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Abstract. Progress on researches in the field of molecules at cold and ultracold

temperatures is reported in this review. It covers extensively the experimental methods

to produce, detect and characterize cold and ultracold molecules including association

of ultracold atoms, deceleration by external fields and kinematic cooling. Confinement
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1. Introduction

”Quo vadis, cold molecules?”. This was the title chosen by J. Doyle, B. Friedrich, F.

Masnou-Seeuws, and R. Krems, for the editorial of the special issue on cold molecules

published in 2004 in European Physical Journal D [1]. This is still a very appropriate

question nowadays, as the research field on cold molecules (and atoms) is constantly

expanding in many directions, involving a continuously increasing number of groups
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throughout the world. Cold molecules indeed open entirely new avenues for fascinating

research, as it is brilliantly -sometimes ”romantically”- expressed in several broad-

scope papers. As early as 1998, J. Glanz reported on the subtle flirtation of ultracold

atoms [2]. ”Molecules are cool” claimed J. Doyle and B. Friedrich [3], even ”really

cool” [4], also joined by B. Goss-Levi predicting ”hot prospects for cold molecules” [5].

These ”quantum encounters of the cold kind” lead researchers to see their ”dreams

of controlling interactions on the quantum level come true, and the exquisite nature

of this control has proved remarkable” [6]. This is actually the most prominent

characteristic of this topic. For instance, cold molecules opened new perspectives in

high-resolution molecular spectroscopy [7, 8, 9, 10]. The expected accuracy of the

envisioned measurements with ultracold molecules makes them appear as a promising

class of quantum systems for precision measurements, related to fundamental issues

usually discussed in the context of high-energy physics: the existence of the permanent

electric dipole moment of the electron [11, 12, 13, 14] as a probe for CP-parity violation

[15, 16, 17], the time-independence of the electron-to-nuclear and electron-to-nuclear

mass ratios [18, 19, 20, 21, 22, 23], and of the fine-structure constant [24]. Various

proposals appeared for achieving quantum information [25, 26, 27, 28], or molecular

optics devices [29] based on cold polar molecules (i.e. exhibiting a permanent electric

dipole moment). Elementary chemical reactions at very low temperatures could be

manipulated by external electric or magnetic fields, therefore offering an additional

flexibility for their control [30]. The large anisotropic interaction between cold polar

molecules is also expected to give rise to quantum magnetism [31], and to novel quantum

phases [32, 33]. Last but not the least, the achievement of quantum degeneracy

with cold molecular gases [34, 35, 36, 37, 38, 39, 40, 41] together with the mastering

of optical lattices [42] has built a fantastic bridge between condensed matter and

dilute matter physics [43]. Indeed, the smooth crossover between the Bose-Einstein

condensation (BEC) of fermionic atomic pairs and the Bardeen-Cooper-Schrieffer (BCS)

delocalized pairing of fermions related to superconductivity and superfluidity, has been

experimentally observed [41, 44, 45, 46]. It is also expected that polar molecules trapped

inside an optical lattice could provide lattice-spin models [47].

Due to the specific domain covered by the present review, it is first worthwhile to

precisely define the basic words of its topic, i.e. molecule and cold, as most readers are

probably not experts in this field.

1.1. What do we mean by a ”molecule”?

As it will become clear further on, we adopt a rather broad definition for a molecule,

being a tightly or loosely bound collection of a small number of atoms, held together

by the electromagnetic field of the constituent atoms, or even by applied external

electromagnetic fields. We will mostly focus on diatomic or triatomic molecules, except
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otherwise stated ‡. This definition obviously includes the standard vision of the strong

chemical bond inside molecules in a stable state (the ”chemist’s molecules”), induced

by electron exchange interaction responsible for many collision processes or elementary

chemical reactions. The molecular ground state binding energy is typically in the 0.1-

10 eV range, while the molecular equilibrium distance most often lies between 2 and

10a0 §. Another class of well-studied stable molecules is composed by the Van der

Waals molecules [48], most often involving rare gas atoms, which exist thanks to the

mutual polarization of their individual atomic or molecular components. This is a long-

range interaction whose potential energy varies as R−6 (R being the distance between

individual components), leading to binding energies in the 0.01-0.1 eV range or below,

and equilibrium distances in the 10a0 range. Another kind of molecular bond arises

from the competition between the ion-pair configuration (A++B−) and the covalent

configuration (A+B) within electronically excited states of various diatomic molecules

AB. This feature generally produces a double-well pattern on the relevant potential

curves, the inner one being related to the conventional chemical bond, while the position

and depth of the outer depends on the strength of this competition. Among well-known

examples are for instance the B”B̄ state in H2 [49, 50], or highly-excited states of alkali

dimers [51].

An important achievement of the cold molecule researches in the 90’s has been the

experimental observation of a new kind of excited electronic molecular states, usually

referred to as pure long-range molecules in the literature [52, 53, 54, 55, 56, 57, 58, 59,

60, 61] which have been predicted thirty years ago [62, 63] for most homonuclear alkali

dimers (from Na2 to Cs2). In a few cases, the competition between the long-range dipole-

dipole interaction of a ground state S atom with an excited P atom of the same species

(which varies as R−3) with the spin-orbit interaction creates a double-well structure

in the related molecular excited potential curves: the standard inner well for chemical

bonding is now accompanied by a tiny outer well located at large distances. Inside the

bound pair, the atoms are left apart at distances of several tens of Bohr radii (Figure

1a), with binding energies ranging from a fraction of cm−1 for Na2 up to a few tens of

cm−1 in Cs2. The vibrational levels of such excited states generally decay within a few

tens of nanoseconds into a pair of free ground state atoms, but they live long enough

to be well characterized spectroscopically. The helium dimer formed by a metastable

23S atom and an excited 23P atom is an even more spectacular case [64, 65], exhibiting

an equilibrium distance as large as 200 a0, with a binding energy as low as 0.05 cm−1

(Figure 1b). Jones et al [8] refer to this class of molecules as physicists molecules, i.e.,

molecules whose properties can be related with high precision to the properties of the

constituent atoms. In particular, such molecular states have been proven useful for

‡ Indeed, most of the experimental realizations of cold molecular samples originate from association of

cold atom pairs, or from slowing down of simple molecules
§ In this paper, we will mostly use atomic units (a.u.) for distances, with 1 a.u. ≡ a0=0.0529177 nm,

and wave numbers (cm−1) as energy units, defined by two times the Rydberg constant 2R∞ =

217474.63137 cm−1 = 27.2116 eV
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the accurate determination of atomic radiative lifetimes (see for instance the review of

ref.[66]). As described in the next section, these advances benefited from the extensive

studies of the photoassociation process between laser-cooled atoms [7, 8, 67, 68, 69],

i.e. where two colliding cold atoms resonantly absorb a photon and produce an excited

molecule in a well-defined rovibrational level.

It is recognized for a while now that the hyperfine interaction, i.e. the

coupling between electronic and nuclear angular momenta, plays a crucial role in the

photoassociation of cold atoms, especially when looking at molecular energy levels close

to the dissociation limit related to a ground state S atom and an excited P atom of the

same species [70, 71]. Pure-long range molecular states are also predicted as resulting

from the competition between the dipole-dipole and the hyperfine interaction, just like

in the case above. However, they have not been observed up to now, due to the interplay

of the hyperfine interaction in the excited state of alkali atoms with their broad natural

width. In contrast, such states can be probed in the 171Yb dimer through the observation

of photoassociation transition close to the 1S0 −
3 P1 intercombination line with a very

small natural width [72]. The shallowest long-range potential well ever identified has

been observed, as deep as 750 MHz, about half of the depth of the long-range potential

well of the helium dimer [64].

During the same period the electronic ground state of alkali diatomic molecules

has been explored up to its dissociation limit, as stable molecules have been created

in the uppermost ro-vibrational levels bound by a tiny energy much smaller than a

cm−1. Again, the molecular bond is peculiar: most of the vibrational motion takes

place at unusually large distances (typically about 100a0), in a region where the Van

der Waals interaction varying as R−6 binds the atoms together. But in contrast with

the Van der Waals molecules, or with the pure long-range molecules above, the atoms

can be accelerated towards each other inside the chemical bond region where they

stay for a short time (less than 1 ps), while the total vibrational period can reach

values as high as 1 ns. In other words, the potential energy of the atom pair may

vary by about eight orders of magnitude during a single vibrational period. These

molecules represent an even more striking example of physicists’ molecules. Such high-

lying molecular levels result for instance from the spontaneous decay of those pure

long-range molecules excited by photoassociation. At such distances, the electrostatic

interaction competes with the hyperfine interaction giving rise to resonant patterns in

the dynamics of the atom pair, known as Feshbach resonances [73]. The control of such

resonances with external magnetic fields yielded a novel way to associate cold atom pairs

into molecules (usually referred to as magnetoassociation or Feshbach association), and

opened the amazingly creative research field of quantum degeneracy with molecules. In

particular, the universality of the few-body physics has been discussed in the quantum

halo regime [74], where the size of a bound atom pair exceeds the range of the atom-

atom interaction, so that its wave function extends far inside the classically-forbidden

region. A well-known example of such a system is the ground state of the helium dimer
4He2 [75]. Efimov states, i.e. bound states of three particles are predicted in this regime
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(b)

Figure 1. Long-range potential wells in the excited molecular states of several

diatomic molecules. (a) The so-called 0g− states in alkali dimers, correlated to the

lowest 2S1/2 +2 P3/2 dissociation limit (reprinted with permission from ref.[59]). (b)

The so-called 0+
u state in metastable helium dimer, correlated to the 23S + 23P

dissociation limit (reprinted with permission from ref.[64]). In both cases, note the

range of internuclear distances and of potential energies, respectively much larger and

much smaller than those of the ”chemist’s molecules”.
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[76, 77].

To conclude this paragraph, it is worth mentioning an even more exotic class of

excited molecules, identified as long-range Rydberg molecules [78, 79, 80]. In one case,

a highly-excited atom A∗(nℓ) (a Rydberg atom) can be associated with a neighboring

ground state atom A to give rise to a tiny bound molecular state, due to the interaction

between the quasi-free electron of A∗ (with principal quantum number n and angular

momentum ℓ) and the neutral atom which acts as a perturber. The size of the resulting

molecule is comparable to the size of the Rydberg atom, which scales as n3, and

can reach thousands of a0, i.e. the size of a bacteria. Moreover, such molecules,

while homonuclear, should exhibit a giant permanent electric dipole moment (with a

magnitude in the range of 103 Debye) just like Rydberg atoms, and lifetimes of the order

of hundreds of microseconds. In a second case, pairs of Rydberg atoms are predicted to

form ”macrodimers”, or ultralong-range Rydberg molecules, bound by the long-range

electrostatic interaction between them [81]. Such Rydberg molecules of either type have

a typical size in the 103 − 104a0 range, and a binding energy far smaller that a cm−1.

Experimental evidence for the existence of such peculiar systems has been recently

reported in the literature [82, 83, 84, 85].

In the rest of this paper, we will focus on molecules in their ground electronic state,

or in their lowest metastable state, when appropriate.

1.2. What do we mean by ”cold” and ”ultracold”?

Many of the systems or phenomena quoted above have been investigated in the context

of what is nowadays usual to refer to as cold or ultracold matter. In the common sense,

cold is just ”cold as ice”. In the thermodynamical sense, the quest of low temperatures

matches the researches on gas liquefaction, down to the ultimate limit of the liquid
3He at about 2 millikelvins (mK). Since the late eighties, the amazing development

of laser cooling of dilute atomic gaseous samples [86, 87, 88] established the current

nomenclature for the field of cold and ultracold matter, respectively associated to a

temperature above, and below 1 mK. Nevertheless, in many physical situations in this

research area, the system under study is not in thermodynamical equilibrium, and its

temperature T should be understood as resulting from the identity Ekin ≈ kBT , where

Ekin is the representative kinetic energy of the constituting atoms and/or molecules (kB

being the Boltzmann constant). As typical examples, a dilute gas of laser-cooled cesium

atoms in a magneto-optical trap (MOT), with density n ≈ 1011 atoms/cm3, is created

almost at thermodynamical equilibrium with T ≈ 0.1 mK, while the residual motion

of cesium atoms in a Bose-Einstein condensate (BEC) corresponds to a temperature

of the order of a few nanokelvins (nK). But the supplementary degrees of freedom

of molecules, i.e. vibration and rotation, compared to atoms, result into their most

fascinating properties as yielding further possibilities to manipulate them, and this is

the central topic of this review paper. Therefore it is suitable to define a temperature

for each of these degrees of freedom, say Tt, Tv and Tr for the translational, vibrational,
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and rotational degrees of freedom, respectively, just like for instance in molecular

thermal or supersonic beams. In the various physical situations quoted above, it is

clear that translationally cold or ultracold conditions are required to be able to observe

those tiny bound molecular systems, otherwise they would be destroyed immediately

by collision with surrounding particles. In most cases, translationally cold molecules

created by photoassociation or magnetoassociation do not rotate, i.e. are rotationally

cold. In contrast they are most often created in a broad distribution of vibrational levels

(vibrationally hot) so that they contain an enormous amount of internal energy which

can be released even during a cold collision, which blows out the entire system. The

control of this energy release is currently the main concern of many researches in the

cold molecule community, as we will see below.

1.3. Is there a universal approach to create cold and ultracold stable molecules?

This will be the central question of the next section, and we will see that every class

of approaches has its own degree of ”universality”. At first it is natural to imagine

that laser-cooling could be used for molecules just like for atoms to bring them almost

at rest. But the complex internal structure of the molecules generally prevents this

approach to work [89]. Indeed, laser-cooling of atoms relies on a closed-level radiative

transition scheme which allows the atoms to undergo many absorption-spontaneous

emission cycles until they are stopped in the laboratory frame. Such closed-level scheme

are not expected to be easily found in molecules [90, 91], so that the population is

spread over many rovibrational levels after a few absorptions. Very soon came the idea

to associate a pair of ultracold atoms using electromagnetic fields (photoassociation)

[92], which does not change the translational motion of the pair, then creating a stable

ultracold molecule. The formation of ultracold molecules using photoassociation in

a MOT of ultracold atoms has been observed for the first time with cesium atoms

[93]. The observation of even colder diatomic molecules has been reported after a two-

photon Raman transition inside a rubidium BEC [94]. The possibility to use external

magnetic field to associate ultracold atoms (magnetoassociation) has been first pointed

out in refs.[95, 96], based on the important concept of magnetic tunability of Feshbach

resonances to control interatomic interactions [97]. Their experimental observation can

be considered as having been initiated by the first demonstration of an atom-molecule

coupling in a rubidium BEC [35]. But it is important to mention that these methods

are by far not universal, as being restricted mostly to the formation of ultracold ground

state alkali dimers in high-lying vibrational levels.

A somewhat more intuitive idea could be to use cryogenics methods to reach low

temperatures. Indeed it is possible to set up a cryogenic cell with liquid helium at

temperature well below 1 K, producing a helium vapor as well. The group of J. Doyle

has promoted the technique of buffer-gas cooling, first on atoms like europium [98]

and chromium [99], and next on the CaH molecule [100]. As long as a molecular gas

can be introduced in the cell -for instance by laser ablation on a solid target- the
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molecules are thermalized by collisions with the surrounding cold helium gas. They

can be trapped in a magnetic trap while the buffer gas is pumped out from the cell.

In principle this technique can be applied to any paramagnetic molecule. An alternate

experimental approach actually achieved a microscopic ”flying version” of the buffer-

gas cooling technique: molecular species can be isolated in the isothermal environment

(T ∼ 0.15 − 0.37 K) provided by helium droplets (containing thousands to billions

of atoms) from an helium supersonic beam [101]. The weak interaction between the

trapped species and the helium droplet has allowed many spectroscopic investigations

with molecular species, as the embedded molecule can rotate freely [102, 103].

Another option is to slow down existing molecules using external fields. The

Stark deceleration of molecular beams via inhomogeneous electric field is a powerful

technique pioneered in the group of G. Meijer [104, 105, 106], and certainly represents a

breakthrough in the manipulation of polar molecules, until their storage in various kinds

of traps [107, 108, 109]. One can also exploit electrostatic field [110, 111] or magnetic field

[112] to select and guide slow molecules out of a room-temperature reservoir . Intense

optical fields can also be used to create traveling optical lattices for deceleration purpose

[113, 114]. A new emerging idea consists in implementing analogous approaches using

pulsed magnetic fields to slow down paramagnetic molecules [115, 116, 117], with a first

success already demonstrated with molecular oxygen [118]. All these approaches have

a limited applicability: they are restricted to light neutral molecules or radicals, which

are slowed down to kinetic energies equivalent to temperatures above the millikelvin,

i.e. the cold domain.

A couple of other approaches have also been demonstrated, relying on kinematic

cooling of molecular systems, which are sometimes considered as the ”most universal”

ones as they rely on purely kinematic considerations, while not so easy to handle. Hence

the collision of an atomic (say, Ar) and a molecular (say, NO) beam in an appropriate

geometric configuration can leave one of the species (NO) at rest in the lab frame,

the excess of energy and momentum being carried out by the other species (Ar) [119].

A backward rotating nozzle filled with oxygen has been shown to deliver pulses of O2

molecules at velocities equivalent to 10 K [120]. We also note that the possibility to cool

rotational, vibrational, and translational degrees of freedom of molecules by coupling a

molecular dipole transition to an optical cavity has been predicted [121] and simulated

[122, 123].

Finally, we will not cover the topic of cold molecular ions in this review. This is

a very active area nowadays, since the first observation of the formation of molecular

ions inside a trap of laser-cooled magnesium ions [124]. This area is nicely covered in a

recent book edited by I. W. M. Smith [125].

2. The challenge for experimentalists: obtaining cold molecules

As emphasized above, several routes have been demonstrated to create samples of

cold molecules under various conditions of density and temperature, often related to
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their chemical nature. Indeed, laser techniques will be adapted to species for which

resonant laser frequencies are available, i.e. are mostly applied to cold alkali, alkaline-

earth, and metastable rare gas atomic samples. In contrast, deceleration of preexisting

molecules by an external electric or magnetic field will be used for lighter species due

to experimental constraints on the length of their flying area. We review in this section

the main investigations performed during the last fifteen years, with the goal of creating

dense ensembles of cold neutral molecules in their absolute ground state.

2.1. Association of ultracold atoms: the quest for ultracold molecules in their absolute

ground state

In the last few years researchers have learned how to use the huge advances in

laser cooling, trapping, and manipulation of atomic gases to assemble molecules from

ultracold atoms. Two main processes can be used to this aim: (i) photoassociation,

where two colliding cold atoms can be fused together through the absorption of a

photon into an excited molecule which is stabilized by spontaneous emission; (ii)

magnetoassociation, based upon the existence of Feshbach resonances arising from the

coupling between the initial scattering state of the free atoms and of a bound molecular

state. In the following subsections we describe both methods and review the related

experiments. In most cases, molecules are created in high vibrational states which are

unstable against vibrational relaxation through collisional or radiative processes. In the

last subsection we present the most recent experimental developments devoted to the

method for obtaining samples of cold molecules in their absolute ground state.

2.1.1. Molecules formed after photoassociation of cold alkali atom pairs Photoassocia-

tion (PA) occurs when two colliding laser-cooled atoms resonantly absorb a photon and

produce an excited molecule in a given rovibrational level [92]. During the last two

decades, PA of cold atoms appeared as a powerful tool for high-resolution molecular

spectroscopy [7], giving access to the detailed knowledge of the long-range interactions

between atoms in their ground or excited state. For instance, information about atomic

collisional parameters at very low energies, such as scattering lengths and Feshbach

resonance positions, has been determined. As the kinetic energy of the cold colliding

atoms is very well defined (Ekin/kB ≤ 1 mK, corresponding to about 20 MHz), PA is a

quasi-resonant process, and high-resolution spectra of excited molecular states can be

recorded as a function of the PA laser frequency ωPA. The efficiency of the PA process

depends on the density of atomic pairs at internuclear distance R, which scales as R2, so

it probes preferentially excited vibrational levels close to the corresponding dissociation

limit, i.e. with a large spatial extension. The PA rate strongly depends on the detuning

∆ = ωPA − ωat from the atomic resonance frequency ωat. For a pair of identical alkali

atoms where the asymptotic part of the excited state potential is determined by the

resonant dipole-dipole interaction V (R) = D − C3/R
3, it scales as ∆−7/6 [126, 127].

However PA spectroscopy turned out to be efficient even down to several hundreds of
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cm−1 below resonance, and thus appeared as complementary to the conventional molec-

ular spectroscopy in determining the complete potential curves of molecules. Precise

determinations of the C3 coefficient yielded accurate values of the radiative lifetime of

the lowest excited level of alkali atoms [128, 52, 55, 129, 130, 131]. Other processes can

take place while the molecule is in the excited state, like autoionization into molecular

ions (observed for Na [54]) or predissociation into a pair of one ground state atom and

one excited atom (observed for Na [53] and K [132]). Highly excited molecular states

can be studied by optical-optical double-resonance spectroscopy [55]. Long-range inter-

actions between ground state atoms can also be probed by two-color PA spectroscopy

according to a ”Λ”-type level scheme. Accurate determination of the sign and mag-

nitude of the scattering length a can be obtained. This is possible either by precisely

determining the position of the last vibrational levels in the ground state potential or

by studying the intensity modulation of the PA spectrum [133]. Extensive reviews on

various aspects of PA can be found in references [67, 7, 8].

As we will review hereafter, PA performed in a cold and dense sample of laser-cooled

atoms represents an efficient way to produce stable cold molecules, after the spontaneous

decay of the photoassociated molecules. It is worthwhile to note that this possibility is

not obvious at first glance. Indeed, cold atoms remain most of the time far from each

other, so that PA most often produces excited molecules in long-range electronic states

varying as R−3 for homonuclear pairs. In contrast, electronic states linking two ground

state atoms have a much shorter range determined by their van der Waals interaction

varying as R−6. Due to the Franck-Condon (FC) principle, the spontaneous decay of

the excited molecules favors the formation of a pair of free atoms, which will escape

from the trap and induce a change in the number of trapped atoms (trap-loss signal).

Nevertheless cold ground state molecules can be produced quite efficiently through PA

in some special cases, when the probability density of the excited molecular state can

be increased at short internuclear distances.

The key point for their observation has been to set up an appropriate detection

technique, imposed by the low density of the formed molecules. A good choice was

to selectively photoionize the molecules with a Resonantly Enhanced Multiphoton

Ionization (REMPI) scheme [134], and detect them after a mass selection by an ion

detector (channeltron or microchannel plates). In general it is sufficient to let the

particles travel along a few centimeter path to separate atomic ions from molecular

ions by time-of-flight (TOF). However, when the masses of the products are very close

to each other (like LiCs+ and Cs+ [135]), a more sophisticated TOF apparatus, like a

Wiley-McLaren detector, should be used. The REMPI method was first used in a cold

molecule experiment by Fioretti et al [93], and applied afterwards in most experiments

devoted to the formation of cold dimers by PA. An intense nanosecond laser, pulsed

at fairly low rate (≃ 10 − 20 Hz) is in general preferable to a c.w. laser chopped at

high rate, as high ionization rates preferentially detect excited state molecules, whose

production rate is much larger than for stable dimers. On a longer timescale, the number

of stable molecules becomes larger than the number of excited molecules, because they
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are accumulated in the ionization region, due to their low velocity. An example of

formation and detection processes is shown in Fig. 2, while a REMPI spectrum is shown

in Fig. 3. Several molecular intermediate states can be used in the REMPI process. For

example a convenient choice is the (2)3Πg state in Cs2 or Rb2, which is responsible of

the so-called diffuse bands in absorption spectra of high-temperature alkali vapors [136].

This state offers good FC factors for transition with almost all vibrational states of the

lowest triplet state, and is located at an energy lower than the two-photon ionization

threshold of the atomic ground state, which makes the molecular ionization much more

probable than the atomic one.

The formed molecules have almost the same translational temperature than the

starting atomic sample, as the recoil energy associated to the photon absorption and

emission is negligible. Only the lowest rotational levels are populated as the centrifugal

barrier prevents the initial atom pairs to collide in partial waves higher than the lowest

ones (s, p, d). The stable molecules are typically formed in high vibrational levels of

the singlet ground state or of the lowest triplet state. In principle their population

can be transferred down to lower vibrational levels by optical pumping processes,

where the spontaneous decay step of the formation process is replaced by a stimulated

emission step. In this case the process can be coherently driven with the advantage

of populating a single final state. In real experiments, as it will be shown in the

following sections, the process has limitations due to losses and decoherence. Another

possibility is the stimulated Raman adiabatic passage (STIRAP) process made by a

counter-intuitive pulse sequence, where the first pulse couples the molecular bound

levels and the second one makes the coupling with the continuum [137]. An alternative

proposal for photoassociation is the utilization of fast pulses at high repetition rate with

pulse duration ranging from hundreds of ns [138] down to tens of fs [139, 140]. By

appropriately chirping the pulses it should be possible to efficiently couple the starting

continuum wave function to the bound state one, ensuring adiabatic following conditions.

Coherent control techniques like feedback-learning loops could be employed. Raman or

short pulses can be also used to transfer the population of cold molecules from high to

low vibrational levels [141, 142]. Preliminary experiments have been performed using

chirped femtosecond laser pulses to make PA [143, 144]. These experiments showed

a quenching of the molecular signal rather than an enhancement; however a signature

of the coherence of the process was found, giving an indication that coherent control

of PA could be accomplished. Very recent experiments [145] observed the transient

dynamics of the PA of cold Rb atoms using shaped fs laser pulses. Time-resolved pump-

probe spectra revealed coherent oscillations of the molecular formation rate, assigned to

coherent transient dynamics in the electronic excitation.

The first experimental observation of cold molecules produced through PA, has been

achieved by the group at Laboratoire Aimé Cotton (Orsay, France), where Cs2 molecules

falling out of a MOT have been observed [93]. Cold molecules were produced in the

lowest (metastable) triplet state a3Σ+
u as the decay products of the 0−g pure long-range
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Figure 2. Rb2 molecular potential curves involved in one of the observed cold molecule

formation processes, utilizing resonant coupling [146], and in their detection. All

potentials are drawn at the same scale, while levels in the excited states, not drawn

on scale, illustrate the different level density in the A1Σ+
u (0+

u ) and b3Πu(0+
u ). Arrows

correspond to spontaneous emission starting from (1) the external turning point of

the PA level down to the uppermost vibrational level of the X state, (2) from the

intermediate turning point of the PA level induced by the resonant coupling down to

moderately bound vibrational levels of the X state, (3) from the inner turning point

of the PA level induced by the resonant coupling down to strongly bound vibrational

levels of the X state. The other ungerade electronic states correlated to the 5s + 4d

limit are also displayed for completeness.

excited state. The specific reaction for Cs reads:

Cs(6s)+Cs(6s)+hνPA → Cs∗2(0
−

g (6S+6P3/2; v, J))→ Cs2(a
3Σ+

u ; v′, J ′)+hν ′(1)

where the 0−g state is one of the four (among 0−g , 0+
u , 1u, 1g) attractive electronic
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Figure 3. Experimental REMPI spectrum of 85Rb2 dimers produced by PA with

detuning δPA = −69 cm−1 from the (5S + 5P1/2) asymptote. The shift of the baseline

is due to the change of the dye used for the ionization laser. The asterisks indicate

ghost lines produced by two-photon transitions to atomic Rydberg states. Reprinted

with permission from Lozeille et al [147].

states connected to the 6S + 6P3/2 asymptote, which can be optically excited from the

ground state (see Fig.1. This is one of the specific cases where the spontaneous decay rate

into stable molecules is enhanced. It happens when PA populates levels corresponding

to ’pure long-range molecules’ [63], in which the entire vibrational motion takes place

between intermediate (≈ 15a0) and large (well beyond 25a0) internuclear distances. This

feature induces a ”R-transfer” of the probability density from large distances towards

short distances. The inner turning point of such double-well states represents a favorable

Condon point for decaying into a stable molecule, especially for the 0−g (nS + nP3/2)

states of cesium (n = 6) and rubidium (n = 5). The production rate of cold molecules

can reach values up to a few millions of molecules per second for Cs [148]). The cold

molecules formation through PA into pure long-range molecules works excellently in

cesium, through both 0−g and 1u long-range states [93, 149] (see Figure 4), and also in

rubidium through the 0−g long-range state [150, 61]. The mechanism becomes less

favorable for the lighter alkalis, because the long-range wells are located at larger

distances. A similar mechanism has been proposed [151] - but not yet observed- to

form deeply-bound ground state Cs2 molecules, relying on the excitation of the highly-

excited (3)‘Σ+
u (6S + 7S) state. Its potential curve has two wells separated by a barrier

located around 13a0 induced by the interaction between the covalent and the ion-pair

configurations within the molecular state. It favors a ”R-transfer” if the PA excitation

is appropriately chosen for reaching the top of the hump.

Another efficient process leading to the formation of cold molecules relies on the
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so-called resonant coupling in Rb2 and Cs2: the strong spin-orbit coupling between

the A1Σ+
u (nS + nP ) and b3Πu(nS + nP ) states induces resonant interaction between

vibrational levels of the resulting 0+
u states [152]. Like in the previous case, it creates a

favorable FC point at short distances (a ”R-transfer”) suitable for direct spontaneous

emission down to vibrational levels of the singlet ground state of Cs2 [152, 153, 154, 155]

and Rb2 [156, 157, 158, 146, 159].

Figure 4. Photoassociative spectra of Cs2 molecules (upper part) and KRb molecules

(lower part), obtained after REMPI and molecular ion detection. For Cs2 PA

is done below the 6S1/2 + 6P3/2 asymptote, while for KRb PA is done below

K(4S1/2) + Rb(5P1/2) asymptote. Note the difference in the level density between

the two spectra, due to the different shape of the excited state potentials near the

asymptotes (varying as 1/R3 vs. 1/R6, respectively). For Cs2, the transitions are due

to the 0−g and 1u states, while for KRb the Ω = 0, 1, 2 bands are indicated by circles,

crosses and triangles respectively. Reprinted with permission from Fioretti et al [59]

and from Wang et al [160].
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Ground-state potassium molecules in deeply bound levels of the singlet X1Σ+
g

ground state have been observed after the direct spontaneous decay of the A1Σ+
u (4S +

4P ) state [161]. The molecule formation rate is quite low (of the order of 103 molecules

per second), as the emission mainly takes place at the inner turning point of a standard

molecular potential well with a steep wall, i.e. where the probability density is low. A

more efficient production of ground state K2 molecules through a two-step pumping

scheme via highly-excited electronic (Rydberg) states like the (5)1Πu(4S + 4D) or

the (6)1Πu(4S + 4F ) has been demonstrated [162]. It again relies on a ”R-transfer”

mechanism towards short-range potential wells of the Rydberg states, which favors the

production of K2 molecules in deeply-bound levels.

Cold sodium dimers in the last two vibrational levels (v =14,15) of the lowest triplet

state have been detected [163] after PA into the 0−g (3S+3P1/2) state. In this experiment

the molecular detection was done by resonant ionization using a narrow band c.w. laser,

with a resolution limited just by the radiative lifetime of the intermediate state in the

ionization path.

Rubidium molecules have been produced in a condensate of 87Rb atoms by a

stimulated Raman process [94]. A first laser is tuned to the free-bound transition to

a rovibrational level of the excited 0−g (5S + 5P1/2) bound state, with a small detuning

necessary to minimize population of the excited state. A second laser beam closes the

Raman process to the second-to-last vibrational level of the lowest triplet state. The

Raman process is observed through the atom loss from the condensate. The width of

the transition is extremely narrow (a few KHz), showing an increase as a function of the

peak condensate density due to mean-field interactions (Fig. 5). A shift of the line has

also been observed. Besides the exact energy position of the bound level, the analysis

of the line shape yielded the atom-molecule collisional parameters.

Soon after the first experiments on homonuclear dimers, a large activity has been

devoted to the formation of ultracold heteronuclear molecules composed of two different

alkali atoms. As it is discussed later in this review, such molecules exhibit a permanent

electric dipole moment which induces long-range interactions among them, opening new

possibilities for many applications. In contrast with a pair of identical alkali atoms, an

alkali atom in its ground state interacts with an alkali atom of a different species at large

distances through the van der Waals interaction varying as ∝R−6. As a consequence,

the spatial overlap (FC factors) between the initial collisional wave function and the

vibrational wave functions of the excited molecular states are significantly smaller than

for the homonuclear case. However the FC factors for spontaneous decay back into

ground state molecules is enhanced due to the similar shape of the potential curves in

the ground and excited states. The resulting overall efficiency for producing ground-

state molecules becomes therefore comparable to homonuclear dimers [164].

Ground state RbCs molecules have been produced in the lowest triplet state a3Σ+

by PA in a dual-species MOT [165]. A photoassociation laser tuned below the lowest

excited asymptote Rb(5S)+Cs(6P1/2), created RbCs molecules in the excited 0− state

resulting from the spin-orbit coupling of the (2)3Σ+ and b3Π states [70]. The decay
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Figure 5. Stimulated Raman line shapes in a Rb BEC for four different peak

condensate densities: (A) n=0.77 1014 cm−3; (B) n=1.22 1014 cm−3; (C) n=1.75

1014 cm−3; and (D) n=2.60 1014 cm−3. Each spectrum shows the fraction of atoms

remaining in the condensate after illumination by the two coherent laser fields,

as a function of the laser frequency difference, due to molecule formation. The

increase in width and center frequency of the resonance with density arises from

the atom-condensate and molecule-condensate mean-field interactions. Reprinted with

permission from Wynar et al [94].

process produced RbCs in the lowest triplet state with a rate as high as 5×105 s−1 for the

most populated vibrational level (v =37). They were detected by state selective REMPI

through the intermediate (2)3Σ+ and B1Π coupled states correlated to Rb(5S)+Cs(6P ).

Observation of cold KRb molecules has been first reported in a double species MOT,

presumably produced by PA from the trapping lasers and spontaneous emission [166].
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In another experiment, KRb dimers in the lowest triplet state and in the singlet ground

state have been produced and detected by REMPI in a two-species dark-SPOT MOT

by a PA laser tuned below the K(4S)+Rb(5P1/2) asymptote followed by spontaneous

decay [160]. A PA spectrum of KRb molecules is shown in Figure 4. All eight attractive

potential curves converging to the K(4S)+Rb(5P1/2) and K(4S)+Rb(5P3/2) asymptotes,

i.e. two Ω = 0+, two Ω = 0−, three Ω = 1 states and one Ω = 2 state, have been

identified and classified in the PA spectrum of the detected products [167]. State-

selective detection by REMPI has been analyzed using the 41Σ+, 51Σ+, 43Σ+ and 33Π

states as resonant intermediate states [168]. The analysis has allowed the assignment

of vibrational levels bound by an energy as large as 30 cm−1 of both the a3Σ+ and

X1Σ+ states. The detection technique has been further refined using the depletion

spectroscopy technique, that consisted in exciting the produced stable molecules with

an additional c.w. laser. In this way a dip in the ion signal is produced when the

depletion laser is resonant, yielding a resolution allowing the assignment of the rotational

structure [169]. Other experiments observed the formation of cold heteronuclear dimers

of NaCs [170, 171] and LiCs [135]. Further alkali pairs are currently under investigation

[172, 173].

2.1.2. Molecules formed after magnetoassociation of cold alkali atom pairs After the

achievement of Bose-Einstein condensation of alkali atoms [174, 175, 176] magnetically-

tuned Feshbach resonances have been the subject of a growing number of studies, which

are reviewed for instance in ref.[73]. Briefly, a Feshbach resonance occurs when, in the

course of a scattering process, a bound state of a closed channel is coupled through some

interaction with the scattering flux in the entrance channel. In ultracold alkali atom

collisions, this occurs within the hyperfine manifold of states, when a bound state of a

closed hyperfine channel is located at almost zero energy, corresponding to the entrance

channel. In a magnetic field the resonance energies depend on the field strength through

the Zeeman effect of the different hyperfine levels. The zero-energy resonance position

is determined by the field strength at which the energy of a diatomic vibrational bound

state becomes degenerate with the threshold for dissociation into an atomic pair at

rest. The s-wave scattering length has a simple expression near the resonance given by:

a(B) = abg(1−
∆

B−B0

), where abg is the background scattering length, ∆ is the resonance

width and B0 is the Feshbach resonance position. For positive scattering lengths, the

state describes a stable molecule in the absence of collisions with the background gas.

The value of the scattering length can be tuned by varying the position of Feshbach

resonances with an external magnetic field [97], and can be used for the conversion

of atom pairs into molecules [95]. Let us note that Feshbach resonances can also be

induced by optical means using a single laser [177, 178, 179], or a stimulated Raman

scheme through a bound molecular state [180].

The applications of Feshbach resonances span from the Bose-Einstein condensation

of 85Rb [181] and Cs [182] to studies of the collapse of condensates with negative

scattering lengths [183]. Application of Feshbach resonances for ultracold molecule
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formation has first been predicted in ref.[184] and demonstrated later in ref.[35].

The coherence properties of the atomic BEC are transferred to the molecules, as

demonstrated by two-photon Bragg scattering, where diffracted molecules recoil with

the same momenta as the atoms but expand with half the velocity due to their mass

[185]. After the first observation, several groups have concentrated experimental effort to

produce so-called Feshbach molecules. Specific reviews on molecule formation through

magnetic Feshbach resonances can be found in [73, 186]. For these experiments new

schemes for the detection of Feshbach molecules have been developed. These techniques

involve radio frequency (rf) photodissociation, atom loss and recovery, as well as

the spatial separation of molecules from the remnant atomic cloud followed by their

dissociation using magnetic field sweeps. The separation of Feshbach molecules from

the atomic gas is achieved via the Stern-Gerlach approach [36], probing the magnetic

moments of dimers at magnetic fields away from the zero energy resonance. Weakly-

bound heteronuclear molecules produced near a Feshbach resonance can be directly

imaged by light resonant with atoms, thanks to the 1/R6 dependence of the potentials

in both ground and excited states [187].

The first experiment on Feshbach molecules has been achieved a BEC of bosonic
85Rb atoms exposed to pairs of magnetic field pulses in the vicinity of the 155 G zero-

energy resonance [35]. This experiment probed the regime of strong interactions where

the magnitude of the scattering length is comparable to the average interatomic distance.

Such perturbations induces three distinct components of the gas. The oscillatory

behavior of their relative proportions as a function of the time delay between the pulses

implied an interpretation in terms of Ramsey interference fringes due to a superposition

state of separated atoms and Feshbach molecules. Subsequent experiments improved the

production efficiency by using magnetic field sweeps from negative to positive scattering

lengths across a zero-energy resonance (Figure 6). If the magnetic sweep is sufficiently

slow, the atomic energy adiabatically follows the magnetic field change. The ramp speed

determines the conversion efficiency, which vanishes for very fast ramps. A reverse sweep

dissociates the molecules back into atoms, with a relative velocity settled by the ramp

speed [188]. The technique of magnetic sweep has been applied to atomic Bose-Einstein

condensates as well as to ultracold gases of fermions. The conversion efficiency depends

on the sweep rate and on the phase space density, while it does not depend on the

statistics, as demonstrated in [189], where a simple model reproduced the conversion

efficiency of both bosons and fermions. Another technique consists in modulating the

field at a frequency corresponding to the energy difference between the free atomic

channel and the molecular bound state [190].

Molecular formation using magnetic field sweeps across Feshbach resonances

has been first observed with bosonic species like Cs[36], Na [191] and 87Rb [188].

Heteronuclear bosonic molecules have also been produced using interspecies Feshbach

resonances, as demonstrated for 85Rb87Rb dimers [192] and 41K87Rb molecules [193].

In homonuclear samples, experiments started from atoms in optical traps, pumped to

the lower energy hyperfine state, which is stable against collisions. A magnetic field
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Figure 6. Scheme of molecular association of a pair of ground state 87Rb atoms

via a downward magnetic field sweep in a spherical harmonic atom trap. The bare

vibrational levels (v = 0 − 6) associated with the background scattering quasi-

continuum (i.e. the discretized levels of the trap with positive energy) and the Feshbach

resonance energy, Eres(B), are indicated by dotted and dashed lines, respectively. Solid

curves refer to the magnetic field dependence of the dressed energy levels near the zero-

energy resonance position at 1007.4 G. Reprinted with permission from Köhler et al

[73].

sweep converts a fraction of the atoms into dimers. The dimers are produced in very

high excited levels with binding energies smaller than 0.1 cm−1 and a wave function

extending over several thousands of Bohr radii. Although in some cases, as in ref.[191],

molecules were generated in the quantum-degenerate regime, they were not referred to

as a molecular Bose-Einstein condensate, because their lifetime was not sufficient to

reach full thermal equilibrium. The lifetime of the molecules turned out to be indeed

very short, becoming slightly longer (from 1 to tens of ms) near resonance. Inelastic

atom-dimer collisions like the vibrational quenching collisions can explain such lifetimes,

as the inelastic rate constants KAD are of the order of 10−10 cm3 s−1. The molecules

are heated by these collisions and ejected from the trap. Atom-molecule collisions can

be eliminated by ’purification’, i.e. by a resonant pulse or another process that removes

atoms from the sample. In presence of an optical lattice for low occupation number,

molecule-molecule collisions can be avoided, and the molecular lifetime can be increased

by a large factor (see the next subsection).

Metastable Cs2 molecules in high rotational states with a lifetime larger than 1 s

have been recently produced [194]. The molecules are created by Feshbach association

in a g-wave state and transferred via an intermediate state to an l-wave (ℓ=8, where

ℓ is the rotational angular momentum of the atom pair) state. The molecules in this
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state are stable even at magnetic fields corresponding to energies above the dissociation

threshold due to the large centrifugal barrier and the weak coupling with other states.

Other experiments investigated the molecular formation in fermionic species.

Collisions between two fermions in the same hyperfine state are suppressed by the

Pauli exclusion principle at ultralow temperatures. Indeed, s-wave collisions are

forbidden because of the antisymmetry of their total wave function and therefore , two

spin-component mixtures must be prepared to achieve low temperature collisions and

evaporative cooling. Two-spin-component mixtures of fermions are in general cooled

in optical traps (although 40K two-state mixtures can be evaporatively cooled also in a

magnetic trap).

Figure 7. (A): images of a molecular cloud of 40K2 after 20 ms of free expansion,

above the BEC critical temperature (left) and below it (right), showing the tight

spatial peak characteristic of a condensate. (B): corresponding 1-D distribution of the

optical density of the molecular cloud, fitted by a combination of a Gaussian and a

Thomas-Fermi distribution. Reprinted with permission from Greiner et al [38].

The mixture can be prepared from a single state by radiofrequency (rf)

spectroscopy; decoherence mechanisms help to transform the prepared coherent state

into an incoherent mixture. In the first experiment looking for Feshbach molecules

formed from fermionic atoms (40K), the lifetime of the dimers created through magnetic

sweep turned out to be short (≈1 ms) [40]. Experiments were also performed on

fermionic 6Li atoms, both by sweeping the magnetic field across a Feshbach resonance

[195, 196] and by using the enhancement of three-body collision rate near a Feshbach
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resonance to efficiently form the dimers [37]. In these cases the lifetime of the produced
6Li2 molecules was found very long, larger than 1 s, and even larger near the resonance

where the scattering length is large and positive. This was later confirmed for 40K

[197]. The explanation of such long lifetimes comes from the Fermi statistics that

acts by suppressing atom-dimer and dimer-dimer collisions at very long range [198].

Long lifetimes (beyond 100 ms) have been recently measured for heteronuclear 6Li40K

molecules created from fermionic species [199].

Soon after the reports about the observation of the huge lifetime of the fermionic

dimers, experiments on 6Li and 40K showed the formation of Bose-Einstein condensate

of Li2 [200, 39] and K2 [38]. Li2 dimers have been condensed using three-body

recombination near a Feshbach resonance while the magnetic sweep technique was used

for K2. The onset of condensation was observed, as shown in Figure 7, by the appearance

of a density peak below a critical temperature after reconverting the molecules into

atoms.

2.1.3. Formation of molecules in optical lattices The use of a three-dimensional optical

lattice to increase the efficiency of molecular formation through PA thanks to the tight

atomic confinement was suggested in [34]. In a first experimental realization [201], a

Bose-Einstein condensate of 87Rb atoms was loaded in a 3D optical lattice and converted

into a Mott insulator by increasing the potential depth. In the Mott insulator phase,

atoms are localized at individual lattice sites with shells having an exact number of atoms

per site (in this case single atoms or atom pairs) and the atomic motion through the

lattice is blocked due to the repulsive interactions between the atoms [202]. The lattice

modifies the long-range part of the interatomic potential, changing the free-bound PA

transition into a bound-bound one. A two-photon Raman transition converted the atom

pairs into molecules in one of the two uppermost vibrational levels of the a3Σ+
u state.

The spectra showed a progression of resonances with a spacing due to the quantized

motional states of the dimers in the lattice [201]. In a similar experiment, atoms in a

Mott insulator were exposed to two pulses in a stimulated Raman scheme and coherent

oscillations between an atomic and a molecular quantum gas were observed as a function

of the PA pulse duration [203]. An optical lattice can also be used to increase the

lifetime of molecules created from bosonic atoms. In [204], 87Rb2 dimers were created

through an adiabatic ramp through a Feshbach resonance in a 3D lattice. By using

a combination of microwave and light pulses, the sample was purified from remaining

atoms, preventing atom-molecule inelastic collisions. Loading individual molecules into

the sites and using a sufficiently deep optical lattice, molecule-molecule collisions are

suppressed, resulting into a long molecular lifetime (700 ms). The conversion efficiency

from atoms to molecules turned out to be extremely high (95 %). In a later experiment

the loading of exactly one molecule per lattice site was demonstrated [205].

Molecules in optical lattices have also been produced from fermionic atoms [206].

In this experiment the confinement of the molecules induced by the presence of

the lattice potential, has been observed in the region of negative scattering length.
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More recently heteronuclear dimers have been created starting from a bosonic atomic

species and a fermionic one [207]. Using rf-association near a Feshbach resonance

between atoms in specific hyperfine levels |F, mF 〉
40K|9/2,−9/2〉 and 87Rb|1, 1〉

atoms, the formation of heteronuclear KRb dimers has been observed. A mixture

of 40K|9/2,−7/2〉 and 87Rb|1, 1〉 atoms has been prepared inside an optical lattice

and analyzed by rf-spectroscopy. The appearance of a peak detuned with respect to

the 40K|9/2,−7/2〉 →40K|9/2,−9/2〉 atomic peak has been assigned to the molecular

formation. By varying the magnetic field value with respect to the Feshbach resonance

center, real molecules, confinement-induced molecules or repulsively-bound atom pairs

[208] were observed, as shown in Fig. 8.

Figure 8. Binding energy of heteronuclear 40K-87Rb molecules in an optical lattice

for two different lattice depths Ulat in units of the 87Rb recoil energy. The center of

the Feshbach resonance is located at 546.8(1) G. Attractively bound molecules, which

are confinement-induced at a positive detuning with respect to the resonance center,

and real molecules, which are stable in free space below the center of the resonance,

are observed. In addition, repulsively interacting pairs with a positive binding energy

below the resonance are also observed. Reprinted with permission from Ospelkaus et

al [207].

2.1.4. Creating cold molecules in their lowest vibrational level Both association

techniques presented so far have the drawback of producing molecules in high-lying

vibrational states. For stability reasons and for many applications it is important
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to create dimers in the lowest rovibronic state. Some recent experiments obtained

spectacular results on this aspect.

A first evidence of ultracold dimers obtained in the v = 0 ground-state level has

been reported for K2 molecules in ref. [162] (see Sec. 2.1.1). The formation of RbCs

molecules in the v = 0 ground-state level, while spread over several rotational states,

has been clearly demonstrated in ref.[209]. Starting from dimers obtained through PA

and spontaneous decay into high vibrational levels of the a3Σ+ lowest triplet state,

the population of the v′ = 37 level has been transferred into the v =0 level of the

X1Σ+ ground state by an optical transfer process. Such a triplet-singlet conversion

relies on the transfer through the c3Σ+, B1Π and b3Π (correlated to Rb(5S)+Cs(6P ))

molecular states coupled by spin-orbit interaction, allowing to circumvent the triplet-

singlet electric-dipole-forbidden transition rule. Two different lasers generated the pump

and dump pulses, while the molecules were detected by REMPI. The spectrum of the

ion signal as a function of the dump laser frequency presented a peak corresponding

to the position of the v = 0 state, as shown in Fig. 9. The estimated efficiency of the

optical transfer from the v′ = 37 a3Σ+ level into the v =0 X1Σ+ level was found around

6%.

Formation of LiCs molecules in the rovibrational ground singlet state has been

recently reported [210]. A single PA step through the v′ = 4, J ′ = 1, 2 levels of the B1Π

state (correlated to Li(2s)+Cs(6P )) populates the X1Σ+ v = 0 level with a branching

ratio of about 23%. The detection is performed by REMPI through the B1Π state. As

this detection does not resolve the rotational structure, depletion spectroscopy with an

additional narrow-band c.w. laser is implemented showing the presence of resonances

corresponding to LiCs molecules in the absolute rovibronic level v = 0, J = 0 (after the

decay of the v′ = 4, J ′ = 1 PA level) and in the v = 0, J = 2 level (after the decay of

the v′ = 4, J ′ = 2 PA level). The estimated formation rates is 100 molecules per second

and 5000 molecules per second in the J = 0 and J = 2 levels respectively.

An original approach based on optical pumping with shaped laser pulses has been

demonstrated in [211] to create Cs2 molecules in the ground state v = 0 level. The dimers

are initially formed in low X1Σ+
g vibrational levels (v = 1 to 7) through PA of a manifold

of spin-orbit-coupled 1g states correlated to the 6S + 6P and 6S + 5D asymptotes,

followed by two-photon radiative decay. Cs2 molecules are detected by REMPI through

the C1Πu(6s+5D) state. A broadband femtosecond laser pulse tuned to the transitions

between the X1Σ+
g and the B1Πu levels modifies the vibrational distribution of the

ground state. If the laser pulses are shaped in order to cut the high frequency part

of their spectrum and to avoid the repumping the v = 0 molecules, the population

finally accumulates into this level. The formation rate in the v = 0 level is increased

up to 105 s−1, while the rotational distribution is not resolved. This method acts as a

vibrational cooling process and could be used in principle to cool the rotational degrees

of freedom. It may be a general approach for any molecule providing that suitable

electronic transitions can be found, with the drawback of heating the molecular sample.

We also note that by appropriately shaping the pulses it is also possible to transfer the
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Figure 9. Observation of X1Σ+ v=0,1 state RbCs molecules. Results are shown

for excited state depletion (upper) and direct detection (lower) for three consecutive

excited states, located at energies of (a) 9754.26 cm−1, (b) 9814.60 cm−1, and (c)

9786.10 cm−1 above the a3Σ+ v = 37 state. In (c), the region between the v = 0 and

v = 1 resonances is shown to have no additional features for direct detection. The

dotted lines indicate the predicted dump laser frequency for the desired transition.

Reprinted with permission from Sage et al [209].

population to a selected vibrational level different from v = 0 [212].

Another way to create molecules in the lowest rovibronic state combines the

production of Feshbach molecules with the optical transfer technique known as STIRAP

(Stimulated Raman Adiabatic Passage). A counter-intuitive sequence of laser pulses

fulfilling the adiabaticity criteria is set up, where the first pulse couples two molecular

bound levels and the second one makes the coupling with the initial Feshbach molecular

state. The process requires phase coherence between the two laser fields. The population
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flows through a dark state, avoiding radiative losses in the excited state. In these

experiments the molecular fraction is detected by repeating the STIRAP process in the

reverse sequence, and dissociating the Feshbach molecules. In this way it is possible to

coherently couple the initial atomic sample to the molecular one and backwards without

significantly heating the sample, thus allowing sensitive atomic imaging techniques to

probe the molecular fraction. By making use of STIRAP, rubidium molecules produced

through a Feshbach resonance in an optical lattice have been transferred to the second-

to-last vibrational level (with a binding energy ≈500 MHz), with an efficiency of 87 %

[213]. Using rf-transitions, the molecules have been transferred down to more deeply

bound states [214]. The group at JILA has applied the same technique to 40K87Rb

heteronuclear Feshbach molecules, transferred to the third-to-last vibrational level (with

a binding energy ≈10 GHz) with an efficiency larger than 80%.

Shortly afterwards, a major breakthrough has been demonstrated with the

conversion of Cs2 Feshbach molecules into a ground state level bound by more than

1000 cm−1 [215]. Lang et al succeeded transferring Rb2 Feshbach molecules to the a3Σ+
u

lowest level [216], and similar results have been soon reported by the JILA group for

both X1Σ+ and a3Σ+ KRb molecules [217] and in Innsbruck for X1Σ+
g Cs2 molecules

[218]. In ref.[216] the intermediate excited level of the STIRAP scheme belongs to the

(1)3Σ+
g (5S + 5P ) potential with 1g character. The exact position of the resonance and

the Rabi frequencies are obtained by accurate spectroscopy measurements that include

atom-molecule dark resonances [219]. The transfer has been done in a 3D optical lattice,

that allows to obtain a lifetime for a fraction of the ground state molecules (those in

the lowest Bloch band) exceeding 200 ms. In [218] the transfer down to the deeply-

bound levels of the X1Σ+
g state has been achieved by a double STIRAP transfer: the

first step brings the population into the v =73 level, and the second down to the v =0

level, using in both steps intermediate levels belonging to the A1Σ+
u - (b)3Πu(0

+
u ) coupled

states. In [217] the v = 0 levels of both the a3Σ+ and X1Σ+ states of polar 40K87Rb

have been reached with two different STIRAP paths. In the former case, the v =0

level was reached from Feshbach molecules through the v′ =10 level of the (2)3Σ+ state

with an efficiency of 56 %. The lifetime of the produced molecules was measured at

170 µs, presumably limited by collisions with background atoms. In the latter case, the

v =0 level was reached with the intermediate v′ =23 level of the Ω =1 component of

the electronically excited (2)3Σ+ potential, coupled to the B1Π state through spin-orbit

interaction, with a conversion efficiency of 83 % (see Figure 10). The obtained polar

molecules were then trapped in the optical dipole trap. The polar character of the

dimers was confirmed by a measurement of the dipole moment through the Stark shift

induced by a DC electric field on the dark resonance spectroscopy. The dipole moment

has been measured to at 0.05 D for the v = 0, J = 0 level of the lowest triplet state

and 0.566 D for the v = 0, J = 0 level of the singlet ground state. Following studies

[220] measured also the AC polarizability of the ground state molecules at 1090 nm.

The lifetime of the trap was dependent on the presence of K atoms in the dipole trap,

as the reaction KRb+K→K2+Rb is energetically allowed. However, also removing the
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K atoms, the lifetime was limited to 70 ms for reasons still to be clarified. The ground

state KRb molecules are actually just a factor 3 from quantum degeneracy.

Figure 10. STIRAP transfer from weakly-bound Feshbach molecules to the absolute

molecular ground state (v = 0, N = 0 of X 1Σ). A: Transfer scheme, the intermediate

state being the v = 23 level of the Ω = 1 component of the electronically excited

(2)3Σ+ potential. B: Normalized Raman laser intensities vs. time for the round-trip

STIRAP pulse sequence. C: STIRAP line shape. The number of Feshbach molecules

returned after a round-trip STIRAP transfer is plotted as a function of the two-photon

Raman laser detuning. The round-trip data were taken at the time indicated by the

black arrow in (B). The red data points show the Feshbach molecule number when

only one-way STIRAP is performed (at the time indicated by the red arrow in (B)),

where all Feshbach molecules are transferred to the ground state and are dark to the

imaging light. Reprinted with permission from Ni et al [217].

2.2. Decelerating and guiding molecules with external fields

A method to directly cool molecules can use their interaction with external fields. It

is already known since a few decades [221] that the inhomogeneous electric fields of

multipolar devices can be used to manipulate (deflect, focus and orient) beams of dipolar

molecules. Recently the interaction of molecules with electric, magnetic and optical

fields has been used also to decelerate molecular beams. In the following subsections

we describe the main techniques and results so far obtained. A specific review can be

found in [222].
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2.2.1. Stark deceleration of polar molecules A clever way to apply the Stark effect to

decelerate polar molecules was demonstrated in [223]. The method does not produce

real cooling because the phase-space density is preserved. It works with a supersonic

molecular beam, where in the pulsed gas expansion efficient cooling of all internal degrees

of freedom of the molecule occurs [224]. Pulsed molecular beams have low rotational

temperatures (few K) and densities of about 1012 cm−3 per quantum state. In the moving

frame of the molecular beam the translational temperature is already quite cold (of the

order of 1 K) and it is important for many applications, like for trapping, to transfer

that to the laboratory frame. The deceleration process makes use of the interaction of

dipolar molecules with time-varying electric fields. For many small molecules, positive

Stark shifts of typically 1 cm−1 can be obtained in an electric field of 100 kV cm−1.

Starting with molecule in a quantum state feeling an increase in Stark energy with

increasing electric field (low-field seeker), the molecule will be decelerated while moving

from low to high electric field. Leaving the high electric field region, the molecule will

regain kinetic energy. This does not happen if the electric field is switched off quickly, as

shown in Figure 11. In order to repeat the process many times, a Stark decelerator was

built [223] consisting of many stages (64 pairs of electrodes). The Stark decelerator (that

may work also as accelerator) is a device for neutral molecules equivalent to a linear

accelerator for charged particles. The timing of the electric field switches defines a

’synchronous’ molecule and determines the efficiency of deceleration and the stability of

the process. Molecules slower than the synchronous molecule will see the field switched

off before arriving to the position of the maximum, and will be less decelerated, while

faster molecules are ahead and feel a higher deceleration [225]. Therefore the process

in the decelerator selects a bunch of molecules with a narrow velocity distribution,

corresponding to a translational temperature of few mK, out of the starting distribution

and decelerates it to an arbitrarily low absolute velocity. Moreover, the molecules in

low-field seeking states are confined near the symmetry axis of the decelerator, where

the electric field is minimum. In the first experiment [223] the metastable CO molecules

were decelerated from 230 m.s−1 to 98 m.s−1. The molecules were detected by the

electrons emitted impinging on a gold surface at the exit of the decelerator, with the

time-of-flight distribution showing the deceleration process. Other molecules have been

decelerated using Stark decelerators, including ND3 [107], OH [226, 9], formaldehyde

[227], NH [228] and SO2 [229]. SO2 molecules can be dissociated at threshold in a

controlled way by external field [230], and the fragments (O and SO) could be used for

cold collision studies.

An envisioned application of Stark decelerated molecules is to yield an ensemble of

slow molecules which could be trapped and further cooled down by sympathetic cooling

with ultracold alkali atoms, thus extending the class of molecules which could be used for

quantum degeneracy studies. Preliminary theoretical investigations performed on OH

or NH molecules colliding with ultracold Rb atoms [231, 232, 233] are not favorable, as

inelastic collisions are expected to dominate the process. The light LiH molecule has a

quite simple structure, and could be an alternative for performing accurate modeling of
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collisional cross sections. A beam of Stark decelerated LiH molecules has just been

produced using a 100 stages Stark decelerator, after transferring the population of

the rotational ground level (which is a high-field-seeking state) into the first excited

rotational level [234]. Starting from a supersonic beam at 420 m/s velocity, the molecules

have been decelerated down to 53 m/s, thus removing 98.5% of the kinetic energy.

Another experiment demonstrated also deceleration of high-field seeking metastable

CO molecules [235]. The scheme utilized alternating electric field gradients along the

two directions perpendicular to the molecular beam in order to achieve guiding. Even

molecules as heavy as benzonitrile (C7H5N) [236] and YbF [237] high-field seeking

molecules have been decelerated. YbF molecules are of interest for a measurement

of the electric dipole moment of the electron, that gains sensitivity due to the heavy

mass of the molecule [12].

Figure 11. A polar molecule having its dipole oriented antiparallel to the electric field

lines will decelerate while flying into an electric field. If the electric field is switched off

while the molecule is still in the field, the molecule will keep a lower velocity. Reprinted

with permission from Bethlem et al [104].

An even simpler scheme to select and guide polar molecules using the linear Stark

effect in an inhomogeneous field has been implemented in [110] and it is shown in

Figure 12a. Using a bent guide with a quadrupole electric field, a beam of either

formaldehyde (H2CO) or deuterated ammonia (ND3) has been guided and filtered in

velocity, with a resulting longitudinal temperature of about 5 K and a transversal one

of 0.5 K. Simultaneous guiding of molecules in high-field and low-field seeking states

has been achieved [238]. Using a four-wire setup and switching the voltages of a pair of

opposite electrodes, guiding of ND3 molecules in both states was fulfilled for a range of

driving frequencies.
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Figure 12. Sketch of different methods using Stark effect to manipulate molecules.

(a): velocity selection and guiding of polar molecules. Reprinted with permission from

Junglen et al [238]. (b): far off-resonant traveling optical lattice. Reprinted with

permission from Fulton et al [239]. (c): scheme to decelerate H2 molecules in Rydberg

states. Reprinted with permission Yamakita et al [105].

A method to use the linear Stark effect to decelerate hydrogen molecules in Rydberg

states has been demonstrated in [105]. The advantage of Rydberg molecules is their

huge dipole moment compared to ground state molecules. There are however important

disadvantages due to the finite lifetime (in the µs range for n =15-20) and to the complex

Stark map in electric field and related state crossings. The experiment started from a

supersonic beam of H2, that were excited to selected Rydberg states by a combination of

VUV and UV radiation. Two rods act as an electric dipole producing an inhomogeneous

electric field along the axis that decelerates low-field seeking dimers and accelerates

high-field seeking molecules, as sketched in Figure 12c. The observed deceleration

corresponded to a decrease of kinetic energy of just 2.5 % after the application of the

dipole field for 1 µs. The use of many stages as for ground state molecules is in this

case not applicable because the molecules would decay from the Rydberg state along

the trajectory. A scheme using two dipoles was proposed in [240] to decelerate hydrogen

molecules in Rydberg states to zero velocity, but it has not been implemented up to

now.
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2.2.2. Zeeman deceleration of paramagnetic molecules Exploiting the Zeeman effect

instead of the Stark effect, a magnetic analogue of the Stark decelerator has been

realized. This allows to decelerate a wide range of molecules, possessing a magnetic

dipole moment, to which the Stark technique cannot be applied. High magnetic fields

with fast switching times have been difficult to achieve and required specific design

of the coils. A first experimental demonstration of a Zeeman decelerator was firstly

reported on hydrogen atoms in [115] using six stages, with a field distribution providing

a transverse restoring force to the beam axis. The application of this technique to

molecules has been recently implemented [118]. Oxygen molecules from a supersonic

beam were decelerated to velocities as low as 50 m.s−1 using a decelerator with 64 stages.

Oxygen molecules in the 3Σ−

g ground state are paramagnetic, but at high magnetic fields

there are avoided crossings between different rotational states that can change character

of the dimers from low-field to high-field seeking. As in the setup the high-field seekers

were magnetically defocused, the magnetic field had an upper limit of operation. The

velocity of 16O2 molecules was directly measured using a quadrupole mass spectrometer

mounted on a translation stage. An alternating gradient decelerator, like for the Stark

method, can be used to decelerate diamagnetic species and high-field seeking molecules

as well.

2.2.3. Optical deceleration of polarizable molecules Deceleration using the second order

Stark shift in intense far off-resonant optical fields has been demonstrated [113]. A

supersonic beam of benzene seeded in xenon interacted with an injection seeded Nd:YAG

laser propagating in the orthogonal direction and focused to 20 µm, with a pulse width

of 15 ns and a peak intensity above 1012 W.cm−2. The velocity was measured by ionizing

the benzene molecules through REMPI by an UV laser and measuring the time-of-flight

of the ions in a Wiley-McLaren mass spectrometer. The interaction with the radiation

produced a deceleration or acceleration of the molecular beam following their position

downstream or upstream of the pulsed laser respectively. The maximum deceleration

corresponded to 25 m.s−1. Pulsed optical lattices have also been used to decelerate

molecules in a cold molecular beam [114]. Nitric oxide molecules were decelerated by

a deep optical lattice created by two near-counterpropagating laser beams with a fixed

frequency difference, resulting in a lattice moving with constant velocity (Figure 12b).

The molecules are temporally trapped within the lattice potential and make oscillations.

If in the laser pulse time (6 ns) the molecules make an half oscillation in the potential

well, corresponding to a half rotation in the phase space, their final velocity is determined

by about twice the difference between the lattice and the molecular beam velocities.

Therefore they can be decelerated (or accelerated) if the molecular beam velocity is

greater (or smaller) than the lattice velocity. In the experiment NO molecules were

decelerated from 400 m.s−1 to 270 m.s−1 in a single laser pulse [114]. Molecules with a

larger polarizability like benzene could be decelerated to zero velocity with appropriate

pulse duration [239].
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2.3. Kinematic cooling of molecules

2.3.1. Buffer gas cooling of molecules The method of buffer gas cooling relies on the

elastic collisions between the molecules (or atoms) and a cryogenic cooled helium gas.

The method is quite general and in principle can be applied to any kind of molecule.

It is a particular case of the sympathetic cooling method, that was firstly applied to

atomic ions [241] and molecular ions [242], and then to neutral atoms [243]. In the first

experiment with molecules [100], the molecular sample to be cooled was produced by

laser ablation of a solid target with a starting temperature of about 1000 K, as shown

in Figure 13(a). A buffer gas density of about 1016 cm−3 is available using 4He at a

temperature of 800 mK or using 3He at 240 mK. With this density and by assuming

a cross section for elastic scattering of 10−14 cm2, about one hundred collisions are

necessary to thermalize close to the buffer gas temperature. Once the collisions with

the buffer gas have dissipated the translational energy of the molecules, they can be

trapped by a magnetic field. This step can be applied just for paramagnetic molecules

in low-field seeking states, and in particular for those having an important magnetic

dipole moment (µ ≥ µB, where µB is the Bohr magneton). A spherical quadrupole field

can be used to magnetically trap molecules, although it suffers for spin-flip (Majorana)

losses in the center. In the first experiment [100], CaH molecules were produced by

pulsed laser ablation of a CaH2 solid target inside the cryogenic cell. The cell was

positioned inside a magnet consisting of two superconducting solenoids arranged in

anti-Helmoltz configuration, that could produce a maximum magnetic field of about

3 T, corresponding to a trap depth of 2 K for CaH molecules (µ= 1 µB). Vacuum

separated the magnet (at 4 K) from the cell whose temperature (100-800 mK) was

controlled by a dilution refrigerator and resistive heating. The cell was heated before

the ablation pulse and successively cooled in order to pump the helium gas to the

cell walls after the thermalization process. The loading process worked even without

heating, presumably due to evaporation of the condensed helium gas by the ablation

pulse. The trapped molecules were detected by laser induced fluorescence (LIF). The

laser excited the B2Σ+v′ = 0 ← X2Σ+v′′ = 0 transition and the radiative decay

B2Σ+v′ = 0 → X2Σv′′ = 1 was used for detection. In absence of the magnetic

field a single rotational transition (N ′ = 0, J ′ = 3/2 ← N ′′ = 0, J ′′ = 1/2) was

observed, due to fast rotational relaxation. In presence of the magnetic field, the

rotational transition splits into two shifted components, one coming from the low-field

seeking state (N ′′ = 0, J ′′ = 1/2, M ′′ = 1/2), and the other from the high-field seeking

state. By following the time evolution of the two components it was possible to observe

the dynamics of the loading process and of the trapping. The low-field seeking state

molecules had a trapping lifetime of 0.5 s. About 108 CaH molecules were trapped

at a temperature of 400 mK. In a successive experiment about 1012 PbO molecules

were produced at a temperature of 4 K after pulsed laser ablation and thermalization

in a cryogenic cell [244]. PbO is one of the best candidates for measurement of a

permanent electric dipole moment (EDM). CrH and MnH molecules have been cooled
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and trapped with the same technique, allowing the study of elastic and inelastic collisions

with 3He atoms [245]. A different loading mechanism using a molecular beam has also

been developed [246] (see Figure 13c). A radical beam source, consisting of a room

temperature glow discharge in a mixture of gas, that converts ammonia molecules into

NH radicals, produced a molecular beam entering the cryogenic cell through an orifice.

Two shields, made by charcoal coated copper tube held at 4 K, pumped the helium

leaking out of the orifice. The molecules loaded in the cell were detected by LIF and

absorption spectroscopy on the A3Πi(v
′ = 0) ← X3Σ−(v′′ = 0) transition. Up to 1012

NH molecules were loaded inside the buffer gas cell at a temperature below 6 K. Recently,

using the beam loading technique, 108 NH molecules were magnetically trapped with a

1/e lifetime of 200 ms for low-field seekers [247]. NH molecules have also been trapped

together with atomic nitrogen in order to study cold chemical processes in conditions

close to interstellar ones [248]. Using laser ablation and buffer gas cooling, it is also

possible to extract a cold molecular beam from a hole in the cell, as demonstrated for

PbO [249].

Figure 13. Different methods to load a buffer gas cell for cooling and trapping

molecules. Reprinted from Egorov [250].
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2.3.2. Cooling by helium clusters In the free jet expansion of helium, cold nanodroplets,

consisting of large clusters, can be formed at a temperature of about 0.4 K for 4He and

0.15 K for 3He. The droplets can be seeded by atomic or molecular species passing them

through a pickup cell, the attached molecules being in the lowest vibrational state and at

low rotational temperature. Such a device is the flying version of the buffer gas cooling

approach above. Helium nanodroplet isolation (HENDI) spectroscopy is nowadays a well

established technique for investigating molecules which are not necessarily accessible in

the free space, or to measure the influence of the helium droplet on the molecular levels

in order to know if the molecule sticks at the surface, or is solvated inside the droplet.

Specific information can be found in the extensive reviews of refs.[251, 252]. In relation

with laser-cooling experiments, many studies have been carried out with alkali species.

When two alkali atoms are picked up by the droplet, they tend to form a dimer at the

droplet surface, dissipating their internal energy by evaporation of helium atoms. As

the lowest triplet state of alkali dimers is about ten times less bound than their ground

state, dimers are mostly formed in the former one [253], giving access to the spectroscopy

of the triplet electronic states which cannot be easily accessed in the gas phase. The

resolution of such a spectroscopy is usually low due to the interaction with the droplet

which broadens the absorption or the emission lines. However, it can reveal most of

the properties of previously unknown molecular states [254, 255, 256, 257]. The low

resolution of this spectroscopic approach aiming at measuring transition energies can be

compensated by the high resolution on the energy spacing between vibrational levels:

when they are coherently coupled during an excitation with a femtosecond laser pulse

[258, 259, 260], the energy spacings appear as beating frequencies in the time-dependent

light emitted by the molecules either trapped on the droplet, or flying close to it. Alkali

timers in their higher spin metastable state - the lowest quartet state - can even be

formed on the droplet [261]. This represents a promising way to study the spectroscopy

of such species in various mixtures, to be compared to the few available computations

on alkali trimers (see for instance ref.[262]).

2.3.3. Cooling molecules via “Billiard-like” collisions Another method that uses

collisions to produce cold molecules has been developed and applied first to NO molecules

[119]. The technique utilizes crossed supersonic molecular and atomic beams and it is

based on the kinematic collapse of the molecular velocity distribution for scattering with

a given recoil velocity vector in the center-of-mass (COM) frame. In an atom-molecule

collision, when the final molecule velocity in the COM frame is equal in magnitude

and opposite in direction to the COM velocity, the resulting velocity in the laboratory

frame vanishes. If the COM and the recoil velocities scale in the same way with the

starting molecules velocity, an effective cooling can be achieved. In the experiment [119]

NO molecules in the X 2Π1/2 j = 1/2 state collided inelastically with argon atoms in

crossed beam geometry producing cold NO molecules in the X 2Π1/2 j′ = 15/2 state.

For detection, the molecules were ionized by REMPI and the produced ions were imaged

to a position sensitive detector. A fraction of about 10−5 of the molecules in the seeded
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beam, corresponding to a density of 108 cm−3, was cooled down to a translational

temperature of 406 mK. In an improved experiment [263], the same group was able to

lower the effective temperature of the extracted NO molecules down to about 35 mK,

corresponding to a mean velocity of 4.5 m/s.

Another method has been recently implemented for metal-halogen molecules [264].

It uses reactive scattering of an alkali metal beam (potassium in that case) and a pulsed

beam of HBr molecules. In the COM frame the final velocity of the KBr products gets

slow because of the small ratio of the product masses mH/mKBr. In order to produce

slow velocities also in the laboratory frame, the COM velocity is regulated near zero by

sending the two beams counter-propagating and having a speed ratio equal to the inverse

of their masses. The products are detected by surface ionization on the hot surface of a

Re ribbon after time-of-flight. The outcoming distribution has a temperature of about

15 K with a 7 % fraction of the beam at velocities below 14 m.s−1, that could be trapped

thanks to the large electric dipole moment of KBr.

2.3.4. Rotating nozzle A conceptually simple method to slow molecules is the use of

a rotating beam source. If the gas exits from a hole near the tip of the rotor, the

velocity in the laboratory frame is given by the vector sum of the gas velocity in the

rotor frame and the rotor velocity. The device can increase or decrease the velocity

following the direction of rotation. Some effects play a role in the scheme including the

centrifugal enhancement of the gas density inside the rotor and the swatting of the slow

molecules by the rotor itself. A prototype was tested in [120] for both supersonic and

effusive beams of O2, CH3F and SF6 molecules. The detection process measured the

time-of-flight distributions by a fast ion gauge or a quadrupole mass spectrometer. The

obtained temperatures were of the order of few K, limited by the collisions with the

background gas that produced a velocity-dependent attenuation of the beam.

2.4. Trapping of neutral cold molecules

In order to perform sophisticated experiments on ultracold molecular samples, exceeding

short timescales, much effort has been done for the storage of molecules in different

kinds of traps. The possible methods for confining molecules include electrostatic,

magnetic and optical traps or combinations of them. Each kind of trap works for specific

molecules: the electrostatic trap for polar molecules, the magnetic trap for paramagnetic

molecules, while the optical trap is more universal. Magnetic trapping of paramagnetic

molecules was already discussed in connection with buffer gas cooling. Other kinds of

traps, like the microwave trap [265], have been proposed but not yet experimentally

realized.

A powerful method for trapping employs the optical dipole force, confining particles

towards or away from the region of maximum intensity, following the detuning sign.

Useful traps are FORT’s (Far Off-Resonant Traps) and in particular the quasi-

electrostatic optical trap (QUEST)[266], working at large red detuning, i.e. at a
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frequency ω much lower with respect to the first atomic resonant frequency ω0. The

main advantage of QUEST’s is its capability to trap atoms in every quantum states and

also molecules [267]. A further advantage relies on the low photon scattering rates that

can determine very long storage times. In addition these conservative traps create ideal

conditions to study collisions (see Section 3.3).

The trap depth of a quasi electrostatic trap is given by: U (r) = 2π
c
αI(r), where

I(r) is the laser intensity and α is the atomic (or molecular) dynamic polarizability

which, for ω ≪ ω0, is almost equal to the static dipole polarizability (ω = 0). For

example the rubidium static polarizability is equal to 329 a3
0, so by tightly focusing a

100 W CO2 laser, it is possible to achieve trap depths exceeding 1 mK. The stronger

gradient, and consequently higher depth, is in the radial direction, while in the axial

direction the gradient is lower, and depends on the Rayleigh length. For this reason, it

is convenient to send the focused laser beam along the horizontal direction in order to

easily compensate gravity on the vertical one.

Since its first experimental demonstration [268], QUEST’s have been developed in

many laboratories and used to reach BEC in both rubidium [269] and cesium [182],

quantum degeneracy for fermionic lithium [270] and more recently molecular

condensates, as already described. The first molecular trap using a QUEST has been

done on Cs2 dimers created by three-body recombination in a Cs MOT [267], and later

extended to molecules produced by PA [271, 272, 273]. Molecules created through

magnetoassociation are routinely produced and trapped in QUEST’s or FORT’s. As

Feshbach molecules are formed at very low temperatures (in the nK region), the trap

depth can be shallow. This permits also the use of red-detuned optical traps where the

relatively low laser intensity does not produce significant heating through off-resonant

photon absorption. As already discussed in Sect. 2.1.3, molecules can be confined in

optical lattices, that in three-dimensions constitute an array of microtraps, that can

preserve them from collisional inelastic processes.

Polar molecules can be confined by suitable electric field configurations. As an

extension of the Stark deceleration experiments, confinement of ND3 molecules in an

electrostatic trap has been demonstrated [107]. In the deceleration process molecules

in the J = 1, K = 1, M = 1 low-field seeking state of the vibrational ground levels

were selected. The trap had a quadrupole geometry with a cut in the center along

the decelerated beam axis (Figure 14). The molecules entered the trap after being

decelerated to 13 m.s−1 with a velocity spread of 2 m.s−1. By setting asymmetric

voltages to the electrodes, the molecules were brought to standstill at the center of the

trap. At that time, the voltages were switched to a near symmetric situation, giving a

potential well in the trap center. The molecules were probed by multiphoton ionization

and ion detection. The molecule density in the trap was 106 cm−3 with a 1/e lifetime of

240 ms. In following experiments electrostatic trapping of OH [9] and NH [108] has been

achieved as well. When the trapping lifetime is improved, one must take in consideration

the black-body radiation, as polar molecules have dipole allowed vibrational and/or

rotational transitions in the IR region [274]. Recently in a electrostatic trap of OH
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and OD molecules, the black-body pumping rates to high-field seeking rotational states

have been measured, showing that room-temperature black-body radiation limits the

trapping lifetime to a few seconds [275]. Electrostatic trapping of polar molecules has

been achieved also under continuous loading by filtering the velocity of a beam of ND3

molecules [111]. In that case the molecular density was 108 cm−3 with a lifetime of

130 ms.

Figure 14. Apparatus to trap Stark decelerated molecules in an electrostatic trap

(above) and in a storage ring (below). Reprinted with permission from Bethlem et al

[104] and from Crompvoets et al [276].

Injection of ND3 molecules in a storage ring with a radius of about 12 cm has

been demonstrated [277]. In this case the decelerated molecular beam with a velocity of

89 m.s−1 was tangentially injected into the storage ring (see Figure 14), passing between

the rods of an hexapole, which was abruptly switched on once the molecules entered

it. The inhomogeneous electric field provided the necessary centripetal force to produce

stable orbits. In the ring bunches of cold molecules interact repeatedly, at well defined

times and at distinct locations, with electric fields. Up to six round-trips inside the ring

have been observed. A modified design of the storage ring, that introduces a gap between

two half-rings, allowed to counteract the spreading of the molecular packet enabling a

larger number of trips [109]. In principle, different molecules can be simultaneously

stored in the ring and used for collision studies.

Trapping of OH molecules in a magneto-electrostatic trap has been achieved in

[278]. The OH molecules were decelerated in a 142 stages Stark decelerator before they
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enter the trap. The molecules are in the |Ω = 3/2〉 ground state. When high external

fields (E ≥1 kV/cm and B ≥ 100 G) are applied, the total angular momentum J

and its projection mJ on the axis of the applied field become good quantum numbers;

the ground state also splits into two opposite parity states (Λ-doublet). In these

conditions the ground state molecules feel both linear Zeeman and Stark effects. The

magneto-electrostatic trap is composed by a quadrupole magnetic field superposed to a

quadrupole electric field. The molecules that are decelerated must be of electrically low-

field seeking nature (|J = 3/2, mJ = ±3/2〉) while those which are aimed for trapping

must also be of magnetically low-field seeking nature, therefore just the half in the

|J = 3/2, mJ = +3/2〉 state. The experiment succeeded to trap OH at a density of

103 cm−3 and a temperature of 30 mK [278].

By realizing an electrodynamic trap, the molecules in high-field seeking states have

been trapped [279]. Molecules in the absolute ground state are high-field seekers and

it is important to be able to manipulate them. As they are not sensitive to inelastic

collisions evaporative cooling can in principle be applied to increase their phase-space

density. The Earnshaw’s theorem forbids a stable extremum of the electromagnetic field

in three dimensions. However it is possible to have a maximum in two dimensions and

a minimum in the other. Switching between two configurations of electric fields with a

saddle point can confine either low-field or high-field seeking molecules. The AC trap

has been realized by combining a dipole field and an hexapole field and tested with ND3

molecules in the J = 1, K = 1 ground state. After Stark deceleration of the low-field

seeking hyperfine level, the molecules can be partly pumped to the high-field seeking

state by a microwave pulse. The trap is stable for a switching frequency above a cut-off

value (about 1 KHz), until for too high switching frequency the net force averages out.

Details on the shape of the trap and motion inside it can be found in [280].

Electric traps can also be used for confinement of polar molecules produced by

photoassociation. The first demonstration has been given for NaCs dimers [281, 282],

using a thin-wire electrostatic trap (TWIST). The molecules are produced by PA in a

large number of deeply bound vibrational states (v = 0−30) of the X1Σ+ ground state.

In presence of an electric field, they feel a quadratic Stark effect with a polarizability

depending on the ratio between the electric dipole moment and the rotational constant.

As both these two quantities decrease in a similar way as a function of the vibrational

number, the polarizability is constant within 10 % for the first thirty vibrational states.

The dimers are high-field seekers for J = 0 and low-field seekers for rotating states. The

molecular trap is directly loaded by PA in a MOT using tungsten wires as electrodes in

a quadrupole configuration. The trap confines about 100 molecules with a lifetime of

225 ms, limited by the background vacuum.
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3. The challenge for theorists: the knowledge and the control of cold

molecule interactions

One of the dreams of scientists is to control the evolution of a complicated quantum

system at the ultimate limit, i.e. to control both its internal and external degrees

of freedom. This implies mastering its formation process, and its interaction with

similar neighboring systems, or with its environment. As it can be understood from the

previous sections, cold molecules represent attractive systems to achieve such a goal, as

many experimental groups were successful to create molecules in well-defined internal

states and to trap them in elaborate electromagnetic configurations. Such progress

clearly benefited from a continuous exchange between theory and experiment, either for

predictions or interpretations of observed results.

3.1. The knowledge of the structure of cold atom pairs: a cornerstone

Researches on cold molecules mainly started with the formation of alkali dimers, as

alkali atoms are the most widely used species for laser cooling. A detailed knowledge

of their structure is necessary for appropriate manipulation of these species in the

course of their formation process (association and stabilization) as well as their detection

process (REMPI). The simple electronic structure of alkali atoms, i.e. a single valence

electron in the field of a polarizable ionic core, allows for calculating the electronic

properties of alkali dimers with the hope of reaching a somewhat high accuracy.

Several popular quantum chemistry codes known by their acronyms like CIPSI [283],

MOLPRO [284, 285], GAUSSIAN [286], can be efficiently used for such systems. But

it is virtually impossible to determine the absolute energy of molecular levels with an

accuracy comparable to the extreme precision of the measurements yielded by molecular

spectroscopy or cold molecule experiments.

A noticeable exception is the simplest neutral molecule, i.e. H2 which is a pure two-

electron system. Elaborated approaches based on explicitly correlated basis functions

in elliptic coordinates have been specifically designed to take in account the deviations

from the usual Born-Oppenheimer (BO) approximation, which are important in H2 due

to its relatively low mass [287]. Joint experimental and theoretical studies on several

electronic states have demonstrated an accuracy better than 1 cm−1 on the hydrogen

molecular levels [288, 289]. The alternative approach of Multichannel Quantum Defect

Theory (MQDT) has been also used for exploring the electronic and vibronic structure

[290] of H2 excited states, based on previous accurate ab-initio results like the ones

mentioned above. Recently, spectacular results have been obtained for the hyperfine

structure of the H2 Rydberg states and its parent ion H+
2 , reproducing the position of

hyperfine experimental energy levels to an accuracy better than 1 MHz [291, 292].

Going back to the alkali dimers, such accurate studies are out of reach due to the

intrinsic multielectronic nature of these molecules. However the relative simplicity of the

alkali atoms, i.e. composed of one valence electron moving in the field of a polarizable

core, stimulated many elaborate theoretical studies on alkali diatomic molecules. A
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large amount of high-resolution molecular spectroscopy studies have been carried out

as well, and for both cases, their complete list would require an entire review article,

or even a book. In the following, we attempt to provide the reader with a documented

overview of their current knowledge, relevant for cold molecule studies. Most of the

quoted references contain extensive bibliography which could help the interested reader

to locate information on a specific system, or on specific molecular states.

As alkali species are involved in association processes from ultracold atom pairs, it

is first appropriate to divide the range of interatomic distances in two regions. First in

the long-range domain (say, R >20a0 typically, where the exchange of electrons between

atoms vanishes), the dynamics of the association of the atom pair is dominated by atom-

atom interactions induced by electrostatic forces. As it is well-known [293, 294], two

ground-state S atoms interact via second-order dispersion forces, leading to a potential

energy varying as −C6/R
6 where C6 (of positive sign) is referred to as the van der Waals

coefficient. Two identical atoms, one being in its S ground state, and the other in the

first excited P state feel each other via a first-order dipole-induced dipole interaction

yielding a long-range potential energy proportional to −C3/R
3. The C3 coefficient may

be positive or negative, depending on the relative orientation of the dipoles induced on

each atom. Similarly, a ground state S atom interacting with another identical atom in

its first excited D state gives rise to a first-order potential energy varying as −C5/R
5

due to quadrupole-quadrupole interaction. Note however that in the latter case, this

term is dominated by the Van der Waals interaction for most of the range of interest,

due to the usually large values of the C6 coefficients. Finally, two atoms of different

species influence each other via van der Waals interaction, as there is no possibility for

exchanging their excitation, i.e. for inducing permanent dipole or quadrupole dipole

moments. In all the above situations, the potential energy of the atom pair is entirely

determined by atomic properties. Due to their simple structure, highly accurate wave

functions for the atoms can be derived, resulting into precise values of the Cn long-

range coefficients. Among many theoretical studies, we can quote the most precise ones

concerning a pair of ground state atoms (including Li to Fr), yielding either C6 values,

and higher order terms (C8, C10 terms) [295, 296, 297] for homonuclear pairs, and for

heteronuclear pairs [298]. For a pair of one ground state atom and an excited atom,

extensive studies can be found in refs [299, 300, 301]. Let us note that similar studies

have been performed for other species relevant for ultracold atoms like alkaline-earth

species [302, 303].

Modern quantum chemistry computations accurately deal with electron correla-

tions, which control the quality of the electronic wave functions. In this respect, several

electronic properties which are often hardly measured accurately, can be determined

from theory with a great confidence. A systematic investigation on all alkali pairs in

the framework of Effective Core Potentials (ECP) and full Configuration Interaction

(CI) [304] has recently predicted the value of their permanent electric dipole moment

in the ground state, which has been for instance recently confirmed in the course of an

experiment creating ultracold KRb molecules in their v = 0 level [217]. A discrepancy
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of about 40% remains between three different theoretical models. Transition dipole mo-

ments, which drive the transition probabilities, can be accurately determined as well,

and it is now proved that elaborate computations of different kinds yield satisfactory

agreement among themselves [305]. Similarly, the computation of static dipole polariz-

abilities [210], and dynamic polarizabilities [27] are relevant for modeling the trapping of

polar molecules in external electromagnetic fields, or to predict their possible orientation

and alignment in a superposition of static and oscillating electric fields [306].

In the perspective of obtaining molecular quantum degenerate gases, ultracold

molecules have to be created in their absolute ground state, or at least in a single

quantum state. This implies the control of the hyperfine interaction in the low-lying

molecular levels which are ultimately used in STIRAP-based transfer processes (see

section 2.1.4). Aldegunde et al investigated the hyperfine energy levels and Zeeman

splitting for homonuclear and heteronuclear alkali dimers in low-lying rotational and

vibrational states, by carrying out density-functional theory calculations of the nuclear

hyperfine coupling constants [307, 308]. For instance, rotationless levels are split into

multiplets, where two neighboring levels are separated typically by amounts between

90 Hz for 41K2 and 160 kHz for Cs2.

While alkali atoms still represent the preferred species for ultracold molecule

experiments, other species like alkaline-earth atoms [309, 310, 311], or Ytterbium

[312, 313, 314], are also used by several groups to perform PA spectroscopy, even

if no stable ultracold molecules have been observed yet. Such atoms possess two

valence electrons, so that the calculation of the electronic structure of the associated

dimers will be more involved. In particular, the corresponding dimers can be modeled

as four-effective-electron systems within an ECP approach, which cannot be treated

anymore using a full-CI computation, as the configuration space is by far too large

compared to the capabilities of current or upcoming computers. Elaborate calculations

are nevertheless feasible, as attested by the following studies achieved with the objective

of finding efficient cold molecule formation schemes. The electronic structure of the

calcium dimer, including potential curves, transition dipole moments and spin-orbit

couplings, as well as the predicted PA spectrum, have been investigated in detail in

refs.[315, 316], using a hybrid method involving small-core ECP’s. The electronic

structure of the Sr2 molecule, including potential curves for the ground state and for the

lowest ungerade states, and transition dipole moments, has been obtained in an ab initio

relativistic configuration interaction valence bond self-consistent-field method. The

accuracy of the results have been checked against the size of the employed basis sets, and

compared with available experimental data. For both systems, the possibility to stabilize

photoassociated molecules into ground state molecules due to non-adiabatic couplings

is discussed. Despite its two valence electron, the treatment of the Yb2 molecule is

even harder due to the large Yb2+ polarizable core whose size is comparable to the

size of the valence orbitals. Ground and excited state potentials have been computed

with the MOLPRO package, using three different ECP’s [317]. It is worthwhile to note

also that in the near future, data concerning mixed species will be required, as ongoing
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experiments are setting up cold atom traps with mixed species like for instance Yb and

Rb [318].

It is also worthwhile to mention a possible novel interest for alkali hydrides in the

cold molecule context (see the recent Stark deceleration of LiH [234]), whose electronic

properties are similar to the one of alkali dimers, and which can be accurately calculated

(see for instance refs. [319, 320, 321, 322, 323, 324]). Based on such knowledge, the

possibility to create cold LiH and NaH ground state molecules has been investigated

[325, 326] by one-photon stimulated radiative association process applied on a pair of

colliding cold Li and H atoms. Significant population of high-lying vibrational states

is predicted, while the spontaneous decay cascade down to the v = 0 level may take

several minutes. Of course, such a proposal relies on the availability of a stable dual

trap of cold Lithium and Hydrogen atoms.

Cold molecule studies benefited a lot from the high-resolution spectroscopy of alkali

dimers. It is impossible here to list the abundant literature available on this class of

systems which is intensively studied since almost 40 years. Such systems are indeed

quite popular in molecular spectroscopy, for the same reason as in laser-cooling studies,

i.e. most of the main transition frequencies lie in the optical domain. It is striking to

realize that the cold molecule experiments performed with all possible pairs of alkali

atoms boosted many new high-resolution spectroscopic investigations, which in turn

were helpful to guide them. This is particularly true for heteronuclear alkali pairs as the

ground state and the lowest triplet state of most of them have been recently determined

in an amazing series of studies [327, 328, 329, 330, 331]. Moreover, several excited

electronic states have been identified, including those exhibiting strong perturbations

like the well-known case of the lowest excited A1Σ+ and b3Π states (also referred to

as the (A ≈ b) system) coupled by spin-orbit interaction. This effect is dominant

when at least one heavy alkali atom (Rb or Cs) is involved [332]. Such studies rely

on elaborate deperturbation methods [333] which most often imply a joint theoretical

and experimental analysis: initial guesses for potential curves and molecular spin-

orbit coupling are provided by quantum chemistry calculations as input for a multi-

parameter non-linear fitting procedure [334, 335, 336, 337]. The input of the quantum

chemistry calculations is even more important for instance in the case of the most recent

experiments devoted to the production of v = 0 molecules with STIRAP (see Section

2.1.4), for which the complete spectroscopy of the intermediate excited states was not

available. Such experiments have a quite long duty cycle, so that the appropriate

transitions cannot be identified by carefully looking for all of them. Therefore the

calculations are helpful for the assignment and the interpretation of the few observed

lines.

3.2. Control of the formation of cold molecules with external fields

In cold and ultracold gaseous samples, the kinetic energy of the particles is smaller

than the perturbations induced by the presence of external electric and magnetic fields,
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which can therefore modify their dynamics. This offers the opportunity to achieve a long-

lasting goal of controlling elementary chemical reactions, for instance to drive products

into a single, well-defined quantum state. In this respect, ultracold conditions have the

advantage of drastically reducing the number of channels involved in the dynamics, so

that precise comparison between experiment and theoretical models can be envisioned.

As already described in section 2.1.2, external field assisted cold collisions are the

basis for the magnetoassociation of ultracold atoms through the control of magnetic

Feshbach resonances (MFR) by tuning an external magnetic field. Mastering the

position of these resonances in an experiment requires a detailed knowledge of the

related atom-atom interaction mainly at large distances, characterized by the Van der

Waals coefficient and the scattering length, as previously discussed. A recent proposal

suggested to use the enhancement of the density probability of the atom pair at short

distances induced by the MFR to perform a radiative association to stabilize the MFR

into the v = 0 level of the molecular ground state [338]. This process, named as

Feshbach-Optmized photoassociation (FOPA) by the authors (Figure 15), is predicted

to provide molecular formation rate as high as a few 106 molecules/s in the case of LiNa,

comparable to what is observed in the experiments reported in section 2.1.1.

Figure 15. The Feshbach-optimized photoassociation process (FOPA): Colliding

atoms (1) interact via open (blue) and closed (green) channels due to hyperfine

interactions. A Feshbach resonance occurs when a bound level (2) (green wave

function) coincides with the continuum state (blue wave function). A photon can

associate the atoms into a bound level v (3) of the ground state potential (red).

Reprinted with permission Pellegrini et al [338].
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Such a control of resonance positions can be extended to the optical Feshbach

resonances (OFR), induced by a strong continuous resonant laser light, which couples

open and closed scattering channels. The case of non-resonant laser light applied on

cold atoms has been treated in ref. [339]. First predicted in ref.[340], OFR’s have been

observed for the first time by Fatemi et al in 2000 [177], in the photoassociation of cold

Na pairs. OFR’s have been proposed as a versatile tool to create cold molecules: indeed,

they involve excited electronic states of molecules, instead of requiring the presence of

an hyperfine manifold as for MFR’s, which is for instance absent in most abundant

isotopes of alkaline-earth atoms. Their tuning is also more flexible through both the

laser intensity and frequency. The coherent conversion of an atomic Bose-Einstein

condensate into a molecular one using photoassociation laser with a linear frequency

sweep has been modeled [341, 342], suggesting the possibility to observe oscillations

in the atom/molecule number with time. Koch et al [343] modeled the formation of

ultracold 87Rb2 molecules by solving the time-dependent Schrödinger equation, involving

a linear ramping of the laser frequency: in the dressed molecular state picture, the OFR

is swept through the entrance scattering channel, so that ground state molecules are left

in their highest vibrational levels.

For molecules exhibiting a permanent dipole moment, such ase heteronuclear alkali

dimers, external electric fields also offer the possibility to tune the interaction within

the atom pair [344]. Strong electric fields have been shown to strongly distort the

rovibrational internal structure of heteronuclear molecules. In refs.[345, 346], the authors

provided a full rovibrational description of the molecule in a homogeneous electric

field including the coupling between the vibrational and rotational motions, through

the development of an effective rotor approximation going beyond the traditional rigid

rotor approximation. The same group applied this approach to the one-photon induced

photoassociation of the strongly dipolar LiCs molecule ‖, under the influence of a static

electric field in the range of 10−7 to 10−4 a.u. (or 0.514-514 kV/cm) [347]. The cross-

section has been found to strongly depend on the rotational angular momentum, with

an inhibitory effect predicted on J = 1 levels when the field increases. Finally, the

combination of an electric and a magnetic field on a heteronuclear dimer (LiCs) has been

shown to induce Feshbach resonances for moderate electric fields (about 100 kV/cm),

also inducing strong anistropy in the atom-atom interaction [348, 349].

Besides these studies, a wealth of theoretical developments have been carried out

in order to apply the techniques of coherent control or optimal control with laser pulses

to the formation of ultracold molecules, with the objective of controlling the association

process with appropriate shaping of the pulse in amplitude and phase. The first attempt

to model wave-packet dynamics of the PA of cold atoms has been proposed in ref.[350].

A pair of cold sodium atoms was associated by a picosecond laser pulse, and then probed

by a second pulse ionizing the associated pair. The objective was to discriminate the

two possible ionization mechanisms, i.e. photoionization and autoionization, expected

‖ The LiCs molecule possesses the largest permanent dipole moment of all alkali pairs, 5.3 Debye [304],

in the v = 0 of their ground state.
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to yield different time dependent molecular ion count. The corresponding experiment

was found to actually probe the dynamics of the wave-packet in the intermediate,

photoassociated state [351]. Only very few further PA experiments with femtosecond

laser pulses have been reported afterwards, probably because up to now they have not

revealed a clear manifestation of the possibility to enhance and control the formation

of cold molecules [143, 144]. On the theoretical side, the first attempts consisted in

optimizing the photoassociation step using frequency-chirped laser pulses [139, 352, 353].

A chirped broad pulse allows maximizing the number of excited pairs of atoms located

at different interatomic distances, as resonant conditions for PA are then reached for

many frequencies embedded in the pulse envelope (”photoassociation window”). A

large variety of laser pulse has been examined [352] for picosecond duration (which

is adapted to the typical dynamical time of cold atom PA), and various detuning of

their central width. The wave-packet describing the excitation of the cold atom pair in

the photoassociated state is predicted to focus at the inner turning point of the excited

molecular state. This yielded favorable conditions for stabilization by spontaneous decay

into stable ground state molecules [140, 354], which has been modeled through pump-

dump schemes following the ideas of optimal control theory [355, 141, 356]. Such studies

are still at their beginning, but look very promising. However they are currently limited

due to the possibility to include more channels in the calculations (to mimic the hyperfine

structure for instance), and to properly describe the repetition of the pulse [138], which

could involve couplings with several partial waves in the entrance scattering channel.

In this respect, modeling such processes on alkaline-earth species with no hyperfine

structure [357] may be of interest for future experiments.

3.3. Interactions between cold atoms and molecules

Several recent experiments made giant strides in forming dense samples of ultracold

molecules, either mixed or not with ultracold atoms, and started to address the issue

of understanding their mutual interactions. First, much less channels are expected to

contribute at ultra-low collision energies than in the thermal domain, as the rotational

angular momentum ℓ of the complex is zero at vanishing collision velocities vcoll. The

possibility to compare elaborate theoretical models to detailed experimental results

obtained under well-controlled conditions is now at reach. In particular, the cross

sections are governed by the Wigner’s threshold laws [358], predicting elastic cross

sections varying as v4ℓ
coll, and inelastic cross sections as v2ℓ−1

coll . In consequence, ultra-

low energy collisions are dominated by the s-wave (ℓ = 0), and reaction rates can be

quite large at ultracold temperatures. Next, the large de Broglie wavelength of the

collision partners will enhance the importance of tunneling effects during the process.

The long-range interactions between the collision partners will play a crucial role, as well

as the coherences if the collisions occur within a degenerate gas. Finally, the collision

process can be modified, and hopefully controlled, by the presence of external electric or

magnetic fields, as the corresponding coupling terms are of the same order of magnitude,
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or even larger, than the collision energy. Such studies opened a new era for the vast field

of inelastic or reactive collisions, which could be renamed as cold or ultracold chemistry

[30, 359, 186].

In this section, we first review the experiments which reported evidence for atom-

molecule or molecule-molecule collision phenomena at low temperatures, and we will

overview the status of the theoretical developments.

3.3.1. Observation of cold atom-molecule and molecule-molecule collisions Two

different experiments on optical trapping of Cs2 dimers created by PA allowed to extract

atom-molecule and molecule-molecule inelastic rate constants for different rovibrational

states [272, 273]. The rates turned out largely independent on the rovibrational level

populated with corresponding cross sections unitary limited. Recently also inelastic

collisions in a trapped sample of RbCs molecules have been studied [360]. Atom-molecule

collisions were studied for both RbCs-Cs and RbCs-Rb cases, by removing the undesired

atom from the optically trapped sample. The REMPI state-selective detection allowed

to measure rate constants for a range of vibrational levels of the ground triplet states

with binding energies from 0.5 to 7 cm−1. The inelastic rate constants were equal within

the experimental precision. The rate behavior and magnitude can be explained by a

model that assumes that any pair that penetrates the short-range region gives trap loss.

The flux transmitted at short range is calculated by solving the Schrödinger equation

with the appropriate C6 coefficient of the considered pair.

Starting from a ultracold sample of Cs2 molecules trapped in a QUEST, Feshbach-

like collisions among molecules have been observed and interpreted as Cs4 bound states

[361]. In the experiment, the molecules are created from an atomic BEC in a crossed

dipole trap by ramping the magnetic field through the g-wave Feshbach resonance at

19.84 G. A ramp of the magnetic field gradient levitates the molecules and separates

them from the atoms, leaving a pure molecule cloud. Tuning the magnetic field

further down, an avoided crossing at 13.6 G transfers the dimers from the initial

state, with quantum numbers f = 4, mf = 4, ℓ = 4, mℓ = 2, to another state

(f = 6, mf = 6, ℓ = 4, mℓ = 0). The new state has a different magnetic moment,

so the transfer can be monitored by imaging the position of the sample that is due to a

balance between magnetic force and gravity. In the new state two strong inelastic loss

resonances are observed as a function of the magnetic field, at 12.72 and 13.15 G. These

resonances are not reliable to the Cs2 energy structure, that is well known near the

dissociation limit until high partial waves [362], and can be explained as the occurrence

of Cs4 bound states. Measurements of the trap lifetime show a density-dependent effect

that supports this interpretation.

An experiment on trapped heteronuclear molecules has investigated inelastic

collisions as a function of the quantum statistics of the colliding particles [187]. KRb

fermionic molecules were produced through rf-association near a Feshbach resonance

between 40K|9/2,−9/2〉 and 87Rb|1, 1〉 atoms, as in the experiment described in a

previous section [207]. Once formed, the loss coefficient β for inelastic collisions has been
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measured as a function of the heteronuclear scattering length a for different collision

partners and compared with theoretical behaviors [363]; the investigated range was

limited below 4500a0, that is the region where the finite temperature does not cause

dissociation. After removing Rb atoms, collisions with distinguishable atoms (K in the

|9/2,−7/2〉 state) showed a a−1 dependence at high scattering length while at low a

β stops changing. Collisions with bosons were studied in a mixture of Rb |1, 1〉 and

K|9/2,−7/2〉 atoms, by subtracting the contribution of K atoms. The loss coefficient

shows in this case an increase at large a due to the attractive atom-molecule interaction.

Finally the molecule-fermionic atom collisions were studied by removing Rb atoms and

driving K atoms to the |9/2,−9/2〉 state by rf. The results showed a suppression of

the molecular decay at high a. In this case, the trap lifetime τ , that is related to the

loss coefficient through β = 1/nτ , where n is the density of the atomic partner, reaches

100 ms.

Besides the investigation of cold collisions in trapped samples, it is now possible to

manipulate the velocity of a molecular beam and thus to study processes and associated

cross sections as a function of the collision energy. A first experiment of this kind has

been reported in [364], where a molecular beam of OH in the X2Π3/2, ν = 0, J = 3/2, f

state-selected state (where f indicates the parity of the electronic wave function), after

Stark deceleration, collided with a Xe beam in a crossed beam configuration. The

velocity of the OH molecules was varied from 33 to 700 m.s−1, with a low width of the

velocity distribution, while the colliding Xe supersonic beam had a velocity of 300 m.s−1

with a 10 % spread that represented the main contribution to the energy resolution.

Cross sections of inelastic scattering were measured as a function of the collision

energy and compared with success to theoretical calculations for collisions changing

the angular momentum and/or parity of the initial OH state. Another experiment

probed collisions between trapped OH molecules and a supersonic beam of He or D2

[365]. The OH molecules, after Stark deceleration, were trapped in a magnetic trap

done with permanent magnets. The OH-He and OH-D2 center-of-mass energy could

be varied from 60 to 230 cm−1 and from 145 to 510 cm−1 respectively, by changing

the nozzle temperature of the He or D2 beam. Total collision cross sections have been

measured by observing the OH population losses, showing for OH-He the signature of

inelastic threshold like in the previous experiment [364], and evidence of resonant energy

transfer in the case of OH-D2 collisions.

3.3.2. Modeling collisions between cold atoms and molecules The main limitation for

such studies is again the lack of knowledge of the potential energy surfaces which drives

the dynamical processes. Despite this difficulty, general trends can be identified, for

instance by looking at the stability of the theoretical results with reasonable variations

of the surfaces, as we will see below. Up to now, theoretical investigations covered several

molecular systems, which are representative of the various cold or ultracold molecular

systems available in experiments. Actually, theory cannot help too much to determine

the magnitude of elastic cross sections, which crucially depend on the scattering length.
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Accurate spectroscopy of the related molecular systems is still lacking to determine this

parameter. However, a wealth of theoretical works have focussed on low-energy collisions

between atoms and molecules, as they imply the concept of Efimov states [366], which

are a manifestation of a universal property of few-body systems. We will comment more

about this in the next section, as they are the subject of a considerable literature.

Just like in the previous section, alkali compounds are attractive for modeling

ultracold atom-molecule and molecule-molecule collisions, due to their simple structure,

and as they are widely used in experiments. However, it is worthwhile to quote that

computations for these effective three-electron systems are by far more demanding than

those for the dimers. A systematic study of the potential energy surface of the lowest

quartet state has been computed for all the homonuclear alkali trimers in their linear

(4Σ+ state in D∞h geometry) or equilateral configurations (4A′ in C3v geometry), using

standard ab initio packages like MOLPRO [367]. The lowest quartet state is involved

in a collision where all atoms are spin-polarized, which can be the case in realistic

experiments, thus assuming that ultracold dimers are created in their lowest triplet

state. The potential surfaces exhibit strong non-additive effects, i.e. due to the strong

polarizability of the alkali atoms, their equilibrium distance in the C3v symmetry is

shorter than the one of the triplet dimer, and its energy minimum is lower than the

sum of the depth of the pairwise potentials. Global potential energy surfaces have

been subsequently derived on a grid of interatomic distances for Li3 [368, 369], Na3

[370, 371], and K3 [372], in all geometries. New results have been recently obtained

for heavier systems including heteronuclear alkali compounds like KiRb3−i (i = 1, 3) in

the context of molecules trapped onto helium nanodroplets [373, 374], or for the Li2A

molecules (with A= Na, K, Rb, Cs) [375]. As a general feature, all these surfaces have no

potential barrier for atom exchange, which will be of central importance for modeling

their dynamics. To be used in numerical codes for scattering, these surfaces have to

be interpolated between the ab initio points, checking that no numerical oscillation

arises, and that their dissociation limit is conveniently described. This requires specific

techniques which are described for instance in ref.[376].

The simplest inelastic collision which can occur between a cold atom and a cold

(diatomic) molecule is the change of the internal state of the molecule, like vibrational

or relaxation defined as A+A2(v)→ A+A2(v
′ < v). This process is of particular interest

as in many experiments (like those of refs.[272, 273, 360, 187] involving alkali atoms)

molecules are formed in high lying vibrational levels, in the presence of surrounding cold

atoms. Despite its simplicity for alkali trimers, a full quantum dynamical treatment of

the process, including inelastic and reactive channels, is required. Indeed, as no barrier

is found in the relevant potential surfaces, an atom can be exchanged with the molecule

(insertion mechanism) in the course of the collision involving indistinguishable alkali

atoms. The choice of an appropriate set of internal coordinates is crucial to represent

all possible arrangements simultaneously. Most models used hyperspherical coordinates

ρ, θ, φ which provide a global representation of the triatomic system: the hyperradius

ρ is related to the size of the triangle formed by the three particles, while θ and φ
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describe its shape. Various implementations have been proposed, which are reviewed

for instance in ref.[376]. In a series of studies, the dynamics of the A+A2 collisions

at ultracold energy (with A=Li, Na, K) has been investigated within the framework

of a time-independent resolution of the Schrödinger equation written in hyperspherical

coordinates, where A is spin-polarized in its ground state, and A2 is in its lowest triplet

state, possibly vibrationally excited. The first study of this kind has been performed

on Na+Na2(v = 0, 3) collisions [377, 371], showing that vibrational relaxation of the

molecule dominates the elastic scattering below 0.1 mK. This suggests that evaporative

cooling of molecules by collisions with parent atoms is not favorable. Similar results

have been obtained for Li+Li2(v = 0, 3) [369], and for K+K2(v = 1) [372]. The

case of heteronuclear systems, involving mixed isotopes of the lithium atom has also

been treated [378], where the vibrational relaxation is found even stronger than for

homonuclear case, compared to elastic processes. More recently a special care has been

brought to the accurate determination of the long-range interactions implemented in

the modeling of the Na+Na2 and K+K2 spin-changing collisions [379]. However, such

calculations are still intended to provide a basic understanding of the processes, as they

are restricted in several respects due to the limited capacity of computing facilities: the

hyperfine structure and the presence of external fields are not included, and are restricted

to low vibrational levels of the dimers, within the fully-spin-polarized configuration of

the triatomic systems. The extension to other configurations is also of interest, as well

as the treatment of heavier molecular systems or heteronuclar systems, providing that

accurate potential surfaces could be calculated [373, 375].

Even more desired by experimentalists are predictions concerning the interaction

between a pair of ultracold alkali dimers. A full quantum mechanical study using a

multidimensional potential surface is out of reach of the present computing resources.

However some insight can already be obtained when a restricted region of the

configuration space is examined. In ref.[380], the collision of pair of RbCs molecules

has been investigated. The potential energy of the system has been calculated along

a minimum energy path with an optimized geometry calculation. The authors showed

that the reaction RbCs+RbCs→ Rb2+Cs2 is barrierless, just like in the case of alkali

atom-molecule collisions. In the spirit of the crossed molecular beam experiments of

refs.[119, 263] on Ar-NO, and of ref.[264] on K-HBr, optimal conditions can be found to

produce slow molecules from the reaction of two RbCs molecules.

Besides these studies on alkali compounds, numerous theoretical studies are devoted

to the quantum description of inelastic or reactive scattering processes for other classes of

systems. Such studies are actually progressing at the rhythm of the obtention of accurate

potential energy surfaces, themselves motivated by the pressure of the increasing spread

of experimental initiatives. Modeling inelastic collisions of molecules with Helium atoms

at low energy looks promising in the perspective of the analysis of buffer-gas cooling

experiments, as one of the collision partners (He) is structureless. Moreover, the Jacobi

internal coordinate system - the molecular radius, the distance between the He atom and

the center-of-mass of the molecule, and the angle between the molecular axis and the
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collision axis- is well adapted. The trapping efficiency of the cooled molecules critically

depends on the Zeeman depolarization processes, i.e. of the relaxation of the molecules

created in a well-defined Zeeman sublevel. Such processes are nicely reviewed in ref.[381],

covering a variety of situations like open-shell or closed-shell molecular systems, and

relaxation processes either from low or high-lying rovibrational levels. Among them,

we can quote the treatment of the collisions of He with N2 [382], with CaH [383], with

NH [384], with CO [385], with OH [386], or with Li2 [387], all species which have been

cooled down in their ground state. All results demonstrate a strong influence of the

initial internal state of the molecule on the relaxation cross section.

In a couple of other studies, the possibility to use ultracold alkali atoms to

sympathetically cool down molecules obtained from devices like Stark decelerator is

investigated. Compared to the case above, both reactants are open-shell systems, which

represents a challenge for ab initio calculations as several coupled potential surfaces have

to be determined. The interaction between the polar NH(X3Σ−) molecule and Rb or Cs

atoms has been studied in [233, 388], and between OH(X2Π) and Rb atoms in [231, 232],

both including spin-orbit effects. One particular feature of such systems is the presence

of an ionic channel, i.e. Rb++NH− or Rb++OH−, whose energy at infinity is not far

above the one of the neutral system. As a consequence, the interaction energy drops very

fast when the mutual distance decreases, and generates a conical intersection between

the potential energy surface of this ionic channel and the one of the neutral system at

short distances (Fig. 16a). Hyperfine interaction has been included in the latter case,

which tremendously increases the number of channels in the scattering process (Fig.

16b). In all these studies, inelastic collisions which change the internal state of the

molecules dominate elastic ones, which could make sympathetic cooling problematic for

trapped molecules.

Following the path of increasing complexity, several explorative studies have been

devoted to cold collisions of identical molecules. The H2+H2 system is obviously

a prototypical one, being the simplest tetramer system. These investigations take

advantage of the improvement of potential energy surfaces, as well as of the continuous

increase of numerical facilities. Analysis of rotational energy transfer mechanisms has

been carried out over a wide range of energies including the ultracold range, examining

also the dependence of the results with the choice of the potential energy surface

[389, 390, 391]. Other studies concern collisions between O2 molecules in various internal

states [392, 393]. It is important to note that the perspective of such works is the

modeling of collisions taking place inside molecular traps, which are, by construction,

created by external electric and/or magnetic fields. Again, as discussed above, these

fields change the properties of the molecules, and therefore influence their dynamics

especially at low energy. This opens the way to the control of elementary chemical

reactions at low energy using external fields, which is the topic of two recent detailed

reviews [30, 394].
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(b)

Figure 16. Potential energy surfaces of the OH-Rb system. Left: adiabatic potential

curves showing crossing for the avoided crossing between the ionic and covalent

channels for a slightly nonlinear geometry. Right: adiabatic curves correlating with the

lower rotational states for the collision in maximally stretched states of both partners,

including hyperfine interactions. Reprinted with permission Lara et al [232].

4. Concluding remarks: accessing new phenomena with cold molecules, a

challenge for physicists and chemists.

In this review, we have presented the huge advances in the field of ultracold molecules,

addressing the main experimental and theoretical issues concerned by their formation

process. The dream of controlling both the internal and the external degrees of

freedom of a molecule seems now to be at reach. Photoassociation, either followed by

spontaneous emission [210] or combined with incoherent optical techniques [209, 211],

can produce ultracold dimers in the ground rovibrational state with a temperature

in the µk range. Ultracold molecules in the ground rovibrational level at even lower

temperatures (in the nK range) can now be produced by coherent optical transfer of

magnetoassociated molecules [216, 218, 217]. Quantum degeneracy of a molecular gas,

already demonstrated for Feshbach molecules [200, 39, 38], will presumably be achieved

soon also for molecules in the ground rovibrational state. These association techniques

are currently limited to alkali species, but different kinds of molecules can be cooled using

methods like Stark or Zeeman deceleration and kinematic cooling. Such techniques

create molecular samples in the mK temperature range, but there are proposals to

further cool and compress these molecules in the phase space [91].

The broad area of physical and chemical applications of ultracold molecules, that

covers ultra-high resolution spectroscopy with tests of fundamental theories, few-body

physics, quantum computation, molecular optics and controlled chemical processes, is
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now beyond the proposal stage and begins to show the first important results. Such an

exhaustive presentation of these topics would require a review twice long, so that we

summarize in this last section their most promising or spectacular developments.

• Novel ultra-high resolution molecular spectroscopy

The resolution of conventional molecular spectroscopy benefits of the utilization

of cold molecular samples, producing a strong reduction of first and second order

Doppler effect and a longer interrogation time in the measuring device. But the

main advantages of cold molecules rely in unconventional spectroscopy, as the access

to pure long-range states and to triplet states is hard to achieve with thermal

ensembles. As described in section 2.1.1, PA allows to obtain detailed information

on the long-range part of molecular potential curves and to the properties of the

constituting atoms. A huge amount of accurate atomic and molecular data have

been reported in literature in the last two decades [67, 7, 8]. An example is the

scattering length a, already quoted in section 2.1.2, that deserves very precise

determination. As it is well known, this parameter resumes the elastic scattering

properties of ground state atoms at low collision energies, and plays a crucial role

in the stability of Bose-Einstein condensates. The scattering length is related to

the total accumulated phase of the interaction potential between two atoms, and

is extremely sensitive to any detail of this potential at a level which cannot be

achieved by pure theoretical approaches. Instead joint experimental and theoretical

studies have been amazingly successful to determine this parameter, and to predict

the strongly coupled energy level structure of long-range molecules induced by

hyperfine interactions. PA can provide good estimates of a by locating the nodal

positions of the wave function or by measuring the near-threshold bound states.

The novel Feshbach spectroscopy is highly accurate in measuring near-threshold

bound states in all systems that exhibit Feshbach resonances. By elaborate time-

dependent control of the magnetic field it is possible to populate any of the near-

threshold bound molecular states [395], including those having high rotational

angular momentum [194]. The states that cannot be directly populated from the

open channel can be reached through state transfer, with either a slow (adiabatic)

or fast (diabatic) field ramp through a level crossing. Spectroscopic signature of a

level crossing can be given by a measurement of the molecular magnetic moment

or by dissociation loss after applying microwave radiation [395]. Also transfer

across avoided crossings using radiofrequency allowed cruising through the Feshbach

resonance manifold of 87Rb2 [214]. Several authors proposed broad reviews of the

physics of Feshbach resonances, and of their applications [95, 73, 396].

• Tests of fundamental theories

The ultra-high resolution which is made available in cold molecule experiments

allows to design protocols aiming to perform tests of fundamental theories like

the cosmological variation of the fine structure constant α [18] or the me/mp

ratio [19, 20, 21, 22, 397, 23]. One example is the measurement of the Λ-
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doublet transitions of OH ground-state molecules in the microwave range [24]. A

beam of OH molecules was Stark-decelerated before entering a microwave cavity

where the molecules were probed by Rabi and Ramsey spectroscopy, giving a

large improvement over the previous frequency measurements thanks to the longer

interrogation time. The sum and difference of ∆F=0 transition frequencies can

be related to the fine structure constant α, and a comparison of laboratory and

astrophysical measurements can give constraints on the time variation of α, that is

predicted by unified field theories [398].

The measurement of the electric dipole moment (EDM) of the electron is another

example where cold molecules can be useful. A non-zero EDM would imply a T-

violation, i.e. an asymmetry with respect to time reversal, and a limit value would

test theories beyond the standard model [399]. A heavy polar molecule is a good

candidate for a sensitive measurement, as the effective electric field felt by the

unpaired electron can be expressed by the product Q×P , where P is the molecular

polarizability induced by an external field (≈1 for a polar molecule) and Q is a

factor proportional to Z3, with Z the mass number [11]. Experiments aiming at

determining the electron EDM are underway on PbO [244, 14, 400, 401] and YbF

[12, 237, 402].

• The quantum degenerate regime for molecules

One of the most important result in the field has been the achievement of a BEC of

Feshbach molecules out of a degenerate atomic Fermi gas (see section 2.1.2). Besides

the interest in obtaining a quantum degenerate regime for molecules in the ground

rovibrational state, i.e. without internal energy, both theory and experiments have

deeply investigated the region very close to a Feshbach resonance. The region where

the scattering length a < 0 does not support bound molecular states according

to two-body physics. On the contrary, many-body physics, in the limit of weak

interactions, allows for the formation of fermionic pairs identifiable with Cooper

pairs. Following the Bardeen-Cooper-Schrieffer (BCS) theory [403], that explains

the occurrence of superconductivity and superfluidity, Cooper pairs are delocalized

pairs of electrons weekly bound at very long range. Bose-Einstein condensation of

Cooper pairs was observed in both K and Li gases by a rapid sweep of the magnetic

field from the BCS to the BEC side of the resonance [404, 46] and the pairing energy

gap, as forecast by the theory, has been detected [44, 405, 406]. The BEC and BCS

regions are connected by a crossover region where the gas is strongly interacting

and theory becomes a challenging problem [43].

Starting from an atomic Bose-Einstein condensate, the coherent conversion into a

molecular BEC is an advance towards a sort of ”superchemistry” that is a stimulated

emission of molecules in a chemical reaction [96]. Nonlinearity in the atom-molecule

coupling through stimulated Raman transitions may give rise to giant collective

oscillations with time-dependent reaction rates, that depend on the reaction vessel.

The atom-molecule system can present quantum effects like soliton formation or

squeezed state generation.
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• Universality of few-body physics at ultracold temperatures

In the ultracold domain, the scattering length is the characteristic parameter of

the mutual interaction between atoms, controlling their elastic collisions. If the

scattering length reaches large values (for instance by tuning it with external

magnetic fields), it can exceed the range of molecular interaction (halo system),

so that the long-range atom-atom interaction becomes independent of any detail of

the short-range interaction. For instance, the binding energy Eb of the uppermost

bound state of an atom pair characterized by a positive scattering length a is

given by Eb = h̄2/(µa2), where µ is the reduced mass of the system. This property

suggests that two-body properties at ultracold energies adopt a universal character.

Such a universality has been demonstrated for three-body systems by Efimov [366].

In the limit of infinite scattering length, he demonstrated that a series of three-body

bound states converges towards the dissociation threshold, with ratio of binding

energies of successive states equal to a universal constant. Efimov states actually

occur in three identical boson systems in presence of a two-body interaction with

large scattering length [366]. The so-called Efimov physics has been reviewed in

depth by Braaten and coworkers [407, 408].

The availability of ultracold samples of atomic and molecular particles, together

with the possibility to tune their mutual interactions through Feshbach resonances

opened new perspectives for the investigation of Efimov physics, illustrated by

two recent experiments bringing first evidences of Efimov physics. In ref.[409], a

resonance in the three-body recombination loss rate measured in a cesium trap has

been observed in the region of large negative (two-body) scattering length near

a Feshbach resonance, yielding an indirect manifestation of an Efimov state. An

atom-dimer resonance has also been observed in an optically-trapped mixture of Cs

atoms and Cs2 Feshbach molecules [410], suggesting the presence of a trimer state

close to the atom-dimer dissociation threshold. This exploration has been extended

to the collisions between Feshbach Cs2 molecules in the quantum halo regime,

measuring their decay rate down to lower vibrational states [411]. The authors

observed a pronounced minimum in the loss rate when varying the scattering length,

which has still to be interpreted in relation with universal properties of four-body

physics.

• Dipolar gases

A novel aspect of ultracold atomic and molecular gases emerged with the realization

of samples of ultracold particles with a permanent electric dipole moment such as

chromium atoms, or heteronuclear alkali diatoms, or with an electric dipole moment

induced by an external electric field, like cold Rydberg atoms. Indeed, such particles

interact through long-range dipole-dipole potentials varying as R−3 (with R their

mutual distance) which dominates the usual van der Waals interaction (varying as

R−6). Such cold gases will evolve in a entirely new regime of strong interactions with

pronounced anisotropy, compared to previous studies. A considerable literature is

now available treating many aspects of such dipolar gases [412, 413, 414], whose
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interaction between particles could be controlled either by tuning external fields, or

by using various geometries of the trapping configuration, like quasi-2D traps for

instance. In particular, dipolar gases represent systems of choice for many-body

physics, providing new possibilities for modeling condensed matter phases.

• Quantum information

The development of a quantum computer, that should perform some tasks with

exponentially higher efficiency than a classical computer, is actually being pursued.

Neutral polar molecules are suitable as information carriers because they have well-

defined internal states, they weakly interact with the environment, and they can

be entangled through dipole-dipole interaction. A first proposal to use cold polar

molecules for this purpose was given in [25]. The polar molecules should be trapped

in a 1D array and oriented along or against an electric field; it is remarkable that

the loading of a single molecule in each lattice site has already been experimentally

demonstrated [205]. An electric field gradient allows for spectroscopic addressing

of a single molecule, through microwave field pulses that couple rotational states,

implementing the quantum information processing. Using a 1D array of KCs

dimers (or similar) in the ground rovibrational state, about 105 CNOT gates should

be feasible within the coherence time of a few seconds. Several scenarios have

been proposed using ultracold polar molecules to achieve entanglement tests [415],

quantum phase gates [416], or robust quantum computation schemes [417, 418]. In

order to combine the coherence properties of an ensemble of cold polar molecules

together with a scalable architecture, a quantum computer using molecules and a

mesoscopic solid-state resonator has been proposed [419]. Trapping of cold polar

molecules like CaBr above an electrostatic Z-trap, integrated with a microwave

strip-line resonator, would induce also a cooling process of the molecules through

cavity-enhanced spontaneous emission of excited rotational states. The process

would be similar to sideband cooling used for trapped ions [420]. Finally the

utilization of cold polar molecules as quantum memories of solid-state circuits have

been proposed [26, 28].
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[73] Köhler T, Góral K and Julienne P S 2006 Rev. Mod. Phys. 78 1311

[74] Jensen A S, Riisager K, Fedorov D V and Garrido E 2004 Rev. Mod. Phys. 76 215

[75] Tang K T, Toennies J P and Yiu C L 1995 Phys. Rev. Lett. 74 1546

[76] Efimov V 1990 Comments Nucl. Part. Phys. 19 271

[77] Efimov V 1993 Phys. Rev. C 47 1876

[78] Greene C H, Dickinson A S and Sadeghpour H R 2000 Phys. Rev. Lett. 85 2458

[79] Hamilton E L, Greene C H and Sadeghpour H R 2002 J. Phys. B: At. Mol. Opt. Phys. 35 L199

[80] Khuskivadze A A, Chibisov M I and Fabrikant I I 2002 Phys. Rev. A 66 042709



CONTENTS 58

[81] Boisseau C, Simbotin I and Côté R 2002 Phys. Rev. Lett. 88 133004

[82] Farooqi S, Tong D, Krishnan S, Stanojevic J, Zhang Y P, Ensher J R, Estrin A S, Boisseau C
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Weber S M, Sauer F, Wöste L and Lindinger A arXiv.org 0903.4549

[146] Fioretti A, Dulieu O and Gabbanini C 2007 J. Phys. B: At. Mol. Opt. Phys. 40 3283

[147] Lozeille J, Fioretti A, Gabbanini C, Huang Y, Pechkis H K, Wang D, Gould P L, Eyler E E,

Stwalley W C, Aymar M and Dulieu O 2006 Eur. Phys. J. D 39 261

[148] Drag C, Tolra B L, Dulieu O, Comparat D, Vatasescu M, Boussen S, Guibal S, Crubellier A and

Pillet P 2000 IEEE J. Quant. Electron. 36 1378
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[188] Dürr S, Volz T, Marte A and Rempe G 2004 Phys. Rev. Lett. 92 020406

[189] Hodby E, Thompson S T, Regal C A, Greiner M, Wilson A C, Jin D S, Cornell E A and Wieman

C E 2005 Phys. Rev. Lett. 94 120402

[190] Thompson S T, Hodby E and Wieman C E 2005 Physical Review Letters 95 190404

[191] Xu K, Mukaiyama T, Abo-Shaeer J R, Chin J K, Miller D E and Ketterle W 2003 Phys. Rev.

Lett. 91 210402

[192] Papp S B and Wieman C E 2006 Physical Review Letters 97 180404

[193] Weber C, Barontini G, Catani J, Thalhammer G, Inguscio M and Minardii F 2008

arXiv:0808.4077v1

[194] Knoop S, Mark M, Ferlaino F, Danzl J G, Kraemer T, Nägerl H C and Grimm R 2008 Phys.

Rev. Lett. 100 083002

[195] Cubizolles J, Bourdel T, Kokkelmans S J J M F, Shlyapnikov G V and Salomon C 2003 Phys.



CONTENTS 61

Rev. Lett. 91 240401

[196] Strecker K E, Partridge G B and Hulet R G 2003 Phys. Rev. Lett. 91 080406

[197] Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403

[198] Petrov D, Salomon C and Shlyapnikov G 2004 Phys. Rev. Lett. 93 090404

[199] Voigt A C, Taglieber M, Costa L, Aoki T, Wieser W, Hänsch T and Dieckmann K 2009 arXiv
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[202] Greiner M, Mandel O, Hänsch T W and Bloch I 2002 Nature 419 51

[203] Ryu C, Du X, Yesilada E, Dudarev A M, Wan S, Niu Q and Heinzen D 2005 arXiv:cond-

mat/0508201

[204] Thalhammer G, Winkler K, Lang F, Schmid S, Grimm R and Denschlag J H 2006 Phys. Rev.

Lett. 96 050402

[205] Volz T, Syassen N, Bauer D M, Hansis E, Dürr S and Rempe G 2006 Nature Physics 2 692
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[326] Juarros E, Kirby K and Côté R 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S965

[327] Docenko O, Tamanis M, Ferber R, Pashov A, Knöckel H and Tiemann E 2004 Phys. Rev. A 69
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[333] Lisdat C, Dulieu O, Knöckel H and Tiemann E 2001 Eur. Phys. J. D 17

[334] Tamanis M, Ferber R, Zaitsevskii A, Pazyuk E A, Stolyarov A V, Chen H, Qi J, Wang H and

Stwalley W C 2002 J. Chem. Phys. 117 7980

[335] Bergeman T, Fellows C E, Gutterres R F and Amiot C 2003 Phys. Rev. A 67 050501

[336] Docenko O, Tamanis M, Ferber R, Pazyuk E A, Zaitsevskii A, Stolyarov A V, Pashov A, Knöckel
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[391] Quéméner G and Balakrishnan N 2009 arXiv [physics.chem-ph] 0812.3866v1

[392] Avdeenkov A V and Bohn J L 2001 Phys. Rev. A 64 052703

[393] K Tilford M Hoster P M F and Forrey R C 2004 Phys. Rev. A 69 052705

[394] Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079

[395] Mark M, Ferlaino F, Knoop S, Danzl J G, Kraemer T, Chin C, Nägerl H C and Grimm R 2007
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