see also [Sa94] for a de Branges-

Rovnyak spaces approach to Hitt’s result) that when p = 2, kerTϕ = gK2
I , and that g is an

isometric divisor on kerTϕ = gK2
I (or g is an isometric multiplier on K2

I ). In this situation we

thus have K2
I (|g|2) = K2

I . Note, that for p 6= 2, if g is extremal for gKp
I (|g|p), then Kp

I (|g|p) can

still be imbedded into K2
I when p > 2 and in Kp

I when p ∈ (1, 2) (see [HS03], where it is also
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shown that these imbeddings can be strict). In these situations when considering questions con-

cerning pseudocontinuation and analytic continuation, we can carry over to Kp
I (|g|2) everything

we know about K2
I or Kp

I , i.e. Theorems 1 and 7. Concerning the Ahern-Clark and Cohn results

however, when p 6= 2, we lose information since condition (ii) in Theorem 2 depends on p.

In general the extremal function is not easily detectable (explicit examples of extremal func-

tions were given in [HS03]), in that we cannot determine it, or for a given g it is not a simple

matter to check whether it is extremal or not. So a natural question is to know under which condi-

tions on g and I , we can still say something about analytic continuation of functions in Kp
I (|g|p).

It turns out that Moeller’s result is valid under an additional local integrability condition of 1/g
on a closed arc not meeting the spectrum of I . Concerning the regularity questions in points

contained in the spectrum, the situation is more intricated. As mentioned earlier, an example in

this direction will be discussed at the end of this section.

Regularity of functions in kernels of Toeplitz operators have been considered by Dyakonov.

He in particular establishes global regularity properties of functions in the kernel of a Toeplitz

operator — such as being in certain Sobolov and Besov spaces [Dy96] or Lipschitz and Zyg-

mund spaces [Dy08b] — depending on the smoothness of the corresponding Toeplitz operator.

The following simple example hints at some difference between this situation and the un-

weighted situation or the context of de Branges-Rovnyak spaces discussed before. Let I be

arbitrary with −1 /∈ σ(I), and let g(z) = 1 + z, so that σ(I) is far from the only point where g

vanishes. We know that kerT Ig
g

= gKp
I (|g|p). We first observe that 1+z

1+z
= z. Hence,

1 ∈ Kp
zI = kerTzI = kerT Ig

g

= gKp
I (|g|p)

So, Kp
I (|g|p) contains the function 1/g which is badly behaved in −1, and thus cannot extend

analytically through −1.

This observation can be made more generally as stated in the following result [H08].

Proposition 2 (Hartmann 2008). Let g be an outer function in Hp. If kerTg/g 6= {0} contains

an inner function, then 1/g ∈ Kp
I (|g|p) for every inner function I .

Note that if the inner function J is in kerTg/g then TJg/g1 = 0, and hence 1 ∈ kerTJg/g =

gKp
J(|g|2) and 1/g ∈ Kp

J(|g|2), which shows that with this simple argument the proposition

holds with the more restrictive condition I = J .

Let us comment on the case p = 2:

The claim that the kernel of Tg/g contains an inner function implies in particular that Tg/g is

not injective and so g2 is not rigid in H1 (see [Sa95, X-2]), which means that it is not uniquely

determined — up to a real multiple — by its argument (or equivalently, its normalized version

g2/‖g2‖1 is not exposed in the unit ball of H1).

It is clear that if the kernel of a Toeplitz operator is not reduced to {0} — or equivalently (since

p = 2) g2 is not rigid — then it contains an outer function (just divide out the inner factor of any

non zero function contained in the kernel). However, Toeplitz operators with non trivial kernels

containing no inner functions can be easily constructed. Take for instance Tzg0/g0 = TzTg0/g0 ,
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where g0(z) = (1−z)α and α ∈ (0, 1/2). The Toeplitz operator Tg0/g0 is invertible (|g0|
2 satisfies

the Muckenhoupt (A2) condition) and (Tg0/g0)
−1 = g0P+

1
g0

[Ro77] so that the kernel of Tzg0/g0

is given by the preimage under Tg0/g0 of the constants (which define the kernel of Tz). Since

g0P+(c/g0) = cg0/g0(0), c being any complex number, we have kerTzg0/g0 = Cg0 which does

not contain any inner function.

So, without any condition on g, we cannot hope for reasonable results. In the above example,

when p = 2, then the function g2(z) = (1 + z)2 is in fact not rigid (for instance the argument

of (1 + z)2 is the same as that of z). As already pointed out, rigidity of g2 is also characterized

by the fact that Tg/g is injective (see [Sa95, X-2]). Here Tg/g = Tz the kernel of which is C.

From this it can also be deduced that g2 is rigid if and only if Hp(|g|p) ∩Hp(|g|p) = {0} which

indicates again that rigidity should be assumed if we want to have Kp
I (|g|p) reasonably defined.

(See [Ka96] for some discussions on the intersection Hp(|g|p) ∩Hp(|g|p).)

A stronger condition than rigidity (at least when p = 2) is that of a Muckenhoupt weight. Let

us recall the Muckenhoupt (Ap) condition: for general 1 < p < ∞ a weight w satisfies the (Ap)
condition if

B := sup
I subarc of T

{
1

|I|

∫

I

w(x)dx×

(
1

|I|

∫

I

w−1/(p−1)(x)dx

)p−1
}
<∞.

When p = 2, it is known that this condition is equivalent to the so-called Helson-Szegő con-

dition. The Muckenhoupt condition will play some rôle in the results to come. However, our

main theorem on analytic continuation (Theorem 17) works under a weaker local integrability

condition.

Another observation can be made now. We have already mentioned that rigidity of g2 in H1 is

equivalent to injectivity of Tg/g, when g is outer. It is also clear that Tg/g is always injectif so that

when g2 is rigid, the operator Tg/g is injectif with dense range. On the other hand, by a result of

Devinatz and Widom (see e.g. [Ni02, Theorem B4.3.1]), the invertibility of Tg/g, where g is outer,

is equivalent to |g|2 being (A2). So the difference between rigidity and (A2) is the surjectivity (in

fact the closedness of the range) of the corresponding Toeplitz operator. A criterion for surjectiv-

ity of non-injective Toeplitz operators can be found in [HSS04]. It appeals to a parametrization

which was earlier used by Hayashi [Hay90] to characterize kernels of Toeplitz operators among

general nearly invariant subspaces. Rigid functions do appear in the characterization of Hayashi.

As a consequence of Theorem 17 below analytic continuation can be expected on arcs not

meeting the spectrum of I when |g|p is (Ap) (see Remark 1). However the (Ap) condition cannot

be expected to be necessary since it is a global condition whereas continuation depends on the

local behaviour of I and g. We will even give an example of a non-rigid function g (hence not

satisfying the (Ap) condition) for which analytic continuation is always possible in certain points

of T where g vanishes essentially.

Closely connected with the continuation problem in backward shift invariant subspaces is the

spectrum of the backward shift operator on the space under consideration. The following result

follows from [ARR98, Theorem 1.9]: Let B be the backward shift on Hp(|g|p), defined by
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Bf(z) = (f − f(0))/z. Clearly, Kp
I (|g|p) is invariant with respect to B whenever I is inner.

Then, σ(B|Kp
I (|g|p)) = σap(B|Kp

I (|g|p)), where σap(T ) = {λ ∈ C : ∃(fn)n with ‖fn‖ = 1 and

(λ− T )fn → 0} denotes the approximate point spectrum of T , and this spectrum is equal to

T \ {1/ζ ∈ T : every f ∈ Kp
I (|g|p) extends analytically in a neighbourhood of ζ}.

The aim is to link this set and σ(I). Here we will need the Muckenhoupt condition. Then, as in

the unweighted situation, the approximate spectrum of B|Kp
I (|g|p) on T contains the conjugated

spectrum of I . We will see later that the inclusion in the following proposition [H08] actually is

an equality.

Proposition 3 (Hartmann 2008). Let g be outer in Hp such that |g|p is a Muckenhoupt (Ap)-
weight. Let I be an inner function with spectrum σ(I) = {λ ∈ clos D : lim infz→λ I(z) = 0}.

Then σ(I) ⊂ σap(B|Kp
I (|g|p)).

We now come to the main result in the weighted situation (see [H08]).

Theorem 17 (Hartmann 2008). Let g be an outer function in Hp, 1 < p < ∞ and I an inner

function with associated spectrum σ(I). Let Γ be a closed arc in T. If there exists s > q,
1
p

+ 1
q

= 1, with 1/g ∈ Ls(Γ), then every function f ∈ Kp
I (|g|p) extends analytically through Γ

if and only if Γ does not meet σ(I).

Note that in [H08] only the sufficiency part of the above equivalence was shown. However the

condition that Γ must not meet σ(I) is also necessary (even under the a priori weaker condition

of continuation through Γ) as follows from the proof of Theorem 18 below.

It turns also out that — like in the de Branges-Rovnyak situation discussed in Theorem 8 —

for analytic continuation it is actually sufficient to have continuation. This result is new, and we

will state it as a theorem provided with a proof. It is based on ideas closed to the proof of the

previous theorem.

Theorem 18. Let g be an outer function in Hp, 1 < p < ∞ and I an inner function with

associated spectrum σ(I). Let Γ be an open arc in T. Suppose that every function f ∈ Kp
I (|g|p)

extends continuously through Γ then Γ ∩ σ(I) = ∅, and every function in Kp
I (|g|p) extends

analytically through Γ.

Proof: Observe first that obviously kI
λ ∈ K2

I (|g|2). By the Schwarz reflection principle, in

order that kI
λ continues through Γ we need that Γ does not meet σ(I) (note that clos Γ could meet

σ(I)).
As in the unweighted situation, every meromorphic function f/I , f = Iψ ∈ K2

I (|g|2), admits

a pseudocontinuation ψ̃, defined by ψ̃(z) =
∑

n≥0 ψ̂(n) 1
zn in the exterior disk De = C \ clos D.

Fix Γ0 any closed subarc of Γ. Since σ(I) is closed, the distance between σ(I) and Γ0 is

strictly positif. Then there is a neigbourhood of Γ0 intersected with D where |I(z)| ≥ δ > 0. It

is clear that in this neighbourhood we are far away from the part of the spectrum of I contained

in D. Thus I extends analytically through Γ0. For what follows we will call the endpoints of this

arc ζ1 := eit1 and ζ2 := eit2 (oriented in the positive sense).

The following argument is in the spirit of Moeller [Mo62] and based on Morera’s theorem.

Let us introduce some notation (see Figure 1).
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ζ1

ζ2

T

1/r0

Ω0

Ω̃0

r0

Figure 1: The regions Ω0 and Ω̃0

For suitable r0 ∈ (0, 1) let Ω0 = {z = reit ∈ D : t ∈ [t1, t2], r0 ≤ r < 1}. and Ω̃0 = {z =
eit/r ∈ De : t ∈ [t1, t2], r0 ≤ r < 1}. Define

F (z) =

{
f(z)/I(z) when z ∈ Ω0

ψ̃(z) when z ∈ Ω̃0.

By construction this function is analytic on Ω0 ∪ Ω̃0 and continuous on Ω0 ∪ Ω̃0. Such a function

is analytical on Ω0 ∪ Ω̃0. �

Remark 1. It is known (see e.g. [Mu72]) that when |g|p ∈ (Ap), 1 < p < ∞, then there exists

r0 ∈ (1, p) such that |g|p ∈ (Ar) for every r > r0. Take r ∈ (r0, p). Then in particular 1/g ∈ Ls,

where 1
r

+ 1
s

= 1. Since r < p we have s > q. which allows to conclude that in this situation

1/g ∈ Ls(Γ) for every Γ ⊂ T (s independant of Γ).

We promised earlier an example of a non-rigid function g for which analytic continuation of

Kp
I -functions is possible in certain points where g vanishes.

Example. For α ∈ (0, 1/2), let g(z) = (1 + z)(1 − z)α. Clearly g is an outer function vanishing

essentially in 1 and −1. Set h(z) = z(1 − z)2α, then by similar arguments as those employed

in the introducing example to this section one can check that arg g2 = arg h a.e. on T. Hence

g is not rigid (it is the “big” zero in −1 which is responsible for non-rigidity). On the other

hand, the zero in +1 is “small” in the sense that g satisfies the local integrability condition in a

neighbourhood of 1 as required in the theorem, so that whenever I has its spectrum far from 1,

then every K2
I (|g|2)-function can be analytically continued through suitable arcs around 1.

This example can be pushed a little bit further. In the spirit of Proposition 2 we check that

(even) when the spectrum of an inner function I does not meet −1, there are functions inKp
I (|g|p)

that are badly behaved in −1. Let again g0(z) = (1 − z)α. Then

g(z)

g(z)
=

(1 + z)(1 − z)α

(1 + z)(1 − z)α
= z

g0(z)

g0(z)
.
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As already explained, for every inner function I , we have kerTIg/g = gKp
I (|g|p), so that we

are interested in the kernel kerTIg/g. We have TIg/gf = 0 when f = Iu and u ∈ kerTg/g =
kerTzg0/g0 = Cg0 (see the discussion just before the proof of Proposition 2). Hence the function

defined by

F (z) =
f(z)

g(z)
= I(z)

g0(z)

g(z)
=

I(z)

1 + z

is in Kp
I (|g|p) and it is badly behaved in −1 when the spectrum of I does not meet −1 (but not

only).

The preceding discussions motivate the following question: does rigidity of g suffice to get

analytic continuation for Kp
I (|g|2)-function whenever σ(I) is far from zeros of g?

Theorem 17 together with Proposition 3 and Remark 1 allow us to obtain the following result.

We should mention that it is easy to check that Hp(|g|p) satisfies the conditions required of a

Banach space of analytic functions in order to apply the results of [ARR98].

Corollary 2 (Hartmann 2008). Let g be outer inHp such that |g|p is a Muckenhoupt (Ap) weight.

Let I be an inner function with spectrum σ(I) = {λ ∈ clos D : lim infz→λ I(z) = 0}. Then

σ(I) = σap(B|Kp
I (|g|p).

Another simple consequence of Theorem 17 concerns embeddings. Contrarily to the situations

discussed in Sections 2 and 3, the weight is here on the Kp
I -side.

Corollary 3 (Hartmann 2008). Let I be an inner function with spectrum σ(I). If Γ ⊂ T is a

closed arc not meeting σ(I) and if g is an outer function in Hp such that |g| ≥ δ on T \ Γ for

some constant δ > 0 and 1/g ∈ Ls(Γ), s > q, 1
p
+ 1

q
= 1. Then Kp

I (|g|p) ⊂ Kp
I . If moreover g is

bounded, then the last inclusion is an equality.

Suppose now p = 2. We shall use this corollary to construct an example whereK2
I (|g|2) = K2

I

without g being extremal for gK2
I (|g|2). Recall from Hitt’s result [Hi88], that when g is the

extremal function of a nearly invariant subspace M ⊂ H2, then there exists an inner function

I such that M = gK2
I , and g is an isometric multiplier on K2

I so that K2
I = K2

I (|g|2). Recall

from [HS03, Lemma 3] that a function g is extremal for gK2
I (|g|2) if

∫
f |g|2dm = f(0) for

every function f ∈ K2
I (|g|2). Our example is constructed in the spirit of [HS03, p.356]. Fix

α ∈ (0, 1/2). Let γ(z) = (1 − z)α and let g be an outer function in H2 such that |g|2 = Re γ
a.e. on T (such a function clearly exists). Let now I = BΛ be an infinite Blaschke product with

0 ∈ Λ. If Λ accumulates to points outside 1, then the corollary shows that K2
I = K2

I (|g|2). Let

us check that g is not extremal. To this end we compute
∫
kλ|g|

2dm for λ ∈ Λ (recall that for

λ ∈ Λ, kλ ∈ K2
I = K2

I (|g|2)):
∫
kλ|g|

2dm =

∫
kλ Re γdm =

1

2

(∫
kλγdm+

∫
kλγdm

)
=

1

2
kλ(0)γ(0) +

1

2
〈kλ, γ〉

=
1

2
(1 + (1 − λ)α)(26)

which is different from kλ(0) = 1 (except when λ = 0). Hence g is not extremal.
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We could also have obtained the non-extremality of g from Sarason’s result [Sa89, Theorem

2] using the parametrization g = a
1−b

appearing in Sarason’s and Hayashi’s work (see [H08] for

details on this second argument).

It is clear that the corollary is still valid when Γ is replaced by a finite union of intervals. How-

ever, we can construct an infinite union of intervals Γ =
⋃

n≥1 Γn each of which does not meet

σ(I), an outer function g satisfying the yet weaker integrability condition 1/g ∈ Ls(Γ), s < 2,

and |g| ≥ δ on T \ Γ, and an inner function I such that K2
I (|g|2) 6⊂ K2

I . The function g obtained

in this construction does not satisfy |g|2 ∈ (A2). (See [H08] for details.)

Another simple observation concerning the local integrability condition 1/g ∈ Ls(Γ), s > q:
if it is replaced by the global condition 1/g ∈ Ls(T), then by Hölder’s inequality we have an

embedding into a bigger backward shift invariant subspace:

Proposition 4 (Hartmann 2008). Let 1 < p < ∞ and 1/p + 1/q = 1. If there exists s > q such

that 1/g ∈ Ls(T), then for r with 1/r = 1/p+ 1/s we have Lp(|g|p) ⊂ Lr.

So in this situation we of course also have Kp
I (|g|p) ⊂ Kr

I . In particular, every function

f ∈ Kp
I (|g|p) admits a pseudocontinuation and extends analytically outside σ(I). Again the

Ahern-Clark condition does not give complete information for the points located in the spectrum

of I since (ii) of Theorem 2 depends on p.

When one allows g to vanish in points contained in σ(I), then it is possible to construct exam-

ples with |g|p ∈ (Ap) and Kp
I (|g|p) 6⊂ Kp

I : take for instance I = BΛ the Blasche product vanish-

ing exactly in Λ = {1− 1
2n}n and g(z) = (1− z)α, where α ∈ (0, 1/2) and p = 2 (see [H08] for

details; the condition |g|2 ∈ (A2) is required in the proof to show that K2
I (|g|2) = P+(1

g
K2

I ) —

see Lemma 2 below — which gives an explicit description of K2
I in terms of coefficients with re-

spect to an unconditional basis). The following crucial example is in the spirit of this observation.

4.1. An example. In the spirit of the example given in [H08, Proposition 4] we shall now discuss

the condition (ii) of Theorem 2 in the context of weighted backward shift invariant subspaces.

We first have to recall Lemma 1 from [H08]:

Lemma 2 (Hartmann 2008). Suppose |g|p is an (Ap) weight and I an inner function. Then

A0 = P+
1
g

is an isomorphism of Kp
I onto Kp

I (|g|p). Also, for every λ ∈ D we have

A0kλ =
kλ(µ)

g(λ)
.(27)

We return to the situation p = 2. Take g(z) = (1 − z)α with α ∈ (0, 1/2). Then |g|2 is (A2).
Let

rn = 1 −
1

2n
, θn = (1 − rn)s =

1

2ns
, λn = rne

iθn ,

where s ∈ (0, 1/2). Hence the sequence Λ = {λn}n tends tangentially to 1. Set I = BΛ. We

check the Ahern-Clark condition in ζ = 1 for N = 0 (which means that we are just interested in
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the existence of non tangential limits in ζ = 1). Observe that for s ∈ (0, 1/2) we have

|1 − rne
iθn|2 ≃ (1 − rn)2 + θ2

n =
1

22n
+

1

22ns
≃

1

22ns
,(28)

and so when q > 1

∑

n≥1

1 − r2
n

|1 − rneiθn|q
≃

∑

n≥1

1/2n

1/2nsq
≃

∑

n≥1

2n(sq−1).(29)

The latter sum is bounded when q = 2 which implies in the unweighted situation that every

function in the backward shift invariant subspace K2
I has a nontangential limit at 1. Note also

that since |g|2 ∈ (A2), by Proposition 4 and comments thereafter, K2
I (|g|2) imbeds into some

Kr
I , r < 2. Now taking q = r′ > 2, where 1

r
+ 1

r′
= 1, we see that the sum in (29) diverges

when sr′ ≥ 1 and converges for rs′ < 1. So depending on the parameters s and α we can assert

continuation or not. It will be clear a posteriori that the parameter s — ensuring convergence of

(29) for q = 2 — will be such that r′s ≥ 1 (r and hence r′ are fixed once α is fixed).

Note that σ(I) ∩ T = {1}, which corresponds to the point where g vanishes. Clearly, Λ is an

interpolating sequence, and so the sequence {kλn/‖kλn‖2}n is a normalized unconditional basis

in K2
I . This means that we can write K2

I = l2(
kλn

‖kλn‖2
) meaning that f ∈ K2

I if and only if

f =
∑

n≥1

αn
kλn

‖kλn‖2

with
∑

n≥1 |αn|
2 <∞ (the last sum defines the square of an equivalent norm in K2

I ).

As already mentioned |g|2 is Muckenhoupt (A2). This implies in particular that we have the

local integrability condition 1/g ∈ Ls(Γ) for some s > 2 and Γ an arc containing the point 1.

Moreover, we get from (27)

{A0(kλn/‖kλn‖2)}n = {
kλn

g(λn)‖kλn‖2

}n,

and {kλn/(g(λn)‖kλn‖2)}n is an unconditional basis in K2
I (|g|2) (almost normalized in the sense

that ‖A0(kλn/‖kλn‖2)‖|g|2 is comparable to a constant independant of n). Hence for every se-

quence α = (αn)n with
∑

n≥1 |α
2
n| <∞, we have

fα :=
∑

n≥1

αn

g(λn)

kλn

‖kλn‖2

∈ K2
I (|g|2).

To fix the ideas we will now pick αn = 1/n1/2+ε for some ε > 0 so that
∑

n αnkλn/‖kλn‖2 is

in K2
I , and hence fα ∈ K2

I (|g|2). Let us show that f does not have a non tangential limit in 1.

Fix t ∈ (0, 1). Then

f(t) =
∑

n

αn

g(λn)

kλn(t)

‖kλn‖2

.
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We have ‖kλn‖2 = 1/
√

1 − |λn|2 ≃ 2n/2. Also as in (28),

|g(λn)| = |1 − λn|
α ≃ θα

n =
1

2nsα

Changing the arguments of the αn’s and renormalizing, we can suppose that

αn

g(λn)‖kλn‖2

=
2n(sα−1/2)

n1/2+ε

Let us compute the imaginary part of fα in t. Observe that the imaginary part of 1/(1 − tλn) is

negative. More precisely, assuming t ∈ [1/2, 1) and n ≥ N0,

Im
1

1 − tλn

= Im
1 − tλn

|1 − tλn|2
=

−trn sin θn

|1 − tλn|2
≃

−θn

|1 − tλn|2
=

−1/2ns

|1 − tλn|2

Also for n ≥ N = log2(1/(1 − t)), we have 1 − t ≥ 1/2n and rn = 1 − 1/2n ≥ t, so that for

these n

|1 − tλn|
2 ≃ (1 − trn)2 + θ2

n ≤ (1 − t2)2 + θ2
n ≤ 4(1 − t)2 + θ2

N

≤ 4(1 − t)2 + c(1 − t)2s . (1 − t)2s

So

| Im f(t)| =

∣∣∣∣∣Im
∑

n

αn

g(λn)

kλn(t)

‖kλn‖2

∣∣∣∣∣ &
∑

n≥log2(1/(1−t))

2n(sα−1/2)

n1/2+ε

1/2ns

(1 − t)2s

&
1

(1 − t)2s

∑

n≥log2(1/(1−t))

1

2γn
≃

1

(1 − t)2s

1

2γ log2(1/(1−t))

& (1 − t)γ−2s,

where γ = s + 1/2 − sα + δ for an arbitrarily small δ (this compensates the term n1/2+ε). So

γ − 2s = 1/2− s(1 + α) + δ which can be made negative by choosing s closely enough to 1/2.

We conclude that the function fα is not bounded in 1 and thus cannot have a non-tangential

limit in ζ = 1
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[Bern26] S.N. Bernstein, Leçons sur les propriétés extrémales et la meilleurs approximation des fonctions ana-
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