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A note on uniqueness of entropy solutions
to degenerate parabolic equations in R

N

Boris Andreianov and Mohamed Maliki

Abstract. We study the Cauchy problem in R
N for the parabolic equation

ut + div F (u) = ∆ϕ(u),

which can degenerate into a hyperbolic equation for some intervals of values
of u. In the context of conservation laws (the case ϕ ≡ 0), it is known that
an entropy solution can be non-unique when F ′ has singularities. We show
the uniqueness of an entropy solution to the general parabolic problem for
all L∞ initial datum, under the isotropic condition on the flux F known for
conservation laws. The only assumption on the diffusion term is that ϕ is a
non-decreasing continuous function.
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1. Introduction

Consider the convection-diffusion problem

ut + div F (u) − ∆ϕ(u) = f in (0, T ) × R
N , u|t=0 = u0 (1)

with a source f measurable on (0, T ) × R
N , with

∫ T

0
‖f(t, ·)‖L∞ dt < +∞ and

an initial datum u0 ∈ L∞(RN ). Here F = (F1, . . . , FN ) : R 7→ R
N is assumed

merely continuous (a quantitative continuity assumption on F will be imposed in
the sequel), and ϕ : R 7→ R is a continuous non-decreasing function.

Degenerate and non-degenerate problems of the kind (1), often investigated
under the local Lipschitz continuity assumption on ϕ and F , appear in various
physical contexts, including e.g. flows and sedimentation in porous media. Math-
ematical treatment of these problems was boosted some ten years ago by the
introduction of the adequate notion of entropy solution (see Carrillo [8]).

Indeed, the framework (1) includes conservation laws as a particular case. It is
well known that in general, global classical solutions of (1) may not exist; and that
a weak solution in the sense of distributions may not be unique. The standard way
to fix this problem is to work with the so-called entropy solutions (see Kruzhkov
[9] for the case of conservation laws, and Carrillo [8] for the adaptation of this
notion to the case of a degenerate elliptic-parabolic-hyperbolic equation, of which
(1) is a particular case). The classical result of Kruzhkov establishes uniqueness of
an entropy solution (together with the property of finite domain of dependence on
initial data) for the case where ϕ ≡ 0 and F is locally Lipschitz continuous. When
the Lipschitz continuity assumption is dropped, uniqueness of entropy solutions
for a conservation law can be lost (see the works [16, 13, 10, 14] of Kruzhkov
and Panov). The effect of non-uniqueness is closely connected to the property of
“infinite speed of propagation”, which arises when F ′ is unbounded.

This is the goal of this note to investigate the question of uniqueness of en-
tropy solutions of (1) for a general nonlinearity ϕ in the diffusion term. Technically,
the problem amounts to the difficulty of exploiting the so-called Kato inequality

(u − û)+t + div
(

sign +(u − û)(F (u) − F (û)
)

≤ ∆(ϕ(u) − ϕ(û))+ + (f − f̂)+ in D′([0, T )× R
N ); (2)

here u, û are two entropy solutions of (1) corresponding to source terms f, f̂ .
Formally, if we let the test function in (2) converge to one, we get the inequality

d

dt

∫

RN

(u − û)+(t) ≤

∫

RN

(f − f̂)+ in D′([0, T )),

which implies uniqueness of an entropy solution. Even when one can justify that
u− û ∈ L∞(0, T ; L1(RN )), a too slow decrease of |F (u)− F (û)| as |x| → ∞ could
be an obstacle to this formal reasoning. In fact, the issue of uniqueness of L1∩L∞

solutions for the conservation law ut + div F (u) = 0, u|t=0 = u0 is not yet clearly
understood; see [2] for a discussion of relevancy of the known conditions.
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For the case ϕ ≡ 0 and L∞ entropy solutions, sufficient uniqueness conditions
for (1) in terms of the moduli of continuity of F were first formulated by Kruzhkov
and Hil’debrand ([12]) (after that Bénilan ([5] obtained the same condition for mild
solutions in L1). Roughly speaking, the conditions of [5, 12] (see also [11]) amount
to the Hölder continuity of F of order α = 1 − 1

N . This condition is “isotropic”:
the possibility that some of the components F1, . . . , FN of F may have a “better”
modulus of continuity than the vector-function F is not exploited. This contrasts
with the following “anisotropic” assumption

lim inf
r↓0

∏N
i=1 ωi(r)

rN−1
< +∞ (3)

due to Kruzhkov and Panov ([13, 16]); here for i = 1, . . . , N , ωi : R
+ → R

+ is
a modulus of continuity of Fi on the interval [−M, M ] containing the values of
u. Assumption (3) restricts the behaviour of the moduli of continuity ωi(r) of Fi

at r = 0. Assumption (3) is also sufficient for the uniqueness of entropy solutions
of a scalar conservation law. A sharper condition is given in [14]. Notice that for
the L1∩L∞ data, sufficient uniqueness conditions of a completely different nature
were found by Bénilan and Kruzhkov in [6] (see also [2]).

In [15], together with Touré the second author of the present paper proved
uniqueness of an entropy solution to the equation (1) upon replacing ωi(r) in (3)
with

(

ωi(r) + (rωϕ(r))1/2
)

; here ωϕ : R
+ → R

+ is a modulus of continuity of
ϕ. Clearly, if the space dimension N equals 1, both the Kruzhkov-Panov and the
Maliki-Touré conditions are always satisfied. If the space dimension is equal to 2,
then the Maliki-Touré condition contains no restriction on the function ϕ.

In the work [3] we have investigated the exactness of the assumption of [15]
for the case of a pure diffusion equation (i.e., F ≡ 0). It turns out that uniqueness
of L∞ solutions for this case holds for all ϕ. In the present paper, we show a
similar result for the full convection-diffusion equation (1). More exactly, we show
uniqueness of an entropy solution for (1) for all continuous non-decreasing ϕ,
but under the assumption that F satisfies the isotropic local Hölder continuity
condition of order α = 1 − 1

N . According to the previous remark, we can restrict
our attention to the case N ≥ 3.

Let us briefly describe the main idea of the proof. In order to make disappear
the third term in (2), we choose a test function ρ that is, roughly speaking, a
truncation of the fundamental solution to the Laplace equation in R

N . Notice
that we cannot avoid taking ρ convex in the radial direction, because we need
ρ to be non-negative and equal to zero at infinity. Yet we can take ρ concave in
the orthogonal directions, so that compensations make non-positive the expression
(ϕ(u) − ϕ(û))+ ∆ρ in the D′ formulation of (2). To this end, any positive super-
harmonic vanishing at infinity function ρ could be used. Among the radial super-
harmonic functions, the use of the truncated fundamental solution is optimal with
respect to the restrictions on F that come from the second term in (2); indeed,
the second term in (2) has to be controlled as well.
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Our technique does not allow to benefit from the anisotropy of the flux F ; in
particular, unlike in [15], our assumptions do not reduce to (3) in the trivial case

ϕ ≡ 0. The case of an anisotropic diffusion of the form
∑N

i=1 ∂xixi
ϕi(u) cannot be

covered neither (except when it reduces to the isotropic case by a change of coordi-
nates in R

N ; this happens when the functions ϕi are multiples of some ϕ). Indeed,
the anisotropy makes it impossible to benefit from the compensations between the
different derivatives ρxixi

. We refer to Maliki and Ouedraogo [1] for results on the
non-isotropic diffusion case under suitable assumptions on the moduli of continu-
ity of ϕi, along the guidelines of [15]. The problem where the quasilinear diffusion
operator ∆ϕ(u) is replaced with a fully nonlinear diffusion operator such as the
p-laplacian ∆pϕ(u) is even more difficult; to our knowledge, no uniqueness result
for entropy solutions in R

N is available when p > 2.

2. Definitions and results

Recall that ϕ is a continuous function on R. For M > 0, we say that a sub-
additive, continuous function ωϕ : [0, 2M ] 7→ R

+ such that ωϕ(0) = 0 is a modulus
of continuity of ϕ, if

∀z, ẑ ∈ [−M, M ] |ϕ(z) − ϕ(ẑ)| ≤ ωϕ(|z − ẑ|). (4)

Recall that we only work with bounded solutions of (1). Without loss of generality,
we can assume that M is fixed, moreover, ωϕ is strictly concave (and thus, strictly
increasing) and extended to the whole of R

+; we denote its inverse function by
Ωϕ. We use the Fenchel (Legendre) transform of Ωϕ:

Ω
∗
ϕ(t) = sup

z∈R+

(

zt − Ωϕ(z)
)

.

It easily follows that Ω
∗
ϕ is strictly increasing, thus it is invertible. With the above

notation, we have for all z, t, r ∈ R
+,

zt ≤ Ωϕ(z) + Ω
∗
ϕ(t), (Ωϕ ◦ ωϕ)(r) = r. (5)

For a vector-valued function F : R 7→ R
N , we introduce the (isotropic) mod-

ulus of continuity ωF and the related functions ΩF , Ω
∗
F in the same way, replacing

|ϕ(z)− ϕ(ẑ)| in (4) with |F (z)− F (ẑ)|. Here and in the sequel, we mean that R
N

is endowed with the euclidean norm, which we denote by | · |.

Definition 1. An entropy solution of (1) is a function u ∈ L∞((0, T ) × R
N ) such

that ϕ(u) ∈ L2(0, T ; H1
loc(R

N )) and the inequalities

−

∫ T

0

∫

RN

(

|u− k|ξt + sign (u− k)(F (u)−F (k)) · ∇ξ + sign (u− k)∇ϕ(u) · ∇ξ
)

≤

∫ T

0

∫

RN

sign (u − k) f ξ +

∫

RN

|u0 − k| ξ(0, ·) (6)

hold for all k ∈ R and all ξ ∈ D([0, T ) × R
N ).
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Here and in the sequel, we mean that u0 ∈L∞(RN ), ‖f(t, ·)‖L∞ ∈L1(0, T ).
It is clear that an entropy solution is also a solution in the sense of distributions;
it suffices to use (6) with k = ±‖u‖L∞. It follows that in (6), one can replace
sign (u − k) and |u − k| with sign +(u − k) and (u − k)+, respectively, where
sign +(r) := max{sign r, 0} and r+ := max{r, 0}.

Existence of an entropy solution is standard; it can be obtained, e.g., by a
regularization of F and ϕ (when ϕ ≡ 0, one takes ϕε(z) = εz, which is the so-called
“vanishing viscosity” approximation), with the help of the translation invariance
in x of the left-hand side of (1) and the L1 contraction result of Maliki and Touré
[15].

Definition 1 implies the Kato inequality (2), with the help of the doubling-
of-variables approach of Kruzhkov ([9]) and the techniques of Carrillo ([8]) and
Blanchard and Porretta ([7]) (see e.g. [15, 4, 3]). Inequality (2) can also be obtained
without doubling the variables, with the help of the so-called kinetic formulation
(see Perthame [17] for the case of a conservation law). Uniqueness of an entropy
solution of (1) (and, more generally, the L1 contraction and comparison principle)
follows whenever we can pass to the limit in the Kato inequality (2) with test
functions ξ → 1 on R

N .

We assume that N ≥ 3 (for N ≤ 2, the results of Maliki and Touré [15] apply
with no restriction on ϕ).

Theorem 2.
Let N ≥ 3. Consider an arbitrary non-decreasing continuous function ϕ : R 7→ R.

Consider a locally Hölder continuous of order (1 − 1
N ) function F : R 7→ R

N .

Then whenever (u0 − û0)
+ ∈ L1(RN ), (f − f̂)+ ∈ L1((0, T ) × R

N ),

∫

RN

(u − û)+(t, ·) ≤

∫

RN

(u0 − û0)
+ +

∫ t

0

∫

RN

(f − f̂)+ a.e. on (0, T ), (7)

where u, û are entropy solutions corresponding, respectively, to given initial data

u0, û0 ∈ L∞(RN ) and sources f, f̂ with ‖f(t, ·)‖L∞(R), ‖f̂(t, ·)‖L∞(R) ∈ L1(0, T ).

In particular, under the above assumptions on ϕ, F there exists a unique entropy

solution uu0,f for given data u0, f ; the map (u0, f) 7→ uu0,f is order-preserving,

and the map u0 ∈ L∞(RN ) ∩ L1(RN ) 7→ uu0,0 is a T-contraction in L1.

3. Proof of Theorem 2

The technique of the proof of the theorem is closely related to the previous work
[3]. Roughly speaking, we take in the Kato inequality (2) radial test functions ξ
such that ∆ξ ≤ 0. This allows us to drop the second term in the right-hand side
of (2); thus restrictions on ϕ are bypassed. The test functions are constructed by
truncating the laplacian’s fundamental solution profile 1

|x|N−2 .
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We are intended to use (2) with the test functions ρε(x) =
(

max{ |x|
R , 1}

)2−N−ε

with ε > 0, R > 1 (in order to lighten the notation, we do not indicate explicitly
that ρε also depends on R). Then we let ε → 0, and finally we let R → +∞ .

To this end, let

ρε,L(x) = RN−2+ε
(

(

max{|x|, R}
)2−N−ε

−
(

L
)2−N−ε

)+

, L > R.

By a density argument, we take in (2) test functions under the form ξ(t, x) =
µ(t)ρε,L(x), where µ ∈ D([0, T ))+. Indeed, regularizing ρε,L by convolution, drop-
ping the negative measure part of the distribution ∆ρε,L concentrated on the set
{x ∈ R

N | |x| = R}, using the definition of ωϕ, ωF we deduce

∫ T

0

∫

RN

(u − û)+ρε,L (−µt)

≤

∫ T

0

∫

RN

ωF ((u − û)+)| ∇ρε,L|µ +

∫ T

0

∫

RN

ωϕ((u − û)+)∆acρε,L µ

+

∫

{|x|=L}

ωϕ((u − û)+) (N−2+ε)L1−N−ε µ

+

∫ T

0

∫

RN

(f − f̂) sign+(u − û)ρε,L µ +

∫

RN

(u0 − û0)
+ρε,L µ(0)

for a.e. L > R′; here ∆acρε,L represents the absolutely continuous (with respect
to the Lebesgue measure on R

N ) part of the measure ∆ρε,L. The integral on the
sphere {|x| = L} is understood with respect to the (N − 1)-dimensional Hausdorff
measure. Because u, û are bounded, the integral on the sphere {|x| = L} is upper
bounded by const LN−1L1−N−ε = const L−ε. We calculate

∆acρε,L = ε(N−2+ε) |x|−2ρε1lR<|x|<L

and

| ∇ρε,L| = |N−2+ε| |x|−1ρε1lR<|x|<L;

here ρε(x) =
(

max{ |x|
R , 1}

)2−N−ε
. Notice that 0 ≤ ρε,L ≤ 1 for all ε, R, L. Now we

let L → ∞. Thanks to the boundedness of u, û and to the integrability assumption

on (u0 − û0)
+, (f − f̂)+ we deduce that

∫ T

0

∫

RN

(u − û)+ ρε (−µt)

≤ c

∫ T

0

∫

{|x|>R}

(

ωF ((u − û)+)|x|−1 + ε ωϕ((u − û)+) |x|−2
)

ρε

+

∫ T

0

∫

RN

(f − f̂) sign+(u − û)µ +

∫

RN

(u0 − û0)
+ µ(0). (8)

Here and in the sequel, we assume ε ∈ (0, 1), so that (N − 2 + ε) ≤ (N − 1), and
fix c = (N −1)‖µ‖L∞. Notice that each term in the right-hand side of (8) is finite.
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Our goal is to show that, letting ε → 0 and R → ∞, we can drop the first
term in the right-hand side of (8). The first step is to prove that (u − û)+ is
integrable on (0, T )× R

N .
To this end, fix δ > 0. Let us show that

c ε

∫ T

0

∫

{|x|>R}

ωϕ((u − û)+) |x|−2 ρε ≤ δ

∫ T

0

∫

{|x|>R}

(u − û)+ ρε + rδ,R(ε), (9)

where for all fixed δ > 0, R > 1, the quantity rδ,R(ε) tends to zero as ε decreases
to zero. Indeed, using (5), we get

cε ωϕ((u− û)+) |x|−2 = δ
(

ωϕ((u− û)+)
cε

δ
|x|−2

)

≤ δ (u− û)+ + δ Ω
∗
ϕ(

cε

δ
|x|−2);

thus (9) holds with

rδ,R(ε) := Tδ

∫

{|x|>R}

Ω
∗
ϕ(

cε

δ
|x|−2)ρε.

By the convexity of Ω
∗
ϕ, we have Ω

∗
ϕ( cε

δ |x|−2) ≤ (Ω∗
ϕ)′( cε

δ R−2) cε
δ |x|−2 whenever

|x| ≥ R. Without loss of generality, we can assume that Ωϕ is convex and strictly
increasing; then it is not difficult to prove that ess limt↓0 (Ω∗

ϕ)′(t) = 0 (see e.g. [3]).

Hence we deduce that (Ω∗
ϕ)′( cε

δ R−2) =: oε tends to zero as ε → 0. Therefore using
polar coordinates, we get

0 ≤ rδ,R(ε) = δ T

∫

{|x|>R}

Ω
∗
ϕ(

cε

δ
|x|−2)ρε ≤ oε cT ε

∫

{|x|>R}

|x|−2ρε

= cT ε RN−2+ε oε

∫ +∞

R

r−2+2−N−εrN−1 dr (10)

= cT ε RN−2+ε R−ε

ε
oε → 0 as ε → 0.

Similarly, from (5) we deduce

cωF ((u − û)+) |x|−1 ρε ≤
1

2
(u − û)+ ρε +

1

2
Ω
∗
F (2c|x|−1) ρε. (11)

By the Hölder continuity assumption on F , we can take

ωF (r) = C r1− 1
N , thus ΩF (z) = C z

N

N−1 , thus Ω
∗
F (t) = C tN . (12)

Here C is a generic constant that changes from one expression to another. Hence

∫ T

0

∫

{|x|>R}

Ω
∗
F (2c|x|−1)ρε = C T RN−2+ε

∫ +∞

R

(2c

r

)N

r1−ε dr ≤ const. (13)

By density, we can take µ(·) = (T − ·)+ in (8), so that −µt(t) = 1l(0,T )(t).
Putting δ = 1/2 and letting ε → 0, from (8) and (9)–(13) we deduce that

∫ T

0

∫

{|x|<R}

(u − û)+ ≤ T

∫

RN

(u0 − û0)
+ + T

∫ T

0

∫

RN

(f − f̂)+ + const ≤ const.
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Letting R → ∞, by the monotone convergence theorem we deduce that

(u − û)+ ∈ L1((0, T )× R
N ). (14)

In order to conclude the proof, we return to (8). We now replace (11) with
the estimate

cωF ((u − û)+) |x|−1 ρε ≤ δ c ΩF

( 1

δ
ωF ((u − û)+)

)

ρε + δ c Ω
∗
F (|x|−1) ρε

= δ1− N

N−1 c C (u − û)+ + δ c C |x|−N
( R

|x|

)N−2+ε

; (15)

the expressions (12) are used in (15). Hence setting C(δ) = δ1− N

N−1 c C we infer

c

∫ T

0

∫

{|x|>R}

ωF ((u − û)+) |x|−1 ρε

≤ C(δ)

∫ T

0

∫

{|x|>R}

(u − û)+ + δ c C T RN−2+ε

∫

{|x|>R}

|x|2−2N+ε ρε

≤ C(δ)

∫ T

0

∫

{|x|>R}

(u − û)+ + const δ. (16)

The left-hand side of (16) converges to zero as R → ∞, uniformly in ε; indeed,
(14) yields

inf
δ>0

(

C(δ)

∫ T

0

∫

{|x|>R}

(u − û)+ + const δ
)

→ 0 as R → ∞. (17)

Using (9) and (10) once more, from (14) we get

c ε

∫ T

0

∫

{|x|>R}

ωϕ((u − û)+) |x|−2 ρε

≤ inf
δ>0

(

δ

∫ T

0

∫

{|x|>R}

(u − û)+ + rδ,R(ε)
)

−→ 0 (18)

as ε → 0 and then R → ∞. Now we let ε → 0 and R → +∞ in (8); notice that
ρε converge to 1 and remains bounded. With the help of (16),(17) and (18), we
deduce

∫ T

0

∫

RN

(u − û)+ (−µt)

≤

∫ T

0

∫

RN

(f − f̂) sign+(u − û)µ +

∫

RN

(u0 − û0)
+ µ(0). (19)

The claim (7) follows readily from (19). Because the existence of an entropy solu-
tion is already known, this ends the proof of Theorem 2.
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