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A NOTE ON UNIQUENESS OF ENTROPY SOLUTIONS TO DEGENERATE

PARABOLIC EQUATIONS IN R
N .

BORIS ANDREIANOV AND MOHAMED MALIKI

Abstract. We study the Cauchy problem in R
N for the parabolic equation ut +div F (u) =

∆ϕ(u) , which can degenerate into a hyperbolic equation for some intervals of values of u . In
the context of conservation laws (the case ϕ ≡ 0 ), it is known that an entropy solution can be
non-unique when F ′ has strong singularities. We show the uniqueness of an entropy solution
to the general parabolic problem for all L∞ initial datum, under the isotropic condition on
the flux F known for conservation laws. The only assumption on the diffusion term is that ϕ

is a non-decreasing continuous function.

1. Introduction

Consider the convection-diffusion problem

(1) ut + div F (u) − ∆ϕ(u) = f in (0, T ) × R
N , u|t=0 = u0

with a source f measurable on (0, T ) × R
N , with

∫ T

0
‖f(t, ·)‖L∞ dt < +∞ and an initial

datum u0 ∈ L∞(RN) . Here F = (F1, . . . , FN) : R 7→ R
N is assumed merely continuous (a

quantitative continuity assumption on F will be imposed in the sequel), and ϕ : R 7→ R is a
continuous non-decreasing function.

Degenerate and non-degenerate problems of the kind (1), often investigated under the local
Lipschitz continuity assumption on ϕ and F , appear in various phisical contexts, including
e.g. flows and sedimentation in porous media. Mathematical treatment of these problems was
boosted some ten years ago by the introduction of the adequate notion of entropy solution (see
Carrillo [8]).

Indeed, the framework (1) includes conservation laws as a particular case. It is well known
that in general, classical solutions of (1) may not exist; and that a weak solution in the sense of
distributions may not be unique. The standard way to fix this problem is to work with the so-
called entropy solutions (see Kruzhkov [9] for the case of conservation laws, and Carrillo [8] for
the adaptation of this notion to the case of a degenerate elliptic-parabolic-hyperbolic equation,
of which (1) is a particular case). The classical result of Kruzhkov establishes uniqueness
of an entropy solution (together with the property of finite domain of dependence on initial
data) for the case where ϕ ≡ 0 and F is locally Lipschitz continuous. When the Lipschitz
continuity assumption is dropped, uniqueness of entropy solutions for a conservation law can
be lost (see the works [16, 13, 10, 14] of Kruzhkov and Panov). The effect of non-uniqueness is
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closely connected to the property of “infinite speed of propagation”, which arises when F ′ is
unbounded.

This is the goal of this note to investigate the question of uniqueness of entropy solutions of
(1) for a general nonlinearity ϕ in the diffusion term. Technically, the problem amounts to
the difficulty of exploiting the so-called Kato inequality

(2) (u − û)+
t + div

(

sign +(u − û)(F (u) − F (û)
)

≤ ∆(ϕ(u) − ϕ(û))+ + (f − f̂)+ in D′([0, T ) × R
N );

here u, û are two entropy solutions of (1) corresponding to source terms f, f̂ . Formally, if we
let the test function in (2) converge to zero, we get the inequality

d

dt

∫

RN

(u − û)+(t) ≤

∫

RN

(f − f̂)+ in D′([0, T )) ,

which implies uniqueness of an entropy solution. Even if u− û ∈ L∞(0, T ; L1(RN)) , a too slow
decrease of |F (u)−F (û)| as |x| → ∞ could be an obstacle to this formal reasoning. In fact, the
issue of uniqueness of L1∩L∞ solutions for the conservation law ut +div F (u) = 0, u|t=0 = u0

is not yet clearly understood; see [2] for a discussion of the relevancy of known conditions.

For the case ϕ ≡ 0 and L∞ entropy solutions, sufficient uniqueness conditions for (1) in
terms of the moduli of continuity of F were first formulated by Kruzhkov and Hil’debrand
([12]) (after that Bénilan ([5] obtained the same condition for mild solutions in L1 ). Roughly
speaking, the conditions of [5, 12] (see also [11]) amount to the Hölder continuity of F of
order α = 1 − 1

N
. This condition is “isotropic”: the possibility that some of the components

F1, . . . , FN of F may have a “better” modulus of continuity then the vector-function F is
not exploited. This contrasts with the following “anisotropic” assumption

(3) lim inf
r↓0

∏N
i=1 ωi(r)

rN−1
< +∞

due to Kruzhkov and Panov ([13, 16]); here for i = 1, . . . , N , ωi : R
+ → R

+ is a modulus
of continuity of Fi on the interval [−M, M ] containing the values of u . Assumption (3)
restricts the behaviour of the moduli of continuity ωi(r) of Fi at r = 0 . Assumption (3) is
also sufficient for the uniqueness of entropy solutions of a scalar conservation law. A sharper
condition is given in [14]. Notice that for the L1 ∩ L∞ data, sufficient uniqueness conditions
of a completely different nature were found by Bénilan and Kruzhkov in [6] (see also [2]).

In [15], together with Touré the second author of the present paper proved uniqueness of an
entropy solution to the equation (1) upon replacing ωi(r) in (3) with

(

ωi(r) + (rωϕ(r))1/2
)

;
here ωϕ : R

+ → R
+ is a modulus of continuity of ϕ . Let us point out that, if the space

dimension N equals 1 , both the Kruzhkov-Panov and the Maliki-Touré conditions are always
satisfied. If the space dimension is equal to 2 , then the Maliki-Touré condition contains no
restriction on the function ϕ .

In the work [3] we have investigated the exactness of the assumption of [15] for the case of a
pure diffusion equation (i.e., F ≡ 0 ). It turns out that uniqueness of L∞ solutions for this
case holds for all ϕ . In the present paper, we show a similar result for the full convection-
diffusion equation (1). More exactly, we show uniqueness of an entropy solution for (1) for all
continuous non-decreasing ϕ , but under the assumption that F satisfies an isotropic condition
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which essentially means that F is Hölder continuous of order α = 1 − 1
N

. According to the
previous remark, we can restrict our attention to the case N ≥ 3 .

Our technique does not allow to benefit from the anisotropy of the flux F ; in particular,
unlike in [15], our result does not reduce (3) in the trivial case ϕ ≡ 0 . The case of an

anisotropic diffusion of the form
∑N

i=1 ∂xixi
ϕi(u) cannot be covered neither; we refer to Maliki

and Ouedraogo [1] for results on this non-isotropic diffusion case under suitable assumptions on
the moduli of continuity of ϕi . The problem where the quasilinear diffusion operator ∆ϕ(u)
is replaced with a fully nonlinear diffusion operator such as the p -laplacian ∆pϕ(u) is even
more difficult; to our knowledge, no uniqueness result for entropy solutions in R

N is available
when p > 2 .

2. Definitions and results

Recall that ϕ is a continuous function on R . For M > 0 , we say that a sub-additive,
continuous function ωϕ : [0, 2M ] 7→ R

+ such that ωϕ(0) = 0 is a modulus of continuity of ϕ ,
if

(4) ∀z, ẑ ∈ [−M, M ] |ϕ(z) − ϕ(ẑ)| ≤ ωϕ(|z − ẑ|).

Recall that we only work with bounded solutions of (1). Without loss of generality, we can
assume that M is fixed, moreover, ωϕ is strictly convex (and thus, strictly increasing) and
extended to the whole of R

+ ; we denote its inverse function by Ωϕ . We use the Fenchel
(Legendre) transform of Ωϕ :

Ω
∗
ϕ(t) = sup

z∈R

(

zt − Ωϕ(z)
)

.

It easily follows that Ω
∗
ϕ is strictly increasing, thus it is invertible. We denote by ω∗

ϕ the
inverse of Ωϕ . With the above notation, we have for all z, t ∈ R

+ ,

(5) zt ≤ Ωϕ(z) + Ω
∗
ϕ(t), (Ωϕ ◦ ωϕ)(z) = z, and (Ω

∗
ϕ ◦ ω∗

ϕ)(t) = t.

For a vector-valued function F : R 7→ R
N , we introduce the (isotropic) modulus of continuity

ωF and the related functions ΩF , Ω
∗
F and ω∗

F in the same way, replacing |ϕ(z)−ϕ(ẑ)| in (4)
with |F (z)−F (ẑ)| . Here and in the sequel, we mean that R

N is endowed with the euclidean
norm, which we denote by | · | .

Definition 1. An entropy solution of (1) is a function u ∈ L∞((0, T ) × R
N) such that

ϕ(u) ∈ L2(0, T ; H1
loc(R

N)) and the inequalities

−

∫ T

0

∫

RN

(

|u − k|ξt + sign (u − k)(F (u) − F (k)) · ∇ξ + sign (u − k)∇ϕ(u) · ∇ξ
)

≤

∫ T

0

∫

RN

sign (u − k) f ξ +

∫

RN

|u0 − k| ξ(0, ·)(6)

hold for all k ∈ R and all ξ ∈ D([0, T ) × R
N) .

Here and in the sequel, we mean that u0 ∈ L∞(RN) and ‖f(t, ·)‖L∞ ∈ L1(0, T ) . It is clear
that an entropy solution is also a solution in the sense of distributions; it suffices to use (6) with
k = ‖u‖L∞ . It follows that in (6), one can replace sign (u−k) and |u−k| with sign +(u−k)
and (u − k)+ , respectively, where sign +(r) := max{sign r, 0} and r+ := max{r, 0} .
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Existence of an entropy solution is standard; it can be obtained, e.g., by a regularization of
F and ϕ (when ϕ ≡ 0 , one takes ϕε(z) = εz , which is the so-called “vanishing viscosity”
approximation), with the help of the translation invariance in x of the left-hand side of (1)
and the L1 contraction result of Maliki and Touré [15].

Definition 1 implies the Kato inequality (2), with the help of the doubling-of-variables approach
of Kruzhkov ([9]) and the techniques of Carrillo ([8]) and Blanchard and Porretta ([7]) (see
e.g. [15, 4, 3]). Inequality (2) can also be obtained without doubling the variables, with
the help of the so-called kinetic formulation (see Perthame [17] for the case of a conservation
law). Uniqueness of an entropy solution of (1) (and, more generally, the L1 contraction and
comparison principle) follows whenever we can pass to the limit in the Kato inequality (2) with
test functions ξ → 1 on R

N .

We assume that N ≥ 3 (for N ≤ 2 , the results of [15] apply with no restriction on ϕ ).

Theorem 2. Let N ≥ 3 . Consider an arbitrary non-decreasing continuous function ϕ : R 7→
R . Consider a continuous function F : R 7→ R

N which possesses a modulus of continuity ωF

such that, with the notation introduced above, there holds

(7) IF (R, ε) := RN−2+ε

∫ +∞

R

Ω
∗
F

(1

r

)

r1−ε dr ≤ const uniformly in ε > 0, R > 1 .

Assume in addition that the “ ∆2 -condition” on ΩF holds:

(8) ΩF (2z) ≤ const Ω(z) ∀z ∈ R
+.

Then whenever (u0 − û0)
+ ∈ L1(RN) , (f − f̂)+ ∈ L1((0, T ) × R

N) ,

(9)

∫

RN

(u − û)+(t, ·) ≤

∫

RN

(u0 − û0)
+ +

∫ t

0

∫

RN

(f − f̂)+ a.e. on (0, T ) ,

where u, û are entropy solutions corresponding, respectively, to given initial data u0, û0 ∈
L∞(RN) and sources f, f̂ with ‖f(t, ·)‖L∞(R), ‖f̂(t, ·)‖L∞(R) ∈ L1(0, T ) . In particular, under
assumptions (7), (8) there exists a unique entropy solution uu0,f for given data u0, f ; the
map (u0, f) 7→ uu0,f is order-preserving, and the map u0 ∈ L∞(RN) ∩ L1(RN) 7→ uu0,0 is a
T-contraction in L1 .

Remark 3.

(i) If we replace (7) by the stronger requirement that supε>0 IF (R, ε) → 0 as R → +∞ ,
the assumption (8) can be dropped and the claim of the theorem continues to hold (see
the proof of Theorem 2).

(ii) A sufficient condition is that ωF (z) ≤ const zα with α = 1 − 1
N

(i.e., that F is

Hölder continuous of order 1 − 1
N

); in this case, we can pick ΩF (z) = const z
1

α and

Ω
∗
F (t) = const t

1

1−α ≡ const tN , for which conditions (7), (8) are easy to check.

3. Proof of Theorem 2

The technique of the proof of the theorem is closely related to the previous work [3]. Roughly
speaking, we take in the Kato inequality (2) radial test functions ξ such that ∆ξ ≤ 0 .
This allows us to drop the second term in the right-hand side of (2); thus restrictions on ϕ
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are bypassed. The test functions are constructed by truncating the laplacian’s fundamental
solution profile 1

|x|N−2 .

We are intended to use (2) with the test functions ρε(x) =
(

max{ |x|
R

, 1}
)2−N−ε

, ε > 0 , R > 1
(in order to lighten the notation, we do not indicate explicitly that ρε also depends on R ).
Then we let ε → 0 , and finally we let R → +∞ .

To this end, let ρε,L(x) = RN−2+ε
(

(

max{|x|, R}
)2−N−ε

−
(

L
)2−N−ε

)+

, L > R . By a density

argument, we take in (2) test functions under the form ξ(t, x) = µ(t)ρε,L(x) , where µ ∈
D([0, T ))+ . Indeed, regularizing ρε,L by convolution, dropping the negative measure part of
the distribution ∆ρε,L concentrated of {x ∈ R

N | |x| = R} , using the definition of ωϕ, ωF we
deduce

∫ T

0

∫

RN

(u − û)+ρε,L (−µt) ≤

∫ T

0

∫

RN

ωF ((u − û)+)| ∇ρε,L|µ +

∫ T

0

∫

RN

ωϕ((u − û)+)∆ρε,L µ

+

∫

{|x|=L}

ωϕ((u − û)+) (2−N−ε)L1−N−ε µ

+

∫ T

0

∫

RN

(f − f̂) sign+(u − û)ρε,L µ +

∫

RN

(u0 − û0)
+ρε,L µ(0)

for a.e. L > R′ ; here ∆ρε,L is taken in the pointwise (a.e. on R
N ) sense. Because u, û

are bounded, the integral on the sphere {|x| = L} is majorated by const LN−1L1−N−ε =
const L−ε . We calculate ∆ρε,L = ε(N − 2 + ε)|x|−2ρε1lR<|x|<L and | ∇ρε,L| = (N − 2 +
ε)|x|−1ρε1lR<|x|<L . Notice that |ρε,L| ≤ 1 for all ε, R, L . Now we let L → ∞ . Thanks

to the boundedness of u, û and to the integrability assumption on (u0 − û0)
+ , (f − f̂)+ we

deduce that
∫ T

0

∫

RN

(u − û)+ ρε (−µt) ≤ c

∫ T

0

∫

{|x|>R}

(

ωF ((u − û)+)|x|−1 + ε ωϕ((u − û)+) |x|−2
)

ρε

+

∫ T

0

∫

RN

(f − f̂) sign+(u − û) µ +

∫

RN

(u0 − û0)
+ µ(0).(10)

Here and in the sequel, we fix c = (N − 1)‖µ‖L∞ for ε ∈ (0, 1) .

Our goal is to show that, letting ε → 0 and R → ∞ , we can drop the first term in the
right-hand side of (10). The first step is to prove that (u− û)+ is integrable on (0, T )×R

N .

To this end, fix δ > 0 . Let us show that

(11) c ε

∫ T

0

∫

{|x|>R}

ωϕ((u − û)+) |x|−2 ρε ≤ δ

∫ T

0

∫

{|x|>R}

(u − û)+ ρε + rδ,R(ε),

where for all fixed δ > 0 , R > 1 , the quantity rδ,R(ε) tends to zero as ε decreases to zero.
Indeed, using (5), we get

cε ωϕ((u − û)+) |x|−2 = δ
(

ωϕ((u − û)+)
cε

δ
|x|−2

)

≤ δ (u − û)+ + δ Ω
∗
ϕ(

cε

δ
|x|−2);

thus (11) holds with

rδ,R(ε) := Tδ

∫

{|x|>R}

Ω
∗
ϕ(

cε

δ
|x|−2)ρε.
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By the convexity of Ω
∗
ϕ , we have Ω

∗
ϕ( cε

δ
|x|−2) ≤ (Ω

∗
ϕ)′( cε

δ
R−2) cε

δ
|x|−2 whenever |x| ≥ R .

Without loss of generality, we can assume that Ωϕ is convex and strictly increasing; then it
is not difficult to prove that ess limt↓0 (Ω

∗
ϕ)′(t) = 0 (see e.g. [3]). Hence we deduce that

(Ω
∗
ϕ)′( cε

δ
R−2) =: oε tends to zero as ε → 0 . Therefore using polar coordinates, we get

0 ≤ rδ,R(ε) = δ T

∫

{|x|>R}

Ω
∗
ϕ(

cε

δ
|x|−2)ρε ≤ oε cT ε

∫

{|x|>R}

|x|−2ρε

= cT ε RN−2+ε oε

∫ +∞

R

r−2+2−N−εrN−1 dr = cT ε RN−2+ε R−ε

ε
oε → 0 as ε → 0.(12)

Similarly, from (5) we deduce

(13) cωF ((u − û)+) |x|−1 ρε ≤
1

2
(u − û)+ ρε + Ω

∗
F (2c|x|−1) ρε;

moreover, using assumption (7) we get

(14)

∫ T

0

∫

{|x|>R}

Ω
∗
F (2c|x|−1)ρε = T RN−2+ε

∫ +∞

R

Ω
∗
F

(2c

r

)

r1−ε dr ≤ const IF (R/(2c), ε) ≤ const.

By density, we can take µ(·) = (T − ·)+ in (10), so that −µt(t) = 1l(0,T )(t) . Putting δ = 1/2
and letting ε → 0 , from (10) and (11)–(14) we deduce that

∫ s

0

∫

{|x|<R}

(u − û)+ ≤ T

∫

RN

(u0 − û0)
+ + T

∫ T

0

∫

RN

(f − f̂)+ + const ≤ const.

Letting R → ∞ and s → T , by the monotone convergence theorem we deduce that

(15) (u − û)+ ∈ L1((0, T ) × R
N).

In order to conclude the proof, we return to (10). We now replace (13) with the estimate

(16) cωF ((u − û)+) |x|−1 ρε ≤ δ c ΩF

( 1

δ
ωF ((u − û)+)

)

ρε + δ c Ω
∗
F (|x|−1) ρε.

Denote by C(δ) a generic constant that does not depend on ε, R . Assumption (8) implies
that for t ∈ R

+ , ΩF

(

1
δ
ωF (t)

)

≤ C(δ) ΩF

(

ωF (t)) = C(δ) t . Now using (7), we infer

c

∫ T

0

∫

{|x|>R}

ωF ((u − û)+) |x|−1 ρε ≤ C(δ)

∫ T

0

∫

{|x|>R}

(u − û)+ + δ cT

∫

{|x|>R}

Ω
∗
F (|x|−1) ρε

≤ C(δ)

∫ T

0

∫

{|x|>R}

(u − û)+ + const δ;(17)

The left-hand side of (17) converges to zero as R → ∞ , uniformly in ε ; indeed, (15) yields

(18) inf
δ>0

(

C(δ)

∫ T

0

∫

{|x|>R}

(u − û)+ + const δ
)

→ 0 as R → ∞ .

Using (11) and (12) once more, from (15) we get

c ε

∫ T

0

∫

{|x|>R}

ωϕ((u − û)+) |x|−2 ρε ≤ inf
δ>0

(

δ

∫ T

0

∫

{|x|>R}

(u − û)+ + rδ,R(ε)
)

→ 0 as ε → 0 and then R → ∞.(19)
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Now we let ε → 0 and R → +∞ in (10); notice that ρε converge to 1 and remains bounded.
With the help of (17),(18) and (19), we deduce

∫ T

0

∫

RN

(u − û)+ (−µt) ≤

∫ T

0

∫

RN

(f − f̂) sign+(u − û) µ +

∫

RN

(u0 − û0)
+ µ(0).(20)

The claim (9) follows readily from (20). Because the existence of an entropy solution is already
known, this ends the proof of Theorem 2.
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