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Abstract. In this paper we address the existence, the asymptotic behavior and sta-
bility in Lp and Lp,∞, 3

2
< p ≤ ∞, for solutions to the steady state 3D Navier-Stokes

equations with possibly very singular external forces. We show that under certain small-
ness conditions of the forcing term there exists solutions to the stationary Navier-Stokes
equations in Lp spaces, and we prove the stability of these solutions as fixed points of
the non-stationary Navier–Stokes. The non-stationary solutions can be large. We also
give non-existence results of stationary solutions in Lp, for 1 ≤ p ≤

3
2
.

1. Introduction

In this paper we consider the solutions to the three-dimensional steady state Navier–
Stokes equations in the whole space R

3,

(1.1)

{∇ · (U ⊗ U) + ∇P = ∆U + f

∇ · U = 0.

Here U = (U1, U2, U3) is the velocity, P the pressure and f = (f1, f2, f3) a given time
independent external force. Equation (1.1) will be complemented with a boundary condi-
tion at infinity of the form U(x) → 0 in a weak sense: typically, we express this condition
requiring that U belongs to some Lp spaces. Three problems will be addressed.

We will first establish the existence of solutions U ∈ Lp, with 3
2 < p ≤ ∞, to equations

(1.1) for (small) functions f as general as possible, and non-existence results in the range
1 ≤ p ≤ 3

2 .
Next we will study the asymptotic properties as |x| → ∞ for a relevant subclass of the

solutions obtained.
The third problem at hand is the stability of the solutions in the sense of solutions

to (1.1) being “fixed point” in Lp to the non-stationary incompressible Navier-Stokes
equations

(1.2)





∂tu + u · ∇u + ∇p = ∆u + f

∇ · u = 0

u(0) = u0
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where u, p are the time dependent velocity and pressure of the flow. We will show that
that small stationary solutions U of (1.1) will attract all global non-stationary solutions u
to (1.2) verifying mild regularity conditions, and emanating from possibly large data u0.
This will be achieved by first proving that a wide class of global solutions of (1.2) must
become small in L3,∞ after some time, and then applying the stability theory of small
solutions in L3,∞ as developed, e.g., in [8, 18, 28]. In addition, for small solutions, we
will extend the results on the stability in the existing literature by giving necessary and
sufficient conditions to have that u(t) → U in Lp as t → ∞.

The existence and stability of stationary solutions is well understood in the case of
bounded domains. See for example [9]. For related results in exterior domains we refer
the reader to [10, 11, 12, 15]. A wider list of references regarding connected literature can
be found in [3]. For example, the existence and the stability of stationary solutions in Lp

with p ≥ n, where n is the dimension of the space, is obtained in [22], under the condition
that the Reynolds number is sufficiently small, and in [18], [28] under the assumption that
the external force is small in a Lorentz space. Similar results in the whole domain R

n,
always for p ≥ n, have been obtained also in [17], [7], [8].

On the other hand, not so much can be found in the literature about the existence
and stability of stationary solutions in R

n with p < n. This problem have been studied
recently in the case n = 3 and p = 2 in [3]. In this paper we extend the results of [3] to the
range 3

2 < p ≤ ∞, and improve such results also in the case p = 2 by considering a more
general class of forcing functions. The methods in this paper differ completely from the
ones used in [3]. In the former paper the construction of solutions with finite energy was
based on a well known formal observation: if Φ is the fundamental solution for the heat
equation then

∫ ∞
0 Φ(t, ·) dt is the fundamental solution for Poisson’s equation. Using that

idea it was possible to make a time dependent PDE similar to the Navier-Stokes equation
with f as initial data with a solution that can be formally integrated in time to find a
solution of (1.1).

As we shall see, the conditions on f in the present paper which yield that U ∈ Lp are,
essentially, necessary and sufficient. This will be made possible by a systematic use of
suitable function spaces.

One could also complement the system (1.1) with different type of boundary condition
at infinity. For example, conditions of the form U(x) → U∞ as |x| → ∞, where U∞ ∈ R

3

and U∞ 6= 0 are also of interest. However the properties of stationary solutions satisfying
such condition are already quite well understood. We refer to the treatise of Galdi [13]
for a comprehensive study of this question. On the other hand, the understanding of the
problem in the case U∞ = 0, is still to a more primitive level.

For example, the construction of solutions obeying to the natural energy equality (ob-
tained multiplying the equation (1.1) by U and formally integrating by parts), without
putting any smallness assumption on f , is still an open problem. The main difficulty, for
example when Ω = R

3 (or when Poincaré’s inequality is not available), is that the usual a
priori estimate on the Dirichlet integral

‖∇U‖L2 ≤ ‖f‖Ḣ−1

ensures only that U ∈ Ḣ1 ⊂ L6: but to give a sense to the integral in the formal equality
∫ [

∇ · (U ⊗ U)
]
· U dx = 0

one would need, e.g., that U belongs also to L4.
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More generally, one motivation for developing the Lp theory (especially for low values
of p) of stationary solutions is that this provides additional information on the asymptotic
properties of U in the far field. On the other hand, condition like U ∈ Lp for large p are
usually easily recovered via the standard regularity theory, as bootstrapping procedures
show that weak solutions U ∈ Ḣ1 are regular if f is so. See also [22] for this case.

The paper will be organized as follows. After the introduction we have a section of
general notation, where we recall definitions of several function spaces which will be needed
in the sequel.

Section two deals with the existence of solutions in Lp, 3
2 < p ≤ ∞. Section three

addresses the pointwise behavior in R
3 of the solutions and the asymptotic profiles. We

note that the study of the asymptotic profiles has been dealt at large in the literature,
starting with the well known results of Finn [12] in exterior domains. Our results being in
the whole domain are simpler, but we are able to get them with weaker conditions. Non
existence results of (generic) solutions in U ∈ Lp, p ≤ 3

2 will also follow from such analysis.
Section three handles the stability of stationary solutions. More precisely in the setting

of the Navier–Stokes equation we investigate the stability of the stationary solution U in
the Lp and the Lorentz Lp,∞-norms. We consider a possibly large L3,∞ non-stationary
solution and a stationary solution U ∈ L3,∞ ∩ Lp or U ∈ L3,∞ ∩ Lp,∞ which is small in
L3,∞. We show that the non-stationary solution eventually becomes small in L3,∞ (but
does not converge to 0 in this space), we prove some decay estimates for it and we give a
necessary and sufficient condition to have that u(t) → U in Lp or Lp,∞.

1.1. Notations.

1.1.1. Function spaces. We recall that the fractional Sobolev spaces (or Bessel potential
spaces) are defined, for s ∈ R and 1 < p < ∞, as

Hs
p = {f ∈ S ′(R3) : F−1(1 + |ξ|2) s

2 f̂ ∈ Lp},
and their homogeneous counterpart is

Ḣs
p = {f ∈ S ′(R3) : F−1|ξ|sf̂ ∈ Lp}.

Their differential dimension is s − 3
p . We will only deal with the case s − 3

p < 0, so that

the elements of Ḣs
p can indeed be realized as tempered distributions. As usual, we will

simply write Hs and Ḣs instead of Hs
2 and Ḣs

2 for the classical Sobolev spaces.
The fractional Sobolev spaces can be identified with particular Triebel-Lizorkin spaces,

namely F s,2
p and Ḟ s,2

p . This identification will be useful, because it allows us to handle
the limit case for p = 1: the corresponding spaces are defined as above, but replacing L1

with its natural substitute, i.e., the Hardy space H1. Similarly, in the limit case p = ∞
one replaces L∞ space with BMO. The classical reference for function spaces is [27].

We will make extensive use of the Lorentz spaces Lp,q, with 1 < p < ∞ and 1 ≤ q ≤ ∞.
For completeness we recall their definition.

Let (X,λ) be a measure space. Let f be a scalar-valued λ-measurable function and

λf (s) = λ{x : f(x) > s}.
Then re-arrangement function f∗ is defined as usual by:

f∗(t) = inf{s : λf (s) ≤ t}.
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By definition, for 1 < p < ∞,

Lp,q(Rn) = {f : R
n → C, measurable : ‖f‖Lp,q < ∞},

where

‖f‖Lp,q =





q

p

[∫ ∞

0

(
t

1
p f∗(t)

)q
] 1

q

, if q < ∞,

sup
t>0

{t
1
p f∗(t)}, if q = ∞.

In particular, Lp,∞ agrees with the weak Lp space (or Marcinkiewicz space)

Lp∗ = {f : R
n → C, measurable ∋ ‖f‖Lp∗ < ∞}.

The quasi-norm

‖f‖Lp∗ = sup
t>0

t[λf (t)]
1
p

is equivalent to the norm on Lp,∞, for 1 < p < ∞.
Our measure λ will be chosen to be the Lebesgue measure. The Lebesgue measure of

a set A will be denoted by mes(A). For basic properties of these spaces useful reference
are also [29], [19]. It is well-known that the space Lp,q, 1 < p < ∞ and 1 ≤ q ≤ ∞, is
the interpolated space Lp,q = [L1, L∞]1− 1

p
,q. Here [·, ·]1− 1

p
,q denotes the interpolated space

by the real interpolation method. Using the reiteration theorem for interpolation, see [19,
Theorem 2.2], one has that Lp,q = [Lp1,q1, Lp2,q2]θ,q for all 1 < p1 < p2 < ∞, 1 ≤ q, q2, q2 ≤
∞, 0 < θ < 1 and 1

p = 1−θ
p1

+ θ
p2

. In particular, one has that Lp1,q1 ∩ Lp2,q2 ⊂ Lp,q for all

1 < p1 < p < p2 < ∞ and 1 ≤ q, q2, q2 ≤ ∞. The Hölder inequality in Lorentz spaces can
be stated in the following form.

Proposition 1.1. Suppose that

1 < p, p1, p2 < ∞, 1 ≤ q, q1, q2 ≤ ∞,
1

p
=

1

p1
+

1

p2
and

1

q
=

1

q1
+

1

q2
.

Then the pointwise product is a bounded bilinear operator from Lp1,q1 ×Lp2,q2 to Lp,q, from
Lp,q × L∞ to Lp,q and from Lp,q × Lp′,q′ to L1 where 1

p + 1
p′ = 1 and 1

q + 1
q′ = 1.

The proof of this proposition can be found in [19, Proposition 2.3]. The similar property
for convolution is proved in [19, Proposition 2.4] and reads as follows.

Proposition 1.2. Assume that

1 < p, p1, p2 < ∞, 1 ≤ q, q1, q2 ≤ ∞, 1 +
1

p
=

1

p1
+

1

p2
and

1

q
=

1

q1
+

1

q2
.

Then the convolution is a bounded bilinear operator from Lp1,q1 × Lp2,q2 to Lp,q, from
Lp,q × L1 to Lp,q and from Lp,q × Lp′,q′ to L∞ where 1

p + 1
p′ = 1 and 1

q + 1
q′ = 1.

We also recall the definition of the Morrey–Campanato spaces. In their homogeneous
version, for 1 ≤ q ≤ p, their elements are all the Lq

loc(R
3) functions f satisfying

‖f‖Mp,q = sup
x0∈R3

sup
R>0

R
3
p
− 3

q

(∫

|x−x0|<R
|f(x)|q dx

) 1
q

< ∞

We recall that

(1.3) Lp = Lp,p = Mp,p ⊂ Lp,∞ ⊂ Mp,q, 1 ≤ q < p < ∞,
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with continuous injections. The Mp,q spaces are of course increasing in the sense of the
inclusion as q decreases. On the other hand, the Lp,q- spaces increase with q.

For θ ≥ 0, we introduce the space Ėθ of all measurable functions (or vector field) f in
R

3, such that

‖f‖Ėθ
≡ ess supx∈R3 |x|θ|f(x)| < ∞.

1.1.2. Other notations. We denote by P = Id − ∇∆−1div the Leray projector onto the
divergence-free vector field. Notice that P is a pseudodifferential operator of order zero,
which is bounded in Hs

p, Ḣs
p and Lp,q, for 1 < p < ∞, 1 ≤ q ≤ ∞ and s ∈ R. Thus,

when f belongs to those spaces, the validity of an Helmholtz decomposition f = Pf +∇g
implies that one could assume, without restriction, that f is divergence-free.

However, we will not make this assumption in order to avoid unpleasant restrictions,
especially when working in weighted spaces (notice that P is not bounded in Ėθ) or in L1.
Indeed, it has some interest to consider integrable external forces with non-zero mean,
which prevents div f = 0.

2. Solutions in Lp(R3)

The equations (1.1) are left invariant by the natural scaling (U, p, f) 7→ (Uλ, pλ, fλ) for
all λ > 0 and Uλ = λU(λ·), Pλ = λ2P (λ·) and fλ = λ3f(λ·). Following a well established
procedure, not only for Navier–Stokes, we consider the following program:

(1) Existence: first construct (rough) solutions U in a scaling invariant setting, i.e. in
a functional space with the same homogeneity of L3 assuming that the norm of f is small
in a function space (as large as possible) with the same homogeneity of L1.

(2) Propagation: deduce from additional properties of f (oscillations, localization,. . . )
additional properties for U (localization, asymptotic properties,. . . ).

We will not discuss the propagation of the regularity since this issue is already well
understood (see [13]). For example for, not necessarily small, external forces belonging to

Ḣ−1 ∩ Hs, with s > 3
2 , one deduces that solutions with finite Dirichlet integral are twice

continuously differentiable and solve (1.1) in the classical sense.

Concerning the first part of this program, in order to give a sense to the nonlinearity one
wants to have U ∈ L2

loc. As noticed in [20], the largest Banach space X made of L2
loc(R

3)
functions, which is invariant under translations and such that ‖Uλ‖X = ‖U‖X , is the
Morrey–Campanato space M3,2. Therefore, the weakest possible smallness assumption
under which one can hope to apply the first part of the program should be

‖∆−1f‖M3,2 < ε.

However, it seems impossible to prove the existence of a solution under this type of
condition. Indeed, U ⊗ U would belong to M 3

2
,1, and the singular integrals involved in

equivalent formulations of (1.1) are badly behaved in Morrey spaces of L1
loc functions (see

the analysis of Taylor [25] and in particular Eq. (3.37) of his paper).
Here the situation is less favorable than for the free non-stationary Navier–Stokes equa-

tions, where the existence of a global in time solution can ensured if the initial datum of
the Cauchy problem is small in M3,2 (or even under more general smallness assumptions,
see [19]). The complication, in our case, arises from the lack of the regularizing effect of
the heat kernel.
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On the other hand, the above difficulty disappears in the slightly smaller spaces M3,q.
Indeed, Kozono and Yamazaki established the following result

Theorem 2.1 (See [17]). Let 2 < q ≤ 3. Then there exists a positive number δq and a
strictly monotone function ωq(δ) on [0, δq] satisfying ωq(0) = 0, such that the following
holds:

• For every f ∈ D′(R3) there exists at most one solution U in M3,q satisfying
‖U‖M3,q

< ωq(δq).

• For every tempered distribution f such that ∆−1f ∈ M3,q, and δ = ‖∆−1f‖M3,q
<

δq, there exists a solution U ∈ M3,q of (1.1), such that ‖U‖M3,q
≤ ωq(δ).

This result provides a satisfactory answer to Part 1 of the above program, but it seems
difficult to make progress in Part 2 using such functional setting. For example, a very
strong additional condition like f ∈ S0(R

3) (the space of functions in the Schwartz class
with vanishing moments of all order), and f small, but only in the M3,q-norm (with 2 <
q < 3), seems to imply no interesting asymptotic properties for U (such as U ∈ Lp with
low p).

On the other hand the M3,q spaces, as q ↑ 3, become very close to L3,∞ as can be
seen from relation (1.3). The purpose of our first theorem is to show that one can obtain
propagation results according to Part 2 of our program, by strengthening a little the
smallness assumption, and requiring that

(2.1) ‖∆−1f‖L3,∞ < ε1.

The continuous embedding of L3 into the weak space L3,∞ implies that condition (2.1)

will be fulfilled if, i.e., f ∈ Ḣ−2
3 with small Ḣ−2

3 -norm. Moreover, the continuous embed-
ding

Ḣ− 3
2 ⊂ Ḣ−2

3

shows that the case of forces f ∈ Ḣ− 3
2 with small Ḣ− 3

2 -norm is also encompassed by (2.1).
We now state our first theorem.

Theorem 2.2. There exists an absolute constant ε1 > 0 with the following properties:

• If f ∈ S ′(R3) is such that ∆−1f ∈ L3,∞ and satisfying condition (2.1), then there
exists a solution U ∈ L3,∞ of (1.1) such that

(2.2) ‖U‖L3,∞ ≤ 2‖∆−1
Pf‖L3,∞ .

(The uniqueness holds in the more general setting of Theorem 2.1).
• Let 3

2 < p < ∞. If U is the above solution then we have more precisely

U ∈ L3,∞ ∩ Lp if and only if Pf ∈ Ḣ−2
p .

In this case (and if p 6= 3) U ∈ Lq for all q such that 3 < q ≤ p (or p ≤ q < 3).
Moreover, U belongs to L3,∞ ∩ L∞ (respectively, U ∈ L3,∞ ∩ BMO) if and only

if ∆−1
Pf ∈ L∞ (respectively, ∆−1

Pf ∈ BMO).

Remark 2.3. Important examples of solutions that can be obtained through this theorem
are those corresponding to external forces f = (f1, f2, f3) with components of the form εδ,
where δ is the Dirac mass at the origin. Note that assumption (2.1) is fulfilled, because
∆−1f(x) = ε

|x|(c1, c2, c3), but the more stringent assumptions described right before the

theorem are not.
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In fact, due to the invariance under rotations of (1.1), in this case one can always fix
a coordinate system in a way such that f = (εδ, 0, 0). The solutions that one obtains
in this way are well-known: they are the axi-symmetric solutions (around the x1 axis)
discovered by Landau sixty years ago, with ordinary differential equations methods. These
are solutions that are singular at the origin — in fact the components of the velocity field
are homogeneous functions of degree −1 — and smooth outside zero. They can also be
seen as self-similar stationary solutions of the non-stationary Navier–Stokes equations.

We refer to [7] for an explicit expressions and other interesting properties about these
solutions and to [24] (see also [26]) for related uniqueness results.

Remark 2.4. The particular case p = 2 is physically relevant since it corresponds to finite
energy solutions. The conclusion U ∈ L2 was obtained by Bjorland and Schonbek [3],

under the assumption f ∈ L2 ∩ Ḣ−2−δ for some δ > 0 (plus some smallness condition
on f). Part (2) of Theorem 2.2 improves this result. Indeed the same conclusion can be

reached under the more general conditions (2.1) and f ∈ Ḣ−2. In particular, it follows

that f ∈ Ḣ− 3
2 ∩ Ḣ−2 with f small in Ḣ− 3

2 would be enough.

Roughly speaking, for f ∈ Ḣ− 3
2 , the additional requirement f ∈ Ḣ−2 (which turns out

to be also necessary for obtaining U ∈ L2, up to a modification of f with an additive
potential force, which in any case would change only the pressure of the flow), is formally

equivalent to the additional vanishing condition f̂(ξ) = o(|ξ| 12 ) as |ξ| → 0.

Remark 2.5. The first conclusion of Theorem 2.2 bears some relations with the work
of Kozono and Yamazaki [18] and Yamazaki [28], where they also obtained existence
results of (possibly non-stationary) solutions in Lorentz-spaces and in unbounded domains.
However, the assumptions in [18, 28] on the external force reads f = divF , with F small

in L
3
2
,∞. This is more stringent than our condition 2.1 because it involves one additional

derivative.
The first part of Theorem 2.2 is also related to the work of Cannone and Karch [8].

There, the authors constructed non-stationary solutions of Navier–Stokes in the whole
space in L∞

t (L3,∞) with initial data small in L3,∞ and external force such that

sup
t>0

∥∥∥∥
∫ t

0
e(t−s)∆

Pf(s) ds

∥∥∥∥
L3,∞

is small. With some modifications of their proofs it would be possible deduce the first
conclusion of our theorem from their result, by considering time-independent external
forces (in this case the above condition boils down to (2.1)). We prefer however to give
a self-contained proof directly in the stationary case, because this allows us to obtain
necessary and sufficient conditions. Moreover, none of the these papers addressed the
construction of solution in Lp with p < 3.

Proof. We use a method of mixed bilinear estimates, inspired from [16]. Let us set

U0 ≡ −∆−1
Pf, B(U, V ) ≡ ∆−1

P∇ · (U ⊗ V ).

Then the system (1.1) can be rewritten as

(2.3) U = U0 + B(U,U)

and the solutions of this equations are indeed weak solutions of (1.1). This equation can
be solved applying the standard fixed point method in space L3,∞. For this purpose we
recall a well known fixed point Lemma for bilinear forms. The proof can be found in [6].
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Lemma 2.6. Let X be a Banach space and B : X × X → X a bilinear map. Let ‖ · ‖X

denote the norm in X. If for all x1, x2 ∈ X one has

‖B(x1, x2)‖X ≤ η‖x1‖X‖x2‖X .

Then for for all y ∈ X satisfying 4η‖y‖X < 1, the equation

x = y + B(x, x),

has a solution x ∈ X satisfying and uniquely defined by the condition

‖x‖X ≤ 2‖y‖X .

Remark 2.7. The proof of this lemma also shows that x = lim
k→∞

xk where the approximate

solutions xk are defined by x0 = y and xk = y +B(xk−1, xk−1). Moreover ‖xk‖X ≤ 2‖y‖X

for all k.

We have the estimate

(2.4) ‖B(U, V )‖L3,∞ ≤ C1‖U‖L3,∞‖V ‖L3,∞ ,

for some C1 > 0 independent on U and V . Note that an estimate similar to (2.4) has been
proved e.g. by Meyer in [20] in the case of the non-stationary Navier–Stokes equations
(the bilinear operator B is slightly different in that case).

To prove (2.4), we only have to observe that the symbol m̂(ξ) of the pseudo-differential
operator ∆−1

Pdiv is a homogeneous function of degree −1, such that m̂(ξ) ∈ C∞(R3\{0}).
Thus, the corresponding kernel m is a homogeneous function of degree −2, smooth outside
the origin (more precisely m = (mj,h,k)j,h,k=1,2,3 and mj,h,k are homogeneous functions of
degree −2).

In particular,

B(U, V ) = m(D)(U ⊗ V ) with m ∈ L
3
2
,∞.

Thence,

(2.5) ‖m(D)v‖Lp2 ,q1 ≤ C(p1, q1)‖v‖Lp1 ,q1 , 1
p2

= 1
p1

+ 2
3 − 1,

{
1 < p1 < 3,

1 ≤ q1 ≤ ∞,

by the Young inequality stated in Proposition 1.2. Applying this to v = U ⊗ V and

using Proposition 1.1 to deduce that for U, V ∈ L3,∞ one has that v ∈ L
3
2
,∞, we get

estimate (2.4) with C1 = C(3
2 ,∞). Hence by Lemma 2.6 it follows that, provided that

4‖U0‖C1 < 1, there exists a solution of (2.3) satisfying (2.2).

To prove Part 2, we make use of approximate solutions of Φ(U) = U0 + B(U,U). That
is we choose a sequence satisfying Uk = U0 + B(Uk−1, Uk−1) and use Remark 2.7 to state
that Uk → U in L3,∞ as k → ∞. We show now that

(2.6) ‖B(Uk, Uk)‖Lp ≤ C(p)‖Uk‖L3,∞‖Uk‖Lp , 3
2 < p < ∞,

valid for some positive function p 7→ C(p), continuous on (3
2 ,∞). To obtain this estimate

we use the Hölder inequality given in Proposition 1.1 to deduce that ‖Uk ⊗ Uk‖
L

3p
3+p

,p
≤

C2(p)‖Uk‖Lp‖Uk‖L3,∞ . Relation (2.5) for p1 = 3p
3+p and q1 = p completes the proof of

(2.6).
By Part 1, applied to the approximations Uk, we know that ‖Uk‖L3,∞ ≤ 2‖U0‖L3,∞ .

Choose ‖U0‖L3,∞ ≤ c0ε1, then we get from (2.6), for 3
2 < p < ∞

(2.7) ‖Uk+1‖Lp ≤ ‖U0‖Lp + 2c0C(p)ε1‖Uk‖Lp .
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If Pf ∈ Ḣ−2
p , then U0 ∈ Lp and so, by induction, ‖Uk‖Lp < ∞ for all k. Provided

2c0C(p)ε1 < 1, iterating inequality (2.7) implies that Uk is uniformly bounded in Lp with
respect to k, and hence U ∈ Lp.

However, C(p) blows up as p → 3
2 or p → ∞, and we want to have a smallness assump-

tion independent of p. To circumvent this difficulty, we replace, if necessary, the constant
ε1 of Part 1 of the theorem with a smaller absolute constant (still denoted ε1), in a such
way that 2c0ε1 < 1/ sup2≤p≤7 C(p). Then the above argument yields the conclusion of the
“if part” of the theorem in the case 2 ≤ p ≤ 7. To prove the “only if” part one simply
uses estimate (2.6) with Uk = U .

Let us now consider the case Pf ∈ Ḣ−2
p , 3

2 < p < 2. Then U0 ∈ Lp ∩ L3,∞ and

by interpolation U0 ∈ L2, so using the case 2 ≤ p ≤ 7 we get that U ∈ L2. On the

other hand, according to Proposition 1.2 the space L
3
2
,∞ is stable under convolution with

L1-functions so
B(U,U) = m(D)(U ⊗ U) ∈ L

3
2
,∞.

But from estimate (2.4) we know that B(U,U) ∈ L3,∞. By interpolation, B(U,U) ∈ Lp.
Combining this with equality (2.3) yields U ∈ Lp. Conversely, suppose that U ∈ Lp. Since
we already know that the solution U ∈ L3,∞, we deduce by interpolation that U ∈ L2.
The argument above shows that B(U,U) ∈ Lp. Hence by (2.4) it follows that U0 ∈ Lp,

and this, in turn is equivalent to Pf ∈ Ḣ−2
p .

We now consider the case U0 ∈ Lp with 7 < p ≤ ∞ (this is equivalent to Pf ∈ Ḣ−2
p

if p < ∞). Since U0 ∈ L3,∞, we have by interpolation that U0 ∈ L4 ∩ L7. From the
previous case, we infer that U ∈ L4 ∩ L7. By interpolation, we also have that U ∈ L6,2.
Using Proposition 1.1 this implies that U ⊗U ∈ L3,1, so from Proposition 1.2 and recalling

m ∈ L
3
2
,∞ we get that

B(U,U) = m(D)(U ⊗ U) ∈ L∞.

But we also know that B(U,U) ∈ L3,∞, so by interpolation B(U,U) ∈ Lp. From (2.3) we
conclude that U ∈ Lp. The same argument also shows that U ∈ Lp implies U0 ∈ Lp.

Finally, the BMO case follows in the same way. Indeed, the argument above shows that
if U0 or U belong to BMO, then B(U,U) ∈ L∞. But L∞ ⊂ BMO, so B(U,U) ∈ BMO.
From relation (2.3) we see that U ∈ BMO iff U0 ∈ BMO. This completes the proof of
Theorem 2.2. �

Remark 2.8. With the same proof, one can show the following equivalent condition for
the stationary solution U constructed in Theorem 2.2 to belong to Lp,r. If p ∈ (3

2 ,∞) and

r ∈ [1,∞] then U ∈ Lp,r if and only if ∆−1
Pf ∈ Lp,r.

3. Pointwise behavior in R
3 and asymptotic profiles

In the previous section we dealt with forces such that ∆−1f ∈ L3,∞. Since the typical
example of a function in L3,∞ is |x|−1, it is natural to ask which supplementary properties
are satisfied by the solution when |∆−1f(x)| ≤ ε|x|−1. The theorem below provides a
rather complete answer.

In particular, we will obtain exact asymptotic profiles in the far field for decaying
solutions of (1.1). Starting with the work of Finn (see [12] and the references therein), a
lot is known about the spatial asymptotics of stationary solutions in unbounded domains.
The case of the whole space that we treat in this section is of course simpler than the case
of exterior domains or aperture domains considered e.g. in [13]. Nevertheless, focusing on
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this case allow us to put weaker (and more natural) smallness assumptions on the force,
thus providing a more transparent presentation of the problem.

Before stating our next theorem, let us observe that, despite the unboundedness of P

in the Ėθ spaces, it is fairly easy to ensure e.g. that ∆−1
Pf ∈ Ė1. Indeed, one has for

example that

(3.1) ‖∆−1
Pf‖Ė1

≤ C(‖f‖Ė3
+ ‖f‖L1).

Notice that all the norms in inequality (3.1) are invariant under scaling. The above
inequality can be proved with a simple size estimate (using that ∆−1

P is a convolution

operator with a kernel m̃ satisfying |m̃(x)| ≤ C|x|−1). The same conclusion ∆−1
Pf ∈ Ė1

can be obtained also via the Fourier transform (using classical results in [23]), assuming,
e.g., f = ∇ · F where F is a two dimensional tensor with homogeneous components of
degree −2, smooth outside the origin.

Before stating the next theorem, we recall that one has the imbedding Ė1 →֒ L3,∞, so
a smallness assumption in the space Ė1 implies a smallness assumption in L3,∞

Theorem 3.1. There exists an absolute constant ε2 > 0 (with ε2 a priori smaller than
the constant ε1 of Theorem 2.2) such that:

• If f ∈ S ′(R3) is such that ∆−1
Pf ∈ Ė1 and ‖∆−1

Pf‖Ė1
< ε2, then the solution

U ∈ L3,∞ obtained in Theorem 2.2 satisfies

‖U‖Ė1
≤ 2‖∆−1

Pf‖Ė1
.

• Let 0 ≤ θ ≤ 2. Under the additional assumption ∆−1
Pf ∈ Ėθ, we have also

U ∈ Ėθ.
• In particular, if ∆−1

Pf ∈ Ė0 ∩ Ė2, with small Ė1-norm, then U satisfies the
pointwise estimate

|U(x)| ≤ C(1 + |x|)−2.

In this case the solution U has the following profile as |x| → ∞:

(3.2) U(x) = −∆−1
Pf(x) + m(x) :

( ∫
U ⊗ U

)
+ O

(
|x|−3 log(|x|)

)
,

where m = (mj,h,k) is the kernel of ∆−1
Pdiv and mj,h,k(x) are homogeneous func-

tions of degree −2, C∞ outside zero. Furthermore,

(3.3) m(x) :
(∫

U ⊗ U
)
≡ 0 if and only if ∃ c ∈ R s.t.

∫
UhUk = c δh,k,

for h, k = 1, 2, 3, where δh,k = 0 or 1 if h 6= k or h = k.

Remark 3.2. Let us be more explicit with our notation: by definition, for j = 1, 2, 3,

[
m :

∫
(U ⊗ U)

]
j

=
3∑

h,k=1

mj,h,k

(∫
UhUk

)
.

Moreover mj,h,k(x) = ∂hMj,k(x), where Mj,k is the tensor appearing in the fundamental
solution of the Stokes equation. The computation of M goes back to Lorentz (1896).
See [13, Vol. I, p. 190] for the explicit formula.
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Remark 3.3. For example, it follows from this theorem that, if f ∈ S(R3) is such that

0 6∈ suppf̂ and f satisfies the previous smallness assumption, then

U(x) ≃ m(x) :

(∫
U ⊗ U

)
, as |x| → ∞

provided that the right-hand side does not vanish. Indeed, we have in this case ∆−1
Pf ∈

S(R3). In particular |U(x)| ≤ C(1 + |x|)−2. But the improved estimate U(x) = o(|x|−2)
as |x| → ∞ holds if and only if the flow satisfies the orthogonality relations (3.3). Of
course, generically it is not the case. This implies the optimality of the restriction θ ≤ 2 in
Theorem 3.1 as well as the optimality of the restriction p > 3

2 appearing in Theorem 2.2.

It is possible to relax the condition that 0 6∈ suppf̂ assuming, instead that |f̂(ξ)| ≤ C|ξ|k
for a sufficiently large k > 0. As noticed in [3], this is essentially an oscillatory condition
on f , describing the large time behavior of the solution of the Cauchy problem for the
heat equation.

Remark 3.4. Examples of (exceptional) stationary flows satisfying the orthogonality re-
lations (3.3), and such that U(x) = O

(
|x|−3 log(|x|)

)
, are easily constructed by taking

f satisfying the assumptions of the previous remark and additional suitable symmetries.
An axi-symmetry condition would not be enough: one rather needs here polyhedral-type
symmetries. The suitable symmetries to be imposed on f can be classified exactly as done
in [4], in the case of the non-stationary Navier–Stokes equations. For example the two
conditions Rf(x) = f(Rx) and Sf(x) = f(Sx) where R,S are the orthogonal transforma-
tions in R

3 R : (x1, x2, x3) 7→ (x2, x3, x1) and S : (x1, x2, x3) 7→ (−x1, x2, x3) are sufficient.
See [4] for explicit examples of this type of vector fields.

On the other hand, explicit examples of solutions U = Uf which do not satisfy the
orthogonality relations can be obtained simply by taking f = ηf0 with η > 0 sufficiently
small and f0 ∈ Ḣ−2 satisfying the conditions of Part 2 of Theorem 2.2 with p = 2 (this
implies that Uf0 ∈ L2). If, in addition, there is no c ∈ R such that

∫
(∆−1

Pf0)h(∆−1
Pf0)k = c δh,k,

then Uf cannot satisfy the orthogonality relations, provided η > 0 is small enough. The
proof of this claim relies on an argument that has been used in [5] in the setting of the non-
stationary Navier–Stokes equations. These observations lead us to the following theorem,
containing the announced non-existence result of generic solutions in Lp, p ≤ 3

2 .

Theorem 3.5. Let f0 = (f1, f2, f3) be a divergence-free vector field such that f̂ ∈ C∞
0 (R3)

and 0 6∈ supp(f). Assume also that the matrix

(∫
(f̂0)j(f̂0)k

|ξ|4 dξ

)

j,k

is not a scalar multiple of the identity. Then there exists η0 > 0 such that the solution
of (1.1) with f = ηf0 satisfies |U(x)| ≤ C(1 + |x|)−2, and U 6∈ Lp(R3) for all 1 ≤ p ≤ 3

2
and 0 < η ≤ η0.

Proof of Theorem 3.1. We already have, by Theorem 2.2, a solution in L3,∞. To see that
such solution belongs more precisely, to Ė1 we only have to prove the estimate

(3.4) ‖B(U, V )‖Ė1
≤ C‖U‖Ė1

‖V ‖Ė1
,
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for some C > 0 independent on U and V . Indeed, an application of Lemma 2.6 shows
the existence and the uniqueness of the solution U in Ė1. This solution also belongs to
L3,∞ since Ė1 ⊂ L3,∞. Of course, the re-application of the fixed point argument requires
that we replace the constant ε1 > 0 of Theorem 2.2 by a smaller one. Relation (3.4) is a
particular case of the following lemma:

Lemma 3.6. Let θ1, θ2 be two real numbers such that 1 < θ1 + θ2 < 3. There exists a
constant C such that

‖B(U, V )‖Ėθ1+θ2−1
≤ C‖U‖Ėθ1

‖V ‖Ėθ2
.

Moreover

‖B(U,U)‖Ė2
≤ C(‖U‖2

Ė 3
2

+ ‖U‖2
L2).

Proof. Recall that B(U, V ) = m ∗ (U ⊗V ) with m homogeneous of degree −2. We decom-
pose

B(U, V ) =
(∫

|y|≤ |x|
2

+

∫

|x|
2
≤|y|≤2|x|

+

∫

|y|≥2|x|

)
m(x − y) : (U ⊗ V )(y) dy

= I1 + I2 + I3.

Recalling that |m(x − y)| ≤ C|x − y|−2, we can bound

|I1| ≤ C‖U‖Ėθ1
‖V ‖Ėθ2

∫

|y|≤ |x|
2

1

|x − y|2|y|θ1+θ2
dy

≤ C

|x|2 ‖U‖Ėθ1
‖V ‖Ėθ2

∫

|y|≤ |x|
2

1

|y|θ1+θ2
dy ≤ C

|x|θ1+θ2−1
‖U‖Ėθ1

‖V ‖Ėθ2
,

|I2| ≤ C‖U‖Ėθ1
‖V ‖Ėθ2

∫

|x|
2
≤|y|≤2|x|

1

|x − y|2|y|θ1+θ2
dy

≤ C

|x|θ1+θ2
‖U‖Ėθ1

‖V ‖Ėθ2

∫

|x|
2
≤|y|≤2|x|

1

|x − y|2 dy ≤ C

|x|θ1+θ2−1
‖U‖Ėθ1

‖V ‖Ėθ2
,

and

|I3| ≤ C‖U‖Ėθ1
‖V ‖Ėθ2

∫

|y|≥2|x|

1

|x − y|2|y|θ1+θ2
dy

≤ ‖U‖Ėθ1
‖V ‖Ėθ2

∫

|y|≥2|x|

1

|y|θ1+θ2+2
dy ≤ C

|x|θ1+θ2−1
‖U‖Ėθ1

‖V ‖Ėθ2
,

This proves the first part. To prove the second part, we decompose B(U,U) in the same
way and we estimate I2 and I3 in the same manner. We write for I1

|I1| ≤ C

∫

|y|≤ |x|
2

1

|x − y|2 |U(y)|2 dy ≤ C

|x|2
∫

|y|≤ |x|
2

|U(y)|2 dy ≤ C

|x|2 ‖U‖2
L2 .

�

Let us now prove Part 2 of Theorem 3.1. We have the additional information ∆−1
Pf ∈

Ėθ. We argue as in the proof of Theorem 2.2. That is we define Φ(U) = U0 +B(U,U) and
we choose a sequence satisfying Uk = Φ(Uk−1). From Lemma 3.6 we have the estimate

‖B(Uk, Uk)‖Ėθ
≤ Cθ‖Uk‖Ė1

‖Uk‖Ėθ
, 0 < θ < 2,
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for some positive function θ 7→ Cθ, continuous on (0, 2). As in Theorem 2.2 part 2 it

follows that the sequence of approximate solutions Uk remains bounded in Ėθ, provided
that ∆−1

Pf ∈ Ėθ, for some θ ∈ (0, 2), and

2Cθ‖∆−1
Pf‖Ė1

< 1.

The continuity of Cθ allows to obtain the conclusion of the theorem (with a smallness as-
sumption independent on θ), at least for e.g. θ ∈ [12 , 7

4 ]. We had to exclude a neighborhood
of θ = 0 and of θ = 2, where Cθ blows-up.

In the case 7
4 < θ ≤ 2, we know that ∆−1

Pf ∈ Ė1∩Ėθ ⊂ Ė1∩Ė 7
4
. So, from the previous

case we deduce that the solution U satisfies U ∈ Ė1 ∩ Ė 7
4
⊂ L2 ∩ Ė 3

2
. Using again Lemma

3.6 we infer that B(U,U) ∈ Ė2. But we also know that B(U,U) ∈ Ė1 so B(U,U) ∈ Ėθ.
The conclusion in the case 7

4 < θ ≤ 2 now follows from equation (2.3).

It remains to consider the case 0 < θ < 1
2 (the case θ = 0 is contained in Theorem 2.2,

since Ė0 = L∞). As above, we show that U ∈ Ė 1
2
∩ Ė1 so U ∈ Ė θ+1

2
. From Lemma 3.6 we

get that B(U,U) ∈ Ėθ so U ∈ Ėθ. The proof of Part 2 of Theorem 3.1 is now completed.

Let us prove Part 3. We will show using decay properties of m and a Taylor expansion
that for any solution such that |U(x)| ≤ C(1 + |x|)−2, we have

(3.5) ∆−1
P∇ · (U ⊗ U)(x) = m(x) :

∫
U ⊗ U + O

(
|x|−3 log(|x|)

)
, as |x| → ∞.

But,

∆−1
P∇ · (U ⊗ U)(x) =

∫
m(x − y) : U ⊗ U(y) dy

=m(x) :

∫
U ⊗ U − m(x) :

∫

|y|≥|x|/2
U ⊗ U

+

∫

|y|≤|x|/2
[m(x − y) − m(x)] : U ⊗ U(y) dy

+

∫

|x−y|≤|x|/2
m(x − y) : U ⊗ U(y) dy

+

∫

|y|≥|x|/2, |x−y|≥|x|/2
m(x − y) : U ⊗ U(y) dy.

The only properties on the kernel m that we will use are |m(x)| ≤ C|x|−2 and |∇m(x)| ≤
C|x|−3. We need to show that all the terms on the RHS of the last inequality (excepted the

first one) are bounded by C|x|−3 log |x| for large |x|. This follow easily since U ∈ L2 ∩ Ė2.
For large |x|, the second, the fourth and the last term on the right-hand side are in fact
bounded by C|x|−3. The third term is bounded by C|x|−3 log |x|, for large |x|, as it can be
checked applying the Taylor formula to m. This implies both the asymptotic profiles (3.5)
and (3.2)

To conclude, it remains to show that the homogeneous functions
∑

h,k

mj,h,k(x)

∫
UhUk, j = 1, 2, 3,

vanish identically if and only if the matrix
∫

U ⊗U is a scalar multiple of the identity. We
reproduce a computation similar to that in [21]: taking the Fourier transform, the above
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vanishing condition is proved to be equivalent to
∑

h,k

m̂j,h,k(ξ)

∫
UhUk =

∑

h

iξh

|ξ|2
∫

UjUh −
∑

h,k

iξjξhξk

|ξ|4
∫

UhUk = 0, for a.e. ξ ∈ R
3.

The conclusion is now obvious.
�

We end this section with the proof of Theorem 3.5.

Proof of Theorem 3.5. We start by choosing η0 sufficiently small such that

η0‖∆−1
Pf0‖L3,∞ ≤ ε1,

where ε1 is the smallness constant from Theorem 2.2. According to Theorem 2.2, for
0 < η ≤ η0 there exists a unique solution U ∈ L3,∞ ∩ L2 of (1.1) with f = ηf0 such that
‖U‖L3,∞ ≤ 2η‖∆−1

Pf0‖L3,∞ . It suffices to show that the orthogonality relations (3.3) does
not hold true for U .

Let W0 = −∆−1
Pf0 and U0 = ηW0. The hypothesis implies that the matrix

∫
W0 ⊗W0

is not a scalar multiple of the identity. This means that there exists j 6= k such that either∫
W j

0 W k
0 6= 0 or

∫
|W j

0 |2 6=
∫
|W k

0 |2, where W j
0 denotes the j-th component of W0. We

will suppose that
∫

W j
0 W k

0 6= 0, the other case being entirely similar.
We have

(3.6)
∣∣
∫

U jUk −
∫

U j
0Uk

0

∣∣ =
∣∣
∫

(U j − U j
0 )Uk +

∫
U j

0 (Uk − Uk
0 )

∣∣

≤ ‖U − U0‖L2(‖U‖L2 + ‖U0‖L2)

From (2.3) and (2.6) with p = 2 and Uk replaced by U we deduce that

(3.7) ‖U − U0‖L2 = ‖B(U,U)‖L2 ≤ C(2)‖U‖L2‖U‖L3,∞ ≤ 2C(2)η‖W0‖L3,∞‖U‖L2 .

Therefore

‖U‖L2 ≤ ‖U0‖L2 + ‖U − U0‖L2 ≤ η‖W0‖L2 + 2C(2)η0‖W0‖L3,∞‖U‖L2 .

If we further strengthen the smallness assumption on η0 by

η0 ≤ 1

4C(2)‖W0‖L3,∞

we get that

‖U‖L2 ≤ 2η‖W0‖L2 .

Relation (3.7) combined with the previous estimate implies that

‖U − U0‖L2 ≤ 4C(2)η2‖W0‖L3,∞‖W0‖L2 .

Using the two previous bounds in (3.6) implies that

∣∣
∫

U jUk − η2

∫
W j

0 W k
0

∣∣ ≤ 12C(2)η3‖W0‖L3,∞‖W0‖2
L2 .

Finally

∣∣
∫

U jUk
∣∣ ≥ η2

∣∣
∫

W j
0 W k

0

∣∣ −
∣∣
∫

U jUk − η2

∫
W j

0 W k
0

∣∣

≥ η2
∣∣
∫

W j
0 W k

0

∣∣ − 12C(2)η3‖W0‖L3,∞‖W0‖2
L2 > 0
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if we further assume that

η0 ≤
∣∣∫ W j

0 W k
0

∣∣
24C(2)‖W0‖L3,∞‖W0‖2

L2

.

�

4. Stability of the Stationary Solutions

Consider now a mild formulation of the Navier-Stokes equations with time independent
forcing function f satisfying, as usual, to a smallness condition as in (2.1),

(4.1) u(t) = et∆u0 +

∫ t

0
e(t−s)∆

Pf ds −
∫ t

0
e(t−s)∆

P∇ · (u ⊗ u)(s) ds.

The two main goals of this section are the following. First we want establish conditions
on u0 to ensure that the above system has a solution u ∈ L∞(R+, Lp,∞). Next, we want
to find the largest possible class of solutions u to (4.1) for which we can say that u(t)
converges to the steady solution U given by Theorem 2.2 corresponding to the same
force f . This class will be general enough to include non-stationary solutions in L3,∞

with large initial data. We will show in particular that a priori global solutions, verifying
a mild regularity condition but initially large in L3,∞, become small in L3,∞ after some
time. Only the singularity at infinity of the initial velocity needs to be small in some sense
which is made rigorous in (4.17). For example, we allow an initial velocity u0 bounded by
C/|x| everywhere and bounded by ε/|x| for large x, with C arbitrary and ε small.

We recall that a priori large non-stationary solutions in Ḃ
−1+ 3

p
p,q and V MO−1 of the

Navier–Stokes equations without forcing are known to converge to 0 in these spaces (see
[14, 1]). However, in our case, convergence to 0 will not necessarily hold true for ‖u(t) −
U‖L3,∞ , due to the fact that the smooth function in S(R3) are not dense in L3,∞. Thus,
only weaker convergence results should be expected.

Theorem 4.3 collects our results on the stability of small solutions u, extending, for flows
in R

3 with time independent forcing term, those of [2, 8, 18, 28] to the case 3
2 < p < 3,

and providing some additional information also for p > 3. Theorem 4.7 contains the
convergence result of large solutions u to small stationary solutions U . Its proof relies
on some energy estimates inspired by [14, 1] and on the results on the stability of small
solutions prepared in Theorem 4.3.

To begin we first recall a lemma which will be useful for estimating the integral terms
on the RHS of (4.1) in Lp,∞ spaces. Variants of this lemma can be found in [20], in a
slightly less general form, and in [19].

Lemma 4.1. Given any p ∈ (3
2 ,∞) let q = 3p

p+3 . For 0 ≤ σ < t, the operator

L̃σ(φ)(t) =

∫ t

σ
e(t−s)∆

P∇ · φ(s) ds

satisfies

(4.2) ‖L̃σ(φ)(t)‖Lp,∞ ≤ C(p) sup
0<s<t

‖φ(s)‖Lq,∞

where C(p) denotes a constant independent of σ.

Proof. Let F (t) be the kernel of the operator et∆
Pdiv. First recall the rescaling relation

F (x, t) = t−2F (x/
√

t, 1)
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and that F (·, 1) ∈ L1 ∩ L∞.
We consider separately the following two pieces.

A1 =

∫ t

t−λ∗

F (t − s) ∗ φ(s) ds and A2 =

∫ t−λ∗

σ
F (t − s) ∗ φ(s) ds.

The idea of the estimate is to find, given any fixed λ, a λ∗ so that |A2| < λ/2. With this

choice of λ∗ we can estimate the Lebesgue measure of the set {x : L̃σ(φ)| > λ} in terms
of A1 only. In that direction we establish two preliminary estimates. The first is a an
application of Young’s inequality stated in Proposition 1.2:

‖A2‖L∞ ≤ C

∫ t−λ∗

σ
‖F (t − s)‖Lα,1‖φ‖Lq,∞ ds

Here, α = 3p
2p−3 . The estimate ‖F (t − s)‖Lα,1 ≤ C(t − s)

−1− 3
2p (that follows from the

rescaling properties of F ) implies

(4.3) ‖A2‖L∞ ≤ C(p)(λ∗)−
3
2p ‖φ‖Xσ,t

q
.

Here we have introduced the notation Xσ,t
q = L∞((σ, t), Lq,∞). Similarly, ‖F (t − s)‖L1 ≤

(t − s)−
1
2 and

(4.4) ‖A1‖Lq,∞ ≤
∫ t

t−λ∗

‖F (t − s)‖L1‖φ‖Lq,∞ ds ≤ (λ∗)
1
2 ‖φ‖Xσ,t

q
.

We proceed with the bound for ‖L̃σ(φ)‖Lp,∞ . Using the definition of the norm and the
triangle inequality,

‖L̃σ(φ)(t)‖Lp,∞ ≤ sup
λ>0

λmes{x : |A1| + |A2| > λ}
1
p

For each λ > 0 we may choose λ∗ such that the RHS of (4.3) is equal to λ/2. With this
choice of λ∗,

λmes{x : |A1| + |A2| > λ}
1
p ≤ λmes{x : |A1| > λ/2}

1
p

Also, using (4.4):

λmes{x : |A1| > λ/2}
1
p ≤ λ

1− q

p ‖A1‖
q

p

Lq,∞ ≤ C‖φ‖Xσ,t
q .

Taking the supremum over all λ > 0 establishes (4.2).
�

The following lemma concerns the large time behavior in L3,∞ of solutions of the heat
equation. It will provide a better understanding of the statements of our two next theo-
rems.

Lemma 4.2. Let f ∈ L3,∞.

• Let ε > 0 be arbitrary. Then f can be decomposed as f = f1 + f2 with f1 ∈ L2 and

‖f2‖L3,∞ < ε if and only if lim sup
R→0

R mes{|f | > R} 1
3 < ε.

• If lim
R→0

R mes{|f | > R} 1
3 = 0 then et∆f → 0 in L3,∞ as t → ∞.

• There exists some g ∈ L3,∞ such that et∆g → 0 in L3,∞ as t → ∞ and such that

lim sup
R→0

R mes{|g| > R} 1
3 6= 0.
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Proof. Assume first that f = f1 + f2 with f1 ∈ L2 and ‖f2‖L3,∞ ≤ ε. We estimate

mes{|f1| > R} ≤ 1

R2

∫

R3

|f1|2

so that lim sup
R→0

R mes{|f1| > R} 1
3 = 0. Since we also have that

lim sup
R→0

Rmes{|f2| > R} 1
3 ≤ sup

R>0
R mes{|f2| > R} 1

3 = ‖f2‖L3,∞ < ε

we infer that lim sup
R→0

R mes{|f | > R} 1
3 < ε.

Conversely, assume that lim sup
R→0

R mes{|f | > R} 1
3 < ε. There exists Rε such that

sup
0<R<Rε

R mes{|f | > R} 1
3 < ε.

We set f1 = fχ{|f |>Rε} and f2 = fχ{|f |≤Rε} where χ denotes the characteristic function.
Clearly |f2| ≤ Rε and |f2| ≤ |f | so that

‖f2‖L3,∞ = sup
0<R<Rε

R mes{|f2| > R} 1
3 ≤ sup

0<R<Rε

R mes{|f | > R} 1
3 < ε.

It remains to show that f1 ∈ L2(R3). Let Nε ∈ Z be such that Rε > 2Nε . Then

{|f | > Rε} ⊂
⋃

n≥Nε

{2n < |f | ≤ 2n+1}

so
∫

R3

|f1|2 =

∫

{|f |>Rε}
|f |2 ≤

∞∑

n=Nε

∫

{2n<|f |≤2n+1}
|f |2 ≤

∞∑

n=Nε

4n+1 mes {2n < |f |}

≤
∞∑

n=Nε

4

2n
‖f‖3

L3,∞ < ∞.

This shows the first part of the lemma.

Assume now that lim
R→0

R mes{|f | > R} 1
3 = 0 and let ε > 0 be arbitrary. Using the first

part we decompose f = f1 + f2 with f1 ∈ L2 and ‖f2‖L3,∞ < ε. The standard decay

estimates for the heat equation implies that ‖et∆f1‖L3,∞ < Ct−
1
4 ‖f1‖L2 → 0 as t → ∞.

Moreover, ‖et∆f2‖L3,∞ ≤ ‖f2‖L3,∞ < ε. We infer that

lim sup
t→∞

‖et∆f‖L3,∞ ≤ lim sup
t→∞

(‖et∆f1‖L3,∞ + ‖et∆f2‖L3,∞) ≤ ε.

Letting ε → 0 yields lim sup
t→∞

‖et∆f‖L3,∞ = 0, as required.

To prove the third part of the lemma, we choose

g(x) =
ei|x|2

〈x〉 , 〈x〉 = (1 + |x|2) 1
2 .

It is a straightforward calculation to check that

lim sup
R→0

R mes{|g| > R} 1
3 =

(4π

3

) 1
3 .
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On the other hand, we will show that e
1
4
∆g ∈ L2 which by the decay estimates for the

heat equation implies that ‖et∆g‖L3,∞ < C(t − 1
4)−

1
4 ‖e 1

4
∆g‖L2 → 0 as t → ∞.

Since the kernel of the operator e
1
4
∆ is π− 3

2 e−|x|2 one has that

e
1
4
∆g(x) = π− 3

2

∫

R3

ei|x−y|2

〈x − y〉e
−|y|2 dy = π− 3

2 ei|x|2
∫

R3

e−2ix·y e(i−1)|y|2

〈x − y〉 dy

= π− 3
2
ei|x|2

〈x〉2
∫

R3

(1 − 1

4
∆y)e

−2ix·y e(i−1)|y|2

〈x − y〉 dy

= π− 3
2
ei|x|2

〈x〉2
∫

R3

e−2ix·y (1 − 1

4
∆y)

[e(i−1)|y|2

〈x − y〉
]
dy

The integral in the last term is bounded uniformly with respect to x. Indeed, all derivatives

of e(i−1)|y|2 are integrable and all derivatives of 1
〈x−y〉 are uniformly bounded in x and y.

We deduce that |e 1
4
∆g(x)| ≤ C〈x〉−2 which implies that e

1
4
∆g ∈ L2. This completes the

proof of the lemma. �

We state now our stability result for small solutions.

Theorem 4.3. There exists an absolute constant ε3 > 0 with the following properties:

• If f, u0 ∈ S ′(R3) are such that

(4.5) ‖∆−1
Pf‖L3,∞ + ‖u0‖L3,∞ < ε3

then there is a unique solution u ∈ L∞(R+, L3,∞) of (4.1), weakly continuous with
respect to t ∈ [0,∞), satisfying

(4.6) sup
s>0

‖u(s)‖L3,∞ ≤ 2‖u0‖L3,∞ + 4‖∆−1
Pf‖L3,∞ .

• Let p ∈ (3
2 ,∞) and suppose in addition to (4.5) that u0 ∈ Lp,∞. If u is the above

solution then,

u ∈ L∞(R+, Lp,∞) if and only if ∆−1
Pf ∈ Lp,∞.

• Let p ∈ (3
2 ,∞), and q > min{3, p}. Suppose in addition to (4.5) that u0 ∈ Lp,∞

and ∆−1
Pf ∈ Lp,∞. Let also U ∈ L3,∞ ∩ Lp,∞ be the unique stationary solution

given by Theorem 2.2 (see also Remark 2.8). (We assume here that ε3 ≤ ε1, the
constant introduced in Theorem 2.2).
(i) There is a function ε(q) > 0 such that if ε3 < ε(q) then, for some constant

C > 0,

(4.7) ‖u(t) − U‖Lq ≤ Ct
− 3

2
( 1
min(3,p)

− 1
q
)
, ∀min{p, 3} < q < ∞.

In particular, u(t) − U → 0 in Lq as t → ∞ for all q > min{3, p}.
(ii) If 3

2 < p ≤ 3, then u(t) ⇀ U weakly in Lp,∞ as t → ∞. Moreover, u(t) → U

strongly in Lp,∞ if and only if et∆(u0 − U) → 0 in Lp,∞.
(iii) If 3

2 < p < 3, then the conclusion of the previous item can be strengthened as
follows:

(4.8) ‖u(t) − U − et∆(u0 − U)‖Lq ≤ Ct
1
2
+ 3

2q
− 3

p

for all 3p
6−p ≤ q ≤ p and for some constant C > 0 independent of t.

In particular, u(t)−U → 0 in Lq if and only if et∆(u0 −U) → 0 in Lq as t → ∞,

for all 3p
6−p < q ≤ p.
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Notice that in (4.7) neither u(t) nor U belong in general to Lq. Similarly, the terms
appearing in the LHS of (4.8) in general do not belong, separately, to Lq. In other words,
the difference u(t) − U is better behaved than the solutions themselves.

Remark 4.4. In the particular case p = q = 2, the preceding theorem contains an in-
teresting variant of the stability result for finite-energy solutions obtained in [3] with a
different method. Indeed, consider a stationary solution U ∈ L2 ∩ L3,∞ and a perturba-
tion w0 ∈ L2 ∩ L3,∞. According to conclusion (iii), the solution u of the non-stationary
Navier–Stokes equations starting from u0 = U − w0 satisfies, under the above smallness
assumptions, u(t) → U in L2 as t → ∞ (we use here that et∆w0 → 0 in L2). Explicit
convergence rates can be given, e.g., if the perturbation belongs to additional function

spaces. For instance, when w0 ∈ L
3
2
,∞ ∩ L3∞, then

‖u(t) − U‖2 ≤ Ct−1/4, as t → ∞.

Remark 4.5. Let us present some further immediate consequences of this theorem. If the
perturbation satisfies w0 ∈ L3, then et∆w0 → 0 in L3 and so in L3,∞ as t → ∞. This in
turn implies, by (ii),

u(t) → U in L3,∞ as t → ∞.

More generally, according to the second part of Lemma 4.2, such conclusion remains valid

when lim
R→0

R mes{|w0| > R} 1
3 = 0. However, notice that neither w0 ∈ L3,∞ is sufficient

nor lim
R→0

R mes{|w0| > R} 1
3 = 0 is necessary to ensure this result.

In the same way, in the case 3
2 < p < 3, the condition lim

R→0
R mes{|w0| > R}

1
p = 0

implies that u(t) → U ∈ Lp,∞ as t → ∞. But in this case the stronger condition w0 ∈ Lp

would imply also, by (iii), the stronger conclusion u(t) → U in Lp.

Remark 4.6. Our proof below will show that Equation (4.8) holds true for the wider range

max(1, p
2 ) ≤ q < 3p

3−p . We did not state the full range for q because the most interesting

case is q ≤ p and also because it would require showing that in the case p < 3, the
statement (i) is true with a constant ε(q) independent of q. This additional fact is easy to
prove with a recursive argument, but since it is not really necessary we prefer to skip it.

Proof. We estimate the forcing term in (4.1) by integrating the heat kernel in time then
relying on a fixed point argument making use of Lemma 4.1. The relation

(4.9)

∫ t

0
e(t−s)∆ ds = et∆∆−1 − ∆−1

that follows since both operators have the same symbols, gives

(4.10)
∥∥
∫ t

0
e(t−s)∆

Pf ds
∥∥

L3,∞ ≤ 2‖∆−1
Pf‖L3,∞ .

We used above that et∆ is a convolution operator with a function of norm L1 equal to 1.
Given (4.10), the first part of this theorem follows from the work of Cannone and Karch [8].
But the proof takes only a few lines, so we give it for the sake of the completeness.

Using again that the kernel of et∆ is of L1 norm equal to 1 we deduce that ‖et∆u0‖L3,∞ ≤
‖u0‖L3,∞ . Therefore, if we denote ũ0 = et∆u0 +

∫ t
0 e(t−s)∆

Pf ds one has that

‖ũ0‖L∞(R+;L3,∞) ≤ ‖u0‖L3,∞ + 2‖∆−1
Pf‖L3,∞ .
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To apply the fixed point argument we introduce the notation B̃(u, v) = L̃0(u ⊗ v) and
rewrite (4.1) as

(4.11) u = ũ0 − B̃(u, u)

The bound (4.2), with p = 3, and hence q = 3
2 combined with the Hölder inequality from

Proposition 1.1 yields

‖B̃(u, v)(t)‖L3,∞ ≤ C
(
sup
s>0

C‖u(s)‖L3,∞

)(
sup
s>0

‖v(s)‖L3,∞

)

We apply this estimate combined with the fixed point argument given in Lemma 2.6
to the operator Φ̃(u) = ũ0 − B̃(u, u) in the space L∞(R+, L3,∞). This approach yields
the existence of a unique solution u ∈ L∞(R+, L3,∞) provided 4C‖ũ0‖L∞(R+;L3,∞) < 1.
Lemma 2.6 also insures that the solution satisfies ‖u‖L∞(R+;L3,∞) ≤ 2‖ũ0‖L∞(R+;L3,∞),
establishing part 1 of the Theorem.

To prove the second part of the theorem we establish first the cases p ∈ [2, 7] with a
fixed point argument then treat the other cases with an interpolation argument. First,
combine (4.2) with the Hölder inequality to establish

(4.12) ‖B̃(u, u)(t)‖Lp,∞ ≤ C(p)
(
sup
s>0

‖u(s)‖Lp,∞

)(
sup
s>0

‖u(s)‖L3,∞

)

Let C̃ be the maximum value of the constant in the above equation for p ∈ [2, 7], we require

8ε3 < 1/C̃. Considering again the sequence of approximate solutions (ui) constructed in
the usual way, and making use of (4.6) we see

‖ui+1(t)‖Lp,∞ ≤ sup
s>0

‖ũ0‖Lp,∞ +
1

2
sup
s>0

‖ui(s)‖Lp,∞

From this estimate the “if” statement in the second claim follows for p ∈ [2, 7].
If p ∈ (3

2 , 2), through interpolation we find that for all r ∈ (2, 3) we have that ũ0 ∈
L∞(R+;Lr,∞) and therefore u ∈ L∞(R+;Lr,∞). Appealing to (4.2) and again combining
it with the Hölder inequality we see

(4.13) ‖B̃(u, u)(t)‖Lp,∞ ≤ C sup
t>0

‖u(s)‖2
Lr,∞

where r = 6p
p+3 ∈ (2, 3), hence the right hand side is bounded. Combining this estimate

with (4.11) is enough to prove the “if” statement in the case p ∈ (3
2 , 2). If p ∈ (7,∞) we

again interpolate to get u ∈ L∞(R+;Lr,∞) for all r ∈ (3, 6). Choosing again r = 6p
p+3 ∈

(3, 6) in (4.13) finishes the “if” statement in the second claim. To establish the “only
if” part of the claim combine (4.12) with (4.11) and notice that the RHS of (4.9) tends
to −∆−1 as t → ∞. The weak continuity u(t) → u(t′) for t → t′ and t′ ∈ [0,∞) (the
continuity is actually in the strong topology of L3,∞ for t′ ∈ (0,∞) ) is proved as in [20].

It remains to prove the third part of the theorem, the stability results for stationary
solutions. We begin with Claim (i). Let q > min{3, p}. It is worth noticing that for
q > 3, a stability result in the Lq,∞-norm, as well a decay estimate of the form ‖u(t) −
v(t)‖Lq ≤ Ct

− 3
2
( 1
3
− 1

q
)

was stated in [8, Proposition 4.3]. However, it seems that the
argument briefly sketched in [8] cannot be directly applied to the case where the second
solution v(t) is stationary, because a non-obvious generalization of Lemma 4.1 would be
needed. Therefore, we provide a detailed proof of estimate (4.7) using a slightly different
method.
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Let w = U − u and w0 = U − u0. Then this difference w satisfies the mild PDE

(4.14) w(t) = et∆w0 −
∫ t

0
e(t−s)∆

P∇ · (u ⊗ w + w ⊗ U)(s) ds.

Moreover, our smallness assumptions on u0 and f and the usual fixed point Lemma 2.6
imply that w can be obtained as the limit in L∞(R+, L3,∞) of the approximating sequence
(wk), defined by

wk+1 = et∆w0 − B̃(u,wk) − B̃(wk, U),

where the recursive relation starts with w0(x, t) = et∆w0. Moreover, this sequence (wk) is
bounded in L∞(R+, Lp,∞).

By the semigroup property (recall that F (x, t) denotes the kernel of et∆
Pdiv):

B̃(u, v)(t) = et∆/2B̃(u, v)(t/2) +

∫ t

t/2
F (t − s) ∗ (u ⊗ v)(s) ds.

We deduce,

wk+1(t) = et∆w0 − et∆/2B̃(u,wk)(t/2) − et∆/2B̃(wk, U)(t/2)

−
∫ t

t/2
F (t − s) ∗ (u ⊗ wk)(s) ds −

∫ t

t/2
F (t − s) ∗ (wk ⊗ U)(s) ds.

Now let r = min(3, p) and denote

M = max{‖w0‖Lr,∞ , ‖U‖Lr,∞ , sup
s>0

‖u(s)‖Lr,∞}.

By Lemma 4.1 and using that the sequence wk is bounded in L∞(R+, L3,∞),

‖B̃(u,wk)(t/2)‖Lr,∞ + ‖B̃(wk, U)(t/2)‖Lr,∞ ≤ CrM.

A heat kernel estimate now implies, for all q > r and for some constant C ′
r > 0 independent

of q,

‖wk+1(t)‖Lq,∞ ≤ C ′
rMt−

3
2
( 1

r
− 1

q
) +

∥∥∥∥
∫ t

t/2
F (t − s) ∗ (u ⊗ wk)(s) ds

∥∥∥∥
Lq,∞

+

∥∥∥∥
∫ t

t/2
F (t − s) ∗ (wk ⊗ U)(s) ds

∥∥∥∥
Lq,∞

.

From Lemma 4.1 with Hölder’s inequality we have

∥∥∥∥
∫ t

t/2
F (t − s) ∗ (u ⊗ wk)(s) ds

∥∥∥∥
Lq,∞

+

∥∥∥∥
∫ t

t/2
F (t − s) ∗ (wk ⊗ U)(s) ds

∥∥∥∥
Lq,∞

≤ C ′′
q ε3 sup

s∈[t/2,t]
‖wk(s)‖Lq,∞ .

Let

Wk(t) ≡ sup
τ∈[t,∞)

‖wk(τ)‖Lq,∞ .

then

Wk+1(t) ≤ C ′
rMt−

3
2
( 1

r
− 1

q
) + C ′′

q ε3 Wk(t/2).
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Iterating this inequality implies

Wk(t) ≤ C ′
rM

k−1∑

n=0

(
C ′′

q ε3 2
3
2
( 1

r
− 1

q
)
)n

t−
3
2
( 1

r
− 1

q
) +

(
C ′′

q ε3

)k
W0(t/2

k)

≤ 2C ′
rMt

− 3
2
( 1

r
− 1

q
)
+ C(r, q)

(
C ′′

q ε32
3
2
( 1

r
− 1

q
))k

t
− 3

2
( 1

r
− 1

q
)
,

provided

C ′′
q ε3 2

3
2
( 1

r
− 1

q
)
<

1

2
.

A slightly more stringent smallness condition and independent on r > 3
2 is, e.g.,

(4.15) ε3 < ε(q) :=
1

4C ′′
q

Now assuming (4.15) and letting k → ∞ we get,

(4.16) ‖w(t)‖Lq,∞ ≤ 2C ′
rMt

− 3
2
( 1

r
− 1

q
)
, for r = min(3, p) and q > r.

Writing the above estimate for q − η and q + η, for some η > 0 small enough and interpo-
lating the Lq-space between Lq−η,∞ and Lq+η,∞ shows that the above estimate remains
valid with ‖w(t)‖Lq on the left-hand side. This establishes the stability result (4.7).

We now prove Claim (ii). The weak convergence u(t) ⇀ U in Lp,∞ for 3
2 < p ≤ 3 is

obvious since the solution u(t) is bounded in Lp,∞ and goes to 0 in the sense of distributions
(even in Lq, q > 3, as implied by the previous part of the proof).

On the other hand, the proof of the necessary and sufficient condition for the strong
convergence result in the L3,∞-norm is given in [8, Theorem 2.2] and in [8, Corollary 4.1],
hence we will skip it. The necessary and sufficient condition for the strong convergence
result in the Lp,∞-norm, with 3

2 < p < 3 is a direct consequence of Claim (iii) which we
now prove.

Let now 3
2 < p < 3 and 3p

6−p ≤ q ≤ p. Given these restrictions, there exists some

q1 ∈ [p, 4] such that the following relations hold true:

1

q
− 1

p
≤ 1

q1
≤ 1

p
,

1

q1
< min

(
1 − 1

p
,
1

3
+

1

q
− 1

p

)
.

We go back to the equation for w given in (4.14). We estimate ‖w(t) − w0(t)‖Lq using

Propositions 1.1 and 1.2, the bound ‖w(t)‖Lq1 ,∞ ≤ Ct
− 3

2
( 1

p
− 1

q1
)
(consequence of (4.7) with

q = q1) and the the fact that U ∈ Lp,∞ and u ∈ L∞((0,∞), Lp,∞). We get

‖w(t) − w0(t)‖Lq ≤ C

∫ t

0
(t − s)

− 1
2
+ 3

2
( 1

q
− 1

p
− 1

q1
)‖(u ⊗ w + w ⊗ U)(s)‖

L
q1p

p+q1
,∞ ds

≤ C

∫ t

0
(t − s)

− 1
2
+ 3

2
( 1

q
− 1

p
− 1

q1
)‖w(s)‖Lq1,∞

(
‖u(s)‖Lp,∞ + ‖U‖Lp,∞

)
ds

≤ C

∫ t

0
(t − s)

− 1
2
+ 3

2
( 1

q
− 1

p
− 1

q1
)
s
− 3

2
( 1

p
− 1

q1
)
ds

≤ Ct
1
2
+ 3

2q
− 3

p .

The theorem is now completely proved. �

We finally show our stability result for large solutions.
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Theorem 4.7. There exists an absolute constant ε4 > 0 with the following property. Let
u ∈ L∞

loc([0,∞);L3,∞) ∩ L4
loc([0,∞);L4) be a global solution of the evolutionary Navier-

Stokes equations with a constant in time forcing f such that ∆−1
Pf ∈ L3,∞ ∩ L4 and

(4.17) A(u0, f) ≡ lim sup
R→0

R mes{|u0| > R} 1
3 + ‖∆−1

Pf‖L3,∞ < ε4.

Let U ∈ L3,∞∩L4 be the unique stationary solution constructed in Theorem 2.2. Then we
have that

• lim sup
t→∞

‖u(t)‖L3,∞ ≤ 22A(u0, f);

• u(t) ⇀ U weakly in L3,∞ as t → ∞;
• u(t) → U in L3,∞ as t → ∞ if and only if et△(u0 − U) → 0 strongly in L3,∞ as

t → ∞.

Proof. The idea of the proof is the same as in [14] where it was proved that any global
solution of the Navier–Stokes equations without external force goes to 0 in the Besov

spaces Ḃ
−1+ 3

p
p,q when the time becomes large (see also [1] for the case of V MO−1). It

consists in decomposing the initial velocity in a small part plus a square integrable part.
The small part remains small by the small data theory and the square-integrable part will
become small at some point by using some energy estimates.

Here we use Lemma 4.2 to decompose u0 = v0+w0 where v0 ∈ L2∩L3,∞ and ‖w0‖L3,∞ <
2A(u0, f). Assuming that 3ε4 < ε3 where ε3 is the constant from Theorem 4.3, we can
apply that theorem to construct a global solution w of the Navier-Stokes equations with
forcing term f , initial velocity w0 and such that

‖w(t)‖L3,∞ ≤ 8A(u0, f) for all t ≥ 0.

Moreover, according to relation (4.7) the solution w satisfies the following decay estimate

sup
t>0

t
1
8‖w(t) − U‖L4 < ∞. Since U ∈ L4 we infer that w ∈ L4

loc([0,∞);L4).

The difference v = u − w verifies the following PDE:

(4.18) ∂tv − ∆v + u · ∇v + v · ∇w + ∇p′ = 0

whose integral form reads

(4.19) v(t) = et∆v0 −
∫ t

0
e(t−s)∆

P∇ · (u ⊗ v + v ⊗ w)(s) ds.

We show first that v ∈ C0([0,∞);L2). The first term on the RHS above clearly belongs
to this space. We show that so does the second term. The kernel F (t) of the operator
et∆

P div is of the form F (x, t) = t−2F ( x√
t
, 1) with F (·, 1) ∈ L1 ∩ L∞ ⊂ Lp,q for all

1 < p < ∞ and 1 ≤ q ≤ ∞. In particular, ‖F (t)‖
L

6
5 ,2 ≤ t−

3
4 so that F ∈ L1

loc([0,∞);L
6
5
,2).

By the Hölder inequality we also have that u ⊗ v + v ⊗ w ∈ L∞
loc([0,∞);L

3
2
,∞). Since the

last term in (4.19) is the space-time convolution of F with u ⊗ v + v ⊗w, we infer that it
belongs to C0([0,∞);L2).

For 0 < δ < 1, let Jδ be a smoothing operator that multiplies in the frequency space
by a cut-off function bounded by 1 which is a smoothed out version of the characteristic
function of the annulus {δ < |ξ| < 1

δ }. We also introduce an approximation of the identity
ϕη in time.

Given the additional regularity found for v above, we remark that we can multiply the
equation of v expressed in (4.18) by ϕη ∗ϕη ∗ J2

δ v and integrate in space and time from t0
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to t, with t0 > 0, to obtain that

(4.20) ‖ϕη ∗ Jδv(t)‖2
L2 + 2

∫ t

t0

‖∇ϕη ∗ Jδv(s)‖2
L2 ds = ‖ϕη ∗ Jδv(t0)‖2

L2

+ 2

∫ t

0

∫

R3

u · ∇(ϕη ∗ ϕη ∗ J2
δ v) · v + 2

∫ t

0

∫

R3

v · ∇(ϕη ∗ ϕη ∗ J2
δ v) · w.

We let now η → 0. Given the time continuity of v with values in L2, we have that
ϕη ∗Jδv(t) → Jδv(t) and ϕη ∗Jδv(t0) → Jδv(t0) in L2 as η → 0. The other terms in (4.20)
pass easily to the limit η → 0. Therefore, taking first the limit η → 0 in (4.20), and second
t0 → 0 and using again that v ∈ C0[0,∞);L2) we get that

(4.21) ‖Jδv(t)‖2
L2 + 2

∫ t

0
‖∇Jδv(s)‖2

L2 ds = ‖Jδv0‖2
L2 + 2

∫ t

0

∫

R3

u · ∇J2
δ v · v

+ 2

∫ t

0

∫

R3

v · ∇J2
δ v · w

We bound the last two terms on the RHS as follows

2

∫ t

0

∫

R3

u · ∇J2
δ v · v + 2

∫ t

0

∫

R3

v · ∇J2
δ v · w ≤ 2

∫ t

0
‖∇J2

δ v‖L2‖v‖L4(‖u‖L4 + ‖w‖L4)

≤ 1

2

∫ t

0
‖∇Jδv‖2

L2 +

∫ t

0
‖v‖2

L4(‖u‖2
L4 + ‖w‖2

L4).

Plugging this in (4.21) yields

‖Jδv(t)‖2
L2 +

∫ t

0
‖∇Jδv(s)‖2

L2 ds ≤ ‖Jδv0‖2
L2 +

∫ t

0
‖v‖2

L4(‖u‖2
L4 + ‖w‖2

L4).

Since u, v,w ∈ L4
loc([0,∞);L4), the RHS above is uniformly bounded with respect to δ.

Letting δ → 0 implies thanks to the Beppo-Levi theorem that
∫ t
0 ‖∇v(s)‖2

L2 ds < ∞, that

is v ∈ L2
loc([0,∞);H1).

We go back to (4.21) and estimate

(4.22) 2

∫ t

0

∫

R3

u · ∇J2
δ v · v = 2

∫ t

0

∫

R3

u · ∇J2
δ v · (1 − J2

δ )v

≤ 2‖u‖L4(0,t;L4)‖∇v‖L2(0,t;L2)‖(1 − J2
δ )v‖L4(0,t;L4) → 0 as δ → 0.

We observe now that Ḣ1(R3) →֒ L6,2(R3). This imbedding follows from the Young

inequality for Lorentz spaces after noticing that (−∆)−
1
2 is a convolution operator with a

function bounded by C
|x|2 which therefore belongs to L

3
2
,∞. We use this fact together with

the Hölder inequality to bound the last term in (4.21) as follows

(4.23) 2

∫ t

0

∫

R3

v · ∇J2
δ v · w ≤ C

∫ t

0
‖v‖L6,2‖∇J2

δ v‖L2‖w‖L3,∞ ≤ CA(u0, f)

∫ t

0
‖∇v‖2

L2

Using (4.22) and (4.23) in (4.21), letting δ → 0 and using the Beppo-Levi theorem we
infer that

‖v(t)‖2
L2 + 2

∫ t

0
‖∇v(s)‖2

L2 ds ≤ ‖v0‖2
L2 + CA(u0, f)

∫ t

0
‖∇v‖2

L2
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If we further assume that Cε4 ≤ 1, then CA(u0, f) ≤ 1 so the relation above implies that

v ∈ L∞(R+;L2) ∩ L2(R+; Ḣ1). By interpolation and from the imbedding Ḣ
1
2 ⊂ L3,∞

we infer that v ∈ L4(R+; Ḣ
1
2 ) ⊂ L4(R+;L3,∞). So there exists a time T = T (ε4) such

that ‖v(T )‖L3,∞ < A(u0, f). Since we also have that ‖w(T )‖L3,∞ < 8A(u0, f) we infer
that ‖u(T )‖L3,∞ < 9A(u0, f). Assuming further that 10ε4 < ε3, Theorem 4.3 allows
to construct a small solution starting from time T , a solution whose L3,∞ norm will be
bounded by 22A(u0, f). We will prove below a uniqueness result stating that u must be
equal to this small solution starting from time T . Once this is proved, the first part of
the theorem follows. Moreover, using again that our solution u becomes small after the
time T , the second and the third part of the theorem are consequences of Theorem 4.3.
Except that the equivalent condition for u(t) to converge strongly to U in L3,∞ is that
et△(u(T ) − U) → 0 strongly in L3,∞ as t → ∞. To finish the proof it therefore suffices to
show that

et△(u(T ) − U)
t→∞−→ 0 in L3,∞ ⇐⇒ et△(u0 − U)

t→∞−→ 0 in L3,∞.

This is a consequence of the following sequence of equivalence relations:

et△(u(T ) − U)
t→∞−→ 0 in L3,∞ ⇐⇒ et△(w(T ) − U)

t→∞−→ 0 in L3,∞

⇐⇒ w(t)
t→∞−→ U in L3,∞

⇐⇒ et△(w0 − U)
t→∞−→ 0 in L3,∞

⇐⇒ et△(u0 − U)
t→∞−→ 0 in L3,∞.

We used above that v(T ), v0 ∈ L2 and the decay estimates for the heat equation to deduce
the first and fourth lines of the relation above, and Theorem 4.3 twice for w, starting from
time t = 0 and from time t = T to deduce the second and third lines. This completes the
proof provided that we prove the announced uniqueness result.

Let u be the small solution starting from time T with initial velocity u(T ) constructed in

Theorem 4.3 and set v = u−w. As above we have that v ∈ C0([T ;∞);L2)∩L2([T ;∞); Ḣ1).
Then v − v solves the following equation:

∂t(v − v) − ∆(v − v) + u · ∇(v − v) + (v − v) · ∇u = −∇p1.

As in the previous argument, one can prove that this relation can be multiplied by v − v
and integrated from T to t to get that, for all t ≥ T ,

‖(v − v)(t)‖2
L2 + 2

∫ t

T
‖∇(v − v)‖2

L2 =

∫ t

T

∫
(v − v) · ∇(v − v) · u

≤ C

∫ t

T
‖∇(v − v)‖2

L2‖u‖L3,∞ ≤ CA(u0, f)

∫ t

T
‖∇(v − v)‖2

L2 ≤
∫ t

T
‖∇(v − v)‖2

L2

provided that A(u0, f) is sufficiently small. We infer that v(t) = v(t), that is u(t) = u(t)
for all t ≥ T . This completes the proof of the theorem. �

Remark 4.8. We also have stability in Lp,∞ for large solutions. More precisely, suppose
that in addition to the hypothesis of Theorem 4.7 we assume that u0 ∈ Lp,∞ with p ∈ (3

2 , 3).

Then u ∈ L∞(R+;Lp,∞), u(t) ⇀ U weakly in Lp,∞ and u(t) − et∆(u0 − U) → U in Lp,∞

as t → ∞. This follows easily after applying Theorem 4.3 starting from the time T when
the solution becomes small. One only needs to show the following two facts:

• if u0 ∈ Lp,∞ and ∆−1Pf ∈ Lp,∞ then u ∈ L∞(0, T ;Lp,∞);
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• e(t−T )∆(u(T ) − U) − ut∆(u0 − U) → 0 strongly in Lp,∞ as t → ∞.

To prove the first assertion, we observe that, with the notation from the proof of Theo-
rem 4.3 (namely the notation used in relation (4.11)) one has that ũ0 ∈ L∞(R+;Lp,∞).
Moreover, by the Hölder inequality and using the standard decay estimates for the heat
equation we can bound

(4.24) ‖B̃(u, u)(t)‖Lp ≤
∫ t

0
‖e(t−s)∆

P∇ · (u ⊗ u)(s)‖Lp ds

≤ C

∫ t

0
(t − s)

− 3
2
+ 3

2p ‖u(s)‖2
L3,∞ ≤ Ct

− 1
2
+ 3

2p sup
0<s<t

‖u(s)‖2
L3,∞ .

We infer that B̃(u, u) ∈ L∞(0, T ;Lp) ⊂ L∞(0, T ;Lp,∞), so by (4.11) we also have that
u ∈ L∞(0, T ;Lp,∞). To show the second assertion, we observe that it is sufficient to prove
that

u(T ) − U − et∆(u0 − U) ∈ Lq,∞

for some q < p. But u − U verifies the PDE

∂t(u − U) − ∆(u − U) + u · ∇u − U · ∇U = −∇p2

whose mild formulation implies that

u(T ) − U − et∆(u0 − U) = −
∫ T

0
e(T−s)∆

P∇ · (u ⊗ u − U ⊗ U)(s) ds

The same estimate as in (4.24) shows now that the RHS belongs to Lq,∞ for any 3
2 < q < 3,

in particular for some q < p.
Moreover, if u0 ∈ Lp, then the previous argument shows that u ∈ L∞(0, T ;Lp). From

Theorem 4.3 applied starting from time T we infer that u ∈ L∞(R+;Lp) and u(t) → U in
Lp as t → ∞.

Remark 4.9. We observe that the condition imposed on the initial velocity by the hypoth-
esis of Theorem 4.7 does not imply that u0 is close in L3,∞ to the smooth functions in

S(R3). Indeed, that would require to have that the quantity lim sup
R→∞

R mes{|u0| > R} 1
3 is

small too. This condition is not necessary in Theorem 4.7.
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19. P.G. Lemarié-Rieusset, Recent developements in the Navier–Stokes problem, Chapman & Hall, CRC

Press Boca Raton (2002).
20. Y. Meyer, Wavelets, paraproducts and Navier–Stokes equations, Current developements in mathemat-

ics, 1996, Internat. Press, Cambridge, MA 02238-2872 (1999).
21. T. Miyakawa, M. E. Schonbek, On Optimal Decay Rates for Weak Solutions to the Navier–Stokes

Equations, Mathematica Bohemica 126 (2001).
22. P. Secchi, On the stationary and non-stationary Navier-Stokes equations in Rn. Annali di Matematica

Pura ed Aplicata, Vol 153, 1, Dec 1988.
23. E. M. Stein, Harmonic Analysis. Real variable methods, orthogonality and oscillatory integrals, Prince-

ton university Press (1993)
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