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RESUME - Bien que les champs de pluie estimés soient un parametre environnemental clé, ils ne
sont pas toujours disponibles a une échelle appropriée et avec la précision requise. Les méthodes
d'estimation des pluies basées sur les satellites sont une source utile d'information et leur
amélioration est un probléme important. Dans ce texte nous décrivons une methode d'estimation
des pluies basée sur MSG, le nouveau satellite météorologique Européen. Les tests ont été réalisés
sur une zone d'Afrique de I'Ouest au cours de la saison des pluies 2004. Notre algorithme est
composé de deux parties: une évaluation des probabilités de pluie et I'estimation des quantités
précipitées. L'estimation de la probabilité de pluie est réalisée en comparant les indicateurs dérivés
de MSG avec la détection de pluie TRMM/PR. Apres la sélection des noeuds d'entrée, un
perceptron multicouche est entrainé et, les coefficients du réseau évalues, les durées de pluie
peuvent étre calculées. La seconde partie de 1'algorithme réalise une fusion des probabilités de
pluie et des mesures réelles de précipitation. Cette partie dépend étroitement des données
disponibles. Si les précipitations sont fournies sur une grille, une intensité potentielle est tout
d'abord calculé puis les précipitations sont ramenées a l'échelle du satellite. Sur 1'an 2000, les
champs résultants ont été testés face au GPCP sur un réseau de pluviometres dense et ont montré
un meilleur comportement.

ABSTRACT - Although rainfall estimates are a key environmental parameter, they are not always
available at an appropriate scale and with a sufficient accuracy. Satellite based rainfall estimation
methods supply valuable information and their enhancement is a key issue. In this paper we
describe a rainfall estimation method based on MSG, the new European meteorological
geostationary satellite. Computations have been carried out on West-Africa during 2004 rainy
seasons. Our algorithm is composed of two parts: assessment of rainfall probability and actual
rainfall estimation. Rainfall probability is computed by comparing MSG derived indicators with
TRMM/PR rain detection. After the selection of input nodes, a feed forward neural network is
trained. The network coefficients being assessed, rainfall durations can be computed. The second
part of the algorithm merge rain probability data with actual rainfall measurement. This part is
highly dependent of available rainfall data. If precipitations are supplied as gridded data, a
potential intensity is first computed and then precipitations are downscaled at intitial satellite
resolution. On 2000 data, resulting rainfall estimates have been tested against GPCP on a dense
raingauges network and have demonstrated better performances.

PALAVRAS-CHAVE: Neural-network, Rainfall-estimation, Geostationary-satellite, TRMM

INTRODUCTION AND BACKGROUND

1.1 Indirect estimation methods

Accurate rainfall estimates at various scales are
needed both by modelisation process and environmental
monitoring. Unfortunately the ground collect network
(rain gauges and radar) is not everywhere sufficient for a
proper retrieval. In semi-arid area as West-African Sahel,
this is an important issue as the operationnal network is
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scarcely distributed and most of human activities are
dependent of the rainy season quality. In this context, the
satellite based rainfall estimation methods could bring
valuable informations.

A well known global rainfall climatologic product
is the GPI developed by Arkin (1987). GPI is based on a
simple estimation method from GOES satellite data and
provides estimates on a coarse grid (monthly 2.5°x2.5°).
Several methods have been directly derived from GPI to
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produce estimates at different scales. These methods
improved climatological parameters or integrated other
parameters: coincident rain gauges measurements oOr
aerological data. But, at this time, no one appeared
significantly better than the others.

Recently, the climate observation system has
experimented noticeable changes: new active or passive
microwave sensors, launching of a new generation
geostationary satellite. These changes associated with
extended facilities in storage and data processing could
permit to significantly enhance rainfall estimation
methods.

This paper describes a rainfall estimation method
based on MSG, the new European geostationary satellite.
It focuses on design issues and discusses implementation
on other satellite. This work is integrated into AMMA
(African Monsoon Multidisciplinary Analysis) satellite
component.

1.2  Dataset description

Our study has been carried out on West-Africa on
2004 rainy season. On this period our dataset include a
full coverage of geostationary data from MSG.
Informations used for model training are based on
TRMM precipitation radar and are extracted from 3G68-
Land database (Iguchi, 2000). Rainfall amount is supplied
by GPCP daily estimate. Validation data will be provided
by a dense raingauges network managed by IRD (Alj,
2003).

2 RAINFALL PROBABILITY ESTIMATION

2.1  Rainfall probability and intensity
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Figure 1: Rainfall intensity distribution
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The relation between rainfall intensity and cloud
top temperature is recognized as highly variable both in
time and space (Todd, 2001). This variability explains
difficulties encountered when directly downscaling GPI-
like estimators, as the grid size is the key smoothing
element to reduces the relation unstability.

A factor related to this variability is the
distribution of rainfall intensity. The figure 1 histogram
has been computed from one month of 3G68 database on
our study area. Both axis are in logarithmic scale. It can
be quoted that this curve look close from a Zipf law. This
feature suggest that, for sample size considerations,
etablishing the statistical relation estimation of higher
intensity will be difficult. Another factor is that, whereas
geostationary satellite can provide valuable information
for nephanalysis, there is no physical relation with
intensity of convection. As far as the satellite is able to
properly identify active cells in convective clouds, it can
be used for quantitative rainfall estimation because of the
obvious statistical relation between rainfall duration and
rainfall amount. However the weak character of this
relation make it very unstable.

In a first step we will focus on estimating rainfall
area. Our learning dataset will be constituted by
combining 3G68 grid values with coincident MSG (or
Meétéosat) channels. TRMM rainfall intensity will not be
be considered but only detection or not detection of
rainfall. The resulting file will contain around 800000
records for one month of data. Instead of operating a two
classes partition, we wil produce a fuzzy classification
and interpret the result as a rainfall probability estimation.

2.2 Infrared multichannel capacities

The MSG radiometer has been designed to
enhance cloud classification and these new facilities
should improve rainfall estimations. In tropical area, the
estimations efficiency is highly dependent of their
capacities to discriminate between convective clouds and
other formations. Due to their low temperature, cirrus
screening is a sensitive part of these methods and a
method based on only one infrared channel could not
operate a proper discrimination.

In order to assess relative efficiency of MSG
thermal channel for cirrus screening we have simulated
their spectral response on an ice cloud of various
thickness. The radiative transfert model has been
initialized with a standard tropical atmosphere, a 15 km
top cloud altitude and a water content of 0.05 g/m*
Computations have been carried out by Streamer (Key,
1998).
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indicate that they yet could be efficient in a two channel
= ‘ ; ; ‘ ‘ ; ; e oart screening method. Furthermore this figure looks similar
11%2 égg : to the theoretical one (figure 2) both by the shape of the
*l. e s = curves and their relative positions. A feature suggesting
wl - ] that thin cirrus detection explains partly the efficiency of

multichannel classification.
2.3  Variation indicators

CST method (Adler, 1988) was designed to
discriminate between stratiform and convective rainfall.
This classification is based on a infrared spatial variation
indicator. Underlying hypothesis is that top of clouds
limited by an inversion layer would look as flat whereas
20 \ . . \ \ . . \ \ deep convection should be associated with a non-uniform

’ Faiéureag: Sti; am; sirriSI ati;;l o top cloud temperaturg A local Yariance ora slope are

currently used as an input for rainfall estimation model,

For each MSG channel, the difference of but the actual efficiency of this parameter class is at most
moderate (Ba, 2000).

radiatiave temperature with 10.8 um channel has been
plotted (figure 2). The 3.9 um channel has been ommitted
as to noisy at low temperatures.

The two split-window channel (8.7 ym and 12.0
um) perform well, their difference with 10.8 um quickly
increasing with cloud thickness, reaching a maximum
around 100 m and then decreasing until 0. The other
channels behavior looks as more complex but except
CO2 channel (13.4 um) they converge to O for a thick
cloud.

Actual channel satistics are represented in figure
3. The whole learning dataset has been partitioned
according to 10.8 pm channel with a 1K step. On each
slot the means has been computed separately for rainy
and non rainy pixels and their difference has been plotted.

Figure 4: Higher values of local variance

Limitation of local variation indicator appears in
figure 4. We have computed 3x3 variance on a MSG
thermal infrared image (8.7 um) of Senegal during the
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et e IE aa 1 rainy season. The 5% of higher variance pixels have
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marked in red in this image. It can be quoted that high
variance value are mainly associated with cloud
boudaries. In some extent, this feature is related to
rainfall as the more active cells are generated in front of
convective systems, but the relation is still very indirect.

In order to partially overcome this effect, we
compute local variance not only on thermal infrared but
also on water vapor channel. As ground and atmosphere
lower layer are fully absorbed in this wavelenght, the
boundary effect is decreased. We have also selected as

e P " 2 2ee ore 200 input parameter the maximum temperature value on the
Figure 3: Channels discrimination efficiency computation window.
Every channel has a rather regular curve and no The maximum rainfall intensity occurs during

one presents a significant sign inversion. This should  cells growing phase. We use difference of pixel
Berges J.C., Chopin F. and Bessat F.
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temperature in 10.8 pm with the previous slot as an input
parameter. Obviously more sophisticated indicators could
be designed but concerns of computation time make us
select the simplest.

ar uyr
"War IR

"Pre IR" &

Figure 5: Local variances efficiency

The efficiency of these three parameters is
summarized in figure 5. For each 1K slot, the mean value
of the parameter has been computed both for rainy and
non rainy pixels and their difference plotted. Curves are
less regular than in figure 3. Nevertheless the water vapor
variance and the temperature of previous slot show a
constant behavior in accordance with our intuitive cloud
model. As suggested by figure 4, the thermal infrared
variance does not perform so well in relation with 10.8
um channel.

24 Statistical method

From the previous step we selected 13 input
parameters for MSG estimates:

- 7 infrared channel from 6.3 ym to 13.4 pym

- 6.3 um variance on a 3x3 window

- maximun 6.3 pm on a 3x3 window

- 10.8 um variance on a 3x3 window

- maximum 10.8 um on a 3x3 window

- point altitude

After the selection of this set of input parameters a
statistical method has to be selected in order to actually
estimate rainfall probabilities. The histogram matching
technique is efficient as far as the number of input nodes
is low. This technique could be extended to two input
parameters, but it is not applicable in a full multispectral
model as the required learning set size should be too
large.

Berges J.C., Chopin F. and Bessat F.

Tree classifiers and neural networks have been
compared on a rainfall probability estimation (Berges,
2003). It appears that neural networks are much more
stable than tree classifiers. Integrating bagging (Breiman,
1994) enhances tree classifiers stabilty at the expense of
an higher computing time. After this this modification,
the results obtained by the two methods are roughly
similar but the bias analysis shows still a better
performance of neural networks.

Neural networks are now widely used as non
linear regression method (Funahashi, 1989). To actually
implement a neural estimator the first step is to design a
network architecture. Then the model coefficients are
assessed by comparing estimated with reference values
and by backpropagating estimation error to correct the
coefficients. This operation is done for each element of
the learning dataset and the estimation of these
coefficients requires multiple iterations of this procees.
The computation is stopped on matching a mean error
criterium. A direct retrieval of rainfall intensity from
geostationary satellite data is in many way difficult. Hsu
(1996) uses a complex model integrating a Kohonen map
with a multilayer feed forward network. The probability
rainfall estimation is much more simpler as it can be
efficiently performed by a feed forward network with one
hidden layer. In this class of networks the only parameter
is the number of hidden layer nodes. Usually it is a
tradeoff between estimator accuracy and stability. With
only one hidden node, the neural network is equivalent to
a linear regression which is stable but presenting high
estimation bias. Too much hidden node would overtrain
the network, a situation where resulting estimator would
be highly dependent on small perturbation of learning
dataset. As our learning base is much more greater than
the input node number, overtraining is not a real issue and
we have set the number of hidden nodes to twice the
input node number.

0.00 24.77 49.54 74.32 99.09

Figure 6: MSG 2004/07/06 19:00
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The only significant modification to standard
algorithm is the prior introduction of data scrambling. As
images are spatially coherent, following records are
usually highly correlated. This feature slowdowns the
convergence of the error backpropagation algorithm. So
the learning base records are reordered by a random
algorithm to eliminate this effect.

After completion of the training phase, an estimation can
be computed for each available slot. These instantaneous
probability images match properly with TRMM/PR data.
In figure 6 an estimated probability field is superposed
with coincident TRMM/PR track. Rainy pixels are
plotted in red and non rainy in green. On this figure, the
active cells appear as clearly delineated.

3 RAINFALL INTENSITY ESTIMATION
3.1 Downscaling formula

The estimated rainfall intensity will be computed
by the product of the rainfall probability and the potential
intensity. The determination of this potential intensity
will be highly dependent of the nature of rainfall data. If
actual data are not available potential intensity will be a
constant or a continuous field extracted from climatology.

Should we get actual rainfall data in gridded form,
the downscaling formula (1) should be applicable:

I atlr(a,t) da dt = Ip(cA,cT) [f ar Pr(a,t) da dt 1)
where: A (resp. T) is the spatial (resp. temporal)
integration area
cA (resp. cT) is the center of A (resp. T)
Ir is the actual rainfall intensity

Ip is the potential intensity
Pr is the probability of rainfall

When computing Ip from formula 1 it is important
to define the size of the sliding windows A and T as
greater than a grid cell. A is usually selected defined by a
circle whose radius is twice a grid cell size. After this
operation a potential intensity field is defined and the
estimated rainfall intensity Ie will be obtained by:

Ie(a,t) =Ip(a,t) Pr(a,t) 2)

Formula 1 states that, when integrating estimated
rainfall intensity on a grid cell area resulting value will be
close from actual gridded data. A consequence of this
formula, is that rainfall information can be supplier at a
much coarser scale than the resulting product and the fine

Berges J.C., Chopin F. and Bessat F.

structures are extracted from rainfall

estimates.

probability

3.2 Validation

Due to a lag in 2004 ground data transmission we
have not yet a validation database. But in a previous
experiment we have tested this method on a similar
algorithm based on Météosat 7 (Chopin, 2004).

Comparison demonstrated a clear advantage of
downscaled data when compared with initial gridded
data. As Meteosat statiscal model was simpler than MSG
one we can expect to get at least similar results when
running this algorithm on the new satellite.

4 CONCLUSION AND PERSPECTIVES
4.1 Immediate method enhancements

To get this method fully operational several
improvements have to be integratted.

First of all, the exploitation of TRMM satellite
will be stopped in a next future and there is no
replacement planned for the precipitation radar. So we are
constituting a TRMM/MSG database as large as possible
to avoid the requirement of network training on
coincident data. For the same reason we are investigating
the use of aerological data as model input.

Obviously, much more informations could be
extracted from variation features. More sophisticated
indicators have to be elaborated for a proper retrieval of
clouds morphologic and dynamic properties.

4.2 Rainfall estimation on South America

As a great part of South America is inside of MSG
scanning area, it should be theoritecaly possible to use the
same algorithms for Brazil than for West-Africa. But for
geometric considerations GOES-E will perform much
more better than MSG on this area. Using MSG should
require a correction scan angle algorithm. First
experiments have indicated than MSG IR/probality
relation computed on W-Africa is closer from GOES
IR/Probability on S-America than from uncorrected MSG
IR:Probability on the same area. Moreover it is not sure
that, to identify deep convection kernels, MSG
radiometer would more efficient than GOES one.

The main adjustments in transferring our rainfall
estimation method will be likely more related to
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specificities of physical environment than to differences
in satellite observation systems. A specific issue should
the integration of slope and low level winds for a better
modeling of orographic phenomena.

4.3 A class of methods

As both environmental features and data collect
system are varying, we don't believe a unique optimal
rainfall estimation method can be defined but rather a
general frame of algorithm design. Our present work can
be considered as a first element of this specification
system.
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