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Abstract

Let M be a compact, connected non-orientable surface without boundary and of
genus ¢ > 3. We investigate the pure braid groups P,(M) of M, and in particular
the possible splitting of the Fadell-Neuwirth short exact sequence

1— Pu(M\{x1,...,%3}) = Puim(M) 25 P, (M) — 1,

where m,n > 1, and p. is the homomorphism which corresponds geometrically to
forgetting the last m strings. This problem is equivalent to that of the existence of
a section for the associated fibration p: F,4,, (M) — E,(M) of configuration spaces,
defined by p((x1,...,Xn, Xus1,- -, Xn+m)) = (X1,...,Xn). We show that p and p, admit
a section if and only if n = 1. Together with previous results, this completes the
resolution of the splitting problem for surfaces pure braid groups.

1 Introduction

Braid groups of the plane were defined by Artin in 1925 [A1], and further studied in [A2,
A3]. Braid groups of surfaces were studied by Zariski [Z], and were later generalised
using the following definition due to Fox [FoN]. Let M be a compact, connected surface,
and let n € N. We denote the set of all ordered n-tuples of distinct points of M, known as
the n'"* configuration space of M, by:

Fa(M) = {(p1,--.,Pn) | pi € M and p; ;ép]-ifi;é]'}.
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Configuration spaces play an important role in several branches of mathematics and have
been extensively studied, see [CG, FH] for example.

The symmetric group S, on n letters acts freely on F,(M) by permuting coordinates.
The corresponding quotient space will be denoted by D, (M). Notice that F, (M) is a reg-
ular covering of D,,(M). The n'" pure braid group P,(M) (respectively the n'" braid group
B, (M)) is defined to be the fundamental group of F,(M) (respectively of D,,(M)). If m €
N, then we may define a homomorphism p.: Pyyn(M) — P,(M) induced by the pro-
jection p: Fyim(M) — F,(M) defined by p((x1,...,Xn, Xn41, - Xntm)) = (X1,...,%n).
Representing Py, 4, (M) geometrically as a collection of n + m strings, p. corresponds to
forgetting the last m strings. We adopt the convention, that unless explicitly stated, all
homomorphisms P, (M) — P, (M) in the text will be this one. If M is the 2-disc (or
the plane R?), B,(M) and P,(M) are respectively the classical Artin braid group B, and
pure braid group P, [FVB].

If M is without boundary, Fadell and Neuwirth study the map p, and show ([FaN,
Theorem 3]) that it is a locally-trivial fibration. The fibre over a point (xi, ..., x,) of the
base space is F, (M\ {x1, ..., x,}) which we interpret as a subspace of the total space via
themap i: F,(M\{xy,...,x,}) — F,(M) defined by

Z((ylllym)) = (xll'-'lxnryll---/ym)-

Applying the associated long exact sequence in homotopy, we obtain the pure braid group
short exact sequence of Fadell and Neuwirth:

1 Py (M\ {x1, ..., Xp}) =5 Pypmn(M) 25 Py(M) — 1, (PBS)

where n > 3 if M is the sphere S? [Fa, FVB], n > 2 if M is the real projective plane
RP? [VB], and n > 1 otherwise [FaN], and where i, and p: are the homomorphisms
induced by the maps i and p respectively. The short exact sequence (PBS) has been widely
studied, and may be employed for example to determine presentations of P,(M) (see
Section 2), its centre, and possible torsion. It was also used in recent work on the structure
of the mapping class groups [PR] and on Vassiliev invariants for surface braids [GMP].

In the case of P,, and taking m = 1, Ker (p.) is a free group of rank n. The short exact
sequence (PBS) splits for all n > 1, and so P, may be described as a repeated semi-direct
product of free groups. This decomposition, known as the ‘combing” operation, is the
principal result of Artin’s classical theory of braid groups [A2], and yields normal forms
and a solution to the word problem in B;,. More recently, it was used by Falk and Randell
to study the lower central series and the residual nilpotence of P, [FR], and by Rolfsen
and Zhu to prove that P, is bi-orderable [RZ].

The problem of deciding whether such a decomposition exists for braid groups of
surfaces is thus fundamental. This was indeed a recurrent and central question during
the foundation of the theory and its subsequent development during the 1960’s [Fa, FaN,
FVB, VB, Bi]. If the fibre of the fibration is an Eilenberg-MacLane space then the existence
of a section for p. is equivalent to that of a cross-section for p [Ba, Wh] (cf. [GG2]). But
with the exception of the construction of sections in certain cases (for S? [Fa] and the
2-torus T? [Bi]), no progress on the possible splitting of (PBS) was recorded for nearly
forty years. In the case of orientable surfaces without boundary of genus at least two, the



question of the splitting of (PBS) which was posed explicitly by Birman in 1969 [Bi], was
finally resolved by the authors, the answer being positive if and only if n = 1 [GG1].

As for the non-orientable case, the braid groups of RP? were first studied by Van
Buskirk [VB], and more recently by Wang [Wa] and the authors [GG2, GG3, GG4]. For
n = 1, we have P;(RP?) = B;(RP?) = Z,. Van Buskirk showed that for all n > 2, neither
the fibration p: F,(RP?) — F;(RP?) nor the homomorphism p,: P,(RP?) — P;(RP?)
admit a cross-section (for p, this is a manifestation of the fixed point property of RP?),
but that the fibration p: F3(RP?) — F,(RP?) admits a cross-section, and hence so does
the corresponding homomorphism p,. Using coincidence theory, we showed that for
n = 2,3 and m > 4 — n, neither the fibration nor the short exact sequence (PBS) ad-
mit a section [GG2]. In [GG3], we gave a complete answer to the splitting problem
for RP?%: if m,n € N, the homomorphism p,: Pn+m(RP2) — P, (RPZ) and the fibration
p: Fyim(RP?) — F,(RP?) admit a section if and only if n = 2 and m = 1. In other words,
Van Buskirk’s values (n = 2 and m = 1) are the only ones for which a section exists (both
on the geometric and the algebraic level).

In this paper, we study the splitting problem for compact, connected non-orientable
surfaces without boundary and of genus ¢ > 3 (every non-orientable compact surface
M without boundary is homeomorphic to the connected sum of g copies of RP?, g € N
being the genus of M). In the case of the Klein bottle K? (¢ = 2), the existence of a
non-vanishing vector field implies that there always exists a section, both geometric and
algebraic (cf. [FaN]). Our main result is:

Theorem 1. Let M be a compact, connected, non-orientable surface without boundary of genus
g = 3, and let m,n € N. Then the homomorphism p.: Pyym(M) — P, (M) and the fibration
p: Foym(M) — E,(M) admit a section if and only if n = 1.

Applying Theorem 1 and the results of [GG1, GG3], we may solve completely the
splitting problem for surface pure braid groups:

Theorem 2. Let m,n € Nand r > 0. Let N be a compact, connected surface possibly with
boundary, let {x1,...x,} be a finite subset in the interior of N, let M = N\ {xy,...x,}, and let
Ps: Pugm(M) — Py(M) be the standard projection.

(a) If r > 0 or if M has non-empty boundary then p, admits a section for all m and n.
(b) Suppose that r = 0 and that M is without boundary. Then p. admits a section if and only if
one of the following conditions holds:

(i) M is S?, the 2-torus T? or the Klein bottle K? (for all m and n).
(ii)) M=RP%,n=2andm = 1.
(iii) M # RP?,§%,T?, K2 and n = 1.

The rest of the paper is organised as follows. In Section 2, we determine a presentation
of P,(M) (Theorem 3). In Section 3, we study the consequences of the existence of a
section in the case m = 1and n > 2, i.e. p.: Py 11(M) — P,(M). The general strategy of
the proof of Theorem 1 is based on the following remark. Suppose that (PBS) splits. If
H is any normal subgroup of P,;1(M) contained in Ker (p..), the quotiented short exact
sequence 1 — Ker (p.) /H «— P,+1(M)/H — P,,(M) — 1 must also split. In order to
obtain a contradiction, we seek such a subgroup H for which this short exact sequence
does not split. However the choice of H needed to achieve this may be somewhat delicate:
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if H is too ‘small’, the structure of the quotient P, 1(RP?)/H remains complicated; on
the other hand, if H is too ‘large’, we lose too much information and cannot reach a
conclusion. In Section 4, we first show that we may reduce to the case m = 1, and then
go on to prove Theorem 1 using the analysis of Section 3. As we shall see in Section 4, it
suffices to take H to be Abelianisation of Ker (p. ), in which case the quotient Ker (p..) /H
is a free Abelian group. We will then deduce Theorem 2.
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2 A presentation of P,(M)

Let M = M, be a compact, connected, non-orientable surface without boundary of genus
¢ >2.Ifn e Nand D? € M is a topological disc, the inclusion induces a homomorphism
i1 By(D?) — B,(M). If B € B, (ID?) then we shall denote its image «(8) simply by B. For
1 <i <j < n, we consider the following elements of P,(M):

-1
T 0’]_2

where o7y, ...,0,_1 are the standard generators of B, (DZ). The geometric braid corre-
sponding to B; ; takes the ith string once around the j string in the positive sense, with
all other strings remaining vertical. Foreach1 <k <nand1 <[ < g, we define a genera-
tor p; which is represented geometrically by a loop based at the k" point and which goes
round the I'" twisted handle. These elements are illustrated in Figure 1 that represents M
minus a disc.

A presentation of the braid groups of non-orientable surfaces was originally given by
Scott [S]. Other presentations were later obtained in [Be, GM]. In the following theorem,
we derive another presentation of P,(M).

-1 2
Bi,j = O'i 0'~_10']'_2---0'1',

]

Theorem 3. Let M be a compact, connected, non-orientable surface without boundary of genus
g = 2, and let n € N. The following constitutes a presentation of the pure braid group P, (M):

enerators: B;;, 1 <i<j<n,andpy;, wherel <k <nandl <[l <gq.
S i] ) Ok, g
relations:

(a) the Artin relations between the B; ; emanating from those of P, (ID?):

Bz’,j1 : fi<r<s<jorr<s<i<j
B g g1 — o Dij Brj BijBrjBij ifr<i=s<j 0
rsELpErs B_lB"B ) s

s,j bS] ifi =1 <s <]

~1p-1p p .p..p—lp-1p B . i : -
BS’]. Br’]. BS,]Br,]Bz,]Br,]' BS’]. B, Bs; ifr<i<s<j.
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Figure 1: The generators B; j and pi; of P,(M), represented geometrically by loops lying
in M minus a disc.

(b) foralll <i<j<nandl <kI<g

0 ifk <1
00"V = p B2 ifk =1 2
PikPj1P;x = 3 Lik Pij Pik @
Pix Bi; 0ixB;; 0j1Bi iy Bijoj ifk > 1

8
(c) forall 1 <i < n, the ‘surface relations’ Hpiz,l =By --Bi_1iBijs1-- Bin.
I=1

(d) foralll<i<j<n l<k<nk#jandl <I<g
Bi,]' Z:fk<i01’]'<k
Pk,lBi,ij_, 11 = p;llB;jlpj,l ifk=1i 3)
pj_,llBk_,]'lpj,lBk_,]’lBi,ka,jpj_,llBk,jpj/l Zfl <k< ]
Proof. We apply induction and standard results concerning the presentation of an exten-
sion (see [J, Theorem 1, Chapter 13]). The proof generalises that of [GG3] for RP?, and is

similar in spirit to that of [S].
First note that the given presentation is correct for n = 1 (P;(M) = m;(M) has a

presentation <p111, e PLg | H‘lgzl p%l = 1>). So let n > 1, and suppose that P,(M) has
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the given presentation. Taking m = 1 in (PBS), we have a short exact sequence:

1— 7 (M\{x1, ..., Xn}, Xns1) — Poy1(M) 25 Py(M) —> 1.

In order to retain the symmetry of the presentation, we take the free group Ker (p.) to
have the following one-relator presentation:

g
2
<Pn+1,1/ - Pntl,gr Bl,n-i-l/ ceey Bn,n+1 Hpﬂ-i-l,l = Bl,n+1 T Bn,n+1> .
=1

Together with these generators of Ker (p.), the elements B;j, 1 < i < j < n, and py,
1<k<mnandl <I<g of P,;1(M) (which are coset representatives of the generators of
P, (M)) form the given generating set of P, 1(M).

There are three classes of relations of P, 1(M) which are obtained as follows. The first
consists of the single relation ngzl pfl f = Bijnt1- By of Ker (p.). The second class
is obtained by rewriting the relators of the quotient in terms of the coset representatives,
and expressing the corresponding element as a word in the generators of Ker (p. ). In this
way, all of the relations of P, (M) lift directly to relations of P, ,1(M), with the exception
of the surface relations which become

g

2 .
Hpi,z =By, Bi_1,Biiy1 - BiuBing1 foralll <i<n.
=1

Along with the relation of Ker (p.), we obtain the complete set of surface relations (rela-
tions (c)) for P, 1 (M).

The third class of relations is obtained by rewriting the conjugates of the generators
of Ker (p.) by the coset representatives in terms of the generators of Ker (p.):

(i) Foralll<i<j<nand1<I<mn,

Bint1 ifl <iorj<I
-1 p-1 . .
1 B i1Biii1Bin+1Bin+1Binta if I = f
BijBinnBii =g g’ g if | =i
jin+1°Ln+125n+1 ifl =1
-1 p-1 -1 p-1 e ,
Bj,n+1Bi,n+1Bj,ﬂ+1Bi,n+1Bl,n+1Bi’n+1B]',n+1Bj,n+1B]"n+1 ifi <l < ]

(ii) Bl-,].pnt;].l =pps1pforalll <i<j<nand1<I<g.
(iii) foralll <i<nand 1<k I <g,
Pn+1,1 if k <1
. 1ol Bl 2 ifk=1
PikPn+1,10; i pn-il—l,k z,nl—i—lpn—i—l,k . .
Pk Bina1Pn+1kB; i 10n+11Bin+10, 1k Bint10na e ik > 1.
(iv) Foralll <ik<nand1<I<g,
Bi,n+1 ifk <i

-1_ ) -1 p-1 e

PkiBin+10r) = 3 Ppy11Bins10n+1 ifk =i
-1 pAh —1 -1 iy
Pri11Brns1Pn+11Be i1 Bin+1Bin+10, (1 Bont1Pn1s if 1 <k



Then relations (a) for P, 1(M) are obtained from relations (a) for P,(M) and relations (i),
relations (b) for P,,1(M) are obtained from relations (b) for P,(M) and relations (iii),
and relations (d) for P,,,1(M) are obtained from relations (d) for P,(M), and relations (ii)
and (iv). O

3 Analysis of the case P, 1(My) — P,(M,), n > 2

For the whole of this section, we suppose that ¢ > 3 and n > 2. By Theorem 3, P,,(M,) is
generated by the union of the B; j, 1 <i<j<mn,andofthepy; 1 <k<n 1<I<g Let
us consider the homomorphism p.: P,;11(Mg) — Py(My). In this section, we suppose
that p. admits a section, denoted by s.. Applying (PBS), we thus have a split short exact
sequence

P«

Sx

where K = Ker (p.) = m1(Mg\ {x1,...,Xu}, Xn41) is a free group of rank n + ¢ — 1, gener-
ated by {B1u+1,-- -, Buu+1, 00411, - - - » Pn+1,¢ }, and subject to the relation

2 2
Bint1- - Bunt1 = Puy1,1 7 Puslg

Let H = [K, K] be the commutator subgroup of K. Then K/H is a free Abelian group
of rank n + ¢ — 1. In what follows, we shall not distinguish notationally between the
elements of K and those of K/H. The quotient group K/H thus has a basis

B ={Bin+1,-- - Bucins1, Ons1,1s- - Onslg s )

and the relation
1 -1 2 2
Bun1 =By 1 Byly ug1Pni11 7 Puvig (6)

holds in the Abelian group K/H. Since H is normal in P, 1(Mg) and p. admits a section,
it follows from equation (4) that we have a split short exact sequence

p
1 K/H Ppi1(Mg)/H 22 Pu(Mg) —1,
S

where P is the homomorphism induced by p., and 5 is the induced section.
Consider the subset

I ={Bijpor|1<i<j<n1<k<n1<I<g}

of P,11(Mg)/H. If g € T then p(g) = g € Py(My), and so g71.5(7(g)) € Ker (p) = K/H.
Then the integer coefficients ; ;,, Bi g/ Yk 1,1 Mk1,q Wherel <7 < gand1<g<n-—1,are
(uniquely) defined by the equations:

—(n \ _ p AN %ije pbiji Bijn—1

S (Bz,]) = B0, 1 'Pn+1,gBl,n+1 By %
= . Vi1 Vklg pMkl1 Mk In—1

5 (Pk1) = PriPpiig PuitgBrait Ballngr
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There is an equation for each element of I'. Most of the elements of I' commute with the
elements of the basis B of K/H given in equation (5). We record the list of conjugates of
such elements for later use. In what follows, 1 <i<j<n 1<km<nand1<Ir<g.
In K/H, we have

-1
Bi,ij,n-i-lBi,]' = Bm,n+1

(this follows from equation (1) and the fact that the elements B; , 11, 1 < g < n, belong to
K/H and so commute pairwise), and

-1
Bi,jpn+1,lBi,]' = Pn+1,

by equation (3). Thus B;; belongs to the centraliser of K/H in P,1(Mg)/H. Also by
equation (3), we have

1 -1 p-1 -1 e
pk,le,n-i-lpk,l = pn-{-l,le,n-{-lpn-i-l,l = Bm,n+1 if k =m
1 p-1 -1 -1 :
01 1B na1Pn+11Bi 1 Bmn1Bkns10, 41 1 Bin+10n+1,1 = Bmny1 itk > m,
+ 7 7 + 7 + + 7

SO
-1 1-24;,
Pk,le,n+1pk,l - Bm,n+1m’ (8)

where 4. . is the Kronecker delta. By equation (2), we have

-1 _ -1 p-1 2 _ -1 —_—
Pl 1Pn+1,rP 1 = pn+1,lBk,n+1pn+1,l = pn+1,lBk,n+1 ifl =r
-1 p-1 -1 -1 .
Pn+1,1Bk,n+1pn+1,lBk,n+1pn+1,er,n+1Pn+1,1Bk,n+1Pn+1,l = pPnt1r if1>7,

SO
-1 -0y,
Pk1Pn+1,P; = Pn—i—l,er,nil- )

Combining equations (8) and (9), we obtain

2 -2 -1 -1 -1
Pk rPn+1,Pyy = Pk,rPn+1,er,n+1Pk,r = Pn+1,er,n+1Bk,n+1 = On+1,r/

SO
Ok P10y = Py Pt 1Ok (10)

Furthermore, by equation (8), p%l commutes with By, ,41, and therefore

PkiBun+10] = Pi) But10%- (11)

Hence P%,l also belongs to the centraliser of K/H in P,1(M,)/H. From equations (8)
and (9), we obtain the following relations:

Yik1 Yikg o —Yikl Vik1 Yikg :
pn+1,1 o 'lon-i—l,g ) P],l - p],l ’ B]',n+1 pn+1,1 o 'lon-i—l,g forall 1 < ] s, (12)

and

n+1 1,n+1 n—1n+1
- ikl Mikn—1
],lBl,n+1 . 'Bn—l,n+1

ik Mijk,n—1
B ...B

N, U . . )
,Oj,lB]' ’71,k,]B771,k,1 . Bﬂz,k,nfl if1 < j <n-— 1
1n+1 n—1,n+1P0j1 = ]

ifj =n.
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Setting #7;x, = Oforalll <i<nand1 <k < g yields:
Bk Bl pjr = oy Bt B - BIACL, foralll<j<n (13)

Equations (12) and (13) will be employed repeatedly in the ensuing calculations.

We now investigate the images under 5 of some of the relations (b)—(d) of Theorem 3
(it turns out that the analysis of the other relations, including (a), will not be necessary
for our purposes).
(n) Letl <i<j<nandl <k, < g Weexamine the three possible cases of equation (7)
(relation (b) of Theorem 3).

(i) k <I:then p;p;; = pj 10k in P,(Mg). The respective images under § are:

(N o Yikd Yikg plik1 Hikn—1 Vjla Yilg p'lill Njln—1

5 (0ik0j1) =0ikPpi1 " PrilgBint1 " Ballns101Pnta1  Prt1gBins1 Buling
o B—’Yi,k,l—277i,k,j Vi1t ’Yi,k,g+7j,l,gB’?i,k,1+’7j,1,1___B’Yi,k,n—1+77j,z,n—1
=PikPj15] 41 n+1,1 n+1,g 1n+1 n—1,n+1 ’

and

U Y (5 YiLg plill Titn—1  _  Vik1 Yikg pMik1 Mijn—1

5 (010ik) =Pj10yy 11 " PrirgBint1 BulnaPikPuiin Pt gBra Bal i
Tk 2 Vit Yika YitgtVikg i1t ik Nidn—11"ikn-1
=0;10ikB; 11 n+1,1 T Pntlg By By

) . . . Vi 21k, —Yjk=2Mj1,i
The relation p;x0j1 = pj0ix in Py11(Mg) implies that B j ' = B. " 77 Com-

n+1 in+1
paring coefficients of the elements of B in K/H (cf. equation (5)), if j < n, we have

'Yj,l,k + 277]',1,1' =0 and

(14)
Yikl + 21k =0,
while if j = n, applying equation (6) yields
Yutkt i gYikit2ikn _ g=Vikit2ijn) | p= ikt 20ikn) 2Vigat2ijen) | 2(Viki+2ijn)
in+1 - Tnn+l - Tln+l n—1,n+1 n+1,1 n+1,9 /

and thus equation (14) also holds for j = n. Soforalll <i<j<nand1<k<I<g,
Yiik+ 277]',1,1' =0 and (15)
Yikt +21ik; = 0. (16)
(ii) k = I: then pi,kp]-,kp;kl = p;le;jlp]%k in P;(Mg) foralll <i<j<mnand1l<k<g. The
respective images under 5 are:

(A A =1\ . Vikd Yikg pMik1 Migkn—1 Vikl Vikg plikl Mjkn—1
§ (Pz,kPJ,kPi,k> =0ikCpni1 " PritgBint1  Ballns 1P kP11 PPt~ Bulinsn

—Mikn—1 —Nik1 ~Yikg —Yik1 ,—1
Bn—l,n—i—l T Bl,n+1 pn—i—l,g P11 Pik

:Pi,kPj,kBTlil;kpz:fil,i%krl - 'pz:i(,lg;"ﬁ,k,gB;ZZiik,jBZi;I;i‘li’ﬂj,k,l o BZ:‘,_k,{z/;iZUj,k,n—l.
O BB, oy By Bl o T o T

:Pi,kpj,kP;13 B]—ZJ,F kl x B;ﬁz‘ik,ﬁw,k,k)pzic,llir%‘,k,l N ‘pZi,:,lg:;'Yj,k,g B;Zj_iik,j B;Zi’gi,k,i-i-’?j,k,i)_
BB BB B B

R ey S



and

=(—1p=1.2 Y\ _p Tikn-1 —Njk1 —Vjkg ~Tik1 —1
§ (Pj,k B; pj,k) =B, 1 i1 BLaiiPuilg " Pug11 Pk

B_.Bi,j,nfl ‘ B—ﬁi,j,l —ijg ~ij1p—1,

n—1n+1"" " PlLn+1Pn+1,q " Pnt1,17i
Tk Vikg plikl Mjjkn—1 ik Yikg DMk Mjkn—1
PikOnt1 " PritgBrns1 Bulint1Pikntin " PuiigBini Buli s
 —1p-1 ik Mjkn—1 “Mik1pYikk ~Vikg —Vika —ﬁi,j,n—l _:Bi,frl
ik Bi,]' B]',n+1Bn—1,n+1 T Bl,n+1 Bj,n+1 n+lg "Put11 Pu—tns1 'Bl,n+1 )
—ije —®ij1 2 L =Yikk YVikl Yikg p—2Mjkjpljkl Hikn—1
Pusle Pusi P58 i1 Putin " PritgBinsl Bint1  Buliner
Vika Vikg plik1 Mjkn—1
Pniin " PutigBPinir Balins
8
 1p-1.2 k1~ %ija Vikg—%ijg pljk1—Bij1 Njkn—1—Bijn—-1
=0ik Bij OikOntin P, L R M
] ) 8
. 1 —1p-1.2 - .
Since p; k0 k07 = Ok B, 07 in Prya (Mg), we obtain
—(277j,k,i+7j,k,k)B—(277i,k,j+’h,k,k) TR —IXi,j,gB—ﬁi,j,l B _B—,Bi,j,n—l (17)
in+1 jn+l n+1,1 n+1,g71,n+1 n—1n+1"

If j < n then all of the terms in equation (17) are expressed in terms of the basis 5 of K/H
of equation (5),and soforalll1 <i<j<n-—1,

ajjr=0 foralll<r<g (18)
Bijs=0 foralll<s<n-1,s¢{ij} (19)
Biji = Vjkk+ 21k (20)

Bijj = Yikk + 21ik,- (21)

If j = n then substituting for B,, ,,;1 in equation (17) using equation (6) and comparing
coefficients in K/H of the elements of B yields

2(2%ikn + Vikk) = &iny foralll<r<g
(%ikn +Yikk) = —Bins foralll <s<mn-—1,s#i
2(i ko — M ei) T Yikk = Yuhk) = —Bin,i-

Butyr, =0,s0foralll<i<n—-land1<k<g,

Kiny = 2'7i,k,k foralll <r < g (22)
Bins = —7Yikx foralll<s<mn-—-1,s#1i (23)
Bini = 2nki + (Yukk — Vikk)- (24)

(iii) k > [: then Pi,kPj,lP;kl = P;;}B;]lpj,kB:P],le,]P;klBz,]P],k in pn(Mg) The respective
images under s are:

= noA=1\ o Yikd Tikg plikl Tikn—1 Vjll YiLg p'ila Mjln—1
§ (Pz,kP],lP,-,k> =PikPpii1 " 'Pn+1,gBl,n+1 n 'Bn—l,n+1P],an+1,1 n 'Pn+1,gBl,n+1 n 'Bn—l,n+1'
—Nikn—1 —Mik1 ~Vikg —Yik1 —1
Bn—l,n—i—l T Bl,n+1 pn—i—l,g P11 Pik
AT Yk Tk Yk 2L Y Yile il Nl n—1
=PikPj,10; k Bj,n+1 B, .1 nr11 " P gBin Bl
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and

—( —1p-1 -1 -1
s (Pj,k B, pjkB;; pj1Bi ] Bije ff") -

B it Bttt oot B B s e, B
e BB B e
Pj,lPZle'll,l - 'Pzﬁi'fg Z]riil . BZj'—l'f,ZlJrl ' Bi,jpzﬁ,l - 'Pﬂélz,ng,ihjil - Bng:ﬂ
B, B 0 PO Byt Ot B+ By
Pj,kPZTil,l T Zj-flggBY];-il-l o BZ]—kln;lH
=B, B WA Tk p T LB g B
Vik1 =201 Vike—2Wije pllik1—2Pij1 B’Yj,k,n—l_zﬁi,j,n—l'
n+1,1 n+1,9 1,n+1 n—1,n+1
B;jlpj,lpZii;,l o PZngBY]nlil o BZ]_IT;:—H ‘ Bi,jPziﬂ,l - ‘Piﬁ,ng,iﬁjil o Bfﬂf;il
B, B, TS T 0B, i B
Pfﬁl . 'Pziiéf,ng,ihjil o Bng;ﬂ ‘Pzﬁfil,l - ‘Pﬁig,ngfﬁl a BZj'—I('ln,:Jrl
=P;k1 B[jlpj,kB[jlpj,lBi,ij_,ﬁ Bi,ij,kBiiiiﬁ_zai'j’k : B?,j;'«l'h . szi’f,21+1PZﬁ:'1l,1 - 'Pﬂf,g-

. ~1 —1p-1 ~1 ~1 -
Since PikP} IOk = Pk Bi,j 0jkB; i 0 B; jp ik Bi jojx in Py 1(Mg), we see that

=YjLk—2i1,i 200 5 1=20 ; k+Yi k127 k
B i iti _ gt j j
in+1 jn+l :

If j < n, it follows by comparing coefficients of the elements of B in K/H that for all
l1<i<j<nand1<I<k<yg,

Yisk+ 211 =0

(25)
206,51 — 20 i + Vil + 2ikj = 0
If j = n then
~Ynlk—2Mn1i Bz‘xi,n,l_Zl"i,n,k+7i,k,l+277i,k,n
in+1 T Tnn+l
_ B it =20 g Vi + i) g (i =20 Vi1 i)
T Fln+1 n—1n+1
2(200, 11,1 =20 3 k Vi )+ 2 jen)  2(20 0,120 Vi 1+ 2 o)
n+1,1 n+1,g ’

and comparing coefficients of the elements of B in K/H, we observe that equations (25)
alsoholdif j =n.Soforalll <i<j<nand1<I<k<g,

Yilk+ 211 =0 (26)
20 i1 — 20k + Yigs + 2k, = 0. (27)

11



g

(b) Let1 < i < n. Then | [}, = Byi---Bi—1,Bji+1---Bin in Pa(Ms) by relation (c) of
I=1

Theorem 3. For 1 < < g, note that

=( 2\ _ . 5%l Yilg plill Mign—1 . Vill Yilg plill Niln—1
S (Pi,l) = PilPyi11" ‘Pn+1,gBl,n+1 T Bn—l,n+1pz,an+1,1 T 'Pn+1,gBl,n+1 T 'Bn—l,n+1
=207i1,i=Yil1 271 2Vilg p2itn p2lidn-1

— 02 B 271
_pz,l in+1 pn-{-l,l n+1,¢71,n+1 n—1n+1"

As we saw in equations (10) and (11), p?, belongs to the centraliser of K/H in P,, 1 (Mg)/H,
SO

g
s H Pzz,z =
=1

g g
1—[ 2 n B2 S =S i 255 v 251 Vg . B S BZZlgzl Miln—1
Pi1 i+l Prt1,1 Pn+l,g 1n+1 n—1n+1
1=1 1=1

Further,

S (B1i+-Bi—1,Bijiy1--Bin) = B1i--Bi_1,Biiy1--- Biw

i—1 n

api1 Xig pPLia Brin—1 i1 XiLe pPiia Biin—1
H (Pn+1,1 P, Bini Bull n Y s Y s M
1=1 I=i+1

i—1 n i—1 n
2%t % 21 Mgt Yilg
n+1,1 n+1,g

- -
BZé:l BriatXiziv Pisa BZ§=1 Blin-1+2I=i41 Bitn—1
1,n+1 n—1n+1 :

=By,i---Bi-1,iBiit1- - Bin-p

g
Now in P, 1(Mg)/H, H p7; = Bii++Bi_1,Bijis1- - BinBiyns1, hence

=1
B2 S =y Vit 250 v 250 Ying B> Siamin B> S i1
in+1 Prn+11 Prtig 1n+1 n—1n+1

. -

i miat X ®in N Mgt Y KLy

n+1,1 n+1,9
i—1 i—1

BZLl BrintXizipiPisy BZLl Bin—1+21—it1 Bitn—1
1,n+1 n—1n+1 :
Thusforalll <i <mn,
i1 1
B2 SE L= v S it i 6250 v DTt Mgt i %2 X Yilg
in+1 T FPn+l11 n+1,g
1 i1
BXi-1 BiatSi—is1 B =255 1 g1 Bi-1 Blin 1+ 2l=is1 B 1 =255 a1 (28)
1,n+1 n—1n+1 :

4 Proofs of Theorems 1 and 2

In this section, we use the calculations of Section 3 to prove Theorem 1, from which we
shall deduce Theorem 2.
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Proof of Theorem 1. As we mentioned in the Introduction, the existence of an algebraic
section for p, is equivalent to that of a cross-section for p.

The case n = 1 was treated in Theorem 1 of [GG1], using the fact that if M = My,
where ¢ > 3, then M is homeomorphic to the connected sum of one or two copies of RP?
with a compact, orientable surface without boundary of genus at least one.

Conversely, suppose that there exist m € N and n > 2 for which the homomorphism
P Pypym(M) — P, (M) admits a section. We shall argue for a contradiction. By [GG1,
Proposition 3], it suffices to consider the case m = 1. We first analyse the general structure
of the coefficients «; ; , Bi j 4, Yk 1,r- 1Ik,1,4 defined by equation (7).

(a) Taking j = n in equation (16) implies that 7;;; = Oforalll <i<n—-land1 <k <
I<g.
(b) By equation (27),

Vikl = —2Mik; — 2(aij1 — & k)
foralll<i<j<mnand1 <! <k < g Taking j = n, we obtain

Yikl = —2Mijn — 2(@in1 — dink) =0
since 77;x, = 0 by definition and «;,, = 27,11 foralll <i<n—-1land1l <r < gby
equation (22).
It thus follows from (a) and (b) that
Yik1 =0 foralll<i<n—-land1<kI<gk#L (29)
(c) By equation (22), vk = zzxm 1foralll<i<n—land1<k<g. So
Yikk = Y11 foralll<i<n—-land1l<k<g. (30)

(d) By equation (16), foralll <k <l <gand1 <i <j<n wehave

Nikj = _%')’i,k,l =0,
using equation (29). So by taking | = ¢ we obtain
Mikj=0 foralll<i<j<nandl<k<g-1
(e) By equation (27)
Mikj = % (2 (wijp — @ijk) +Yik1)

foralll<i<j<mnand1l <! <k<g. Butvy;; =0byequation (29), and &; ;; —«; jx = 0
by equation (18) if j < n — 1 and by equation (22) if j = n. Setting [ = 1, it follows that

Mikj=0 foralll<i<j<nand2<k<g.
By (d) and (e) we thus have

Mikj=0 foralll<i<j<mnandl<k<g. (31)
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(f) Suppose that1 <j <i <n—1. Then

Nikj = —%’Yi,k,l forall1 < k <1 < g, by equation (26)
=0 by equation (29).

So taking [ = g, we have 7; ; = O forall 1 < k < ¢ — 1. Further, forall1 </ <k <g,

1 .
Mikj = —5 ikl by equation (15)
=0 by equation (29).

Hence it follows from equation (31) and (f) that
Mikj=0 foralll<ij<n-1i#jandl<k<g. (32)
(¢) From equation (23), we obtain
Bins =—7i1q foralll<s<n-—1,s#1i. (33)
(h) By equations (21) and (32), we see that
Yia1 = Bii+1i+1 = - = Bin—1n—1 foralll <i<n-—2. (34)
(i) By equations (20) and (32), we obtain
Yii1 =PBri1 = =Pi—1ii—1 forall2<i<n-—-1 (35)

Analysing equation (28), we are now able to complete the proof of Theorem 1 as fol-
lows. Leti e {1,...,n —1}. Then the coefficient of B; ,, ;1 yields:

g g i-1 n g
V=2 ini= >, Yiga = D, Brii+ D) Biri—2 D Wi (36)
=1 =1 =1 =1

I=i+1

Now
i—1

i—1
Z Brii= ) 711 byequation (34),
1=1 =1

and
n n
Z Biii = Z Y111 by equation (35).
I=i+1 I=i+1
So using equation (30), equation (36) becomes

n—1

1-8%i11 = Bimi+ 2, M1 = Vil
I=1
Summing over alli = 1,...,n—1, and setting A = >/ 'y;1,and L = Y7 B i, we
obtain
m+g—2)A=(n—-1)—L. (37)
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Now leti = n, and let k € {1,...,n —1}. Since 1,,;, = 0, the coefficient of By, in
equation (28) yields:

8 n—1
Z’Ynlz—l—Zﬁlnk—zthlk—ﬁknwrZﬁlnk—zziﬂqlk
- = Ik
n—1
_:Bknk_Z’Ylll_ZZ’?nlk by equation (33)
=1 =1
1%k

g
= Bruk — (A —1k11) Z Bk + Ynli— Th1i) by equation (24)

8
= (1 =8Bk + k11— A+ Z Y] — Z Yk1,1 by equation (30)
I=1 I=1

g
= (1= )Bnik+ 1= Yk11 — A+ D Yui:
=1

Hence —1 = (1 —&)Brni + (1 —g)Yk11 — A. Summing over allk = 1,...,n — 1, we obtain
m+g—-2)A=(1-g)L+(n-1). (38)

Equating equations (37) and (38), we see that (n —1) —L = (1 —g)L+ (n —1). Since g > 3,
it follows that L = 0, and therefore

n—1
A=
-1+ g1
by equation (37). This yields a contradiction to the fact that A is an integer, and thus
completes the proof of Theorem 1. O

Remark. Although some of the relations derived in (a)-(i) do not exist if n = 2, one may
check that the above analysis from equation (36) onwards is also valid in this case (with

A=v1and L =fB121).

Proof of Theorem 2.

(a) If r > 0 then the result follows applying the methods of the proofs of Proposition 27
and Theorem 6 of [GG1]. If r = 0 and M has non-empty boundary, let C be a boundary
component of M. Then M’ = M\C is homeomorphic to a compact surface with a single
point deleted (which is the case r = 1), so (PBS) splits for M'. The inclusion of M’ in
M not only induces a homotopy equivalence between M and M’, but also a homotopy
equivalence between their n configuation spaces. Therefore their n' pure braid groups
are isomorphic, and the sequence (PBS) for M splits if and only it splits for M'.

(b) Suppose that r = 0 and that M is without boundary. If M = S%, m = 1 and n > 3
then the statement follows from [Fa]. The geometric construction of Fadell may be easily
generalised to all m € N. If n € {1,2}, the result is obvious since P, (S?) is trivial. If M = T?
or K2, the fact that p, has a section is a consequence of [FaN] and the fact that T? and K2
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admit a non-vanishing vector field. If M = RP? then p» admits a section if and only if
n =2 and m = 1 by [GG3]. Finally, if M # RP?,S?, T2, K2 then p» admits a section if and
only if n = 1 by Theorem 1 for the non-orientable case, and by [GG1] for the orientable

case. H
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