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We present a statistical analysis of 5 years of Cluster mission data in the
magnetosheath. Our primary focus is to exhibit the spatial distribution of
mirror mode events. The automatized detection is based on Minimum Variance
Analysis and the amplitude of events. The results are displayed in the GIPM
reference frame to enable comparison with a previous similar study using ISEE-
1 data. These results compare favorably with each other and with studies
focusing on Jupiter’s and Saturn’s magnetosheaths. We further analyze the
dependence of the mirror events with solar wind parameters and Interplanetary
Magnetic Field (IMF) orientation. We notably reveal that the occurrence of
mirror modes is relatively more probable during periods of time when the IMF
is not following the common Parker spiral orientation.
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Cluster observations

1. Introduction

Mirror mode structures in space plasma continue to fuel many new works in

spite of an already vast literature on the subject. Hereafter some of the main

characteristics of the mirror mode are reviewed to explained this abundant

and active research activity. Its ubiquitousness : in environments of the

Earth,1,2 Jupiter,4–6 Saturn,7 Io wake,8 the comet Halley,9 solar wind,10

ICME,11 in the heliosheath13,14 and even in turbulent galaxy clusters;15 its

peculiarity : a non-propagating mode, it is known as a fluid mode, obtained

as one of the modes of anisotropic MHD, although it requires a kinetic
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treatment (including Landau damping, see also Ref. 16) to properly de-

termine the growth rate and because its transverse length scale extends

to the order of the proton Larmor radius (see the discussion in Ref. 17);

its potential existence at large to small length scales;18 its role in plasma

transport in particular near the magnetopause;19 all of these features make

of the mirror mode and mirror instability fundamental objects of study in

plasma physics.

The threshold required for mirror instability to develop in a plasma is

given by20,21
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where T is the temperature, β = 2µ0nkT/B2, subscripts ⊥ and ‖ stand

for the directions with respect to the ambient magnetic field B, subscripts e

and p are for electrons and protons respectively. For isotropic cold electrons

this condition reduces to

βp⊥

(
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Tp‖
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)

> 1 (2)

Close to the Earth the best location for this condition to be met is

in the magnetosheath (the temperature anisotropy and β values are in-

deed relatively large). Any observational study related to the mirror mode

thus required a proper definition of the boundaries of the magnetosheath,

the bow shock and the magnetopause, as well as a proper way of localiza-

tion in this region. Long term operating missions such as ISEE and now

Cluster enable the possibility of comprehensive statistical studies to reveal

key dependence in the occurrence of wave modes with local and remotely

controlling parameters. This is the main task of the present paper which

addresses the occurrence and dependence issues of the mirror mode in the

present Cluster context (see also Ref. 1,22). The paper is organized as fol-

lows. Section 2 presents the data and the way magnetosheath is identified.

In section 3 the characterizing methods we employ for mirror modes are

discussed. Section 4 exposes results of the statistical analysis with Cluster

compared with results obtained from 10 years of ISEE-1 data,2,3 whereas

section 5 is concerned with solar wind and IMF dependencies. A summary

of the main findings of the study concludes the paper in section 6.
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2. Data

Five years of the Cluster mission are considered (01/02/2001 to

31/12/2005). Cluster 1 magnetic field (FGM23) and on-board calculated

ion moments (from the HIA experiment on the CIS instrument24) data are

used at 4 second resolution. We also employ ACE plasma and IMF data

to determine the magnetopause and bow shock positions using models (as

described below).

A web-based version of the statistical analysis tool developed at CDPP

(the French Plasma Physics Data Centre) and used in this study is available

at the URL : cdpp-amda.cesr.fr . Access is granted upon request (mail to

amda@cesr.fr).

2.1. Magnetosheath identification

The first step of our analysis is to determine whether Cluster is located in

the magnetosheath. Data are analyzed by 5min window : an iterative delay

procedure is applied to obtain associated solar wind and IMF parameters

from ACE. Bow shock3 and magnetopause25 models are computed from

these parameters and Cluster is then identified as ’in’ or ’out’ the magne-

tosheath. Data will be displayed in the GIPM (geocentric interplanetary

medium) reference frame first introduced by Ref. 46 and detailed in Ref. 3.

This will enable consistent comparison with ISEE-1 results which are dis-

played in this frame in Ref. 3. For the sake of clarity we reproduce here the

definition of this reference frame.

The X-axis ~ex is antiparallel to the upstream solar wind velocity vector
~V in the reference frame moving with the planet (with components Vx,

Vy, Vz in the GSE reference frame); the direction of the GIPM Y-axis is

determined by the IMF vector ~B (with components Bx, By, Bz in the GSE

reference frame):

~ey = sgn( ~B. ~ex).(− ~B + ( ~B. ~ex) ~ex)/| ~B − ( ~B. ~ex) ~ex| (3)

With such a definition an IMF field line lies in the second and fourth

quadrants of the GIPM XY plane. Zenith angle (θ) and clock angle (φ) are

defined by :

θ = arccos(~r. ~ex/r) (4)

φ = arctan(~r. ~ez/~r. ~ey) (5)
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where ~r is a vector in the GSE frame. The clock angle is measured

perpendicular to the solar wind direction. For an average IMF direction

(following the Parker spiral) −90◦ < φ < 90◦ corresponds to the dusk

magnetosheath side and 90◦ < φ < 270◦ is on the dawn side.

In the following, we define our GIPM reference frame by using a 20min

averaged (and shifted) IMF vector centred on the selected magnetosheath

event.

2.2. Fractional distance in the magnetosheath

We will also make use of the fractional distance F introduced by Ref. 3 to

normalize event positions in the magnetosheath :

F =
r − rMP

rBS − rMP
(6)

where r is the Cluster geocentric distance, rMP is the geocentric distance

to the magnetopause (which is a function of the zenith angle, the solar wind

ram pressure and IMF Bz) and rBS is the geocentric distance to the bow

shock (which is a function of the zenith and clock angles, the upstream

Alfvén and Mach numbers and the angle between the solar wind velocity

and IMF vectors). Therefore F = 0 at the magnetopause and F = 1 at the

bow shock.

3. Mirror mode characterization

Identification of mirror mode events has been a long standing problem

because : 1/ slow mode and mirror mode have both anti-correlated magnetic

and density fluctuations, 2/ mirror mode and ion cyclotron mode both grow

on temperature anisotropy (T⊥ > T‖). However in the magnetosheath it

has been shown26 and observed27 that due to the presence of heavier ions

(mainly helium) mirror instability dominates for β > 1 which is the most

common situation, a condition confirmed by recent simulations28 (β‖ ≥
0.35).

Along time, and with improving tools at hand, different methods have

been developed to discriminate low frequency modes and among them the

mirror mode. These include 1/ transport ratio,29,30 2/ minimum variance

analysis,2 3/ 2- and 4- spacecraft methods,16,31–33 4/ 90◦ degree B/Vz phase

difference.34 A complete review is out of the scope of this article but the

interested reader may refer to Ref. 35 for more details.
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Multi-spacecraft studies have shown that mirror mode structures are

elongated along a direction making a small angle with the ambient magnetic

field.1,33,36

3.1. Identification of mirror-like structures

The magnetic field variations associated with mirror modes are almost lin-

early polarized parallel to the main field direction. They may be of large

amplitude (a few 10%) of sinusoidal but also spiky up and down shapes as

we shall discuss in section 4.4. From these characteristics, a criterion has

been established which follows closely those used by Ref. 2,37 :

• linear polarization with field variation oriented close to the ambient

magnetic field : the angle between the maximum variance direction

and mean magnetic field vector is smaller than 20◦.

• relatively large amplitude : the variance of the field is larger than

10%.

In order to perform statistical survey over 5 years of data we had to

employ relatively low resolution data (4 s) which limits the lower sampled

mirror event size to 8 s. From a 2 month survey with high resolution Cluster

data, Ref. 37 found that mirror events were distributed as a bell shaped dis-

tribution with 98% of events falling into the 4s-24s interval and with a mean

of 12 s. This shows that our data set is undersampled as it misses events

in the 4 to 8s length which corresponds to the events with the smaller spa-

tial scale (of the order of 10 local Larmor radius). However short duration

mirror event does not automatically translate to short length scale event as

the spacecraft velocity and geometry effects have to be taken into account.

Therefore the undersampling of our dataset is not one-to-one equivalent to

a bias toward large length scale mirror events. Nevertheless the way event

scales are affecting statistics still remains to be studied with high resolution

data.

The above criterion is applied to all 5min magnetosheath intervals ob-

tained in the first step. The mean magnetic field is calculated on 10min

window and the Minimum Variance Analysis38 (MVA) and variance are

performed on 5min windows. The sensitivity of the results has been tested

against the variation of these time windows and revealed no major differ-

ence. At this stage we do not make any restriction on plasma parameter

values as we are interested in mirror-like structures appearing above as well

as below the linear mirror instability threshold given by Equation 2. No

constraint has been imposed on the eigenvalues λ resulting from the MVA.
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Indeed, as noted by Ref. 16 (from a small set of mirror events tough), mirror

modes are more commonly observed as elliptically than linearly polarized

as predicted by linear theory. It has been checked that restraining our data

set to linear events (for instance with the condition : λint/λmax ≤ 0.2 and

λmin/λint ≥ 0.3) does not significantly alter the conclusions drawn in the

rest of the paper.

Let us note that Ref. 2 supplement their criterion with a condition on the

symmetry of the structures which essentially selects magnetic depressions.

Therefore ’dip’ or ’hole’ mirror modes only are discussed in that paper. This

makes a significant difference between ISEE-1 and Cluster datasets which

is discussed at the end of section 4.

Automatic detection of data patterns is hard to be perfect and it is

therefore possible that compressional structures (like quasi-perpendicular

shocks) other than mirror modes may be selected by our algorithm. It is

however difficult to evaluate the proportion of misinterpreted events. In

order to limit this occurrence we shall use error bars or plot data with only

sufficient statistical significance.

3.2. Mirror condition

In order to qualify the plasma state with respect to the mirror instability

we define the distance to threshold by

CM = βp⊥

(

Tp⊥

Tp‖
− 1

)

(7)

From Equation 2, CM < 1 (CM > 1) corresponds to mirror (un)stable

plasma while CM = 1 denotes marginal stability for which the mirror

growth rate is zero.

4. Cluster statistics and comparison with ISEE-1 data

Table 1. Ranges of parameters relative to the ISEE-1 mis-
sion2,3 and Cluster mission (this study).

Mission ISEE-1 Cluster

Time range 10 y 5 y
Time resolution 4 s 4 s

Fractional distance (F ) range 0-1 0-1
Zenith angle (θ) range 20◦ − 100◦ 0◦ − 150◦
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Fig. 1. Total number of magnetosheath crossings in the (zenith angle, fractional dis-
tance) plane. The grey scale is logarithmic.

The comparison exposed in this section is based on the results obtained

by the algorithm presented in Section 3. Table 1 lists the range of orbital

parameters associated with ISEE-1 and Cluster missions. Time resolutions

of both these missions are identical.

On Figure 1 the total number of 5min magnetosheath crossings is dis-

played in the zenith angle - fractional distance plane in bins ∆θ × ∆F =

5◦ × 0.05. Events are integrated over all φ angles. The maximum number

of crossings per bin is close to 10000. Cluster orbital configuration leads

to a larger coverage close to the magnetopause and for high latitudes. In

comparison ISEE-1 orbits covered a slightly reduced zenith angle range

(see Table 1). Plotting data in a different plane, namely the clock angle

- fractional distance plane (in bins ∆φ × ∆F = 5◦ × 0.1 integrated over

0◦ ≤ θ ≤ 150◦, Figure not shown) illustrates that all regions of the mag-

netosheath are correctly sampled with a majority of events close to the

magnetopause.
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4.1. Occurrence frequency

The distribution of mirror mode events (ie 5min intervals which satisfy

criteria of section 3.1) is displayed on Figure 2 (zenith angle - fractional

distance plane) and Figure 3 (clock angle - fractional distance plane); bins

with less than five magnetosheath crossings have been rejected in order to

perform a statistically meaningful normalization. For this latter representa-

tion let us note that data from dawn (dusk) side of the magnetosheath are

displayed on the left (right) part of the plot. Equivalently this corresponds

to the quasi-parallel shock (quasi-perpendicular) region (see section 2.1 and

Ref. 3 for more details on the GIPM reference frame). The number of events

is divided by the total number of magnetosheath crossings to reveal the rel-

ative number of mirror events (or occurrence frequency). This shows that

mirror events are more likely to occur close to the magnetopause for all

zenith angles and for smaller and smaller angles for increasing distance

from the magnetopause. The dark bin at (θ = 112.5◦, F = 0.35) is a statis-

tical artefact. There is a dawn/dusk asymmetry with more events occurring

in the dusk sector which is also the region connected to quasi-perpendicular

shock after which mirror modes are mostly expected. Indeed larger temper-

ature anisotropies are generally encountered behind perpendicular shocks

rather than parallel ones due to a sharper transition from solar wind to

magnetosheath plasmas (see also the theoretical work in Ref. 12). These

results agree with those of Ref. 2 and Ref. 3. Although our data representa-

tion is more pixelized than in Ref. 3, occurrence frequencies cannot be one

to one compared as normalization has been applied differently. The present

findings are also consistent with observations from Equator-S data which

show that mirror modes are mostly encountered in the inner magnetosheath

region.39

4.2. Amplitude distribution

The amplitude distribution of mirror mode events δB/B is displayed on

Figure 4 in a representation equivalent to Figure 3; bins with less than five

mirrors events have been rejected in order for the statistics to be mean-

ingful. There is a tendency to observe larger events in the middle magne-

tosheath although the distribution is scarce close to the shock. Also the

average intensity of mirror structures is generally larger in the morning

magnetosheath (90◦ < φ < 270◦) compared to the evening magnetosheath

region (−90◦ < φ < 90◦). It is more precisely in the pre-dawn quadrant

that mirror amplitudes are the larger (90◦ ≤ φ ≤ 135◦) in close agreement
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Fig. 2. Relative number of mirror mode events in the (zenith angle, fractional dis-
tance) plane. The grey scale codes the occurrence frequency and bins with less than five
magnetosheath crossings have been rejected.

with ISEE-1 results.

Ref. 3 argues that there may be a bias effect due the high level of

turbulence behind the parallel bow shock which hides low amplitude mirror

fluctuations. A similar effect may affect our data or, if this is a real physical

feature, the process behind it remains not fully understood.

The results from Cluster observations are however consistent with those

obtained from ISEE-1 reported in Ref. 2 and Ref. 3 : the maximum value for

δB/B is comparable (∼0.5 in both studies). They also compare favorably

with results from studies on giant planets. At Saturn, Ref. 7 found that

the amplitude and wavelength of fluctuations tend to increase with increas-

ing distance from the quasi-perpendicular bow shock, except close to the

magnetopause in the plasma depletion layer. At Jupiter, Ref. 4 studied the

statistical properties of mirror mode depressions observed by Ulysses and

found that the amplitude of the fluctuations was decreasing when approach-

ing the bow shock. Naturally mirror waves need time to grow from their

supposed origin at the shock, and as simultaneously they are convected to-

wards the planet, larger fluctuations are seen away from the shock. Close to
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Fig. 3. Relative number of mirror mode events in the (clock angle, fractional distance)
plane. The grey scale codes the occurrence frequency and bins with less than five mag-
netosheath crossings have been rejected.

the magnetopause 1/ the free energy contained in the anisotropy may have

been consumed by instabilities, 2/ the wave growth may have saturated

or 3/ the plasma flow has been deviated (near the plasma depletion layer)

which explained why amplitude does not peak close to the magnetopause.

4.3. Growth rate

Following Ref. 40, Ref. 11 derived an expression for the maximum growth

rate of the mirror instability (normalized to the proton cyclotron frequency

Ωp) :
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Fig. 4. Relative mirror mode amplitude (δB/B) in the (clock angle, fractional distance)
plane. The grey scale codes the magnitude of the magnetic field perturbation and bins
with less than five mirrors events have been rejected.

γm

Ωp
=

1√
12πβ⊥

(

Tp⊥

Tp‖

)−3/2 (

β⊥

(

Tp⊥

Tp‖
− 1

)

− 1

)2

(8)

for the conditions k‖ ≪ k⊥ in the long wavelength limit and CM > 1

(see Equation 7).

Based on a numerical evaluation of the full kinetic dispersion relation,

this maximum growth rate is γm/Ωp ≃ 0.02 for a plasma containing 5−10%

alpha particles, T⊥/T‖ = 1.5, Tα‖ = 4Tp‖, and β⊥=4 (see Ref. 26 and

Ref. 47). With these plasma parameters the above equation also yields
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γm/Ωp ≃ 0.02. Let us note that since this value is significantly larger than

the maximum growth rate of the proton cyclotron instability, mirror waves

can grow faster.

By using Equation 8, therefore selecting mirror events with CM > 1

only in our analysis, maximum growth rate is evaluated to be below the

γm/Ωp = 0.1 level whereas 77% of events are below the γm/Ωp = 0.01 level;

the mean value is 0.008. These values are consistent with observations and

simulations showing that the magnetosheath plasma is mostly in a marginal

state with respect to the mirror instability.28

Using a model of plasma flowlines and data from the ISEE-1 space-

craft, Ref. 41 showed that the growth rate values are in the range 0.002

s−1 < γ <0.0035 s−1, which is almost an order of magnitude smaller than

the value calculated by Ref. 26. These growth rate are not maximum values

but are computed from the evolution of δB/B along flow lines. Ref. 41 pro-

pose several reasons for this discrepancy one of which being that the source

of the mirror fluctuations may not be at the bow shock but at various loca-

tions more deep inside the magnetosheath. Also the linear analysis done by

Ref. 26 might not be applicable to large amplitude nonlinear fluctuations.

However we note that the authors restrained their dataset to magnetic dips

(or holes) only. Recent works17,43 have shown that such magnetic configu-

rations generally 1/ correspond to a late evolutionary stage of mirror modes

(nonlinear regime) and 2/ are observed in mirror stable plasma (CM < 1),

both conditions in which application of Equation 8 or linear theory is not

appropriate.

4.4. Discussion : differences between ISEE-1 and Cluster

datasets

As discussed above the algorithm in Ref. 2 retained only magnetic de-

pressions whereas our present results concern all magnetic shapes. This is

not an innocuous remark. Indeed the shape of mirror modes had recently

attracted attention both from the theoretical17,42 and observational6,37,43

points of view. These works gave new insight in the physics governing the

evolution of the mirror instability. Previous studies had identified that mir-

ror structures came in different shapes,16,39 but it is only recently that it

was revealed that the shape was controlled by the distance to the thresh-

old CM . It was concluded that deep holes are mainly due to a bistability

process (enabling the existence of mirror structures in mirror stable plasma

conditions, CM < 1), moderate holes and peaks may be observed near

threshold, and large peaks are non linearly saturated mirror mode struc-
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tures far from threshold. The localization of these different structures in

the magnetosheath showed that holes are preferentially observed close to

the magnetopause whereas peaks are more frequent in the middle magne-

tosheath. This spatial distribution is illustrated on Figure 5 which shows

the value of CM in the (zenith angle, fractional distance) plane : maximum

value, corresponding to peaks, are obtained in the middle magnetosheath

whereas close to the magnetopause CM is close or less than one denoting

the presence of holes. The proportion of events with CM > 1 (CM < 1) is

50% (50%). A more detailed description is out of the scope of the present

paper (the relation shape/CM is exposed extensively in Ref. 37,43) but

these remarks enable to pinpoint differences between our present analy-

sis and the one based on ISEE-1. Ref. 2 retained magnetic depressions

only, mostly observed in mirror stable plasmas close to the magnetopause,

whereas our analysis is more general in keeping all mirror-like structures

without constraining plasma parameters. However observations show that

peaks are a minority (14% of events in Ref. 6, 18.7% in Ref. 37 for 19% and

39.7% of hole structures respectively) in mirror datasets; simulations also

show that large mirror peaks only survive in seldom encountered large β

plasmas.43 This may explain why results compare favorably between both

studies despite differences in initial datasets.

5. Relation with solar wind parameters and IMF

orientation

Table 2. Mean values of solar wind and IMF param-
eters for mirror and non-mirror types of events.

Type of event mirror non-mirror

Number of events 6363 57405
alpha/proton density ratio 0.0453 0.0448

ram pressure (nPa) 2.33 2.12
MA (M2

A = 4πρV 2/B2) 10.91 8.17

Ms (M2
s = ρV 2/γp) 8.68 8.49
γm/Ωp 0.008 -

We use ACE data and a solar wind-magnetosheath iterative delay algo-

rithm to associate each magnetosheath event to corresponding solar wind

and IMF parameters. From the values given in Table 2 it is interesting to

note that mean values for both kinds of events (mirror and non-mirror)

are not significantly different, except for MA. In this particular case, the

striking difference led us to investigate this dependence into more details.
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Fig. 5. Distribution of the average distance to threshold (CM ) of the events in the
(zenith angle, fractional distance) plane.

5.1. MA dependence

On Figure 6 the distribution of events with MA bins (of width 1) is plotted

: the dash line is for all magnetosheath 5min intervals whereas the solid line

refers to identified mirror modes only, both normalized to their maximum

value. Distributions exhibit clear peaks with a larger most probable value

for mirror events (max(MA = 8.5)) than for non mirror associated traversals

(max(MA = 6.5)). The average value of the distribution is also higher for

mirror events (10.91 to be compared to 8.17, see Table 2). The ratio between

these two distributions is plotted on Figure 7 to reveal that the occurrence

frequency of mirror modes increases as a function of MA until MA = 12.

This increasing trend is the prominent feature of the Figure as more than

80% of mirror events occur for MA ≤ 12.

As the distribution of mirror events with the ram pressure does not show

significant shift compared with the distribution of magnetosheath crossings

(and equivalently for the dependence with Ms; not shown, see mean values

in Table 2), the dependence on MA translates into a dependence on the

IMF magnitude. Whereas the upstream (IMF) and downstream (magne-
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Fig. 6. Distributions of mirror-like structures (solid line) and of all magnetosheath
crossings (dash line) as a function of MA.

tosheath) magnetic fields are (positively) correlated it is less clear for the

temperature. Therefore, as mirror modes are favoured by large β (∝ 1/B2)

conditions, this magnetic field correlation can tentatively explain the vari-

ation with MA (∝ 1/B).

As solar wind perturbations acting on the global response of the magne-

tosphere is studied to exhibit geo-effectiveness, the solar wind parameters

acting decisively on the growth of mirror modes has to be studied into more

details, and this beyond the ’simple’ filtering effect of the bow shock which

has evidently to be taken into account, as we discuss below.

5.2. IMF orientation

The occurrence of mirror mode signatures in relation with the IMF orienta-

tion has been analyzed. Mirror mode are usually more frequently observed

behind quasi-perpendicular shocks (see Section 4.1), which for common

orientation of the IMF (along the Parker spiral) corresponds to dusk side.

To construct Figure 8, for each 5min magnetosheath crossing, we recorded

the associated IMF orientation and plotted the corresponding point in the

(Bx, By) plane (in GSE coordinates). In this plane most of the points are

observed in the second and fourth quadrants along the By = −Bx line

which correspond to the 45 degrees Parker spiral (proportions of events in

quadrants 2− 4 and 1− 3 are 77% and 23% respectively). When we retain

mirror mode events only the picture is changed as the other two quadrants
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Fig. 7. Occurrence frequency of mirror-like structures as a function of MA. The error
bars are proportional to 1/

√
N where N is the number of mirror events in each ∆MA = 1

bin (Nmin = 1 and Nmax = 909).

exhibit significantly more points, making the distribution appear like a ring

(proportions are then 70%/30%). When one plots the relative number of

events (Figure 9) the result is even more striking as it appears clearly that

this relative number is higher for IMF direction perpendicular to the av-

erage Parker spiral. This original result has also been observed with ISEE

data (M. Tátrallyay, private communication). Indeed ISEE data revealed

that there were relatively more events at the time of non-typical IMF direc-

tions compared to the events when the IMF was closer to the Parker spiral

direction : in about 75% of all observations the IMF was in the Parker

quadrants, whereas for about 25% of all observations the IMF was in the

non-typical quadrants; but only about 70% of the selected mirror events

were in the Parker quadrants, and about 30% of these events were in the

non-typical quadrants. These values are remarkably consistent with those

obtained with Cluster data. Therefore, according to these numbers the se-

lected mirror events occurred more than 30% more frequently when the

IMF is not in the Parker spiral direction (ie an increase from 23% to 30%

in the Cluster case).

Similar plots with Cluster data in the (By, Bz) plane (not shown) exhibit

a smaller increase of this occurrence frequency for non-Parker situations

(∼7% to be compared to the 30% above).

To understand fully the process behind this counter-intuitive observa-
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Fig. 8. IMF in the XYGSE plane for all magnetosheath crossings. The grey scale codes
the number of events in each 0.5nT×0.5nT bin.

tion one needs to compute correctly the nature of the shock associated

with each mirror events. This implies using a streamline model (derived

from Ref. 44 for instance) or simulation results (like it is done in Ref. 6

using a model by Ref. 45) which is left for future work.

6. Summary and conclusion

We have used 5 years of Cluster magnetosheath crossings to investigate the

occurrence of fluctuations associated with the mirror instability. No con-

strain was imposed on the plasma parameters, as it is recognized that mirror
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Fig. 9. IMF in the XYGSE plane for mirror only events normalized to the total number
of crossings. The grey scale codes the occurrence frequency and bins with less than five
crossings have been rejected.

structures also exist below the mirror instability linear threshold (mainly

in the form of magnetic holes43). Let us summarize the main findings of

the paper.

• There is a larger occurrence in the inner region of the magne-

tosheath, close to the magnetopause at larger zenith angle and

closer to the middle of the sheath in the subsolar region.

• There is a dawn/dusk asymmetry with more events occurring in

the dusk sector, i.e. behind quasi-perpendicular shocks.
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• Mirror fluctuation amplitudes are larger in the middle magne-

tosheath (despite a small statistical coverage close to the shock).

• There is a dawn/dusk asymmetry with more large amplitude events

occurring in the dawn sector, i.e. behind quasi-parallel shocks.

• There is no significant dependence with Ms or with the ram pres-

sure of the solar wind.

• There is a clear dependence with MA which, given the above re-

marks, translates into a dependence with the IMF amplitude B.

• There is a clear dependence with the IMF (Bx, By)GSE angle with

relatively more mirror events (+30%) occurring at times when the

IMF is not oriented along the Parker spiral.

Such conclusions could be interesting for integration in further model-

ing efforts. Indeed clarifying the space of potentially influencing parame-

ters is crucial for studying the evolution of the mirror instability. For in-

stance it is such an observational study on mirror structures shapes which

paved the way to identify the bistability phenomenon which is behind

the shape/localization mirror structure filtering in the magnetosheath. Im-

provements in the present analysis could imply the use of a plasma flow line

model to relate properly the events to their originating bow shock localiza-

tion. Regarding the influence of the solar wind, this analysis clearly opened

new questions (role of IMF magnitude and orientation) which demand a

parametric study to be properly addressed using numerical simulations.
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