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We represent the equation defining the quantum A ∞ -algebras introduced in ([B1], [B2]) via GL-invariant tensors on matrix spaces gl(A). This allows in particular to show that the cohomology of the Batalin-Vilkovisky differential from ( [B1], [B2]) are zero.

Notations.We work in the tensor category of super vector spaces, over an algebraically closed field k, char(k) = 0. Let V = V 1|0 ⊕ V 0|1 be a Z/2Z-graded vector space. We denote by α the parity of an element α and by ΠV the super vector space with inversed parity.For a finite group G acting on a vector space U , we denote via U G the space of invariants with respect to the action of G and by U G the space of coinvariants U G = U/{gv -v|v ∈ V, g ∈ G}. If G is finite then the averaging (v) → 1/|G| g∈G gv give a canonical isomorphism U G ≃ U G . Element (a 1 ⊗ a 2 ⊗ . . . ⊗ a n ) of A ⊗n is denoted by (a 1 , a 2 , . . . , a n ). Cyclic words, i.e. elements of the subspace (V ⊗n ) Z/nZ are denoted via (a 1 . . . a n ) c . The symbol δ β α denotes the Kronecker delta tensor: δ β α = 1 for α = β and zero otherwise. We denote by tr the super trace linear functional on End(U), tr(U) = a (-1) a U a a .

1 The vector space F .

Let F = ⊕ ∞ n=0 F n where F n = (V ⊗n ⊗ k[S n ]) Sn .
Here k[S n ] is the group algebra of the symmetric group S n , and S n acts on k[S n ] by conjugation. We defined in ( [B1]) the differential on F which together with the odd symplectic bracket, coming from the cyclic operad structure, form the Batalin-Vilkovisky algebra . Here we shall use the invariant theory approach to cyclic homology ( [FT], [L] and references therein) in order to represent our differential acting on F via GL-invariant geometry on the affine space gl(∞|∞) ⊗ V . Let U be a Z/2Z-graded vector space. There is the natural left group S n -action on

U ⊗n via σ ∈ S n , σ : (u 1 , . . . , u n ) → (-1) ǫ (u σ -1 (1) , . . . , u σ -1 (n) )
1 where ǫ is the standrad Koszul sign. Recall that we work in the tensor category of Z/2Z-graded vector spaces, where the isomorphism X⊗Y ≃ Y ⊗X is realized via (x, y) → (-1) xy (y, x). This gives k-algebra morphism µ : k[S n ] → End k (U ⊗n ). The group GL(U ) of automorphisms of U acts diagonnally on U ⊗n and the image of k[S n ] is obviously in the invariant subspace of End k (U ⊗n ). If U is a vector space with dim k U 1|0 ≥ n then the k-algebra morphism µ is an isomorphism:

µ : k[S n ] ≃ (End k (U ⊗n )) GL(U ) (1)
according to the invariant theory ( [GW]).

Proposition 1 The vector space F n is canonically identified via the map µ with GL(U )-invariant subspace of n-symmetric powers of the vector space End k (U )⊗ V :

F n ≃ (S n (End k (U ) ⊗ V )) GL(U ) , ( 2 
)
where U is a Z/2Z-graded vector space with dim k U 1|0 ≥ n.

Proof. The proof is essentually the application of the invariant theory as in the classical definition of cyclic homology via homology of general linear group (see [FT], [L]).We have the following sequence of isomorphisms of Z/2Z-graded vector spaces:

(V ⊗n ⊗ k[S n ]) Sn ≃ (V ⊗n ⊗ (End k (U ⊗n )) GL(U) ) Sn ≃ ≃ (V ⊗n ⊗ (End k (U ) ⊗n ) GL(U ) ) Sn ≃ ((V ⊗n ⊗ End k (U ) ⊗n ) GL(U) ) Sn ≃ ≃ (((V ⊗ End k (U )) ⊗n ) S n ) GL(U ) ≃ (S n (End k (U ) ⊗ V )) GL(U) .
Here we used the canonical isomorphism End k (U ) ⊗n ≃ End k (U ⊗n ), under which the permuting of n-tuples of endomorphisms by σ corresponds to the conjugation by µ(σ) .We also used the fact that GL(U )-action and S n -action mutually commute.

We shall denote the isomorphism (2) by µ. Let us denote by {E β α } the basis of elementary matrices in End k (U ) corresponding to some basis {e α } in U. Then the map (1) is written as

µ : [σ] → α1,...αn (-1) ǫ E α σ -1 (1) α1 ⊗ . . . ⊗ E α σ -1 (n) αn
For an element a i ∈ V let us denote via

A β i,α = a i ⊗ E β α , A β i,α ∈ End k (U ) ⊗ V the V -valued matrix correspoding to it. Then for (a 1 , . . . , a n ) ⊗ Sn σ ∈ (V ⊗n ⊗ k[S n ]) Sn
representing an element from F n , the isomorphism (2) gives the following GL(U )invariant symmetric tensor

µ : (a 1 , . . . , a n ) ⊗ S n σ → α 1 ,...α n (-1) ǫ A α σ -1 (1) 1,α1 • . . . • A α σ -1 (n) n,αn . ( 3 
)
where ǫ is ǫ plus the Koszul sign arising from the isomorphism

End k (U ⊗n ) V ⊗n ≃ (End k (U ) V ) ⊗n
Let σ = (ρ 1 . . . ρ r ) . . . (τ 1 . . . τ t ) be the cycle decomposition of σ.

Lemma 2 The symmetric tensor µ((a 1 , . . . , a n ) ⊗ Sn σ) is written in terms of the cycle decomposition of σ as

( α 1 ,...α r (-1) ǫρ A αr ρ 1 ,α 1 •A α1 ρ 2 ,α 2 . . .•A αr-1 ρ r ,α r )•. . .•( γ 1 ,...γ t (-1) ǫτ A γ t τ 1 ,γ 1 •A γ 1 τ 2 ,γ 2 . . .•A γ t-1 τ t ,γ t )
Proof. It is sufficient to rearrange (3), so that the pairs of terms with the same repeating upper and lower indexes are placed one after the other. We leave to the interested reader to work out the signs arising from the standard Koszul rule.

If we denote

T r ⊤ (A ρ 1 . . . A ρ r ) = α1,...αr (-1) ǫ ρ A α r ρ 1 ,α1 • A α 1 ρ 2 ,α2 . . . • A α r-1 ρ r ,αr (4) 
then we can write µ((a 1 , . . . , a n )

⊗ S n (ρ 1 . . . ρ r ) . . . (τ 1 . . . τ t )) as T r ⊤ (A ρ 1 . . . A ρ r ) • . . . • T r ⊤ (A τ 1 . . . A τ t )
Remark 3 The notation ( 4) can be justified by the fact that if V = k and A i ∈ End k (U ) then it is the super trace of the action of A 1 . . . A r on the dual space Hom(U, k).

2 The differential and the bracket.

Let us assume that V has an odd symmetric inner product

l : V ⊗2 → Πk, l(x ⊗ y) = (-1) x y l(y ⊗ x)
It follows in particular that the even and odd components of V are of the same dimension, dim k V = (r|r).

We assume from now on that U is also the Z/2Z-graded vector space which has even and odd components of the same dimension:

dim k U = (N |N).
The super-trace functional tr(E α α ) = (-1) α defines the natural even inner product on the vector space End k (U ):

tr(E β α , E α ′ β ) = (-1) β δ α ′ α δ β β (5)
It allows to extend the odd inner product l on V to the odd inner product l defined on End k (U )⊗V . The latter space is therefore an affine space with constant odd symplectic structure. Its algebra of symmetric tensors ⊕ ∞ n=0 S n (End k (U) ⊗ V ) has natural structure of Batalin-Vilkovisky algebra. The odd inner product on End k (U ) ⊗ V can be written as

l(A β α , A α ′ β ) = (-1) β+a(α+β) δ α ′ α δ β β l(a, a).
If we choose a basis {a ν } in V , then the Batalin-Vilkovisky operator acting on the symmetric algebra

⊕ ∞ n=0 S n (End k (U) ⊗ V ) is written, using the generators A β ν,α , as ∆ = νκ,αβ (-1) ε l νκ 2 ∂ 2 ∂A β ν,α ∂A α κ,β (6) 
where

l νκ = l(a ν , a κ ), ε = β + a ν (α + β).
Similarly we have the standard odd Poisson bracket corresponding to the affine space with constant odd symplectic structure:

{A β ν,α A α κ, β } = (-1) ε δ α ′ α δ β β l νκ
Since the inner product l is GL(U )-invariant , therefore both the second-order odd operator ∆ and the bracket {•, •} are GL(U)-invariant. It defines the differential and the bracket on the GL(U)-invariant subspace

⊕ n=s n=0 S n (End k (U ) ⊗ V ) GL(U ) , (7) 
which coincides with ⊕ n=s n=0 F by (2) if dim k U is sufficiently big (N ≥ s). We defined in ([B1], [B2]) the Batalin-Vilkovisky operator acting on F . It is the combination of "dissection-gluing" operator acting on cycles with contracting by the tensor of the inner product. The space F is naturally isomorphic to the symmetric algebra of the space of cyclic words:

F = Symm(⊕ ∞ j=0 (V ⊗j ) Z/jZ )
It is easy to see by considering the cycle decomposition of permutations. The second order Batalin-Vilkovisky operator from ([B1], [B2]) is completely determined by its action on the second symmetric power and it sends a product of two cyclic words (a ρ 1 . . . a ρ r ) c (a τ 1 . . . a τ t ) c to p,q (-1) ε1 l ρ p τ q (a ρ 1 . . . a ρ p-1 a τ q+1 . . . a τ q-1 a ρ p+1 . . . a ρ r ) c + (8)

+ p+1<q (-1) ε2 l ρ p ρ q (a ρ 1 . . . a ρ p-1 a ρ q+1 . . . a ρ r ) c (a ρ p+1 . . . a ρ q-1 ) c (a τ 1 . . . a τ t ) c + p+1<q (-1) ε3 l τ p τ q (a ρ 1 . . . a ρ r ) c (a τ 1 . . . a τ p-1 a τ q+1 . . . a τ t ) c (a τ p+1 . . . a τ q-1 ) c
where ε i are the signs from [B1] in the case of the modular operad based on the spaces k[S n ].

Theorem 4 The operator ∆ defined on the GL(U )-invariant subspace ( 7), where dim k U = (N |N ) is sufficiently big (N ≥ s), coincides with the differential defined on ⊕ n=s n=0 F n in ( [B1], [B2]).

Proof. As ∆ is of second order with respect to the multiplication it is sufficient to consider the case when the cycle decomposition of σ has two cycles

σ = (ρ 1 . . . ρ r )(τ 1 . . . τ t ), so that µ((a 1 , . . . , a n ) ⊗ σ) = T r ⊤ (A ρ 1 . . . A ρ r )T r ⊤ (A τ 1 . . . A τ t )
is the product of two generators of the algebra. Then, applying

∆ = ν,κ;θ,β (-1) ε l νκ 2 ∂ 2 ∂A β ν,θ ∂A θ κ,β
we get three terms. First, there is the term p,q;θ,β (-1) ε1 l ρ p τ q ( α1,...αr; αp-1=β,αp=θ

(-1) ǫp A αr ρ 1 ,α1 . . . A β ρ p ,θ . . . A αr-1 ρ r ,αr )• • ( γ 1 ,...γ t γ q-1 =θ,γ q =β (-1) ǫ q A γ t τ 1 ,γ 1 . . . A θ τ q ,β . . . A γ t-1 τ t ,γ t )
Here and further in this proof we leave to the reader to verify that the signs match correctly. Alternatively the matching follows from the identification of the underlying modular operads, see below, for where the matching of signs is trivial. Rewriting this term so that the pairs of terms with repeating lower and upper indexes follow one after the other we get p,q;θ,β

(-1) ε1 l ρ p τ q • •( {α},{γ} (-1) ǫ A αr ρ 1 ,α1 . . . A αp-2 ρ p-1 ,β A β τ q+1,γq+1 . . . A γ q-2 τ q-1 ,θ A θ ρ p+1 ,αp+1 . . . A αr-1 ρ r ,αr )
where {α} = {α 1 , . . . α p-1 , α p... α r }, {γ} = {γ 1 , . . . γ q-1 , γ q . . . γ t }. This can be written as

p,q (-1) ε1 l ρ p τ q T r ⊤ (A ρ 1 . . . A ρ p-1 A τ q+1 . . . A τ q-1 A ρ p+1 . . . A ρ r )
which is exactly the term corresponding to the first term in (8). The second term:

p<q;θ,β (-1) ε l ρ p ρ q ( α1,...αr; αp-1=β,αp=θ αq-1=θ,αq=β

(-1) ǫp A αr ρ 1 ,α1 . . . A β ρ p ,θ . . . A θ ρ q ,β . . . A αr-1 ρ r ,αr ) • •( γ 1 ,...γ t (-1) ǫτ A γ t τ 1 ,γ 1 . . . A γ t-1 τ t,γt ).
Assume first that the erased terms A β ρ p ,θ and A θ ρ q ,β are not sitting next to each other , i.e. p + 1 < q. Then, rewriting this expression so that the pairs of terms with the same repeating lower and upper indexes follow one after the other, gives

p+1<q (-1) ε2 l ρ p ρ q • •T r ⊤ (A ρ 1 . . . A ρ p-1 A ρ q+1 . . . A ρ r )T r ⊤ (A ρ p+1 . . . A ρ q-1 )T r ⊤ (A τ 1 . . . A τ t ) However if p + 1 = q then we get instead p (-1) ε l ρ p ρ p+1 T r ⊤ (A ρ 1 . . . A ρ p-1 A ρ p+2 . . . A ρ r )T r ⊤ (Id)T r ⊤ (A τ 1 . . . A τ t )
where T r ⊤ (Id) = α (-1) α , which is equal to zero because even and odd parts of U are of the same dimension

dim k U even = dim k U odd . (9) 
The third term is similar to the second and it gives p+1<q

(-1) ε 3 l τ pτ q • •T r ⊤ (A ρ 1 . . . A ρ r ) • T r ⊤ (A τ 1 . . . A τ p-1 A τ q+1 . . . A τ t )T r ⊤ (A τ p+1 . . . A τ q-1 )
So we get the three terms corresponding exactly to the Batalin -Vilkovisky operator defined in ([B1], [B2])

Since the map µ respects the multiplicative structure, we have the similar result concerning the odd symplectic bracket.

Proposition 5 The odd symplectic bracket on the GL(U )-invariant subspaces

S n (End(U ) ⊗ V ) GL(U ) ⊗ S n ′ (End(U ) ⊗ V ) GL(U) → S n+n ′ -2 (End(U) ⊗ V ) GL(U )
coincides with the odd symplectic bracket

F n ⊗ F n ′ → F n+n ′ -2
described in ( [B1], [B2]).

The important consequence of the theorem 4 is that the cohomology of the differential ∆ acting on F are zero, except for the constants F 0 = k.

Theorem 6 The cohomology of the Batalin-Vilkovisky differential acting on F are trivial:

H * (⊕ ∞ n=1 F n , ∆) = 0 . Proof.
The cohomology of the Batalin Vilkovisky operator ∆ acting on the symmetric algebra of the vector space End k (U ) ⊗ V are trivial, because this complex is isomorphic to the De Rham complex of the vector space End k (U ) ⊗ V 1|0 . The reductivity of GL(U ) implies that the cohomology of ∆ acting on the GL(U)-invariant subspace are also trivial. It follows that ker ∆| Fn = im ∆| F n++2 .

3 Modular operad structure on k[S n ].

We defined in ( [B1], [B2]) the modular operad S with components S((n)) = k[S n ]. The subspace of cyclic permutations corresponds to the cyclic operad of associative algebras with scalar product. The relation with GL(U)-invariant tensors on the matrix spaces allows to give a straightforward definition for this modular operad structure.

We work in the category of Z/2Z-graded vector spaces and the appropriate modification of the modular operad is defined as the algebra over triple, which is the functor on S-modules given by

MV((n)) = G∈Γ((n)) V((G)) Aut(G)
Let us consider the endomorphism modular operad E[End k (U )], associated with the vector space End k (U), dim k U = (N |N), equipped with the even scalar product defined by the super trace (5). We have

E[End k (U )]((n)) = End k (U ) ⊗n
and contractions along graphs are defined via contractions with the two-tensor corresponding to the super trace. The structure maps of E[End k (U )] are invariant under the GL(U )-action. Consider the GL(U )-invariant modular suboperad E[End k (U )] GL(U ) . Because of (1) its components for n < N are the same as the components of the operad S E[End k (U )]((n)) GL(U ) ≃ S((n)).

For the space U

′ = U ⊕ k 1|1 , the natural maps E[End k (U )]((n)) GL(U ) → E[End k (U ′ )]((n)) GL(U ′ ) are isomorphisms for n < N . Let us consider the modular operad E[End k ] GL which is the direct limit of E[End k (U i )] GL(Ui) , dim k U i = (N i |N i ), N i → ∞: E[End k ] GL = lim → E[End k (U i )] GL(Ui)
Recall that the basic contraction operators

µ S f f ′ : S((I ⊔ {f, f ′ })) → S((I))
are defined for the modular operad S as the linear maps

k[Aut(I ⊔ {f, f ′ })] → k[Aut(I)]
defined by on permutations of the set

(I ⊔ {f, f ′ }) via (ρ 1 . . . ρ p-1 fρ p+1 . . . ρ r ) . . . (τ 1 . . . τ q-1 f ′ τ q+1 . . . τ t ) → → (ρ 1 . . . ρ p-1 ρ p+1... ρ r ) . . . (τ 1 . . . τ q-1 τ q+1 . . . τ t )
if the elements f and f ′ are in the different cycles of the permutation, and via

(ρ 1 . . . ρ p-1 fρ p+1 . . . ρ q-1 f ′ ρ q+1 . . . ρ r ) . . . (τ 1 . . . τ t ) → (10) → (ρ 1 . . . ρ p-1 ρ p+1 . . . ρ q-1 ρ q+1 . . . ρ r ) . . . (τ 1 . . . τ t ) (ρ 1 . . . ρ p-1 f f ′ ρ p+1 . . . ρ r ) . . . (τ 1 . . . τ t ) → 0 (11) 
if the elements f and f ′ are in the same cycle of the permutation.

Proposition 7

The modular operad S is isomorphic to the modular operad

E[End k ] GL
Proof. The proof consists essentually of the same calculations as in the proof of the theorem 4. In particular the condition (9) implies (11).

4 Even inner product.

In the case of even inner product the space F , on which the equation of the quantum A ∞ -algebra is defined, is

F = Symm(⊕ ∞ j=0 Π((ΠV ) ⊗j ) Z/jZ ) with components F n = ((ΠV ) ⊗n ⊗ k[S n ] ′ ) Sn
where k[S n ] ′ is the vector space with the basis indexed by elements (σ, ρ σ ), where σ ∈ S n is a permutation with i σ cycles σ α and ρ σ = σ 1 ∧ . . . ∧ σ iσ , ρ σ ∈ Det(Cycle(σ)), Det(Cycle(σ)) = Symm iσ (k 0|iσ ), is one of the generators of the one-dimensional determinant of the set of cycles of σ, i.e. ρ σ is an order on the set of cycles defined up to even reordering, and (σ, -ρ σ ) = -(σ, ρ σ ).

If the space V has an even inner product, then F has canonically defined differential ∆, see ( [B1], [B2]).

Let us consider again the Z/2Z-graded vector space U which has even and odd components of the same dimension. Let us denote by p ∈ End(U ), p 2 = 1, an odd involution. It acts by interchanging isomorphically U 1|0 with U 0|1 . Our basic algebra with trace in the case of even inner product is the subalgebra of End(U ), of operators commuting with p:

θ(U) = {G ∈ End(U )| [G, p] = 0}.
It looks as follows in the standard block decomposition of supermatrices:

G = X Ξ -Ξ X
We have isomorphism of Z/2Z-graded vector spaces:

θ(U ) = ΠT * End(U 1|0 ), θ(U ) = End(U 1|0 ) ⊕ ΠEnd(U 1|0 ).
The basic property of θ(U ) is that it has an odd analog of trace functional:

otr(G) = 1 2 tr(Gp) = 1 2 tr(pG) = trΞ
which gives canonical odd invariant inner product on θ(U ):

G, G ′ = otr(G • G ′ ) = tr(XΞ ′ ) + tr(ΞX ′ ).
This odd inner product on θ(U ) together with even inner product on V defines the natural odd inner product on the tensor product Z/2Z-graded vector space θ(U) V Therefore, as in the previoius case, this space is an affine space with constant odd symplectic structure and therefore its algerbra of symmetric tensors ⊕ ∞ n=0 S n (θ(U ) ⊗ V ) has natural structure of Batalin-Vilkovisky algebra.

The canonical super group acting on θ(U ) and its tensor powers is the subgroup Θ(U ) ⊂ GL(U ), preserving the odd involution p:

Θ(U ) = {g ∈ GL(U )|gpg -1 = p}. Proposition 8 We have Hom(θ(U ) ⊗n , k) Θ(U ) = k[S n ] ′ for dim U = (N |N ) sufficiently big, N > n
Proof. The basis for coinvariants of the Θ(U) action on U ⊗ Hom(U, k) is a e a ⊗ e a , a (pe a ) ⊗ e a , a e a ⊗ (e a p). Therefore on the space of tensors (U ⊗ Hom(U, k)) ⊗n the space of Θ(U )-coinvariants is spanned by all possible combinations of these three elements of the form a1,...,an (e a σ(1) ⊗ e a 1 ) ⊗ . . . ⊗ (pe a σ(i) ⊗ e a i ) ⊗ . . . ⊗ (e a σ(j) ⊗ (e a j p)) ⊗ . . . , where σ ∈ S n . Such element corresponds to an arbitrary permutation σ ∈ S n and the marking, which associates one of the three types of tensors (e a σ(i) ⊗ e ai ), (pe a σ(i) ⊗ e ai ), or (e a σ(i) ⊗ e ai p) to every i ∈ {1, . . . , n}. If the cycle decomposition of σis denoted by (ρ 1 . . . ρ r ) . . . (τ 1 . . . τ t ), then such an element gives on End(U ) ⊗n the linear functional of the following type:

tr(A ρ 1 . . . A ρ i-1 pA ρ i . . . A ρ j-1 pA ρ j . . . A ρ r ) • . . . • tr(A τ 1 . . . A τ t )
consisting of products of traces of compositions of the endomorphisms with arbitrary inclusions of the operator p. The operator p commutes with any matrix A ρ j ∈ θ(U ). Therefore on θ(U ) ⊗n all inclusions of p inside the given trace cancel with each other except for possibly one:

tr(A ρ 1 . . . A ρ i-1 pA ρ i . . . A ρ r ) = tr(p l A ρ 1 . . . A ρ r )
where l = 0 or l = 1 depending on the parity of the total number of inclusions of p. Notice now that for any A ∈ θ(U) , tr(A) = 0. And therefore the traces with even number of inclusions of p vanish on θ(U) ⊗n . The trace with odd number of inclusions of p becomes the odd trace otr when restricted to θ(U ) . We see that the Θ(U )-coinvariants in Hom(θ(U ) ⊗n , k) are spanned by the products of odd traces: otr(A ρ 1 . . . A ρ r ) • . . . • otr(A τ 1 . . . A τ t ), A i ∈ θ(U ).

It follows easily from the corresponding result for gl, that these products of odd traces are linearly independent for N > n.

The super group Θ(U ) preserves the odd trace otr and therefore the invariants subspace ⊕ ∞ n=0 S n (θ(U) ⊗ V ) Θ(U ) inherits the natural Batalin-Vilkovisky algebra structure.We have now the following analogs of the propositions 1, 5 and of the theorem 4. The proofs are completely analogous to the proofs in the odd inner product case.

Proposition 9 The vector space F n is canonically identified with Θ(U )-invariant subspace of n-symmetric powers of the vector space θ(U) ⊗ V :

F n ≃ (S n (θ(U ) ⊗ V )) Θ(U) , ( 12 
)
where U is a Z/2Z-graded vector space with dim k U = (N |N ), N ≥ n.

Theorem 10 The operator ∆ defined on the Θ(U )-invariant

where B1], [B2]).

Proposition 11 The odd symplectic bracket on the Θ(U )-invariant subspaces

coincides with the standard odd symplectic bracket (see references in loc.cit):