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[1] A new index assessing the cloud growing rate is
described in this paper. It has been designed to be integrated
in rainfall estimation procedures. As the highest
precipitation rates occur in growing convective cores,
integrating this information should enhance the
precipitation estimations. The index computation relies on
image processing methods. It is composed of two steps: first
a watershed segmentation is applied and then an original
heritage process is performed. This second step, which is
based on a simple matrix computation, is adapted to the
watershed algorithm as it mitigates the over-segmentation
artefact. This cloud growing rate index is compared with a
cooling index which is usually computed to help in
identifying raining cells and it is demonstrated to be more
efficient. Moreover a simple integration of this index in
a widespread rainfall estimation method leads to an
improvement of the diurnal cycle retrieval. Citation: Bergès,

J. C., I. Jobard, and R. Roca (2009), A new index to estimate

precipitation using cloud growing rate, Geophys. Res. Lett., 36,

L08808, doi:10.1029/2008GL036665.

1. Introduction

[2] Estimating rainfall intensity from geostationary satel-
lite IR data is a sensitive issue as the relationship between
rainfall intensity and cloud top IR temperature is not
straightforward and then unstable. As a matter of fact the
thermal infrared channel provides a better estimation of
precipitation probability than of rainfall rate because of the
high intensity estimation issue. Arkin and Meisner [1987]
based the GOES Precipitation Index (GPI) on this property.
However the GPI resolution was defined for large time and
space scales, mainly because the thermal infrared signal in a
convective system is much more homogeneous than the
precipitation distribution.
[3] Convection in the tropics is organized in the form of

Mesoscale Convective System [Houze, 2004] composed of a
convective core of about 10–100 km, made up of convective
cells at different maturing stages of about 1–10 km and a
stratiform region with no active convection but a large cold
cloud shield of about 100–1000 km [Roca et al., 2002].
These systems exhibit elaborated life cycle and relationship
to the amount of rainfall they produce. For a convective cell
the situation is less complex and the maximum of precipita-
tion occurs during the growing phase of the convective cell
[Redelsperger, 1997]. So integrating a growing rate index
should improve the rainfall estimation accuracy. But while
many algorithms have been developed for the full cloud
tracking, few works have been dedicated to a proper estima-

tion of this parameter. For instance, the EUMETSAT SAF
Rapid Detection of Thunderstorms algorithm [Morel and
Senesi, 2002] provides similar index which is used to
characterize the initial phase of convective system but are
not used for rainfall estimation.Machado and Laurent [2004]
focused on the cloud area expansion that reveals skill for
rainfall nowcasting (L. A. T. Machado et al., Convective
system area expansion, high-level wind divergence and
vertical velocity: A tool for nowcasting, paper presented at
the World Weather Research Program Symposium on Now-
casting and Very Short Range Forecasting, World Weather
Research Programme, Toulouse, France, 5–9 September
2005). Vicente and Scofield [1998] use a simple cooling
index defined as the difference from two consecutive images,
but the efficiency of the cooling indicator appears even
slightly lower than the image spatial variance which has a
tenuous link with the precipitation process.
[4] The main reason for this lack of efficiency is that a

cloud growing rate cannot be assessed at the pixel level but at
a cluster level which should represent the convective cell
scale. In this paper a new growing rate index, based on
watershed segmentation, is described. The main issue has
been to keep it stable regarding cluster over-segmentation.
This growing rate index has been computed on a six months
series of geostationary satellite data and its validity has been
checked against passive microwave data.

2. Data

[5] Geostationary dataset, supplied by SATMOS, is com-
posed of the whole series of GOES12 thermal infrared 10.8 mm
channel images from February to July 2006 over South
America. In order to avoid missing sectors in temporal series,
extractions have been performed on a geographic window
19S:11N/90W:30W. Excluding the incomplete slots, this data-
set is composed of 7640 images.
[6] The reference rainfall dataset is based on the 3G68L

product delivered in the TRMM/NASA database and the
rainfall occurrence is derived from the passive microwave
precipitation intensity [Kummerow et al., 2001]. TMI rain-
fall estimation is based on a Bayesian procedure relating
passive microwave to TRMM precipitation radar reflectiv-
ities. Over land this estimator is mainly related to 85 GHz
radiation scattering by ice particles; thus in a deep convec-
tion context, estimated rainfall is based on cloud top
properties and can differ from ground rainfall measure-
ments. Hereafter it is used only for rain detection.

3. Method

3.1. Rainfall Probability Function and Kernel
Delineation

[7] As quoted before, there is a statistical relation between
probability of rainfall occurrence and IR brightness temper-
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ature. This relation is statistically valid in inter-tropical area
where deep convection is predominant. In this paper a rainfall
probability function (RPF) is used as an empirical estimator.
A RPF, computed by histogrammatching, has been plotted in
Figure 1a. For each bin of 1K the percentage of rainy pixels
according to TMI has been assimilated to a rainfall proba-
bility. A second RPF, estimated on a different period, has
been displayed on the same graph and shows the low stability
of this relation. Whereas the two curves look smooth and
coherent, using them directly in a quantitative estimation
would produce significant errors. Figure 1b shows the
distribution of detected rainfall versus IR; it appears that
the two RPF differ mainly in the temperature range
corresponding to the distribution peak. Nevertheless at this
huge aggregation level the empirical functions appear as
monotonic with quasi-null value above 280 K. Of course a
RPF could be computed a more sophisticated way including
multi-spectral or aerologic properties but it should remain
correlated with the main statistical factor which is temperature.
[8] Given a RPF, the computation of a growing rate index

relies on a rainy cluster delineation. A simple identification
process is to apply a fixed temperature threshold and to look
at aggregates as rainy area clusters. But the main drawback
of this method is the choice of a threshold value: a too cold
value would ignore small systems in expansion phase
whereas a too warm value would produce large area with
unpredictable connections. To avoid this effect, the kernel
delineation is based on image segmentation. The watershed
algorithm [Vincent and Soille, 1991] has been selected as it
is widespread and fast. In an intuitive presentation of this
method the RPF is interpreted as a digital elevation model.
The first step is to identify local maxima, each of them will
be associated with a cluster. Then by a recursive process
these kernels are enlarged by all neighbouring pixels with
lower or equal altitude. On the termination, when all pixels
are classified, each cluster represents a runoff basin. Water-
shed segmentation relies on difference of altitude and not in
magnitude of this effect. Therefore it is sensitive to over-
segmentation mainly in quasi-flat area.
[9] Applying a median filter could suppress significant

information as the size of an updraft area size significant
part is of the same order as the geostationary satellite pixel
size. The GATE experiment has shown a log normal

distribution of convective core diameter with more than
50% below 10 km2 [Houze and Betts, 1981]. However a
slight image smoothing reduces the number of clusters and
speeds up computation, while keeping the most intense
precipitation area.

3.2. Growing Rate Index Definition

[10] Due to RPF heterogeneity, the most significant
extension parameter is not the surface but the volume.
Hereafter volume will not mean a physical vertical exten-
sion but the product of the RPF by the cluster characteristic
function. For simple events the growing rate would be the
volume ratio of the same cluster in two successive images.
However the clusters produced by the watershed algorithm
are contiguous and a more sophisticated heritage process
has to be defined rather than a one to one correspondence.
On this topic growing rate estimation is deeply different
from cloud tracking where separated kernels are generated
and heritage process is defined by a significant intersection
surface discarding merging and splitting clusters. Properly
managing these situations is a key issue for growing rate
assessment as it mitigates oversegmentation effect.
[11] The heritage process will be defined in a probabilis-

tic way. Let S be a geographic domain, A a partition on this
domain (i.e., a set of clusters a), a fuzzy partition fA is a set
of functions fa on S satisfying the two conditions:

faðxÞ ����� ½0; 1� for x ����� S ð1Þ

X
a�A

faðxÞ ����� ½0; 1� for x ����� S ð2Þ

Fuzzy partitions are an extension of partition characteristic
functions. Obviously the product of a RPF by the charac-
teristic functions of a partition is a fuzzy partition. The
function fa can be described as a partition cluster weighted
by a RPF.
[12] Instead of associating to each cluster of the first

image a cluster in the second one, the heritage process
computes a new fuzzy partition on the first image. This new
fuzzy partition will be indexed by the same cluster set as the
original fuzzy partition. Let A and B the partitions generated

Figure 1. Rainfall probability function estimated by histogram matching. (a) Empirical functions are computed for two
different time periods. (b) Rainfall probability distribution (unitless) versus 10.8 mm brightness temperature.
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on two successive images and fA and fB the fuzzy partitions
computed from their respective RPF as described above,
then hA the heir of fA is a set of functions ha defined by:

ha ¼
X

b�B
lab fb ð3Þ

lab ¼ sab=
X

a0�A
sa0b ð4Þ

sab ¼
Z
x�S

faðxÞ : fbðxÞ dx ð5Þ

Should the denominator in equation (4) be zero the coeffi-
cient lab would be zeroed. hA satisfies the conditions (1)
and (2) and is therefore a fuzzy partition. sab can be
interpreted as the intersecting volume of clusters a and b
and lab as the relative importance of cluster a compared
with other clusters of A intersecting b. The fuzzy cluster
function ha is a mapping of fa (a fuzzy cluster function on
the first image) among the fuzzy clusters of the second
image. This mapping is dependent of the RPF and not only
of the intersecting area. In some simple case, ha computa-
tion is rather straightforward. When a cluster a splits in two
clusters b and b’ without any interference with other
clusters, then ha is the sum of fb and fb’. In the opposite
situation where two clusters a and a’ merge in one b, ha and
ha’ constitute a linear decomposition of fb. The cluster fb is
split between ha and ha’ proportionally to the intersecting
volumes a \ b and a’ \ b.
[13] The growing rate index for cluster a will be simply

defined as the volume ratio between fa and ha:

Z
x�S

haðxÞdx=
Z
x�S

faðxÞdx ð6Þ

This index is based on simple matrix operations. First a
similarity matrix is computed where the coefficient on line a
and column b is the intersecting volume of clusters a (first
partition) and b (second partition) and this matrix is
normalized so that the sum of each line is 1 or 0. Then,
the vector of inherited cluster volumes is computed by a
matrix product between the normalized similarity matrix
and the vector of cluster volume on the second fuzzy
partition, fB.

[14] An important property is that the growing rate index
is not sensitive to any oversegmentation on B. Splitting in
two, by a proportional factor, a column of the similarity
matrix would not modify the volume vector of inherited
fuzzy partition.

4. Applications

[15] The actual computations rely on a temperature linear
RPF ranging from zero at 273 K to one at 183 K. A median
filter on a 3 � 3 window has been applied on temperature
images to lower memory requirements. In this implemen-
tation both watershed segmentation and matrix operations
run quickly and the resulting index is well suited for
integration in an operational procedure.
[16] Figures 2 (left) and 2 (right) present two successive

RPF images overlaid with watershed segmentation lines.
The local maxima of the RPF are clearly separated but the
segmentation algorithm sensitivity to slight temperature
variations can be noticed. The resulting growing rate index
is displayed in Figure 3 (left) and the cooling rate defined as
the pixel temperature difference is shown for comparison in
Figure 3 (right). The two indices look clearly different. For
example in the center of the image, whereas the cooling
index produces the highest values on the periphery of the
convective cells, the growing rate index identifies properly
the whole growing area. Moreover on the growing rate
index figure, two merging clusters get close values and,
even in such a complex convective system organization,
expansion and decay areas appear clearly. It can be noticed
also that the cooling index maxima would correspond to the
local variance maxima area on cloud edge and this explains
the results obtained by Vicente who found similar perform-
ances for these two indices.
[17] Assessing impact of the growing rate index for

rainfall estimation is difficult because it depends both on
the estimation procedure design and on the retrieval scale.
But it appears as a valuable second order factor for the cloud
top temperature index. Extensive computation has been
carried out on the whole dataset for brightness temperature
below 273 K and results are displayed in Figure 4. In
Figure 4a the mean value of the logarithm of the growing
rate index has been plotted versus the corresponding 10.8 mm
temperature in red (resp. in green) for all pixels classified by
TMI as rainy (resp. non rainy). The error bars have been
plotted on the same graph. Due to the sample size the errors
are small except for the non-rainy cold pixels. Comparison

Figure 2. 10.8 mm brightness temperature on the window 72.5W-62.5W/3.5N-4S for July 17th 2006, (left) at 17:30 and
(right) at 18:00. Clusters boundaries, obtained by watershed segmentation, are overlaid. Color scale is coded in Kelvin.
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of these two curves shows a discrimination efficiency
quickly increasing with temperature above 223 K. At the
analysis scale, there is no significant differences for low
temperature clouds and, at a first glance, the index does not
discriminate the high altitude non precipitating clouds. The
index looks as more efficient to detect young convective
cores producing rainfall despite a warm top temperature.
This results have been obtained without a prior filtering by
cloud classification and all the precipitation types encoun-
tered in the study area contribute. Should we focus on an
identified convective system the results could be better as
suggested by Figures 2 and 3 (left) where all the frontal
expansion areas are associated with high index values.
[18] Assessment of diurnal cycle retrieval by various

indicators is presented in Figure 4b. GPI is a global
estimator with some efficiency at the roughest scales, but
even at these scales it fails to properly render the diurnal
precipitation cycle. The mean TMI rainfall probability has
been plotted (red curve) versus local time. On the same
graph the green curve represents a GPI index (proportion of
pixels with temperature colder than 235 K). A lag appears
between these two curves. Whereas the peak of TMI
probability is, as expected, around 14 h the maximum of
GPI index is around 17 h. Two GPI-enhanced indices have
been computed. For the ‘‘GPI-grow’’ index (magenta curve)
a pixel is rainy if its temperature is colder than GPI

threshold and if its growing index is greater than 1. The
‘‘GPI-cool’’ index (blue curve) selects all the pixels colder
than the threshold and with a positive cooling rate. Com-
paring the peak times, the ‘‘GPI-cool’’ is closer to the TMI
than the GPI but the ‘‘GPI-grow’’ is still better. This result is
not highly dependent on the GPI threshold and other values
would show very similar patterns.

5. Conclusions

[19] The growing rate index appears as consistent and
fairly related to microwave rainfall estimator. The primary
motivation of this work was to enhance EPSAT-SG, the
rainfall estimation procedure designed for the AMMA
(African Monsoon Multiscale Analysis) experiment; now it
is planned to integrate the new index in the next version of the
rainfall algorithm. But the scope of this index goes far
beyond, it is not specific to this algorithm. Only a thermal
infrared channel is needed to compute this index and it can be
used in backprocessing series of geostationary satellite data.
[20] Its capacity to enhance the diurnal cycle retrieval

makes this index a valuable parameter for rainfall estimation
methods using passive microwave data since most of
microwave sensors are onboard sun synchronous satellites
and any information at the diurnal cycle scale can bring a
sensible improvement.

Figure 4. Growing rate index application to rainfall estimation. (a) Mean values of index logarithm with error bars versus
10.8 mm brightness temperature. (b) Diurnal cycle retrieval by various indicators (mean rainfall probability versus local
time).

Figure 3. The cluster evolution computed from the figure 2 images by two different methods: (left) the growing rate index
(dimensionless) and (right) the cooling index (Kelvin difference).
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References
Arkin, P. A., and B. N. Meisner (1987), The relationship between large-
scale convective rainfall and cold cloud over the western hemisphere
during 1982–84, Mon. Weather Rev., 115, 51–74.

Houze, R. A., Jr. (2004), Mesoscale convective systems, Rev. Geophys., 42,
RG4003, doi:10.1029/2004RG000150.

Houze, R. A., Jr., and A. K. Betts (1981), Convection in GATE, Rev.
Geophys. Space Phys., 19, 541–576.

Kummerow, C., Y. Hong, W. S. Olson, S. Yang, R. F. Adler, J. McCollum,
R. Ferraro, G. Petty, D. B. Shin, and T. T. Wilheit (2001), The evolution
of the Goddard profiling algorithm (GPROF) for rainfall estimation from
passive microwave sensors, J. Appl. Meteorol., 40, 1801–1840.

Machado, L. A. T., and H. Laurent (2004), The convective system area
expansion over Amazonia and its relationships with convective system
life duration and high-level wind divergence, Mon. Weather Rev., 132,
714–725.

Morel, C., and S. Senesi (2002), A climatology of mesoscale convective
systems over Europe using satellite infrared imagery. Part I: Methodol-
ogy, Q. J. R. Meteorol. Soc., 128, 1953–1971.

Redelsperger, J. L. (1997), The mesoscale organization of deep convection,
in The Physics and Parameterization of Moist Atmospheric Convection,
edited by R. K. Smith, pp. 159–160, Springer, London.

Roca, R., M. Viollier, L. Picon, and M. Desbois (2002), A multisatellite
analysis of deep convection and its moist environment over the Indian
Ocean during the winter monsoon, J. Geophys. Res., 107(D19), 8012,
doi:10.1029/2000JD000040.

Vicente, G., and R. A. Scofield (1998), The operational GOES infrared
rainfall estimation technique, Bull. Am. Meteorol. Soc., 79, 1883–1898.

Vincent, L., and P. Soille (1991), Watersheds in digital spaces: An efficient
algorithm based on immersion simulations, IEEE Trans. Pattern Anal.
Mach. Intel., 13, 583–598.
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