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SEGMENTED MEDICAL IMAGES BASED
SIMULATIONS OF CARDIAC ELECTRICAL
ACTIVITY AND ELECTROCARDIOGRAM: A
MODEL COMPARISON.

by
Charles Pierre, Olivier Rousseau & Yves Bourgault

Abstract. — The purposes of this work is to compare the action poten-
tial and electrocardiogram computed with the monodomain and bido-
main models, using a patient-based two-dimensional geometry of the
heart-torso. The pipeline from CT scans to image segmentation with
an in-house level set method, then to mesh generation is detailed in
the article. Our segmentation technique is based on a new iterative
Chan-Vese method. The bidomain model and its approximation called
the “adapted” monodomain model are next introduced. The numerical
methods used to solve these two models are briefly presented. Using
both uni- and two-dimensional test cases, we next assess the mesh size
required to control the error on the conduction velocities, a main source
of error in cardiac action potential computations. We show with quanti-
tative estimates that a main parameter controlling the mesh size is the
cell membrane surface-to-volume ratio, noted x. Realistic x of about
1500 — 2000 cm~! for human hearts still require major computational
resources. We then compare our numerical solutions and the electro-
cardiogram recovered with both models on our heart-torso geometry.
Activation sites are chosen so that the depolarisation isochrons closely
match experimental results in human hearts for healthy cardiac propa-
gation. Both models give similar solutions whereas the bidomain model
is about 20-50 times more CPU intensive than the adapted monodomain
model. The main computational effort goes in the computation of the
extra-cellular and extra-cardiac potentials in the heart-torso. We show
that the equations for these potentials must be solved with sufficient
accuracy, otherwise compromising the quality of the computed electro-
cardiograms.

Key words and phrases. — Electro-cardiology, bidomain and monodomain mod-
els, image segmentation, ECG simulation, reaction diffusion equations, numerical
simulations.
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1. Introduction

The numerical simulation of biological phenomenon requires to have
both well suited /accurate models and precise data on the biological struc-
tures considered. Since models in electrocardiology are formulated in
terms of partial differential equations, being able to generate precise
meshes of the heart and of the surrounding tissue is a major asset to-
wards a realistic simulation of the heart electrical activity. The general
objective of this paper is to provide a complete pipeline “Medical image
analysis-Modelling-Simulation” and to present the benefits of this syner-
getic strategy in comparing two models (namely the bidomain and the
adapted monodomain models) for the computation of electrocardiogram
(ECG) on a patient-based geometry built from CT scan medical data.
Our simulations will concentrate on the normal cardiac electrical activity.

During every heartbeat, the so called cardiac action potential phe-
nomenon occurs: the myocardium is successively crossed by two trans-
membrane potential waves — a depolarisation wave followed by a repolari-
sation one — respectively causing its contraction and relaxation. Cardiac
action potential is due to ionic transfers across the cellular membrane
inducing rises and drops in the intra- and extra-cellular potentials, the
difference of which is the previously mentioned transmembrane potential.
This activity generates an extra-cardiac potential field that varies over
time and space, the measurement of which on the body surface is the
ECG.

Cardiac electrical activity involves different complexity levels. Firstly
at the cellular level, huge advances have been done from the pioneering
works of Hodgkin and Huxley [27] to model ionic transfer across the cell
membrane. Recent models provide an accurate description of mammalian
myocites electrophysiology [35], human designed models of ventricle cells
now being available [47].

Secondly, at a macroscopic tissue level, excitation process in myocardial
tissue is the subject of numerous experimental studies, among which we
non extensively quote e.g. [10, 46, 45]. Excitation process involves two
quantities: the extra-cellular and the transmembrane potentials. The
bidomain model [49] expresses the relationship between these two quan-
tities as being linked by a current conservation balance law. Early sim-
ulation using the bidomain model have been done in [42].

Finally, at the body scale, the interaction between the heart and the sur-
rounding tissues has been experimentally studied in [36] using perfused
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dog hearts embedded in an electrolytic bath representing the torso. This
study suggests a strong coupling between the extra-cellular and extra-
cardiac potential fields.

The bidomain model has the strong advantage to be based on a clear
and physiologically relevant modelling process including an homogenisa-
tion step from a microscopic tissue scale to a macroscopic one. This step
has been formally derived in [29] and mathematically justified in [2, 20].
This underlying interpretation at a microscopic tissue scale makes pos-
sible the embedding of the bidomain model with a full torso model via
physiologically relevant coupling conditions at the heart/torso interface
[30], allowing the simulation of the extra-cardiac potential field and of
the ECG. For these reasons the bidomain model is very popular for the
simulation of the heart and torso coupled electrical activity [32, 33].

Meanwhile, the bidomain model is numerically highly demanding and
various simplifications of this model have been widely used. The eikonal
model [15, 16, 12, 14] allows to model the spread of transmembrane
potential wavefront during depolarisation. Automaton models [34] al-
lows the simulation of repolarisation sequence assuming the cells to have
a black boxr behaviour determined by a single entry depolarisation sig-
nal only. Extra-cardiac potential fields can also be recovered during
the depolarisation sequence using the oblique dipole layer representation
[18, 17, 13]. All these simplified version of the bidomain model have
their own limitations: simulation of a depolarisation sequence only, re-
covery of the extra-cardiac potential fields under strong limitations on
the extra-cardiac domain geometry and structure for instance. Moreover,
the simulation of body surface potential using these models follows a two
steps strategy: first interpret the transmembrane potential wavefront as
a distribution of current sources (dipoles), then calculate the associated
far-field potential. As it has been pointed out in [6] and numerically vali-
dated in [7], this strategy does not properly capture the feedback between
the extra-cellular and extra-cardiac potential fields above mentioned.

Another simplified variant of the bidomain model, referred to as the
monodomain model, expresses the excitation sequence with the help of a
single potential variable: the transmembrane potential only. This decou-
pling between the extra-cellular and the transmembrane potential fields
is based on a non-physiologically relevant assumption referred to as the
equal anisotropy ratio assumption. However, complex patterns of excita-
tion in a realistic framework have been successfully simulated using the
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monodomain model [4, 43, 38]. Although efficient in practise, the ques-
tion of the coupling between the cardiac region where no extra-cellular
potential is available and the extra-cardiac potential in the torso re-
mained pending within the monodomain framework.

More recently, [9, 19, 41|, a new model referred to as the adapted mon-
odomain model was proposed both to address the bidomain model high
computational cost problem and the coupling difficulty between the car-
diac and extra-cardiac regions for the monodomain model. In this frame-
work, the transmembrane potential field is governed by a single reaction
diffusion equation as for the monodomain model, the computation of
which remains decoupled from the extra-cellular/-cardiac potential fields.
A complete extra-cardiac/-cellular potential field is then reconstructed
from the transmembrane potential which construction naturally includes
the physiological coupling between extra-cardiac and extra-cellular po-
tentials on the heart surface. The adapted monodomain model has to
be considered as an approximation of the bidomain model, providing
both a much lower computational cost (since the extra-cardiac/-cellular
potential field can be computed when desired only) and a correct cou-
pling on the heart surface between the extra-cardiac and extra-cellular
potential fields. The bidomain and adapted monodomain models have
been compared in few papers. In [9, 19|, the transmembrane potential
course predicted by each model has been compared on a slab of tissue,
respectively in dimension 2 and 3. A deep investigation on the excitation
patterns and action potential duration is provided in [19], showing that
the two models do match quite closely. In [41], extra-cellular potentials
recordings on the epi- and endo-cardial surface have been simulated on an
isolated three dimensional heart. Again the two models provided results
in good agreement.

In this paper we propose to deepen the comparison between the bido-
main and monodomain adapted models on ECG computations as well
as transmembrane and extra-cellular/extra-cardiac potential fields on a
realistic test case. Precisely, a two dimensional test case is considered,
the geometry of which has been automatically generated from a patient
based medical C'T scan, which also includes both conductivity anisotropy
inside the myocardium (due to the muscular fibre orientation) and con-
ductivity heterogeneity inside the torso (where three different regions
have been identified, namely the lungs, the ventricle cavities and the
remaining tissues).
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Patient-based geometry and meshes are generated from raw medical
images using segmentation techniques that are presented in section 2.
The bidomain and adapted monodomain models are stated and discussed
in section 3, whereas section 4 is devoted to their practical implemen-
tation. Section 5 assesses the numerical difficulties of the two models,
especially the mesh size requirements that have been evaluated on a sim-
ple two dimensional geometry. Last section 6 presents our realistic test
case built from the segmented medical images. The simulations of both
models on this test case are presented and eventually discussed. A con-
cluding section follows.

2. Imaging and geometry

To run the numerical simulations in section 6, a mesh accurately re-
producing the heart geometry and the torso organs boundaries is needed.
This is done in two steps. First, we segment the heart and the torso from
a medical image, next, we generate a mesh based on this segmentation.
The image analysis tools developed in order to build this mesh are pre-
sented here.

Figure 1(a) represents a high resolution CT scan, courtesy of the Ot-
tawa Heart Institute. The CT scan has size 512 x 512 x 199 pixels. The
horizontal resolution is of 0.49x0.49 mm whereas vertically it is of 1.25
mm. The heart geometry considered in section 6 has been extracted
from the image shown on Figure 1(b). This image is a horizontal slice of
the original three-dimensional CT scan exhibiting a cut through the two
cardiac ventricles as well as a fraction of the lungs.

The medical image can be thought as a function g : 2 — R. The
segmentation is then performed using the Chan-Vese method [8], which
seeks for an approximation of the image ¢g with a binary (two colours)
image u : 2 — {c1,c2}. An energy functional is associated to this binary
image, which energy will be minimised.

The minimisation space is denoted by X, it is defined as the set of all
functions reading u = ¢ xr + c2Xq_F, Where:

— xr is the indicator function of F' C (2,

— F C Qis asub domain of sufficient regularity (with finite perimeter,
see e.g. [1]),

— ¢1, c3 € R are scalar constants.
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()

FIGURE 1. Medical images. (a) Three-dimensional CT scan
(courtesy of the Heart Institute, University of Ottawa), with
resolution 0.49x0.49x1.25 mm: 52 166 656 voxels. (b) Two-
dimensional slice of the previous image, including an horizontal
cut through the cardiac ventricles surrounded by the lungs.

We search for a solution u minimising the Mumford-Shah energy func-
tional Eys [1, 37] over X:

. . 2
0 mip Burs() = mi | 7) + [ 19— uP de
where |J(u)| denotes the perimeter of F' for u = ¢ xr + caxa—r (i.e. the
d — 1-dimensional Hausdorff measure of the jump set of u).

Problem (1) is reformulated using level sets. The unknown u is written
using a level set function ¢: u = ¢; H(¢)+c2(1— H(¢)), where H denotes
the Heaviside function. The energy functional in (1) can be reformulated
in the level set framework and the associated Euler-Lagrange equations
can be derived [8]. These equations are solved using a gradient descent
method. A level set function ¢ associated to a solution of (1) thus is
sought as a steady state of the following equations (§ standing for the
Dirac measure):

@ Gy =300) (1 dv(go) Ao - e - (- )
o) fell— )

= Co = .
Jo H(9) Jo(1 = H(¢))

System (2) has been numerically solved using an explicit finite difference
scheme on the underlying image grid.

The Chan-Vese method provides a two-phase approximation of the
image ¢, in other words the image is split in two sub-regions F' and
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2 — F. In order to segment images containing more than two phases,
the method is applied once. Among the two phases so obtained, the one
containing more than one region of interest is selected and considered as
a new domain on which the Chan-Vese method is applied again. This
iterative segmentation process is used until all the regions of interest
within the original image g are fully extracted. This process is similar
to the hierarchical segmentation method proposed by Tsai, Yezzi and
Willsky [48].

Figure 2 shows the results of this process on the two-dimensional image
of the heart depicted on Figure 1(b). The first step of the process provides
the lungs geometry, which organs were the most contrasted part of the
original image. The second step provides the epicardium and the last
step the endocardium.

(a) (b)

FIGURE 2. Segmentation process. (a) Iterative segmentation
of the CT scan slice. From left to right: lungs boundary, epi-
cardial and endocardial identifications. (b) Final image of the
ventricle slice.

The final segmented image of the ventricle slice depicted on Figure
2(b) is then used to build a mesh of the cut through the torso, heart
and lungs. The mesh generation has been performed using the code
DistMesh [39], a mesher well suited for domains implicitly defined with
level set functions. The mesh of the whole horizontal torso slice so gen-
erated is depicted on Figure 2. Four sub-domains have been identified
on this mesh corresponding to 4 sub-meshes (cardiac region, ventricle
cavities, lungs and remaining tissues). The boundary edges of these sub-
meshes fit the segmented image sub-domains. Each sub-mesh has its own
space resolution as related to the further simulation demands: the ele-
ments within the cardiac ventricles being much finer than the elements
in the extra-cardiac domain.
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FIGURE 3. Mesh generation. Left: whole mesh. Top right: the
lungs and the cardiac ventricles sub-meshes. Down right: the
ventricular cavities and the surrounding tissues.

3. Electrocardiology model: mathematical formulation

The entire domain (the thorax slice) is denoted by €2. The cardiac sub-
domain is denoted H. For convenience, the extra-cardiac sub-domain is
referred to as the torso and denoted T = Q — H.

Two models are formulated in this section. Firstly the bidomain model
for the heart embedded in the torso. Secondly a simplified version of this
model, referred to as the adapted monodomain model.

3.1. Bidomain model for the heart embedded in the torso. —

3.1.1. Heart model. — At the microscopic scale (see e.g. [20, 50]) the
cardiac tissue is regarded as being composed of two distinct media, the
intra-cellular (i) and extra-cellular (e) media. These media interact
across the active cellular membrane. This interaction is described by
ionic models discussed in section 3.3.

The bidomain model provides an homogenised version of such micro-
scopic model at the heart level [2, 29]. Tt involves two potential fields:
the intra- and extra-cellular potentials ¢; and ¢., respectively, in the
whole cardiac volume H. The transmembrane potential V is defined as:

(3) V =¢; — ¢ in H.

At the macroscopic level, the cardiac tissue is seen as an arrangement of
cardiac fibres rotating around the ventricle cavities (see fig. 8 below), thus
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being tangent to the cardiac boundaries (endo- and epi-cardial). This
fibre distribution determines the tissue anisotropy: at any point x € H
is associated two conductivity tensors o;(z) and o.(x) corresponding to
the intra- and extra-cellular media conductivity properties. These tensors
are symmetric positive definite. Introducing the conductivities g,f’e, gf’e
longitudinal and transverse to the fibres, these tensors read:

(4) o;(z) = Diag(g, ¢!) , oe(x) = Diag(g.,g!)

in an orthonormal base whose principal direction is given by the fibre
orientation at point z.

The first equation of the bidomain model expresses, in absence of external
current sources, the global current conservation between the intra-cellular
and extra-cellular media. It reads:

(5) div(o;Ve;) + div(e. Vo) =0 in H .

The second equation of the bidomain model comes from the cellular mem-
brane modelling. The current between the intra- and extra-cellular media
across the membrane is the sum of an ionic transfer (resistive current)
and a capacitive current. At the macroscopic level, it reads:

(6) X (€OV + lion(V,w)) = —div(o.V¢e) ,

¢ denoting the membrane surface capacitance, I;,, the surface current
distribution on the membrane. y is a homogenisation term defined as
the rate of cellular membrane surface per unit volume. Not to enter the
details of electrophysiology modelling, one shall simply present w(x,t) €
RY as a vector describing the state of the cellular membrane. Ionic
models describing I;,,, read the generic form:

(7) ow = g(V,w) in H,

more precisions being given in section 3.3.

3.1.2. Torso model. — The torso T’ is considered as a passive conductor.
Introducing the extra-cardiac potential field ¢, one has:

(8) div(erVeor) = 0 in T,

where o7 is the conductivity tensor in 7. This tensor is isotropic but
heterogeneous, or(x) = g(x)ld, assuming different conductivities g, gc
and ggr in the lungs, the ventricle cavities and the remaining tissues,
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respectively. No current leaking out from the body, one has the following
zero flux boundary condition:

9) orVor-n = 0 on 0f).

Eventually, heart and torso models are coupled on the heart surface by in-
terface continuity conditions between the extra-cellular and extra-cardiac
potentials [30]:

(10) ¢p.=¢r and orVeor-n=o0.Vo.-n on 0H ,
together with a zero flux condition on ¢;:
(11) oiVo;-n=0 on O0H .

Conditions (10) (11) have the following interpretation at the microscopic
level: the intra-cellular media is not in contact with the torso tissues and
no current flows out of the intra-cellular media towards the extra-cardiac
media. Therefore, all the interaction between the heart and the torso
relies on the extra-cellular media.

3.2. Adapted monodomain model. — In the bidomain model
framework, the transmembrane potential V' on one hand and the extra-
cellular/extra-cardiac potentials ¢., ¢r on the other hand appear as
being strongly coupled. Precisely, substituting ¢; = V + ¢, in equation
(5), one gets the elliptic PDE:

div((o; + 0.)V¢.) = —div(o;VV) .

Together with (8) (9) (10), this can be seen as an equation defining ¢, (t)
and ¢7(t) at time ¢ as a function of V'(¢). Meanwhile, incrementing (6)
in order to get V(¢ + dt) requires to know div(c.V¢.) and thus ¢.. This
process expresses the nature of the coupling between V' and ¢, / ¢ and
implies that one of these two quantities cannot be computed separately
from the other.

This strong coupling raises several problems:

— From the numerical point of view, this coupling introduces an ellip-
tic equation that has to be solved at each time step, thus meaning
the inversion of one large ill-conditioned linear system per time step.

— From the physiological point of view, a strong coupling between ¢,
and ¢ has been evaluated and confirmed in [36], meaning that one
of this two fields cannot be derived independently from the other.
During normal activation of the heart, no strong coupling linking V'
to ¢, ¢r has been clearly identified in physiological studies. This
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has been evaluated in [36] using measurements on a perfused hu-
man heart. Thus, V' appears as being independent from ¢., ¢r.
Therefore only a weak coupling,— where ¢., ¢r are functions of V'
and where V' is independent from ¢., ¢r—, is relevant in terms of
model for a normal activation sequence of the heart.

In [5], it has been showed in a simplified framework involving an iso-
lated heart, that the bidomain model can be reformulated as follows:

(12) X (Catv + Iion(‘/; W)) - AV ) atW - g(v, W) .

In this equation, A denotes a pseudo-differential operator, precisely be-
ing defined as the harmonic mean of the two elliptic operators div(o;V-)
and div(c.V-). This operator is non-differential in general: its definition
requires an elliptic problem inversion which procedure is non local. The
strong coupling between V' and ¢,, ¢r precisely relies on the non differ-
ential nature of the operator A.

However, although A is non-differential in general, it turns out to be-
come differential in very particular (non generic) cases. In the case of
equal anisotropy ratio it is assumed that there exists a constant ¢ such
that o.(x) = ¢ o;(z) in H). In this case one gets:

(13) A=div(c,,V:), where o, :=(o;'+o. )"

om appears to be the harmonic mean of o, and ;. This particular case is
known as the monodomain model. In the framework of the monodomain
model, equation (6) is a relation between V' and w only, and V' then
decouples from ¢., ¢r. Therefore, V' can be computed independently,
implying a considerable speed up in the computations since no elliptic
system inversion is required to increment V.

The equal anisotropy ratio assumption however is non-physiologically
relevant, and the monodomain model can not be handled under this
form.

3.2.1. Adapted monodomain model statement. — The adapted mon-
odomain model is an approximation of the bidomain model where the
strong coupling between V' and ¢., ¢r discussed above is weakened.
Precisely, the operator A in (12) is here replaced by the following
differential operator:

(14) A~ div(e,V ), on=(0;"+a. ).



12 Segmented medical images based simulation of the cardiac electrical activity

This approximation is exact in the case of equal anisotropy ratio. The
computations resulting from the adapted monodomain model proceeds
as:

1. First step. Compute the membrane potential V' using the reaction
diffusion model in H only,

(15) X (DY + Lin(V,W)) = div(0,VV) ,  dw = g(V, W),
using the following zero flux boundary condition on V',
(16) omVV-n = 0 on0H .

This condition is discussed in Remark 1.

2. Second step. Using the precomputed value of V(t) at time ¢, com-
pute the extra-cardiac and extra-cellular potentials ¢ (t), ¢.(t) by
solving in € the elliptic problem (5), (8) with (9)-(10). This could
be done when wanted only and not at each time step.

Remark 1. — The zero flux condition (16) has no physiological founda-
tion. It however provides a convenient and correct approximation of the
situation within the bidomain framework. First of all let us again point
out that due to the tangency of the muscular fibre on the heart boundary,
this condition actually reads VV -n=0=V¢;, - n—Vo¢., - n= -V, -n
on OH using (11). Since V. -n # 0 in general, condition (16) does not
strictly hold with the bidomain model. However, because the variation on
the potential V' is limited except in the sharp de-/re-polarisation wave-
fronts, VV - n appears as being negligible on OH excepted in the small
region where the wavefront is in contact with OH, so a posteriori justify-
ing (16). More detailed numerical illustrations on this point are given in
section 6.2.

3.3. Models settings. —

3.3.1. Ionic models. — From the pioneering work of Hodgkin and Hux-
ley [27], a considerable amount of work has been devoted to obtain ac-
curate and realistic descriptions of cellular membrane electrical activity.
In the past decade, great improvements have been made towards the
modelling of mammals ventricular cells electrophysiology, especially since
Luo and Rudy class IT models [35], allowing the modelling of calcium be-
haviour and of several electrophysiological disturbances such as ischemia.
A human designed version of this model, the TNNP model [47], will be
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Model parameters Values Unit
Cell membrane surface-to-volume ratio X = 1500 — 2000 [cm™ ]
Membrane surface capacitance c=1. [ F/em?]
Longitudinal intra-cellular conductivity gt =1.741 [mS/cm]
Transverse intra-cellular conductivity gl =0.1934 [mS/cm
Longitudinal extra-cellular conductivity gl = 3.906 [mS/cm
Transverse extra-cellular conductivity gt =1.970 [mS/cm
Lung conductivity g = 0.5 [mS/cm
Blood conductivity (ventricle cavities) go = 6.7 [mS/cm
Remaining tissues conductivity gr = 2.2 [mS/cm

TABLE 1. Parameters calibration.

used to model ionic currents in all our simulations. An action potential
predicted by this model is depicted on figure 4.

v, mv] ®

0

-45

Rest potential
%0 time ¢ [ms]
100 200 300 400 500 600

FIGURE 4. Trans-membrane potential predicted by the TNNP
ionic current model for human ventricular cells [47].

3.3.2. Parameters. — Both the cardiac conductivity parameters and the
homogenisation factor x determines the depolarisation wavefront veloc-
ity. Physiological measurements of this velocity along and across the
cardiac fibres can be found in Clerc’s paper [10] or in a series of paper
by Spach et al. [45, 46]. Spach et al. pointed out strong individual
variability as well as age influence both on propagation velocities and
longitudinal /axial velocities ratio. In this paper, we use the conductiv-
ities from [31], which parameters have been computed in order for the
model predictions to fit the experimental measurements. These values
are given in table 1. They imply an axial/transverse velocity ratio of 2.6.
Setting the cell membrane surface-to-volume ratio y to 1800, the model
axial and transverse velocities are of 0.5 and 0.19 m/s, respectively. All
these values are in good agreement with the ranges in [45]. The value of
X also has a strong individual and age variability, a range of 1500-2000
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cm ™! seems suitable. The setting of this parameter in regard to numer-
ical difficulties is detailed in section 5. The conductivity values for the
different torso component have been found in [44].

4. Model numerical implementation

Discrete unknowns. For both the bidomain and the adapted mon-
odomain models, two unknowns are computed at every time step n on
the heart mesh: the transmembrane potential V™ and the gating variable
associated with the ionic model w”. Note that V" is a one column vector
whereas w” is a N columns vector depending on the chosen ionic model.
For the model considered here, N is of order 20.
¢r in H mesh
@7 in T mesh ’
defined on €2’s mesh thanks to the continuity condition (10).

For the bidomain model, ¢™ has to be computed at each time step.
For the adapted monodomain model, ¢" is computed when desired only,
here at each millisecond.

Time discretisation. A semi-implicit Euler scheme is used here:
implicit for the diffusion and explicit for reaction terms. Although more
precise time integration schemes have been pointed out in [25], attention
is focused here on the space discretisation.

Space discretisation For the 1D simulations in section 5.1, a finite
differences method has been used.

For all the remaining simulations in dimension 2, more sophisticated
numerical methods on triangular meshes are needed to numerically solve
the bidomain and the adapted monodomain models. A finite volumes
method has been used here, referred to as DDFV method (Discrete
Duality Finite Volumes [23, 26]).

Finite volumes schemes have been showed in [21] to exhibit good sta-
bility properties with regard to the sharpness of the reaction terms.
Moreover, DDFV schemes have been especially designed for solving
anisotropic/heterogeneous diffusion problems [22]. They provide an
accurate description both of the scalar potential field and of the vector
current field, which seems to be well appropriated here. Adaptation of
this method to electrocardiology problems has been presented in [40].
One essential property of this scheme is to preserve the symmetry
and positivity properties of the diffusion operators at the discrete

Let us introduce the discrete potential field ¢" = {
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level, so allowing a wide range of linear solvers and preconditioning
techniques. Precisely, denoting by ¢ some general tensor (anisotropic,
heterogeneous), one has the following discretisation of the diffusion
equation:

(17) div(eVu) = f % AU = DF,

where A, is a symmetric non positive matrix and D is a diagonal positive
matrix.

Bidomain model implementation. At each time step, the following
two operations are performed:

1. Solve the linear system

At
D —_— Ao'e |: Vn+1 :| D <Vn — glion(‘/nywn))
~ Xc ¢n+1 = C )
A, A 0

with the notations in (17) and where:
— 7 is the tensor o; + 0., in H and o7 in T,
— A, V™1is equal to A, V™! in H and to 0 in 7.
Each line of the system corresponds to the discretisation of equa-
tions (6) and (5)+(8), respectively, and where the constraints (9)-
(10) are directly imposed within the construction of the three ma-
trices A,,, A, As.
The resulting linear system has a non-symmetric global matrix com-
posed of symmetric blocks. A GMRES solver with SSOR precondi-
tioning has been used.
2. Update the gating variables w"*! by solving the ionic model ODE
system (7).
Adapted monodomain model implementation. It follows the
same procedure as for the bidomain model but the first step is greatly
simplified.

1. Invert the linear system (on H only):

(D _ At A0m> Vit = D <V” — gIi,m(V”,w")> .

Xc c
This system has a symmetric positive-definite global matrix. A CG
solver with a SSOR preconditioning is used.

2. Update the gating variables w™! by solving the ionic model ODE
system (7).



16 Segmented medical images based simulation of the cardiac electrical activity

The potential ¢ is recovered at each millisecond only by inverting the
balance equations (5)+(8) on €. At the discrete level, it reads:

Aﬁgbk = _AO'i Vk )

with the same notation as previously. This system has a symmetric
negative definite matrix and can be solved using a CG solver with SSOR
preconditioning.

Updating the gating variables w”. At each time step, the reaction
differential system (7) is solved point-wise using classical ODE solvers,
either forward Euler or better with Runge-Kutta 4 (RK4) for stiff equa-
tions (to resolve fast inward sodium currents). Numerical simulations
showed that such a solver provides an approximation of high accuracy
since the time step required by this RK4 method is of the order of 1 ms,
which value is much larger than the time steps of less than 0.1 ms used
in further computations with the coupled ODE/PDE system.

5. Assessing mesh size requirements

When simulating the propagation of transmembrane potential waves,
an accurate prediction of both the wavefront velocity and the action po-
tential duration (ADP) is of primary importance.

APD is defined pointwise as the time interval between depolarisation and
repolarisation. This quantity is controlled by the differential system (7),
therefore no great influence of the space discretisation on the APD has
been observed in numerical simulations.

On the hand, the wavefront velocity is highly sensitive to the space dis-
cretisation, which dependence was expected since transmembrane po-
tential wave propagation is due to diffusion processes in the wavefront
region. Thus, an accurate description of the transmembrane potential
within the wavefront region is necessary, which requires a fine enough
space resolution. Since the wavefront thickness and velocity are propor-
tional to 1/x, a relationship between the space resolution requirements
and the scaling parameter y is crucial.

The purpose of this section is precisely to investigate numerically what
space resolution is required in order to obtain an accurate description of
the wavefront. First of all, one-dimensional experiments are presented
to exhibit the general behaviour of the discrete solutions. Secondly, this
behaviour is confirmed with a more complex 2D framework to determine
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quantitative space resolution requirements as depicted in table 2. These
1D and 2D results are discussed together.

*°'Potential V' ‘
mV]

-101 /

-50|

-90

FIGURE 5. Transmembrane potential waves (pulses) propaga-
tion along a 40 cm muscular fibre for different mesh resolution
Ax. Pulses are recorded at time t = 50 ms. From left to right,
the pulses correspond to a resolution of 1, 0.5, 0.25, 0.125 and
0.06125 mm respectively. The bold dash line (reference solu-
tion) correspond to a Az = 0.0075 mm.

Velocity
[cm/ms] “ relative
0.03- - €ITOT (%)

log 1/Az |
FI1GURE 6. Relationship between the space resolution Ax and
the pulses velocity. Left: pulse velocity as a function of
log(1/Az). Right: relative error between the pulse velocity
and the limit (continuous model) velocity.

5.1. 1D case. — The domain €2 here is a 1D interval modelling a 40
cm long muscular fibre. Transmembrane potential waves (referred to as
pulses here) propagating from the left towards the right of the domain
are generated by applying a stimulation current at the left extremity
of the fibre at initial time. For these simulations, the bidomain model
has been set with the parameters in table 1 and xy = 2000 cm~!. The
domain €2 is discretised with uniformly distributed grid points with a
space resolution Az varying from 4 mm up to 0.0075 mm. On figure 5,
pulses corresponding to various space resolutions have been displayed at
the same time t = 50 ms after stimulation. Strong discrepancies can be
observed between the pulses velocities. These velocities have been com-
puted and plotted as a function of the space resolution Az in logarithmic
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scale on figure 6 (left). As expected, the discrete pulses velocity converge
towards a limit velocity as Az — 0. This limit velocity corresponds
to the transmembrane potential wave velocity for the continuous model.
The relative error between the (discrete) pulses velocity and this limit
velocity has been plotted as a function of Az (also in logarithmic scale)
on figure 6 (right).

V [mV]
.30.0

FIGURE 7. Space resolution influence on the transmembrane
potential wavefront velocity and shape in dimension 2. The
three transmembrane potential depicted here have been com-
puted in the same way and recorded at the same time but on
three different meshes with space resolutions of 0.23, 0.08 and
0.03 mm, from left to right respectively.

5.2. 2D case. — The former numerical results are investigated here in
a more complex framework. The domain (2 is two dimensional (a 4 x4 cm
square). The bidomain system of equations has been discretised using the
DDFV scheme presented in section 4 on unstructured triangular meshes.
Fibre anisotropy is introduced with muscular fibres oriented horizontally.

The bidomain model has been set with the parameters from table 1.
Different values of the scaling parameter y are considered. Transmem-
brane potential waves are generated by applying a stimulation current at
the domain centre.

On figure 7, three wavefront are displayed for the same value of x =
2000 cm™! but on three meshes with different resolution (namely 0.23,
0.08 and 0.03 mm from left to right). The potential waves on the three
meshes are represented at the sane time (37 ms after stimulation).
Potential waves have been computed for various values of x (namely 250,
1000, 1500 and 2000 cm™') on a series of successively refined meshes
with resolution varying from 0.25 to 0.03 mm. Their longitudinal and
transverse velocities (along the horizontal and vertical axes) have been
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computed. The continuous model corresponding velocities have been
evaluated from a reference solution. The comparison between the com-
puted velocities and the reference (limit) velocities is given in table 2.
This table is designed to highlight what space resolution is needed to
get a 1% accurate prediction on the wavefront velocities (axially and
transversely to the fibre direction).

space resolution [mm] | 0.16 | 0.12 | 0.08 0.06 | 0.04 | 0.03
x = 250 cm™? 54 % |14 %

Y = 1000 cm* 17.3 % | 2.9%
Y = 2000 cm ! 185%[74%|.6%

TABLE 2. Relative error on the transmembrane potential wave-
front velocities (axial and transverse), according to the scaling
parameter y and the space resolution.

5.3. Discussion. — The results in the one dimensional case display the
general behaviour of the space-discretised bidomain equations. Trans-
membrane potential waves do exist at the continuous level. However, on
a discrete lattice potential waves will not exist unless the space resolu-
tion of the lattice is finer than some critical value Ax < Axy. Whenever
Az > Axy, no waves can propagate: a well known propagation failure
phenomenon occurs, see e.g. [28]. This is visible on figure 6 (left): the
two first points on the left of the graph, with a space resolution of 4 and
2 mm, corresponding to a zero velocity are inside the propagation failure
region. Although potential waves do propagate when Ax < Az, these
waves may be considerably slowered. This is illustrated on figure 5: the
pulse on the left (1 mm space resolution) is four times slower than the
limit pulse in bold dash line (reference solution). Thus, a very careful
attention has to be paid with the choice of the space resolution when dis-
cretising the bidomain model. Actually, as depicted on figure 6 (right),
the propagation failure region is followed by a range of space resolution
producing considerable relative error on the velocities as compared to the
reference solution. For instance, from a 1 to a 0.1 mm space resolution,
the relative error on the velocity decreases from 75% to less than 5 % |,
a 0.05 mm resolution being necessary to get an accuracy of order 1%.

Another interesting feature is illustrated on figure 6: the space resolution
influence on the length of the pulses plateau. As already mentioned in the
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preamble of this section, the space resolution has a negligible influence
on the APD. Here APD corresponds to the ratio between the plateau
length and the pulse velocity. All pulses having the same APD, the slow
pulses have shorter plateau length.

In dimension 2, the situation is even sharper. The same slowering effect
of the discretisation is illustrated on figure 7. It is moreover reinforced by
a degradation of the potential wavefront general shape on coarse mesh.
In fact, an elliptic shape is expected for the wavefront here: coarsening
the space resolution damages this shape. Therefore, a sufficiently fine
space resolution has to be imposed not only to have an accurate predic-
tion on the potential waves velocity but also to prevent the wavefront
from distortion.

Being given a set of conductivities for the model and a discretisation
scheme, the choice of the space resolution is dictated by the scaling pa-
rameter y since this parameter controls the wavefront thickness. The
setting of the space resolution with regard to the value of x is given in
table 2. To get an accuracy of order 1% on the transmembrane potential
waves for a physiological range of values of x (1500-2000 cm™!) imposes
a space resolution below 0.04 mm. On a 2 dimensional slice of the heart
(50 cm? approximately), this requires a computation with roughly 5 x 10°
degrees of freedom. In dimension 3, for one whole human heart (about
50 cm?), 2 x 10° degrees of freedom are necessary.

To carry on with the numerical simulations, the value of x will be lowered
to 250 cm—1 in the sequel of this paper. A space resolution of 0.1 mm
will thus be required, making the computational costs affordable.

6. Simulations on segmented medical images

The goal now is to compare the solutions obtained from the bidomain
and adapted monodomain models on a more complex and realistic con-
figuration: anatomical geometry of the heart and torso including fibrous
anisotropy and conductivity heterogeneities. We first detail the specific
aspects of the test case. The transmembrane potential, the extra-cellular
and extra-cardiac potentials, and the ECG computed from the body sur-
face potential recordings are next presented for both models. A discussion
of the results follows.
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6.1. The test case. — According to the conclusions reached in section
5, bi-dimensional simulations are done and the value of the scaling pa-
rameter x is set to 250 to obtain accurate comparisons while maintaining
affordable computational costs. The other parameters in the bidomain
and adapted monodomain models are set as described in section 3.3.

6.1.1. The mesh. — The heart and torso mesh has been generated from
the segmented medical images as described in section 2 and depicted on
Figure 2. The heart itself counts 485 000 nodes, whereas the torso has 115
000 nodes, resulting in a mesh with 600 000 nodes for the entire thorax
slice. Four sub-domains have been identified: ventricles, lungs, ventricle
cavities (filled in with blood) and the remaining tissues. This mesh has
a 0.1 mm resolution in the myocardium, enough to get an accuracy of 1
% on the action potential propagation velocity according to Table 2.

6.1.2. Fibre orientation. — The fibre orientation is required to set the
conductance tensors o, and o;. No physiological data being available on
the fibre organisation of the medical images used here, we artificially built
the fibre orientation using the following anatomical rules: the muscular
fibres are rotating around the ventricles cavities and are tangent both
on the epicardial and endocardial walls. Such a fibre architecture is easy
to construct from the level set solution computed in the segmentation
process (2). Few fibres are shown in Figure 8a.

6.1.3. Activation sites and initial condition. — Action potential propa-
gation is initiated by applying a stimulation current at four stimulation
sites located on the endocard of both ventricles and depicted on Fig-
ure 8b. Physiologically, activation in the ventricles is generated by the
fast conduction tissue (Purkinje fibres) not included in our model. Purk-
inje fibres induce ventricular myocites depolarisation at their extremities,
which phenomenon is modelled here by applying localised stimulation
currents causing the same depolarisation. Location of the initiation sites
has been determined from physiological data in Durrer et al [24]. In this
paper, action potential propagation isochrons in human ventricles have
been measured. One of these isochrons has been reproduced on Figure
8c. Initiation sites are visible on the left and right ventricular endocard
(4 sites), with a delay of 5 ms for the right ventricle activation. The
rest of the myocardium is set to rest potential (-86.2 mV), while the
extra-cellular and extra-cardiac potentials are set to zero.
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i

4

=
FIGURE 8. (a) Myocardial fibre organisation. (b) Stimulation
sites. 4 stimulation zones are identified, two on the left ven-
tricle endocard and two on the right one. The left ventricle is
stimulated first, then the right ventricle with a delay of 5 ms.
(c) Depolarisation wave isochrons from experimental measure-
ments on perfused human ventricles (from Durrer et al. [24] ),
5 ms separate the isolines.

6.1.4. Computing the ECG. — The extra-cardiac potential is recorded
at the six points of the thorax labelled V1 to V6 shown on Figure 9. These
six electrodes are located as closely as possible with a bi-dimensional
geometry to their actual position on the chest in the standard ECG
procedure. The electrode V1 is located slightly right to the sternum
with the remaining electrodes aligned towards the left up to the armpit.
Recordings are done at every time step, with the time step of 0.05 ms
used in all our simulations. The raw values of the extra-cardiac potential
are used to draw the ECG that will shown below.

6.2. Results. — The evolution of the solution of the bidomain model
is depicted on Figure 10 at three consecutive times during the depolar-
isation phase. At the left, the transmembrane potential is shown. De-
polarised regions (in red) spreads across the myocardium starting from
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Ficure 9. ECG recordings: position of the electrodes.

the initiation sites. The figures at the bottom shows the solution right
after the depolarisation fronts coming from the right and left ventricle
activation sites have crossed over in the septum.

Extra-cellular and extra-cardiac potential ¢ maps are depicted at the
right on Figure 10. Different scales are used to plot the potentials V' and
¢ as the potential ¢ has a smaller magnitude than the transmembrane
potential V. In general, V € [-90,35] mV while ¢ € [—20,20] mV.
The fast positive inward ionic currents at the depolarisation front lead
to a sharp increase of the transmembrane potential V' (red regions on
figures at the left) and a sudden decrease of the extra-cellular potential
¢ (blue regions on figures at the right). This is a simple consequence
of the conservation of charges between the intra- and extra-cellular me-
dia expressed in the bidomain model. The fibre orientation is visible
on the transmembrane potential V' sequence, the depolarisation wave-
fronts propagating faster along the ventricle cavity boundaries—, tangent
to the fibres—, than across the septum for instance. The depolarisation
wavefront propagation leads to a strong polarisation of the extra-cellular
medium ahead of the front (red regions on figures at the right). These
myocardial areas with positive extra-cellular potential act as sources for
the extra-cardiac potential, leading to a positive potential in the thorax
and positive recordings at the electrodes on the chest.

6.2.1. Comparison of solutions from both models. — Solutions for the
test case documented in the previous section are computed with both
the bidomain and adapted monodomain models, using the same mesh,
parameters and initial solution. Comparisons are made on the basis of
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V [mV]

ISD 0

FIGURE 10. Left: from top to bottom, transmembrane poten-
tial V' at times t = 16, 24 and 32 ms after initiation. Right:
corresponding extra-cellular and extra-cardiac potential maps.

i) the de-/re-polarisation isochrons, ii) the potentials V' and ¢ at given
times and iii) the ECG recorded.

Figure 11 shows the depolarisation isochrons obtained with the two
models. These isochrons are computed by checking at which nodes of
the mesh that are in a non-activated polarised state the transmembrane
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potential V' increases above a threshold potential of 20 mV. This verifi-
cation is done at each time step while solving any of the two models and
the time at which each node depolarises is memorised. Initiation regions
are seen in blue on both figures, while areas in red are last depolarised.
The repolarisation isochrons are not shown here but closely match the
depolarisation isochrons for both models. This situation is concordant
with the setting of our model here for which no heterogeneities in the
ionic model within the myocardium has been considered. Thus, the first
cells to depolarise are the first to repolarise.

' g% T

FIGURE 11. Depolarisation isochrons: bidomain model (left)
and adapted monodomain model (right). The isochrons are
separated by 5 ms.

Contours of V' near the depolarisation front are superposed to the po-
tential ¢ on Figure 12 (at the top) for both models. These V' contours are
drawn on the same figure (at bottom) to accurately compare the position
of the depolarisation fronts predicted by the bidomain and adapted mon-
odomain models. The solutions depicted correspond to the solution at
time ¢t = 24 ms seen on Figure 10 (middle), approximately corresponding
to the mid-depolarisation sequence. Solutions at times ¢ = 16 and 32 ms
were also compared (not shown here). Similar trends were observed.

The ECG recorded at leads V1 and V5 are plotted on Figure 13 for
both models. Similar graphs and trends were obtained at the other leads
(not shown here). For each lead, a L? relative error is obtained by com-
puting the absolute L?(0,T) error between the ECG for the adapted
monodomain and bidomain models with 7" = 600 ms and by dividing
this absolute error by the L? norm of the reference bidomain ECG. These
relative errors for the six leads are reported in Table 3. Leads V1 and
V5 have the smallest and largest L? relative error, respectively.
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Bidomain model Adapted monodomain model

FicURE 12. Comparison of the bidomain and adapted mon-
odomain solutions at time ¢ = 24 ms after initiation. Top:
colours correspond to the extra-cellular and extra-cardiac po-
tentials and contours to the transmembrane potential at V =
-80, -25, 30 mV. Bottom: superposition of these transmem-
brane potential contours for the bidomain (blue) and adapted
monodomain (black) models.

lead | V1 |V2 | V3| V4 | V5 | V6
error | 6.9(6.979(104|114|7.3

TABLE 3. Relative L? error (in %) between the bidomain and
adapted monodomain ECG recordings at each lead.

6.2.2. Computational requirements for solving both models. — The com-
putational requirements to solve the bidomain and adapted monodomain
models are now compared. Computing the transmembrane potential V'
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FIGUure 13. ECG at leads V1 and V5 for the bidomain and
adapted monodomain models.

on the heart only takes about 1/50 of the total CPU time to solve the
full bidomain model on the combined heart-thorax. We recall that the
heart has 485 000 nodes while the heart-thorax counts 600 000 nodes.
For this comparison, the same time-step At = 0.05 ms is used, the norm
of the system residual must be below 10~% and 10~7 for the adapted mon-
odomain and bidomain models, respectively. Computing V' and also the
extra-cellular and extra-cardiac potential ¢ at each ms (every 20 time
steps) during the simulations with the adapted monodomain model, the
ratio of CPU times increases to 1/24. Solving the potential equation for
¢ is indeed difficult and the most CPU intensive. For the computation of
¢ with the adapted monodomain model, the norm of the system residual
needed is 1075 only.

The impact of the convergence tolerance on the residual of the bido-
main model is now illustrated in Table 4 and Figure 14. The relative
error on the ECG is taken between solutions at successive tolerances,
e.g. between the ECG recorded at 10~° and 10~* tolerances with as ref-
erence solution the ECG at 107° tolerance. Computations were made on
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coarser mesh to show that the relative error between ECG at successive
tolerances closely matches the relative error between the ECG recorded
at a given tolerance and a reference ECG at the strictest tolerance.

Tol | 107*| 107®| 107 | 1077
V1 |681] 659 | 304 | 83
V2 | 68.0 | 81.6 | 274 | 9.4
V3| 72.8 | 90.9 | 28.2 | 10.2
V4 | 82.3 |132.1| 27.7 | 11.2
V5 | 84.5 | 60.7 | 38.7 | 14.5
V6 | 83.4 | 438 | 32.1 | 8.6

TABLE 4. Relative L? error (in %) between ECG recordings at
each lead for bidomain solutions at successive tolerances.

—1E-7, reference
-—-1E-6
-—1E-5

1E-4

1 | 1
100 200 300 600
FIGURE 14. ECG recorded at electrod V1 using the bidomain
model for various tolerances during the linear system inversion.

ECGs depicted here correspond to a tolerance varying from
10~* up to 10~7. This last 107 tolerance corresponding to the

reference solution of the bidomain model.

6.3. Discussion. — The isochrons of Figure 11 obtained with the bido-
main and adapted monodomain models are relatively close to the exper-
imental results of Durrer et al. [24] (see Figure 8 at bottom). The
qualitative aspect of the isochrons is the same. The depolarisation time
of the whole myocardium is of the same magnitude, i.e. about 50 ms
from the initial activation to the last depolarisation times in both cases.
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This is surprising as Durrer et al. used perfused human hearts in their
experiments for which the fibre architecture and the action potential
wave propagation are three-dimensional, while our simulations are two-
dimensional. We have no clear explanation of this good agreement. A
plausible cause is that the action potential propagates more within the
cut plane than across the plane for this cross-section of the heart. More-
over, the membrane surface-to-volume ratio y is equal to 250 cm ™! in our
simulations while it is about 2000 cm ™! in myocardial tissue. The con-
ductance velocity being proportional to y~'/? at least for one-dimensional
waves and simple ionic models, the action potential generally propagates
nearly 3 times slower with the physical value of x than with x = 250
cm~!. If it had been possible to use a larger y, we might have seen larger
discrepancies between the experimental and numerical results.

The results of the previous section show that the solutions of the bido-
main and adapted monodomain models are very close to each other.
This is seen by comparing the variables V' and ¢, the re-/de-polarisation
isochrons and the ECG obtained with both models. The position of the
depolarisation fronts closely match between models except for minor dif-
ferences in a small area near the walls (see for instance Figure 12 at
bottom). The fibres are taken tangent to the walls in our simulations,
which implies that 9V /dn = 0 for the transmembrane potential obtained
through the adapted monodomain model. Within the accuracy limits im-
posed by the computational mesh, the contours of V' are thus orthogonal
to the heart walls. For the bidomain model, the boundary condition on
V is given by 0V/On = —0¢./On and the V contours are not orthogonal
to the heart walls unless d¢./0n = 0. This difference on the boundary
conditions explains the slight contour mismatch near the walls for the
two models. Away from the walls, the time evolution of V' is controlled
by transmembrane ionic currents which are the same in both models and
by the conductance second order terms. For physiological values of the
conductivity along and across fibres, using a single conductance operator
with the harmonic average tensor o,, in the partial-differential equation
for V' properly propagates the action potential wave. This is true at least
in the case of “healthy” stimulation patterns and normal wave propaga-
tion used in our test case.

The isochrons of Figure 11 confirm this analysis, the in-time evolution of
the depolarisation fronts are similar for both models. The fronts propaga-
tion for the adapted monodomain model appears as being slightly slower
than with the bidomain model. The total amount of time needed for
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the ventricles to entirely depolarise has been computed for both models,
showing a difference of 3 % in relative error.

The ECG shown on Figure 13 are well superposed except for minor
mismatches in zones with large gradients. A very tiny difference of time
amplitude of the QRS complex can be seen, illustrating that the depolar-
isation is slightly slower with the adapted monodomain model than with
the bidomain one. In comparison, the relative errors between the ECG
obtained with the bidomain and adapted monodomain models given in
Table 3 seem large for such a good match of the curves. This relative
error is obtained by dividing the absolute error by the L? norm of the
reference bidomain ECG. The ECG recordings being null for most times,
this division scales up the relative error, explaining the large relative
errors at leads V1 to V6 in spite of the excellent curve superposition.

While the solutions from the bidomain and adapted monodomain mod-
els show excellent agreement, the computational requirements to solve
the two models are not the same. The bidomain model is by two orders
of magnitude more demanding in CPU time if only the transmembrane
potential V' is required. The numerical solution of the coupled potential
equations for the extra-cellular potential ¢, and extra-cardiac potential
¢r is the most intensive. The stiffness of these potential equations is
the main cause of error on the ECG recovered from the bidomain model
when the norm of the residual is not reduced enough by the iterative
method, as presented in Table 4 and Figure 14. The minimal require-
ment for getting an accurate ECG is to solve the potential equations
with a tolerance of at most 107 on the residual. This tolerance is harder
to achieve with the bidomain model where the coupling of the potential
equations with the reaction-diffusion equation for V' makes the design of
good preconditioner more difficult.

If the extra-cellular and extra-cardiac potentials were recovered at each
time step for the adapted monodomain model, the computational sav-
ing in using the monodomain model would be much smaller. Indeed,
these potential equations are uncoupled from the reaction-diffusion equa-
tion for V' in the adapted monodomain model, leaving the possibility of
computing the potential ¢ every n time steps only. In Figure 13, ECG
recordings every 20 time steps for the monodomain model allow for a
great saving in CPU time and are as accurate as those for the bidomain
models done at every time step.
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7. Conclusion

The action potential and ECG computed with a bidomain and an
adapted monodomain models were compared using a two-dimensional
test case. The geometry used is derived from a patient-based CT scan
and represents a two-dimensional cut of the heart embedded in a torso.
By segmenting the CT image with an automatic level-set method and
meshing this level-set geometry with an appropriate mesh generator, we
easily did electrophysiological simulations on a patient-based geometry.
The results show that monodomain models can predict reliable cardiac
action potential and ECG when the activation sites reside within the
myocardium, this at a much lower cost than with the bidomain model.
Here “reliable” means that the results are as good as those from the
bidomain model which is generally considered the best model for coupled
heart-thorax simulations. The comparison of the computed ECG with
real patient ECG is another issue, strongly dependent on the ionic models
representing the myocite channel activity. Our conclusions simply say
that given the best ionic models, a properly set monodomain model will
provide as realistic ECG as the bidomain model, and if the bidomain
model does not match reality then a monodomain model will not do it
either, and vice-versa.

Our conclusions still need to be confirmed on patient-based three-
dimensional geometries and with a physiological value of the surface-
to-volume ratio y. The techniques behind the pipeline from medical im-
ages to electrophysiological simulations can easily be extended to three
dimensions. Developments are well under way and will be reported in
a forthcoming paper. Moreover we played enough with x in previous
simulations to be confident that a higher y should not change the con-
clusions. As shown with our computations, a physiological x needs very
fine meshes, beyond what is possible in three dimensions with uniformly
fine grids. The use of local mesh refinement as in [11] or of anisotropic
mesh adaptation as in [3] is a promising avenue for reaching physiological
x and compare models on three-dimensional heart geometries. Another
outstanding issue is the identification of situations where both models
give discordant solutions and ECG, away from the cases of common ac-
tivation sites and normal heartbeat used here, and the verification with
computations that indeed the bidomain and monodomain predictions
are quantitatively and qualitatively different for these pathological situ-
ations.
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