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Matrix De Rham complex and quantum

A∞−algebras

S.Barannikov
Ecole Normale Superieure, 45 rue d’Ulm, 75230, Paris, Cedex 05.

We represent the equation defining the quantum A∞−algebras introduced
in ([B1],[B2]) via GL-invariant tensors on matrix spaces gl(A). This allows in
particular to show that the cohomology of the Batalin-Vilkovisky differential
from ([B1],[B2]) are zero.

Notations.We work in the tensor category of super vector spaces, over an
algebraically closed field k, char(k) = 0. Let V = V 1|0⊕V 0|1 be a Z/2Z-graded
vector space. We denote by α the parity of an element α and by ΠV the super
vector space with inversed parity.For a finite groupG acting on a vector space U ,
we denote via UG the space of invariants with respect to the action of G and by
UG the space of coinvariants UG = U/{gv − v|v ∈ V, g ∈ G}. If G is finite then
the averaging (v) → 1/|G|

∑
g∈G gv give a canonical isomorphism UG ≃ UG.

Element (a1⊗a2⊗ . . .⊗an) of A⊗n is denoted by (a1, a2, . . . , an). Cyclic words,
i.e. elements of the subspace (V ⊗n)Z/nZ are denoted via (a1 . . . an)

c. The symbol
δβα denotes the Kronecker delta tensor: δβα = 1 for α = β and zero otherwise. We
denote by tr the super trace linear functional on End(U), tr(U) =

∑
a(−1)

aUa
a .

1 The vector space F .

Let F = ⊕∞n=0Fn where

Fn = (V
⊗n ⊗ k[Sn])

Sn .

Here k[Sn] is the group algebra of the symmetric group Sn, and Sn acts on k[Sn]
by conjugation.

We defined in ([B1]) the differential on F which together with the odd
symplectic bracket, coming from the cyclic operad structure, form the Batalin-
Vilkovisky algebra . Here we shall use the invariant theory approach to cyclic
homology ([FT],[L] and references therein) in order to represent our differential
acting on F via GL−invariant geometry on the affine space gl(∞|∞)⊗ V . Let
U be a Z/2Z-graded vector space. There is the natural left group Sn-action on
U⊗n via

σ ∈ Sn, σ : (u1, . . . , un)→ (−1)ǫ(uσ−1(1), . . . , uσ−1(n))
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where ǫ is the standrad Koszul sign. Recall that we work in the tensor category of
Z/2Z-graded vector spaces, where the isomorphismX⊗Y ≃ Y⊗X is realized via
(x, y)→ (−1)xy(y, x). This gives k−algebra morphism µ : k[Sn]→ Endk(U

⊗n).
The group GL(U) of automorphisms of U acts diagonnally on U⊗n and the im-
age of k[Sn] is obviously in the invariant subspace of Endk(U

⊗n). If U is a vector
space with dimk U

1|0 ≥ n then the k−algebra morphism µ is an isomorphism:

µ : k[Sn] ≃ (Endk(U
⊗n))GL(U) (1)

according to the invariant theory ([GW]).

Proposition 1 The vector space Fn is canonically identified via the map µ with
GL(U)-invariant subspace of n−symmetric powers of the vector space Endk(U)⊗
V :

Fn ≃ (S
n(Endk(U)⊗ V ))GL(U)

, (2)

where U is a Z/2Z-graded vector space with dimk U
1|0 ≥ n.

Proof. The proof is essentually the application of the invariant theory as in
the classical definition of cyclic homology via homology of general linear group
(see [FT],[L]).We have the following sequence of isomorphisms of Z/2Z-graded
vector spaces:

(V ⊗n ⊗ k[Sn])
Sn ≃ (V ⊗n ⊗ (Endk(U

⊗n))GL(U))Sn ≃

≃ (V ⊗n ⊗ (Endk(U)
⊗n)GL(U))Sn ≃ ((V ⊗n ⊗Endk(U)

⊗n)GL(U))Sn ≃

≃ (((V ⊗Endk(U))
⊗n)Sn)GL(U) ≃ (Sn(Endk(U)⊗ V ))GL(U)

.

Here we used the canonical isomorphism Endk(U)
⊗n ≃ Endk(U

⊗n), under
which the permuting of n−tuples of endomorphisms by σ corresponds to the
conjugation by µ(σ) .We also used the fact that GL(U)−action and Sn−action
mutually commute.

We shall denote the isomorphism (2) by µ̃. Let us denote by {Eβ
α} the

basis of elementary matrices in Endk(U) corresponding to some basis {eα} in
U . Then the map (1) is written as

µ : [σ]→
∑

α1,...αn

(−1)ǫE
α
σ−1(1)

α1 ⊗ . . .⊗E
α
σ−1(n)

αn

For an element ai ∈ V let us denote via

Aβ
i,α = ai ⊗Eβ

α, Aβ
i,α ∈ Endk(U)⊗ V

the V−valued matrix correspoding to it. Then for

(a1, . . . , an)⊗Sn σ ∈ (V
⊗n ⊗ k[Sn])Sn
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representing an element from Fn, the isomorphism (2) gives the followingGL(U)-
invariant symmetric tensor

µ̃ : (a1, . . . , an)⊗Sn σ→
∑

α1,...αn

(−1)̃ǫA
α
σ−1(1)

1,α1
· . . . ·A

α
σ−1(n)

n,αn . (3)

where ǫ̃ is ǫ plus the Koszul sign arising from the isomorphism

Endk(U
⊗n)

⊗
V ⊗n ≃ (Endk(U)

⊗
V )⊗n

Let σ = (ρ1 . . . ρr) . . . (τ1 . . . τ t) be the cycle decomposition of σ.

Lemma 2 The symmetric tensor µ̃((a1, . . . , an) ⊗Sn σ) is written in terms of
the cycle decomposition of σ as

(
∑

α1,...αr

(−1)ǫρAαr
ρ1,α1

·Aα1
ρ2,α2

. . .·Aαr−1
ρr,αr

)·. . .·(
∑

γ1,...γt

(−1)ǫτAγt
τ1,γ1

·Aγ1
τ2,γ2

. . .·A
γt−1
τt,γt)

Proof. It is sufficient to rearrange (3), so that the pairs of terms with the
same repeating upper and lower indexes are placed one after the other. We leave
to the interested reader to work out the signs arising from the standard Koszul
rule.

If we denote

Tr⊤(Aρ1 . . . Aρr) =
∑

α1,...αr

(−1)ǫρAαr
ρ1,α1

·Aα1
ρ2,α2

. . . ·Aαr−1
ρr,αr

(4)

then we can write µ̃((a1, . . . , an)⊗Sn (ρ1 . . . ρr) . . . (τ1 . . . τ t)) as

Tr⊤(Aρ1 . . . Aρr) · . . . · Tr
⊤(Aτ1 . . . Aτt)

Remark 3 The notation (4) can be justified by the fact that if V = k and
Ai ∈ Endk(U) then it is the super trace of the action of A1 . . . Ar on the dual
space Hom(U, k).

2 The differential and the bracket.

Let us assume that V has an odd symmetric inner product

l : V ⊗2 → Πk, l(x⊗ y) = (−1)x yl(y ⊗ x)

It follows in particular that the even and odd components of V are of the same
dimension, dimk V = (r|r).

We assume from now on that U is also the Z/2Z-graded vector space which
has even and odd components of the same dimension:

dimk U = (N |N).
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The super-trace functional
tr(Eα

α) = (−1)
α

defines the natural even inner product on the vector space Endk(U):

tr(Eβ
α, E

α̃′

β̃
) = (−1)βδα̃

′

α δ
β

β̃
(5)

It allows to extend the odd inner product l on V to the odd inner product l̂ de-
fined on Endk(U)⊗V . The latter space is therefore an affine space with constant
odd symplectic structure. Its algebra of symmetric tensors ⊕∞n=0S

n(Endk(U)⊗
V ) has natural structure of Batalin-Vilkovisky algebra. The odd inner product
on Endk(U)⊗ V can be written as

l̂(Aβ
α, Ã

α̃′

β̃
) = (−1)β+a(α+β)δα̃

′

α δ
β

β̃
l(a, ã).

If we choose a basis {aν} in V , then the Batalin-Vilkovisky operator acting on
the symmetric algebra ⊕∞n=0S

n(Endk(U)⊗ V ) is written, using the generators
Aβ
ν,α, as

∆ =
∑

νκ,αβ

(−1)ε
lνκ
2

∂2

∂Aβ
ν,α∂Aα

κ,β

(6)

where lνκ = l(aν , aκ), ε = β + aν(α+ β). Similarly we have the standard odd
Poisson bracket corresponding to the affine space with constant odd symplectic
structure:

{Aβ
ν,αA

α̃
κ,β̃
} = (−1)εδα̃

′

α δ
β

β̃
lνκ

Since the inner product l̂ is GL(U)-invariant , therefore both the second-order

odd operator ∆ and the bracket {•, •} are GL(U)-invariant. It defines the
differential and the bracket on the GL(U)−invariant subspace

⊕n=s
n=0S

n(Endk(U)⊗ V )GL(U), (7)

which coincides with ⊕n=s
n=0F by (2) if dimk U is sufficiently big (N ≥ s).

We defined in ([B1],[B2]) the Batalin-Vilkovisky operator acting on F . It is
the combination of ”dissection-gluing” operator acting on cycles with contract-
ing by the tensor of the inner product. The space F is naturally isomorphic to
the symmetric algebra of the space of cyclic words:

F = Symm(⊕∞j=0(V
⊗j)Z/jZ)

It is easy to see by considering the cycle decomposition of permutations. The
second order Batalin-Vilkovisky operator from ([B1],[B2]) is completely deter-
mined by its action on the second symmetric power and it sends a product of
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two cyclic words (aρ1 . . . aρr )
c(aτ1 . . . aτt)

c to

∑

p,q

(−1)ε1lρpτq(aρ1 . . . aρp−1aτq+1 . . . aτq−1aρp+1 . . . aρr)
c + (8)

+
∑

p+1<q

(−1)ε2lρpρq(aρ1 . . . aρp−1aρq+1 . . . aρr)
c(aρp+1 . . . aρq−1)

c(aτ1 . . . aτt)
c

+
∑

p+1<q

(−1)ε3lτpτq(aρ1 . . . aρr )
c(aτ1 . . . aτp−1aτq+1 . . . aτt)

c(aτp+1 . . . aτq−1)
c

where εi are the signs from [B1] in the case of the modular operad based on the
spaces k[Sn].

Theorem 4 The operator ∆ defined on the GL(U)−invariant subspace (7),
where dimk U = (N |N) is sufficiently big (N ≥ s), coincides with the differential
defined on ⊕n=s

n=0Fn in ([B1],[B2]).

Proof. As ∆ is of second order with respect to the multiplication it is
sufficient to consider the case when the cycle decomposition of σ has two cycles
σ = (ρ1 . . . ρr)(τ1 . . . τ t), so that

µ̃((a1, . . . , an)⊗ σ) = Tr⊤(Aρ1 . . . Aρr )Tr
⊤(Aτ1 . . . Aτt)

is the product of two generators of the algebra. Then, applying

∆ =
∑

ν,κ;θ,β

(−1)ε
lνκ
2

∂2

∂Aβ
ν,θ∂A

θ
κ,β

we get three terms. First, there is the term

∑

p,q;θ,β

(−1)ε1lρpτq(
∑

α1,...αr ;
αp−1=β,αp=θ

(−1)ǫpAαr
ρ1,α1

. . .
̂
Aβ
ρp,θ

. . . Aαr−1
ρr,αr

)·

· (
∑

γ1,...γt
γq−1=θ,γq=β

(−1)̃ǫqAγt
τ1,γ1

. . . Âθ
τq,β

. . . A
γt−1
τt,γt)

Here and further in this proof we leave to the reader to verify that the signs
match correctly. Alternatively the matching follows from the identification of
the underlying modular operads, see below, for where the matching of signs is
trivial. Rewriting this term so that the pairs of terms with repeating lower and
upper indexes follow one after the other we get

∑

p,q;θ,β

(−1)ε1 lρpτq ·

·(
∑

{α},{γ}

(−1)̃ǫAαr
ρ1,α1

. . . A
αp−2
ρp−1,β

Aβ
τq+1,γq+1

. . . A
γq−2
τq−1,θ

Aθ
ρp+1,αp+1

. . . Aαr−1
ρr,αr

)
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where {α} = {α1, . . . α̂p−1, α̂p...αr}, {γ} = {γ1, . . . γ̂q−1, γ̂q . . . γt}. This can be
written as

∑

p,q

(−1)ε1lρpτqTr
⊤(Aρ1 . . . Aρp−1Aτq+1 . . . Aτq−1Aρp+1 . . . Aρr )

which is exactly the term corresponding to the first term in (8). The second
term:

∑

p<q;θ,β

(−1)εlρpρq(
∑

α1,...αr ;
αp−1=β,αp=θ
αq−1=θ,αq=β

(−1)ǫpAαr
ρ1,α1

. . .
̂
Aβ
ρp,θ

. . . Âθ
ρq,β

. . . Aαr−1
ρr,αr

) ·

·(
∑

γ1,...γt

(−1)ǫτAγt
τ1,γ1

. . . A
γt−1
τt,γt).

Assume first that the erased terms ̂Aβ
ρp,θ

and Âθ
ρq,β

are not sitting next to each

other , i.e. p+1 < q. Then, rewriting this expression so that the pairs of terms
with the same repeating lower and upper indexes follow one after the other,
gives

∑

p+1<q

(−1)ε2 lρpρq ·

·Tr⊤(Aρ1 . . .Aρp−1Aρq+1 . . . Aρr )Tr
⊤(Aρp+1 . . . Aρq−1)Tr

⊤(Aτ1 . . . Aτt)

However if p+ 1 = q then we get instead

∑

p

(−1)ε̃lρpρp+1Tr
⊤(Aρ1 . . . Aρp−1Aρp+2 . . . Aρr )Tr

⊤(Id)Tr⊤(Aτ1 . . .Aτt)

where Tr⊤(Id) =
∑

α(−1)
α , which is equal to zero because even and odd parts

of U are of the same dimension

dimk U
even = dimk U

odd. (9)

The third term is similar to the second and it gives

∑

p+1<q

(−1)ε3 lτpτq ·

·Tr⊤(Aρ1 . . . Aρr ) · Tr
⊤(Aτ1 . . . Aτp−1Aτq+1 . . . Aτt)Tr

⊤(Aτp+1 . . . Aτq−1)

So we get the three terms corresponding exactly to the Batalin -Vilkovisky
operator defined in ([B1],[B2])

Since the map µ̃ respects the multiplicative structure, we have the similar
result concerning the odd symplectic bracket.
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Proposition 5 The odd symplectic bracket on the GL(U)−invariant subspaces

Sn(End(U)⊗V )GL(U)⊗Sn′(End(U)⊗V )GL(U) → Sn+n′−2(End(U)⊗V )GL(U)

coincides with the odd symplectic bracket

Fn ⊗ Fn′ → Fn+n′−2

described in ([B1],[B2]).

The important consequence of the theorem 4 is that the cohomology of the
differential ∆ acting on F are zero, except for the constants F0 = k.

Theorem 6 The cohomology of the Batalin-Vilkovisky differential acting on F
are trivial: H∗(⊕∞n=1Fn,∆) = 0 .

Proof. The cohomology of the Batalin Vilkovisky operator ∆ acting on the
symmetric algebra of the vector space Endk(U) ⊗ V are trivial, because this
complex is isomorphic to the De Rham complex of the vector space Endk(U)⊗
V 1|0. The reductivity of GL(U) implies that the cohomology of ∆ acting
on the GL(U)-invariant subspace are also trivial. It follows that ker∆|Fn =
im∆|Fn++2 .

3 Modular operad structure on k[Sn].

We defined in ([B1],[B2]) the modular operad S with components S((n)) =
k[Sn]. The subspace of cyclic permutations corresponds to the cyclic operad of
associative algebras with scalar product. The relation with GL(U)−invariant
tensors on the matrix spaces allows to give a straightforward definition for this
modular operad structure.

We work in the category of Z/2Z-graded vector spaces and the appropriate
modification of the modular operad is defined as the algebra over triple, which
is the functor on S−modules given by

MV((n)) =
⊕

G∈Γ((n))

V((G))Aut(G)

Let us consider the endomorphism modular operad E[Endk(U)], associated
with the vector space Endk(U), dimk U = (N |N), equipped with the even scalar
product defined by the super trace (5). We have

E[Endk(U)]((n)) = Endk(U)
⊗n

and contractions along graphs are defined via contractions with the two-tensor
corresponding to the super trace. The structure maps of E [Endk(U)] are invari-
ant under the GL(U)-action. Consider the GL(U)−invariant modular subop-
erad E [Endk(U)]

GL(U). Because of (1) its components for n < N are the same
as the components of the operad S

E[Endk(U)]((n))
GL(U) ≃ S((n)).
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For the space U ′ = U ⊕ k1|1, the natural maps E [Endk(U)]((n))GL(U) →
E[Endk(U

′)]((n))GL(U′) are isomorphisms for n < N . Let us consider the
modular operad E[Endk]

GL which is the direct limit of E[Endk(Ui)]
GL(Ui),

dimk Ui = (Ni|Ni), Ni →∞:

E[Endk]
GL = lim

→
E[Endk(Ui)]

GL(Ui)

Recall that the basic contraction operators

µSff ′ : S((I ⊔ {f, f
′}))→ S((I))

are defined for the modular operad S as the linear maps

k[Aut(I ⊔ {f, f ′})]→ k[Aut(I)]

defined by on permutations of the set (I ⊔ {f, f ′}) via

(ρ1 . . . ρp−1fρp+1 . . . ρr) . . . (τ1 . . . τq−1f
′τ q+1 . . . τ t) →

→ (ρ1 . . . ρp−1ρp+1...ρr) . . . (τ1 . . . τq−1τ q+1 . . . τ t)

if the elements f and f ′ are in the different cycles of the permutation, and via

(ρ1 . . . ρp−1fρp+1 . . . ρq−1f
′ρq+1 . . . ρr) . . . (τ1 . . . τ t) → (10)

→ (ρ1 . . . ρp−1ρp+1 . . . ρq−1ρq+1 . . . ρr) . . . (τ1 . . . τ t)

(ρ1 . . . ρp−1ff
′ρp+1 . . . ρr) . . . (τ1 . . . τ t)→ 0 (11)

if the elements f and f ′ are in the same cycle of the permutation.

Proposition 7 The modular operad S is isomorphic to the modular operad
E[Endk]GL

Proof. The proof consists essentually of the same calculations as in the
proof of the theorem 4. In particular the condition (9) implies (11).

4 Even inner product.

In the case of even inner product the space F , on which the equation of the
quantum A∞−algebra is defined, is

F = Symm(⊕∞j=0Π((ΠV )
⊗j)Z/jZ)

with components
Fn = ((ΠV )

⊗n ⊗ k[Sn]
′)Sn

where k[Sn]′ is the vector space with the basis indexed by elements (σ, ρσ),
where σ ∈ Sn is a permutation with iσ cycles σα and ρσ = σ1 ∧ . . . ∧ σiσ ,
ρσ ∈ Det(Cycle(σ)), Det(Cycle(σ)) = Symmiσ (k0|iσ ), is one of the generators
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of the one-dimensional determinant of the set of cycles of σ, i.e. ρσ is an order
on the set of cycles defined up to even reordering, and (σ,−ρσ) = −(σ, ρσ).

If the space V has an even inner product, then F has canonically defined
differential ∆, see ([B1],[B2]).

Let us consider again the Z/2Z-graded vector space U which has even and
odd components of the same dimension. Let us denote by p ∈ End(U), p2 = 1,
an odd involution. It acts by interchanging isomorphically U1|0 with U0|1. Our
basic algebra with trace in the case of even inner product is the subalgebra of
End(U), of operators commuting with p:

θ(U) = {G ∈ End(U)| [G, p] = 0}.

It looks as follows in the standard block decomposition of supermatrices:

G =

(
X Ξ
−Ξ X

)

We have isomorphism of Z/2Z-graded vector spaces: θ(U) = ΠT ∗End(U1|0),

θ(U) = End(U1|0)⊕ΠEnd(U1|0).

The basic property of θ(U) is that it has an odd analog of trace functional:

otr(G) =
1

2
tr(Gp) =

1

2
tr(pG) = trΞ

which gives canonical odd invariant inner product on θ(U):

〈G,G′〉 = otr(G ◦G′) = tr(XΞ′) + tr(ΞX ′).

This odd inner product on θ(U) together with even inner product on V defines
the natural odd inner product on the tensor product Z/2Z-graded vector space

θ(U)
⊗

V

Therefore, as in the previoius case, this space is an affine space with con-
stant odd symplectic structure and therefore its algerbra of symmetric tensors
⊕∞n=0S

n(θ(U)⊗ V ) has natural structure of Batalin-Vilkovisky algebra.
The canonical super group acting on θ(U) and its tensor powers is the sub-

group Θ(U) ⊂ GL(U), preserving the odd involution p:

Θ(U) = {g ∈ GL(U)|gpg−1 = p}.

Proposition 8 We have

Hom(θ(U)⊗n, k)Θ(U) = k[Sn]
′

for dimU = (N |N) sufficiently big, N > n
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Proof. The basis for coinvariants of the Θ(U) action on U ⊗Hom(U, k) is∑
a ea ⊗ ea,

∑
a(pea) ⊗ ea,

∑
a ea ⊗ (e

ap). Therefore on the space of tensors
(U ⊗Hom(U, k))⊗n the space of Θ(U)−coinvariants is spanned by all possible
combinations of these three elements of the form

∑

a1,...,an

(eaσ(1) ⊗ ea1)⊗ . . .⊗ (peaσ(i) ⊗ eai)⊗ . . .⊗ (eaσ(j) ⊗ (e
ajp))⊗ . . . ,

where σ ∈ Sn. Such element corresponds to an arbitrary permutation σ ∈ Sn
and the marking, which associates one of the three types of tensors (eaσ(i) ⊗
eai), (peaσ(i) ⊗ eai), or (eaσ(i) ⊗ eaip) to every i ∈ {1, . . . , n}. If the cycle
decomposition of σis denoted by (ρ1 . . . ρr) . . . (τ1 . . . τ t), then such an element
gives on End(U)⊗n the linear functional of the following type:

tr(Aρ1 . . . Aρi−1pAρi . . . Aρj−1pAρj . . . Aρr ) · . . . · tr(Aτ1 . . . Aτt)

consisting of products of traces of compositions of the endomorphisms with
arbitrary inclusions of the operator p. The operator p commutes with any
matrix Aρj ∈ θ(U). Therefore on θ(U)⊗n all inclusions of p inside the given
trace cancel with each other except for possibly one:

tr(Aρ1 . . . Aρi−1pAρi . . . Aρr ) = tr(plAρ1 . . . Aρr )

where l = 0 or l = 1 depending on the parity of the total number of inclusions of
p. Notice now that for any A ∈ θ(U) , tr(A) = 0. And therefore the traces with
even number of inclusions of p vanish on θ(U)⊗n. The trace with odd number
of inclusions of p becomes the odd trace otr when restricted to θ(U) . We see
that the Θ(U)−coinvariants in Hom(θ(U)⊗n, k) are spanned by the products of
odd traces:

otr(Aρ1 . . . Aρr) · . . . · otr(Aτ1 . . . Aτt), Ai ∈ θ(U).

It follows easily from the corresponding result for gl, that these products of odd
traces are linearly independent for N > n.

The super group Θ(U) preserves the odd trace otr and therefore the invari-
ants subspace ⊕∞n=0S

n(θ(U) ⊗ V )Θ(U) inherits the natural Batalin-Vilkovisky
algebra structure.We have now the following analogs of the propositions 1, 5
and of the theorem 4. The proofs are completely analogous to the proofs in the
odd inner product case.

Proposition 9 The vector space Fn is canonically identified with Θ(U)-invariant
subspace of n−symmetric powers of the vector space θ(U)⊗ V :

Fn ≃ (S
n(θ(U)⊗ V ))Θ(U) , (12)

where U is a Z/2Z-graded vector space with dimk U = (N |N), N ≥ n.
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Theorem 10 The operator ∆ defined on the Θ(U)−invariant

∆ : (Sn(θ(U)⊗ V ))Θ(U) →
(
Sn−2(θ(U)⊗ V )

)Θ(U)
,

where dimk U = (N |N) is sufficiently big (N ≥ n), coincides with the differential
∆ : Fn → Fn−2 defined in ([B1],[B2]).

Proposition 11 The odd symplectic bracket on the Θ(U)−invariant subspaces

Sn(θ(U)⊗ V )GL(U) ⊗ Sn′(θ(U)⊗ V )GL(U) → Sn+n′−2(θ(U)⊗ V )GL(U)

coincides with the standard odd symplectic bracket (see references in loc.cit):

Fn ⊗ Fn′ → Fn+n′−2.
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