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Abstract

Let M be a compact, connected non-orientable surface without boundary and of
genus g ¥ 3. We investigate the pure braid groups PnpMq of M, and in particular
the possible splitting of the Fadell-Neuwirth short exact sequence

1 ÝÑ PmpMz tx1, . . . , xnuq ãÝÑ Pn�mpMq p�ÝÑ PnpMq ÝÑ 1,

where m, n ¥ 1, and p� is the homomorphism which corresponds geometrically to
forgetting the last m strings. This problem is equivalent to that of the existence of
a section for the associated fibration p : Fn�mpMq ÝÑ FnpMq of configuration spaces,
defined by pppx1, . . . , xn, xn�1, . . . , xn�mqq � px1, . . . , xnq. We show that p and p� admit
a section if and only if n � 1. Together with previous results, this completes the
resolution of the splitting problem for surfaces pure braid groups.

1 Introduction

Braid groups of the plane were defined by Artin in 1925 [A1], and further studied in [A2,
A3]. Braid groups of surfaces were studied by Zariski [Z], and were later generalised
using the following definition due to Fox [FoN]. Let M be a compact, connected surface,
and let n P N. We denote the set of all ordered n-tuples of distinct points of M, known as
the nth configuration space of M, by:

FnpMq �  pp1, . . . , pnq ∣

∣ pi P M and pi � pj if i � j
(

.
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Configuration spaces play an important rôle in several branches of mathematics and have
been extensively studied, see [CG, FH] for example.

The symmetric group Sn on n letters acts freely on FnpMq by permuting coordinates.
The corresponding quotient space will be denoted by DnpMq. Notice that FnpMq is a reg-
ular covering of DnpMq. The nth pure braid group PnpMq (respectively the nth braid group
BnpMq) is defined to be the fundamental group of FnpMq (respectively of DnpMq). If m P
N, then we may define a homomorphism p� : Pn�mpMq ÝÑ PnpMq induced by the pro-
jection p : Fn�mpMq ÝÑ FnpMq defined by pppx1, . . . , xn, xn�1, . . . , xn�mqq � px1, . . . , xnq.
Representing Pn�mpMq geometrically as a collection of n � m strings, p� corresponds to
forgetting the last m strings. We adopt the convention, that unless explicitly stated, all
homomorphisms Pn�mpMq ÝÑ PnpMq in the text will be this one. If M is the 2-disc (or
the plane R2), BnpMq and PnpMq are respectively the classical Artin braid group Bn and
pure braid group Pn [FVB].

If M is without boundary, Fadell and Neuwirth study the map p, and show ([FaN,
Theorem 3]) that it is a locally-trivial fibration. The fibre over a point px1, . . . , xnq of the
base space is FmpMz tx1, . . . , xnuq which we interpret as a subspace of the total space via
the map i : FmpMz tx1, . . . , xnuq ÝÑ FnpMq defined by

i ppy1, . . . , ymqq � px1, . . . , xn, y1, . . . , ymq.
Applying the associated long exact sequence in homotopy, we obtain the pure braid group
short exact sequence of Fadell and Neuwirth:

1 ÝÑ Pm pMz tx1, . . . , xnuq i�ÝÑ Pn�mpMq p�ÝÑ PnpMq ÝÑ 1, (PBS)

where n ¥ 3 if M is the sphere S2 [Fa, FVB], n ¥ 2 if M is the real projective plane
RP2 [VB], and n ¥ 1 otherwise [FaN], and where i� and p� are the homomorphisms
induced by the maps i and p respectively. The short exact sequence (PBS) has been widely
studied, and may be employed for example to determine presentations of PnpMq (see
Section 2), its centre, and possible torsion. It was also used in recent work on the structure
of the mapping class groups [PR] and on Vassiliev invariants for surface braids [GMP].

In the case of Pn, and taking m � 1, Ker pp�q is a free group of rank n. The short exact
sequence (PBS) splits for all n ¥ 1, and so Pn may be described as a repeated semi-direct
product of free groups. This decomposition, known as the ‘combing’ operation, is the
principal result of Artin’s classical theory of braid groups [A2], and yields normal forms
and a solution to the word problem in Bn. More recently, it was used by Falk and Randell
to study the lower central series and the residual nilpotence of Pn [FR], and by Rolfsen
and Zhu to prove that Pn is bi-orderable [RZ].

The problem of deciding whether such a decomposition exists for braid groups of
surfaces is thus fundamental. This was indeed a recurrent and central question during
the foundation of the theory and its subsequent development during the 1960’s [Fa, FaN,
FVB, VB, Bi]. If the fibre of the fibration is an Eilenberg-MacLane space then the existence
of a section for p� is equivalent to that of a cross-section for p [Ba, Wh] (cf. [GG2]). But
with the exception of the construction of sections in certain cases (for S2 [Fa] and the
2-torus T2 [Bi]), no progress on the possible splitting of (PBS) was recorded for nearly
forty years. In the case of orientable surfaces without boundary of genus at least two, the
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question of the splitting of (PBS) which was posed explicitly by Birman in 1969 [Bi], was
finally resolved by the authors, the answer being positive if and only if n � 1 [GG1].

As for the non-orientable case, the braid groups of RP2 were first studied by Van
Buskirk [VB], and more recently by Wang [Wa] and the authors [GG2, GG3, GG4]. For
n � 1, we have P1pRP2q � B1pRP2q � Z2. Van Buskirk showed that for all n ¥ 2, neither
the fibration p : FnpRP2q ÝÑ F1pRP2q nor the homomorphism p� : PnpRP2q ÝÑ P1pRP2q
admit a cross-section (for p, this is a manifestation of the fixed point property of RP2),
but that the fibration p : F3pRP2q ÝÑ F2pRP2q admits a cross-section, and hence so does
the corresponding homomorphism p�. Using coincidence theory, we showed that for
n � 2, 3 and m ¥ 4 � n, neither the fibration nor the short exact sequence (PBS) ad-
mit a section [GG2]. In [GG3], we gave a complete answer to the splitting problem
for RP2: if m, n P N, the homomorphism p� : Pn�mpRP2q ÝÑ PnpRP2q and the fibration
p : Fn�mpRP2q ÝÑ FnpRP2q admit a section if and only if n � 2 and m � 1. In other words,
Van Buskirk’s values (n � 2 and m � 1) are the only ones for which a section exists (both
on the geometric and the algebraic level).

In this paper, we study the splitting problem for compact, connected non-orientable
surfaces without boundary and of genus g ¥ 3 (every non-orientable compact surface
M without boundary is homeomorphic to the connected sum of g copies of RP2, g P N

being the genus of M). In the case of the Klein bottle K2 (g � 2), the existence of a
non-vanishing vector field implies that there always exists a section, both geometric and
algebraic (cf. [FaN]). Our main result is:

Theorem 1. Let M be a compact, connected, non-orientable surface without boundary of genus
g ¥ 3, and let m, n P N. Then the homomorphism p� : Pn�mpMq ÝÑ PnpMq and the fibration
p : Fn�mpMq ÝÑ FnpMq admit a section if and only if n � 1.

Applying Theorem 1 and the results of [GG1, GG3], we may solve completely the
splitting problem for surface pure braid groups:

Theorem 2. Let m, n P N and r ¥ 0. Let N be a compact, connected surface possibly with
boundary, let tx1, . . . xru be a finite subset in the interior of N, let M � Nz tx1, . . . xru, and let
p� : Pn�mpMq ÝÑ PnpMq be the standard projection.

(a) If r ¡ 0 or if M has non-empty boundary then p� admits a section for all m and n.
(b) Suppose that r � 0 and that M is without boundary. Then p� admits a section if and only if
one of the following conditions holds:

(i) M is S2, the 2-torus T2 or the Klein bottle K2 (for all m and n).
(ii) M � RP2, n � 2 and m � 1.
(iii) M � RP2, S2, T2, K2 and n � 1.

The rest of the paper is organised as follows. In Section 2, we determine a presentation
of PnpMq (Theorem 3). In Section 3, we study the consequences of the existence of a
section in the case m � 1 and n ¥ 2, i.e. p� : Pn�1pMq ÝÑ PnpMq. The general strategy of
the proof of Theorem 1 is based on the following remark. Suppose that (PBS) splits. If
H is any normal subgroup of Pn�1pMq contained in Ker pp�q, the quotiented short exact
sequence 1 ÝÑ Ker pp�q {H ãÝÑ Pn�1pMq{H ÝÑ PnpMq ÝÑ 1 must also split. In order to
obtain a contradiction, we seek such a subgroup H for which this short exact sequence
does not split. However the choice of H needed to achieve this may be somewhat delicate:
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if H is too ‘small’, the structure of the quotient Pn�1pRP2q{H remains complicated; on
the other hand, if H is too ‘large’, we lose too much information and cannot reach a
conclusion. In Section 4, we first show that we may reduce to the case m � 1, and then
go on to prove Theorem 1 using the analysis of Section 3. As we shall see in Section 4, it
suffices to take H to be Abelianisation of Ker pp�q, in which case the quotient Ker pp�q {H
is a free Abelian group. We will then deduce Theorem 2.
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2 A presentation of PnpMq
Let M � Mg be a compact, connected, non-orientable surface without boundary of genus

g ¥ 2. If n P N and D2 � M is a topological disc, the inclusion induces a homomorphism
ι : BnpD2q ÝÑ BnpMq. If β P BnpD2q then we shall denote its image ιpβq simply by β. For
1 ¤ i   j ¤ n, we consider the following elements of PnpMq:

Bi,j � σ�1
i � � � σ�1

j�2σ2
j�1σj�2 � � � σi,

where σ1, . . . , σn�1 are the standard generators of BnpD2q. The geometric braid corre-
sponding to Bi,j takes the ith string once around the jth string in the positive sense, with
all other strings remaining vertical. For each 1 ¤ k ¤ n and 1 ¤ l ¤ g, we define a genera-
tor ρk,l which is represented geometrically by a loop based at the kth point and which goes

round the lth twisted handle. These elements are illustrated in Figure 1 that represents M
minus a disc.

A presentation of the braid groups of non-orientable surfaces was originally given by
Scott [S]. Other presentations were later obtained in [Be, GM]. In the following theorem,
we derive another presentation of PnpMq.
Theorem 3. Let M be a compact, connected, non-orientable surface without boundary of genus
g ¥ 2, and let n P N. The following constitutes a presentation of the pure braid group PnpMq:
generators: Bi,j, 1 ¤ i   j ¤ n, and ρk,l , where 1 ¤ k ¤ n and 1 ¤ l ¤ g.
relations:

(a) the Artin relations between the Bi,j emanating from those of PnpD2q:
Br,sBi,jB

�1
r,s � $''''&''''%Bi,j if i   r   s   j or r   s   i   j

B�1
i,j B�1

r,j Bi,jBr,jBi,j if r   i � s   j

B�1
s,j Bi,jBs,j if i � r   s   j

B�1
s,j B�1

r,j Bs,jBr,jBi,jB
�1
r,j B�1

s,j Br,jBs,j if r   i   s   j.

(1)
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Figure 1: The generators Bi,j and ρk,l of PnpMq, represented geometrically by loops lying
in M minus a disc.

(b) for all 1 ¤ i   j ¤ n and 1 ¤ k, l ¤ g,

ρi,kρj,lρ
�1
i,k � $''&''%ρj,l if k   l

ρ�1
j,k B�1

i,j ρ2
j,k if k � l

ρ�1
j,k B�1

i,j ρj,kB�1
i,j ρj,lBi,jρ

�1
j,k Bi,jρj,k if k ¡ l

(2)

(c) for all 1 ¤ i ¤ n, the ‘surface relations’

g¹
l�1

ρ2
i,l � B1,i � � � Bi�1,iBi,i�1 � � � Bi,n.

(d) for all 1 ¤ i   j ¤ n, 1 ¤ k ¤ n, k � j, and 1 ¤ l ¤ g,

ρk,lBi,jρ
�1
k,l � $''&''%Bi,j if k   i or j   k

ρ�1
j,l B�1

i,j ρj,l if k � i

ρ�1
j,l B�1

k,j ρj,lB
�1
k,j Bi,jBk,jρ

�1
j,l Bk,jρj,l if i   k   j.

(3)

Proof. We apply induction and standard results concerning the presentation of an exten-
sion (see [J, Theorem 1, Chapter 13]). The proof generalises that of [GG3] for RP2, and is
similar in spirit to that of [S].

First note that the given presentation is correct for n � 1 (P1pMq � π1pMq has a

presentation
A

ρ1,1, . . . , ρ1,g

∣

∣

±g
l�1 ρ2

1,l � 1
E

). So let n ¥ 1, and suppose that PnpMq has
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the given presentation. Taking m � 1 in (PBS), we have a short exact sequence:

1 ÝÑ π1 pMz tx1, . . . , xnu , xn�1q ÝÑ Pn�1pMq p�ÝÑ PnpMq ÝÑ 1.

In order to retain the symmetry of the presentation, we take the free group Ker pp�q to
have the following one-relator presentation:C

ρn�1,1, . . . ρn�1,g, B1,n�1, . . . , Bn,n�1

∣

∣

∣

∣

∣

g¹
l�1

ρ2
n�1,l � B1,n�1 � � � Bn,n�1

G
.

Together with these generators of Ker pp�q, the elements Bi,j, 1 ¤ i   j ¤ n, and ρk,l ,
1 ¤ k ¤ n and 1 ¤ l ¤ g, of Pn�1pMq (which are coset representatives of the generators of
PnpMq) form the given generating set of Pn�1pMq.

There are three classes of relations of Pn�1pMq which are obtained as follows. The first
consists of the single relation

±g
l�1 ρ2

n�1,l � B1,n�1 � � � Bn,n�1 of Ker pp�q. The second class
is obtained by rewriting the relators of the quotient in terms of the coset representatives,
and expressing the corresponding element as a word in the generators of Ker pp�q. In this
way, all of the relations of PnpMq lift directly to relations of Pn�1pMq, with the exception
of the surface relations which become

g¹
l�1

ρ2
i,l � B1,i � � � Bi�1,iBi,i�1 � � � Bi,nBi,n�1 for all 1 ¤ i ¤ n.

Along with the relation of Ker pp�q, we obtain the complete set of surface relations (rela-
tions (c)) for Pn�1pMq.

The third class of relations is obtained by rewriting the conjugates of the generators
of Ker pp�q by the coset representatives in terms of the generators of Ker pp�q:
(i) For all 1 ¤ i   j ¤ n and 1 ¤ l ¤ n,

Bi,jBl,n�1B�1
i,j � $''''&''''%Bl,n�1 if l   i or j   l

B�1
l,n�1B�1

i,n�1Bl,n�1Bi,n�1Bl,n�1 if l � j

B�1
j,n�1Bl,n�1Bj,n�1 if l � i

B�1
j,n�1B�1

i,n�1Bj,n�1Bi,n�1Bl,n�1B�1
i,n�1B�1

j,n�1Bi,n�1Bj,n�1 if i   l   j.

(ii) Bi,jρn�1,lB
�1
i,j � ρn�1,l for all 1 ¤ i   j ¤ n and 1 ¤ l ¤ g.

(iii) for all 1 ¤ i ¤ n and 1 ¤ k, l ¤ g,

ρi,kρn�1,lρ
�1
i,k � $'&'%ρn�1,l if k   l

ρ�1
n�1,kB�1

i,n�1ρ2
n�1,k if k � l

ρ�1
n�1,kB�1

i,n�1ρn�1,kB�1
i,n�1ρn�1,lBi,n�1ρ�1

n�1,kBi,n�1ρn�1,k if k ¡ l.

(iv) For all 1 ¤ i, k ¤ n and 1 ¤ l ¤ g,

ρk,l Bi,n�1ρ�1
k,l � $'&'%Bi,n�1 if k   i

ρ�1
n�1,lB

�1
i,n�1ρn�1,l if k � i

ρ�1
n�1,lB

�1
k,n�1ρn�1,lB

�1
k,n�1Bi,n�1Bk,n�1ρ�1

n�1,lBk,n�1ρn�1,l if i   k.
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Then relations (a) for Pn�1pMq are obtained from relations (a) for PnpMq and relations (i),
relations (b) for Pn�1pMq are obtained from relations (b) for PnpMq and relations (iii),
and relations (d) for Pn�1pMq are obtained from relations (d) for PnpMq, and relations (ii)
and (iv).

3 Analysis of the case Pn�1pMgq ÝÑ PnpMgq, n ¥ 2

For the whole of this section, we suppose that g ¥ 3 and n ¥ 2. By Theorem 3, PnpMgq is
generated by the union of the Bi,j, 1 ¤ i   j ¤ n, and of the ρk,l, 1 ¤ k ¤ n, 1 ¤ l ¤ g. Let
us consider the homomorphism p� : Pn�1pMgq ÝÑ PnpMgq. In this section, we suppose
that p� admits a section, denoted by s�. Applying (PBS), we thus have a split short exact
sequence

1 // K // Pn�1pMgq p�
//

PnpMgq
s�oo_ _ _

// 1, (4)

where K � Ker pp�q � π1pMgz tx1, . . . , xnu , xn�1q is a free group of rank n � g� 1, gener-
ated by

 
B1,n�1, . . . , Bn,n�1, ρn�1,1, . . . , ρn�1,g

(
, and subject to the relation

B1,n�1 � � � Bn,n�1 � ρ2
n�1,1 � � � ρ2

n�1,g.

Let H � rK, Ks be the commutator subgroup of K. Then K{H is a free Abelian group
of rank n � g � 1. In what follows, we shall not distinguish notationally between the
elements of K and those of K{H. The quotient group K{H thus has a basis

B �  
B1,n�1, . . . , Bn�1,n�1, ρn�1,1, . . . , ρn�1,g

(
, (5)

and the relation
Bn,n�1 � B�1

1,n�1 � � � B�1
n�1,n�1ρ2

n�1,1 � � � ρ2
n�1,g (6)

holds in the Abelian group K{H. Since H is normal in Pn�1pMgq and p� admits a section,
it follows from equation (4) that we have a split short exact sequence

1 // K{H // Pn�1pMgq{H
p

//

PnpMgq
s

oo_ _ _

// 1,

where p is the homomorphism induced by p�, and s is the induced section.
Consider the subset

Γ �  
Bi,j, ρk,l

∣

∣ 1 ¤ i   j ¤ n, 1 ¤ k ¤ n, 1 ¤ l ¤ g
(

of Pn�1pMgq{H. If g P Γ then ppgq � g P PnpMgq, and so g�1. spppgqq P Ker ppq � K{H.
Then the integer coefficients αi,j,r, βi,j,q, γk,l,r, ηk,l,q, where 1 ¤ r ¤ g and 1 ¤ q ¤ n � 1, are
(uniquely) defined by the equations:$&% s

�
Bi,j

� � Bi,jρ
αi,j,1

n�1,1 � � � ραi,j,g

n�1,gB
βi,j,1

1,n�1 � � � Bβi,j,n�1

n�1,n�1

s
�
ρk,l

� � ρk,lρ
γk,l,1

n�1,1 � � � ργk,l,g

n�1,gB
ηk,l,1

1,n�1 � � � B
ηk,l,n�1

n�1,n�1.
(7)
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There is an equation for each element of Γ. Most of the elements of Γ commute with the
elements of the basis B of K{H given in equation (5). We record the list of conjugates of
such elements for later use. In what follows, 1 ¤ i   j ¤ n, 1 ¤ k, m ¤ n and 1 ¤ l, r ¤ g.
In K{H, we have

Bi,jBm,n�1B�1
i,j � Bm,n�1

(this follows from equation (1) and the fact that the elements Bq,n�1, 1 ¤ q ¤ n, belong to
K{H and so commute pairwise), and

Bi,jρn�1,lB
�1
i,j � ρn�1,l

by equation (3). Thus Bi,j belongs to the centraliser of K{H in Pn�1pMgq{H. Also by
equation (3), we have

ρk,lBm,n�1ρ�1
k,l � $'&'%Bm,n�1 if k   m

ρ�1
n�1,lB

�1
m,n�1ρn�1,l � B�1

m,n�1 if k � m

ρ�1
n�1,lB

�1
k,n�1ρn�1,lB

�1
k,n�1Bm,n�1Bk,n�1ρ�1

n�1,lBk,n�1ρn�1,l�Bm,n�1 if k ¡ m,

so
ρk,l Bm,n�1ρ�1

k,l � B
1�2δk,m

m,n�1 , (8)

where δ�,� is the Kronecker delta. By equation (2), we have

ρk,lρn�1,rρ
�1
k,l � $'&'%ρn�1,r if l   r

ρ�1
n�1,lB

�1
k,n�1ρ2

n�1,l � ρn�1,lB
�1
k,n�1 if l � r

ρ�1
n�1,lB

�1
k,n�1ρn�1,lB

�1
k,n�1ρn�1,rBk,n�1ρ�1

n�1,lBk,n�1ρn�1,l � ρn�1,r if l ¡ r,

so
ρk,lρn�1,rρ�1

k,l � ρn�1,rB
�δl,r

k,n�1. (9)

Combining equations (8) and (9), we obtain

ρ2
k,rρn�1,rρ

�2
k,r � ρk,rρn�1,rB�1

k,n�1ρ�1
k,r � ρn�1,rB�1

k,n�1Bk,n�1 � ρn�1,r,

so
ρk,rρn�1,rρ

�1
k,r � ρ�1

k,r ρn�1,rρk,r. (10)

Furthermore, by equation (8), ρ2
k,l commutes with Bm,n�1, and therefore

ρk,lBm,n�1ρ�1
k,l � ρ�1

k,l Bm,n�1ρk,l. (11)

Hence ρ2
k,l also belongs to the centraliser of K{H in Pn�1pMgq{H. From equations (8)

and (9), we obtain the following relations:

ρ
γi,k,1

n�1,1 � � � ργi,k,g

n�1,g � ρj,l � ρj,l � B
�γi,k,l

j,n�1 ρ
γi,k,1

n�1,1 � � � ργi,k,g

n�1,g for all 1 ¤ j ¤ n, (12)

and

B
ηi,k,1

1,n�1 � � � Bηi,k,n�1

n�1,n�1ρj,l � #
ρj,lB

�2ηi,k,j

j,n�1 B
ηi,k,1

1,n�1 � � � Bηi,k,n�1

n�1,n�1 if 1 ¤ j ¤ n� 1

ρj,lB
ηi,k,1

1,n�1 � � � Bηi,k,n�1

n�1,n�1 if j � n.
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Setting ηi,k,n � 0 for all 1 ¤ i ¤ n and 1 ¤ k ¤ g yields:

B
ηi,k,1

1,n�1 � � � Bηi,k,n�1

n�1,n�1 � ρj,l � ρj,l � B
�2ηi,k,j

j,n�1 B
ηi,k,1

1,n�1 � � � Bηi,k,n�1

n�1,n�1 for all 1 ¤ j ¤ n. (13)

Equations (12) and (13) will be employed repeatedly in the ensuing calculations.
We now investigate the images under s of some of the relations (b)–(d) of Theorem 3

(it turns out that the analysis of the other relations, including (a), will not be necessary
for our purposes).

(a) Let 1 ¤ i   j ¤ n and 1 ¤ k, l ¤ g. We examine the three possible cases of equation (7)
(relation (b) of Theorem 3).

(i) k   l: then ρi,kρj,l � ρj,lρi,k in PnpMgq. The respective images under s are:

s
�
ρi,kρj,l

� �ρi,kρ
γi,k,1

n�1,1 � � � ργi,k,g

n�1,gB
ηi,k,1

1,n�1 � � � Bηi,k,n�1

n�1,n�1ρj,lρ
γj,l,1

n�1,1 � � � ργj,l,g

n�1,gB
ηj,l,1

1,n�1 � � � Bηj,l,n�1

n�1,n�1�ρi,kρj,lB
�γi,k,l�2ηi,k,j

j,n�1 ρ
γi,k,1�γj,l,1

n�1,1 � � � ργi,k,g�γj,l,g

n�1,g B
ηi,k,1�ηj,l,1

1,n�1 � � � Bηi,k,n�1�ηj,l,n�1

n�1,n�1 ,

and

s
�
ρj,lρi,k

� �ρj,lρ
γj,l,1

n�1,1 � � � ργj,l,g

n�1,gB
ηj,l,1

1,n�1 � � � Bηj,l,n�1

n�1,n�1ρi,kρ
γi,k,1

n�1,1 � � � ργi,k,g

n�1,gB
ηi,k,1

1,n�1 � � � Bηi,k,n�1

n�1,n�1�ρj,lρi,kB
�γj,l,k�2ηj,l,i

i,n�1 ρ
γj,l,1�γi,k,1

n�1,1 � � � ργj,l,g�γi,k,g

n�1,g B
ηj,l,1�ηi,k,1

1,n�1 � � � Bηj,l,n�1�ηi,k,n�1

n�1,n�1 .

The relation ρi,kρj,l � ρj,lρi,k in Pn�1pMgq implies that B
�γi,k,l�2ηi,k,j

j,n�1 � B
�γj,l,k�2ηj,l,i

i,n�1 . Com-

paring coefficients of the elements of B in K{H (cf. equation (5)), if j   n, we have#
γj,l,k � 2ηj,l,i � 0 and

γi,k,l � 2ηi,k,j � 0,
(14)

while if j � n, applying equation (6) yields

B
γn,l,k�2ηn,l,i

i,n�1 � B
γi,k,l�2ηi,k,n

n,n�1 � B
�pγi,k,l�2ηi,k,nq
1,n�1 � � � B�pγi,k,l�2ηi,k,nq

n�1,n�1 ρ
2pγi,k,l�2ηi,k,nq
n�1,1 � � � ρ2pγi,k,l�2ηi,k,nq

n�1,g ,

and thus equation (14) also holds for j � n. So for all 1 ¤ i   j ¤ n and 1 ¤ k   l ¤ g,

γj,l,k � 2ηj,l,i � 0 and (15)

γi,k,l � 2ηi,k,j � 0. (16)

(ii) k � l: then ρi,kρj,kρ�1
i,k � ρ�1

j,k B�1
i,j ρ2

j,k in PnpMgq for all 1 ¤ i   j ¤ n and 1 ¤ k ¤ g. The

respective images under s are:

s
�

ρi,kρj,kρ�1
i,k

	 �ρi,kρ
γi,k,1

n�1,1 � � � ργi,k,g

n�1,gB
ηi,k,1

1,n�1 � � � Bηi,k,n�1

n�1,n�1ρj,kρ
γj,k,1

n�1,1 � � � ργj,k,g

n�1,gB
ηj,k,1

1,n�1 � � � Bηj,k,n�1

n�1,n�1�
B
�ηi,k,n�1

n�1,n�1 � � � B�ηi,k,1

1,n�1 ρ
�γi,k,g

n�1,g � � � ρ�γi,k,1

n�1,1 ρ�1
i,k�ρi,kρj,kB

�γi,k,k

j,n�1 ρ
γi,k,1�γj,k,1

n�1,1 � � � ργi,k,g�γj,k,g

n�1,g B
�2ηi,k,j

j,n�1 B
ηi,k,1�ηj,k,1

1,n�1 � � � Bηi,k,n�1�ηj,k,n�1

n�1,n�1 �
ρ�1

i,k B
2ηi,k,i

i,n�1B
�ηi,k,n�1

n�1,n�1 � � � B�ηi,k,1

1,n�1 B
γi,k,k

i,n�1ρ
�γi,k,g

n�1,g � � � ρ�γi,k,1

n�1,1�ρi,kρj,kρ�1
i,k B

�γi,k,k

j,n�1 B
�pγi,k,k�γj,k,kq
i,n�1 ρ

γi,k,1�γj,k,1

n�1,1 � � � ργi,k,g�γj,k,g

n�1,g B
�2ηi,k,j

j,n�1 B
�2pηi,k,i�ηj,k,iq
i,n�1 �

B
ηi,k,1�ηj,k,1

1,n�1 � � � Bηi,k,n�1�ηj,k,n�1

n�1,n�1 B
2ηi,k,i

i,n�1B
�ηi,k,n�1

n�1,n�1 � � � B�ηi,k,1

1,n�1 B
γi,k,k

i,n�1ρ
�γi,k,g

n�1,g � � � ρ�γi,k,1

n�1,1�ρi,kρj,kρ�1
i,k ρ

γj,k,1

n�1,1 � � � ργj,k,g

n�1,gB
ηj,k,1

1,n�1 � � � Bηj,k,n�1

n�1,n�1B
�p2ηj,k,i�γj,k,kq
i,n�1 B

�p2ηi,k,j�γi,k,kq
j,n�1

9



and

s
�

ρ�1
j,k B�1

i,j ρ2
j,k

	 �B
�ηj,k,n�1

n�1,n�1 � � � B
�ηj,k,1

1,n�1 ρ
�γj,k,g

n�1,g � � � ρ�γj,k,1

n�1,1 ρ�1
j,k �

B
�βi,j,n�1

n�1,n�1 � � � B
�βi,j,1

1,n�1 ρ
�αi,j,g

n�1,g � � � ρ�αi,j,1

n�1,1B�1
i,j �

ρj,kρ
γj,k,1

n�1,1 � � � ργj,k,g

n�1,gB
ηj,k,1

1,n�1 � � � Bηj,k,n�1

n�1,n�1ρj,kρ
γj,k,1

n�1,1 � � � ργj,k,g

n�1,gB
ηj,k,1

1,n�1 � � � Bηj,k,n�1

n�1,n�1�ρ�1
j,k B�1

i,j B
2ηj,k,j

j,n�1B
�ηj,k,n�1

n�1,n�1 � � � B�ηj,k,1

1,n�1 B
γj,k,k

j,n�1ρ
�γj,k,g

n�1,g � � � ρ�γj,k,1

n�1,1 B
�βi,j,n�1

n�1,n�1 � � � B�βi,j,1

1,n�1 �
ρ
�αi,j,g

n�1,g � � � ρ�αi,j,1

n�1,1ρ2
j,kB

�γj,k,k

j,n�1 ρ
γj,k,1

n�1,1 � � � ργj,k,g

n�1,gB
�2ηj,k,j

j,n�1 B
ηj,k,1

1,n�1 � � � Bηj,k,n�1

n�1,n�1�
ρ

γj,k,1

n�1,1 � � � ργj,k,g

n�1,gB
ηj,k,1

1,n�1 � � � B
ηj,k,n�1

n�1,n�1�ρ�1
j,k B�1

i,j ρ2
j,kρ

γj,k,1�αi,j,1

n�1,1 � � � ργj,k,g�αi,j,g

n�1,g B
ηj,k,1�βi,j,1

1,n�1 � � � Bηj,k,n�1�βi,j,n�1

n�1,n�1 .

Since ρi,kρj,kρ�1
i,k � ρ�1

j,k B�1
i,j ρ2

j,k in Pn�1pMgq, we obtain

B
�p2ηj,k,i�γj,k,kq
i,n�1 B

�p2ηi,k,j�γi,k,kq
j,n�1 � ρ

�αi,j,1

n�1,1 � � � ρ�αi,j,g

n�1,gB
�βi,j,1

1,n�1 � � � B�βi,j,n�1

n�1,n�1. (17)

If j   n then all of the terms in equation (17) are expressed in terms of the basis B of K{H
of equation (5), and so for all 1 ¤ i   j ¤ n� 1,

αi,j,r � 0 for all 1 ¤ r ¤ g (18)

βi,j,s � 0 for all 1 ¤ s ¤ n� 1, s R ti, ju (19)

βi,j,i � γj,k,k � 2ηj,k,i (20)

βi,j,j � γi,k,k � 2ηi,k,j. (21)

If j � n then substituting for Bn,n�1 in equation (17) using equation (6) and comparing
coefficients in K{H of the elements of B yields

2p2ηi,k,n � γi,k,kq � αi,n,r for all 1 ¤ r ¤ gp2ηi,k,n � γi,k,kq � �βi,n,s for all 1 ¤ s ¤ n � 1, s � i

2pηi,k,n � ηn,k,iq � pγi,k,k � γn,k,kq � �βi,n,i.

But ηi,k,n � 0, so for all 1 ¤ i ¤ n� 1 and 1 ¤ k ¤ g,

αi,n,r � 2γi,k,k for all 1 ¤ r ¤ g (22)

βi,n,s � �γi,k,k for all 1 ¤ s ¤ n� 1, s � i (23)

βi,n,i � 2ηn,k,i � pγn,k,k � γi,k,kq. (24)

(iii) k ¡ l: then ρi,kρj,lρ
�1
i,k � ρ�1

j,k B�1
i,j ρj,kB�1

i,j ρj,lBi,jρ
�1
j,k Bi,jρj,k in PnpMgq. The respective

images under s are:

s
�

ρi,kρj,lρ
�1
i,k

	 �ρi,kρ
γi,k,1

n�1,1 � � � ργi,k,g

n�1,gB
ηi,k,1

1,n�1 � � � Bηi,k,n�1

n�1,n�1ρj,lρ
γj,l,1

n�1,1 � � � ργj,l,g

n�1,gB
ηj,l,1

1,n�1 � � � Bηj,l,n�1

n�1,n�1�
B
�ηi,k,n�1

n�1,n�1 � � � B�ηi,k,1

1,n�1 ρ
�γi,k,g

n�1,g � � � ρ�γi,k,1

n�1,1 ρ�1
i,k�ρi,kρj,lρ

�1
i,k B

�γi,k,l�2ηi,k,j

j,n�1 B
�γj,l,k�2ηj,l,i

i,n�1 ρ
γj,l,1

n�1,1 � � � ργj,l,g

n�1,gB
ηj,l,1

1,n�1 � � � Bηj,l,n�1

n�1,n�1
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and

s
�

ρ�1
j,k B�1

i,j ρj,kB�1
i,j ρj,lBi,jρ

�1
j,k Bi,jρj,k

	 �
B
�ηj,k,n�1

n�1,n�1 � � � B�ηj,k,1

1,n�1 ρ
�γj,k,g

n�1,g � � � ρ�γj,k,1

n�1,1 ρ�1
j,k � B

�βi,j,n�1

n�1,n�1 � � � B�βi,j,1

1,n�1 ρ
�αi,j,g

n�1,g � � � ρ�αi,j,1

n�1,1B�1
i,j �

ρj,kρ
γj,k,1

n�1,1 � � � ργj,k,g

n�1,gB
ηj,k,1

1,n�1 � � � Bηj,k,n�1

n�1,n�1 � B
�βi,j,n�1

n�1,n�1 � � � B�βi,j,1

1,n�1 ρ
�αi,j,g

n�1,g � � � ρ�αi,j,1

n�1,1B�1
i,j �

ρj,lρ
γj,l,1

n�1,1 � � � ργj,l,g

n�1,gB
ηj,l,1

1,n�1 � � � Bηj,l,n�1

n�1,n�1 � Bi,jρ
αi,j,1

n�1,1 � � � ραi,j,g

n�1,gB
βi,j,1

1,n�1 � � � Bβi,j,n�1

n�1,n�1�
B
�ηj,k,n�1

n�1,n�1 � � � B�ηj,k,1

1,n�1 ρ
�γj,k,g

n�1,g � � � ρ�γj,k,1

n�1,1 ρ�1
j,k � Bi,jρ

αi,j,1

n�1,1 � � � ραi,j,g

n�1,gB
βi,j,1

1,n�1 � � � Bβi,j,n�1

n�1,n�1�
ρj,kρ

γj,k,1

n�1,1 � � � ργj,k,g

n�1,gB
ηj,k,1

1,n�1 � � � Bηj,k,n�1

n�1,n�1�B
�ηj,k,n�1

n�1,n�1 � � � B�ηj,k,1

1,n�1 ρ
�γj,k,g

n�1,g � � � ρ�γj,k,1

n�1,1 ρ�1
j,k B�1

i,j ρj,kB
2βi,j,j�αi,j,k

j,n�1 �
ρ

γj,k,1�2αi,j,1

n�1,1 � � � ργj,k,g�2αi,j,g

n�1,g B
ηj,k,1�2βi,j,1

1,n�1 � � � Bηj,k,n�1�2βi,j,n�1

n�1,n�1 �
B�1

i,j ρj,lρ
γj,l,1

n�1,1 � � � ργj,l,g

n�1,gB
ηj,l,1

1,n�1 � � � Bηj,l,n�1

n�1,n�1 � Bi,jρ
αi,j,1

n�1,1 � � � ραi,j,g

n�1,gB
βi,j,1

1,n�1 � � � Bβi,j,n�1

n�1,n�1�
B
�ηj,k,n�1

n�1,n�1 � � � B�ηj,k,1

1,n�1 ρ
�γj,k,g

n�1,g � � � ρ�γj,k,1

n�1,1 ρ�1
j,k Bi,jρj,kB

�αi,j,k�2βi,j,j

j,n�1 �
ρ

αi,j,1

n�1,1 � � � ραi,j,g

n�1,gB
βi,j,1

1,n�1 � � � Bβi,j,n�1

n�1,n�1 � ρ
γj,k,1

n�1,1 � � � ργj,k,g

n�1,gB
ηj,k,1

1,n�1 � � � Bηj,k,n�1

n�1,n�1�ρ�1
j,k B�1

i,j ρj,kB�1
i,j ρj,lBi,jρ

�1
j,k Bi,jρj,kB

2αi,j,l�2αi,j,k

j,n�1 � B
ηj,l,1

1,n�1 � � � Bηj,l,n�1

n�1,n�1ρ
γj,l,1

n�1,1 � � � ργj,l,g

n�1,g.

Since ρi,kρj,lρ
�1
i,k � ρ�1

j,k B�1
i,j ρj,kB�1

i,j ρj,lBi,jρ
�1
j,k Bi,jρj,k in Pn�1pMgq, we see that

B
�γj,l,k�2ηj,l,i

i,n�1 � B
2αi,j,l�2αi,j,k�γi,k,l�2ηi,k,j

j,n�1 .

If j   n, it follows by comparing coefficients of the elements of B in K{H that for all
1 ¤ i   j   n and 1 ¤ l   k ¤ g,#

γj,l,k � 2ηj,l,i � 0

2αi,j,l � 2αi,j,k � γi,k,l � 2ηi,k,j � 0.
(25)

If j � n then

B
�γn,l,k�2ηn,l,i

i,n�1 �B
2αi,n,l�2αi,n,k�γi,k,l�2ηi,k,n

n,n�1�B
�p2αi,n,l�2αi,n,k�γi,k,l�2ηi,k,nq
1,n�1 � � � B�p2αi,n,l�2αi,n,k�γi,k,l�2ηi,k,nq

n�1,n�1 �
ρ

2p2αi,n,l�2αi,n,k�γi,k,l�2ηi,k,nq
n�1,1 � � � ρ2p2αi,n,l�2αi,n,k�γi,k,l�2ηi,k,nq

n�1,g ,

and comparing coefficients of the elements of B in K{H, we observe that equations (25)
also hold if j � n. So for all 1 ¤ i   j ¤ n and 1 ¤ l   k ¤ g,

γj,l,k � 2ηj,l,i � 0 (26)

2αi,j,l � 2αi,j,k � γi,k,l � 2ηi,k,j � 0. (27)
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(b) Let 1 ¤ i ¤ n. Then

g¹
l�1

ρ2
i,l � B1,i � � � Bi�1,iBi,i�1 � � � Bi,n in PnpMgq by relation (c) of

Theorem 3. For 1 ¤ l ¤ g, note that

s
�

ρ2
i,l

	 � ρi,lρ
γi,l,1

n�1,1 � � � ργi,l,g

n�1,gB
ηi,l,1

1,n�1 � � � B
ηi,l,n�1

n�1,n�1ρi,lρ
γi,l,1

n�1,1 � � � ργi,l,g

n�1,gB
ηi,l,1

1,n�1 � � � Bηi,l,n�1

n�1,n�1� ρ2
i,lB

�2ηi,l,i�γi,l,l

i,n�1 ρ
2γi,l,1

n�1,1 � � � ρ2γi,l,g

n�1,gB
2ηi,l,1

1,n�1 � � � B2ηi,l,n�1

n�1,n�1.

As we saw in equations (10) and (11), ρ2
i,l belongs to the centraliser of K{H in Pn�1pMgq{H,

so

s

�
g¹

l�1

ρ2
i,l

� ��
g¹

l�1

ρ2
i,l

��
g¹

l�1

B
�2
°g

l�1 ηi,l,i�°g
l�1 γi,l,l

i,n�1 ρ
2
°g

l�1 γi,l,1

n�1,1 � � � ρ2
°g

l�1 γi,l,g

n�1,g � B
2
°g

l�1 ηi,l,1

1,n�1 � � � B2
°g

l�1 ηi,l,n�1

n�1,n�1

�
.

Further,

s
�
B1,i � � � Bi�1,iBi,i�1 � � � Bi,n

� � B1,i � � � Bi�1,iBi,i�1 � � � Bi,n�
i�1¹
l�1

�
ρ

αl,i,1

n�1,1 � � � ραl,i,g

n�1,gB
βl,i,1

1,n�1 � � � Bβl,i,n�1

n�1,n�1

	 n¹
l�i�1

�
ρ

αi,l,1

n�1,1 � � � ραi,l,g

n�1,gB
βi,l,1

1,n�1 � � � Bβi,l,n�1

n�1,n�1

	�B1,i � � � Bi�1,iBi,i�1 � � � Bi,n � ρ
°i�1

l�1 αl,i,1�°n
l�i�1 αi,l,1

n�1,1 � � � ρ°i�1
l�1 αl,i,g�°n

l�i�1 αi,l,g

n�1,g �
B
°i�1

l�1 βl,i,1�°n
l�i�1 βi,l,1

1,n�1 � � � B°i�1
l�1 βl,i,n�1�°n

l�i�1 βi,l,n�1

n�1,n�1 .

Now in Pn�1pMgq{H,

g¹
l�1

ρ2
i,l � B1,i � � � Bi�1,iBi,i�1 � � � Bi,nBi,n�1, hence

B
1�2

°g
l�1 ηi,l,i�°g

l�1 γi,l,l

i,n�1 ρ
2
°g

l�1 γi,l,1

n�1,1 � � � ρ2
°g

l�1 γi,l,g

n�1,g B
2
°g

l�1 ηi,l,1

1,n�1 � � � B2
°g

l�1 ηi,l,n�1

n�1,n�1 �
ρ
°i�1

l�1 αl,i,1�°n
l�i�1 αi,l,1

n�1,1 � � � ρ°i�1
l�1 αl,i,g�°n

l�i�1 αi,l,g

n�1,g �
B
°i�1

l�1 βl,i,1�°n
l�i�1 βi,l,1

1,n�1 � � � B°i�1
l�1 βl,i,n�1�°n

l�i�1 βi,l,n�1

n�1,n�1 .

Thus for all 1 ¤ i ¤ n,

B
1�2

°g
l�1 ηi,l,i�°g

l�1 γi,l,l

i,n�1 � ρ
°i�1

l�1 αl,i,1�°n
l�i�1 αi,l,1�2

°g
l�1 γi,l,1

n�1,1 � � � ρ°i�1
l�1 αl,i,g�°n

l�i�1 αi,l,g�2
°g

l�1 γi,l,g

n�1,g �
B
°i�1

l�1 βl,i,1�°n
l�i�1 βi,l,1�2

°g
l�1 ηi,l,1

1,n�1 � � � B°i�1
l�1 βl,i,n�1�°n

l�i�1 βi,l,n�1�2
°g

l�1 ηi,l,n�1

n�1,n�1 . (28)

4 Proofs of Theorems 1 and 2

In this section, we use the calculations of Section 3 to prove Theorem 1, from which we
shall deduce Theorem 2.
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Proof of Theorem 1. As we mentioned in the Introduction, the existence of an algebraic
section for p� is equivalent to that of a cross-section for p.

The case n � 1 was treated in Theorem 1 of [GG1], using the fact that if M � Mg,

where g ¥ 3, then M is homeomorphic to the connected sum of one or two copies of RP2

with a compact, orientable surface without boundary of genus at least one.
Conversely, suppose that there exist m P N and n ¥ 2 for which the homomorphism

p� : Pn�mpMq ÝÑ PnpMq admits a section. We shall argue for a contradiction. By [GG1,
Proposition 3], it suffices to consider the case m � 1. We first analyse the general structure
of the coefficients αi,j,r, βi,j,q, γk,l,r, ηk,l,q defined by equation (7).

(a) Taking j � n in equation (16) implies that γi,k,l � 0 for all 1 ¤ i ¤ n � 1 and 1 ¤ k  
l ¤ g.
(b) By equation (27),

γi,k,l � �2ηi,k,j � 2pαi,j,l � αi,j,kq
for all 1 ¤ i   j ¤ n and 1 ¤ l   k ¤ g. Taking j � n, we obtain

γi,k,l � �2ηi,k,n � 2pαi,n,l � αi,n,kq � 0

since ηi,k,n � 0 by definition and αi,n,r � 2γi,1,1 for all 1 ¤ i ¤ n � 1 and 1 ¤ r ¤ g by
equation (22).

It thus follows from (a) and (b) that

γi,k,l � 0 for all 1 ¤ i ¤ n� 1 and 1 ¤ k, l ¤ g, k � l. (29)

(c) By equation (22), γi,k,k � 1
2αi,n,1 for all 1 ¤ i ¤ n� 1 and 1 ¤ k ¤ g. So

γi,k,k � γi,1,1 for all 1 ¤ i ¤ n� 1 and 1 ¤ k ¤ g. (30)

(d) By equation (16), for all 1 ¤ k   l ¤ g and 1 ¤ i   j ¤ n, we have

ηi,k,j � �1

2
γi,k,l � 0,

using equation (29). So by taking l � g we obtain

ηi,k,j � 0 for all 1 ¤ i   j ¤ n and 1 ¤ k ¤ g� 1.

(e) By equation (27)

ηi,k,j � 1

2

�
2
�
αi,j,l � αi,j,k

�� γi,k,l

�
for all 1 ¤ i   j ¤ n and 1 ¤ l   k ¤ g. But γi,k,l � 0 by equation (29), and αi,j,l � αi,j,k � 0
by equation (18) if j ¤ n � 1 and by equation (22) if j � n. Setting l � 1, it follows that

ηi,k,j � 0 for all 1 ¤ i   j ¤ n and 2 ¤ k ¤ g.

By (d) and (e) we thus have

ηi,k,j � 0 for all 1 ¤ i   j ¤ n and 1 ¤ k ¤ g. (31)
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(f) Suppose that 1 ¤ j   i ¤ n� 1. Then

ηi,k,j � �1

2
γi,k,l for all 1 ¤ k   l ¤ g, by equation (26)� 0 by equation (29).

So taking l � g, we have ηi,k,j � 0 for all 1 ¤ k ¤ g� 1. Further, for all 1 ¤ l   k ¤ g,

ηi,k,j � �1

2
γi,k,l by equation (15)� 0 by equation (29).

Hence it follows from equation (31) and (f) that

ηi,k,j � 0 for all 1 ¤ i, j ¤ n� 1, i � j, and 1 ¤ k ¤ g. (32)

(g) From equation (23), we obtain

βi,n,s � �γi,1,1 for all 1 ¤ s ¤ n� 1, s � i. (33)

(h) By equations (21) and (32), we see that

γi,1,1 � βi,i�1,i�1 � � � � � βi,n�1,n�1 for all 1 ¤ i ¤ n � 2. (34)

(i) By equations (20) and (32), we obtain

γi,1,1 � β1,i,1 � � � � � βi�1,i,i�1 for all 2 ¤ i ¤ n� 1. (35)

Analysing equation (28), we are now able to complete the proof of Theorem 1 as fol-
lows. Let i P t1, . . . , n� 1u. Then the coefficient of Bi,n�1 yields:

1� 2

ģ

l�1

ηi,l,i � ģ

l�1

γi,l,l � i�1̧

l�1

βl,i,i � ņ

l�i�1

βi,l,i � 2

ģ

l�1

ηi,l,i. (36)

Now
i�1̧

l�1

βl,i,i � i�1̧

l�1

γl,1,1 by equation (34),

and
ņ

l�i�1

βi,l,i � ņ

l�i�1

γl,1,1 by equation (35).

So using equation (30), equation (36) becomes

1� gγi,1,1 � βi,n,i � n�1̧

l�1

γl,1,1 � γi,1,1.

Summing over all i � 1, . . . , n � 1, and setting ∆ � °n�1
l�1 γl,1,1 and L � °n�1

i�1 βi,n,i, we
obtain pn� g� 2q∆ � pn� 1q � L. (37)
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Now let i � n, and let k P t1, . . . , n� 1u. Since ηn,l,n � 0, the coefficient of Bk,n�1 in
equation (28) yields:

ģ

l�1

γn,l,l � 1 � n�1̧

l�1

βl,n,k � 2

ģ

l�1

ηn,l,k � βk,n,k � n�1̧

l�1
l�k

βl,n,k � 2

ģ

l�1

ηn,l,k� βk,n,k � n�1̧

l�1
l�k

γl,1,1 � 2

ģ

l�1

ηn,l,k by equation (33)� βk,n,k � p∆ � γk,1,1q � ģ

l�1

��βk,n,k � γn,l,l � γk,l,l

�
by equation (24)� p1� gqβk,n,k � γk,1,1 �∆ � ģ

l�1

γn,l,l � ģ

l�1

γk,1,1 by equation (30)� p1� gqβk,n,k � p1� gqγk,1,1 �∆� ģ

l�1

γn,l,l.

Hence �1 � p1� gqβk,n,k � p1� gqγk,1,1 �∆. Summing over all k � 1, . . . , n� 1, we obtainpn� g� 2q∆ � p1� gqL� pn� 1q. (38)

Equating equations (37) and (38), we see that pn� 1q� L � p1� gqL�pn� 1q. Since g ¥ 3,
it follows that L � 0, and therefore

∆ � n � 1pn� 1q � pg� 1q
by equation (37). This yields a contradiction to the fact that ∆ is an integer, and thus
completes the proof of Theorem 1.

Remark. Although some of the relations derived in (a)–(i) do not exist if n � 2, one may
check that the above analysis from equation (36) onwards is also valid in this case (with
∆ � γ1,1,1 and L � β1,2,1).

Proof of Theorem 2.

(a) If r ¡ 0 then the result follows applying the methods of the proofs of Proposition 27
and Theorem 6 of [GG1]. If r � 0 and M has non-empty boundary, let C be a boundary
component of M. Then M1 � MzC is homeomorphic to a compact surface with a single
point deleted (which is the case r � 1), so (PBS) splits for M1. The inclusion of M1 in
M not only induces a homotopy equivalence between M and M1, but also a homotopy
equivalence between their nth configuation spaces. Therefore their nth pure braid groups
are isomorphic, and the sequence (PBS) for M splits if and only it splits for M1.
(b) Suppose that r � 0 and that M is without boundary. If M � S2, m � 1 and n ¥ 3
then the statement follows from [Fa]. The geometric construction of Fadell may be easily
generalised to all m P N. If n P t1, 2u, the result is obvious since PnpS2q is trivial. If M � T2

or K2, the fact that p� has a section is a consequence of [FaN] and the fact that T2 and K2
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admit a non-vanishing vector field. If M � RP2 then p� admits a section if and only if
n � 2 and m � 1 by [GG3]. Finally, if M � RP2, S2, T2, K2 then p� admits a section if and
only if n � 1 by Theorem 1 for the non-orientable case, and by [GG1] for the orientable
case.
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