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CLASSIFICATION OF RAUZY CLASSES IN THE

MODULI SPACE OF QUADRATIC DIFFERENTIALS

CORENTIN BOISSY

Abstract. We study relations between Rauzy classes coming from
an interval exchange map and the corresponding connected com-
ponents in the moduli space of Abelian differentials. This gives
a criterion to decide whether two permutations are in the same
Rauzy class or not, without actually computing them.

We prove a similar result for Rauzy classes corresponding to
quadratic differentials.

Introduction

Rauzy induction was first introduced as a tool to study the dynamics
of interval exchange transformations [Rau79]. These mappings appear
naturally as first return maps on a transverse segment, of the direc-
tional flow on a translation surface. The Veech construction presents
translation surfaces as suspensions over interval exchange maps, and
extends the Rauzy induction to these suspensions [Vee82]. This pro-
vides a powerful tool in the study of the Teichmüller geodesic flow and
was widely studied in the last 30 years.

An interval exchange map is encoded by a permutation and a contin-
uous datum. A Rauzy class is a minimal subset of irreducible permuta-
tions which is invariant by the two combinatorial operations associated
to the Rauzy induction. The Veech construction enables us to asso-
ciate to a Rauzy class a connected component of the moduli space
of Abelian differentials with prescribed singularities. Such connected
components are in one-to-one correspondence with the extended Rauzy
classes, which are unions of Rauzy classes and are defined by adding
a third combinatorial operation. Historically, these extended Rauzy
classes were used to prove the nonconnectedness of some strata in low
genera [Vee90], before Kontsevich and Zorich performed the complete
classification [KZ03].
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One can also consider first return maps of the vertical foliation on
transverse segments for flat surfaces defined by a quadratic differential
on a Riemann surface. We obtain a particular case of linear invo-
lutions, that were defined by Danthony and Nogueira [DN90] as first
return maps of measured foliations on surfaces. In this paper, we speak
only of linear involutions corresponding to quadratic differentials. As
before, a linear involution is encoded by a combinatorial datum, the
generalized permutation and a continuous datum. For linear involu-
tions with irreducible generalized permutations, we can generalize the
Veech construction and Rauzy classes [BL09].

In this paper, we give a precise relation between Rauzy classes and
the connected components of the moduli space of Abelian or quadratic
differentials. We prove the following:

Main Theorem. Let Q be a stratum in the moduli space of Abelian
differentials or in the moduli space of quadratic differentials. Let r be
the number of different integers that are orders of a singularity of an
element of Q. For any connected component C of Q, there is exactly r
distinct Rauzy classes that correspond to this connected component.

Note that in the previous theorem, r is not the number of singular-
ities: for instance, in the stratum that consists of translation surfaces
with two singularities of degree 1 (i.e. the stratum H(1, 1)), we have
r = 1.

A flat surface obtained from a permutation or a generalized permuta-
tion π using the Veech construction admits a marked singularity. The
order of this singularity α(π) is preserved by the Rauzy induction, and
we can therefore associate to a Rauzy class an integer, which is the
order of a singularity in the corresponding stratum. Hence, a corollary
of the Main Theorem is the following criteria:

Corollary. Let π1 and π2 be two irreducible permutations or general-
ized permutations. They are in the same Rauzy class if and only if they
correspond to the same connected component and α(π1) = α(π2).

The Main Theorem will be obtained as a direct combination of
Propositions 2.4 and 3.5 for the case of Abelian differentials, and Propo-
sitions 2.4 and 4.4 for the case of quadratic differentials.

Acknowledgments. I thank Anton Zorich, Pascal Hubert and Erwan
Lanneau for encouraging me to write this paper, and for many discus-
sions.
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1. Background

1.1. Flat surfaces. A flat surface is a real, compact, connected surface
of genus g equipped with a flat metric with isolated conical singularities
and such that the holonomy group belongs to Z/2Z. Here holonomy
means that the parallel transport of a vector along a long loop brings
the vector back to itself or to its opposite. This implies that all cone
angles are integer multiples of π. We also fix a choice of a parallel line
field in the complement of the conical singularities. This parallel line
field will be usually referred as the vertical direction. Equivalently a
flat surface is a triple (S,U , Σ) such that S is a topological compact
connected surface, Σ is a finite subset of S (whose elements are called
singularities) and U = {(Ui, zi)} is an atlas of S \ Σ such that the
transition maps zj ◦ z−1

i : zi(Ui ∩ Uj) → zj(Ui ∩ Uj) are translations or
half-turns: zi = ±zj+c, and for each s ∈ Σ, there is a neighborhood of s
isometric to a Euclidean cone. Therefore, we get a quadratic differential
defined locally in the coordinates zi by the formula q = dz2

i . This form
extends to the points of Σ to zeroes, simple poles or marked points
(see [MT02]).

Observe that the holonomy is trivial if and only if there exists a sub-
atlas such that all transition functions are translations or equivalently
if the quadratic differential q is the global square of an Abelian differ-
ential. We will then say that S is a translation surface. In this case, we
can choose a parallel vector field instead of a parallel line field, which
is equivalent in fixing a square root of q. In the complementary case,
we sometime speak of half-translation surfaces.

Example 1.1. Consider a polygon whose sides come by pairs, and such
that, for each pair, the corresponding sides are parallel and have the
same length. We identify each pair of sides by a translation or a half-
turn so that it preserves the orientation of the polygon. We obtain a flat
surface, which is a translation surface if and only if all the identifications
are done by translation. One can show that any flat surface can be
represented by such a polygon (see [Boi08], Section 2).

We can associate to a quadratic differential the set with multiplicities
{k1, . . . , kr} of orders of its poles and zeros, were ki 6= kj for i 6= j, and
were αi is the multiplicity of ki. We denote this set by {kα1

1 , . . . , kαr
r }.

The Gauss–Bonnet formula asserts that
∑

i αiki = 4g − 4. Conversely,
if we fix a set with multiplicities {kα1

1 , . . . , kαr
r } of integers, greater

than or equal to −1 satisfying the previous equality, we denote by
Q(kα1

1 , . . . , kαr
r ) the (possibly empty) moduli space of quadratic dif-

ferentials which are not globally squares of Abelian differentials, and
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which have {kα1

1 , . . . , kαr
r } as orders of poles and zeros. It is well

known that Q(kα1

1 , . . . , kαr
r ) is a complex analytic orbifold, which is

usually called a stratum of the moduli space of quadratic differentials
on a Riemann surface of genus g. In a similar way, we denote by
H(nα1

1 , . . . , nαr
r ) the moduli space of Abelian differentials having zeroes

of degree {nα1

1 , . . . , nαr
r }, where ni ≥ 0 and

∑r

i=1 αini = 2g − 2.
By convention, we will speak of the degree of a singularity in a trans-

lation surface, and of the order of a singularity in half-translation sur-
face. A singularity of degree k corresponds to a cone angle (k + 1)2π.
A singularity of order k corresponds to a cone angle (k + 2)π.

There is a natural action of SL2(R) on Q(k1, . . . , kr): let (Ui, φi)i∈I

be an atlas of flat coordinates of S, with Ui open subset of S and
φi(Ui) ⊂ R2. An atlas of A.S is given by (Ui, A ◦ φi)i∈I . The action of
the diagonal subgroup of SL2(R) is called the Teichmüller geodesic flow.

In order to specify notations, we denote by gt the matrix
(

et/2 0
0 e−t/2

)
.

A saddle connection is a geodesic segment (or geodesic loop) join-
ing two singularities (or a singularity to itself) with no singularities
in its interior. Even if q is not globally a square of an Abelian dif-
ferential, we can find a square root of q along any saddle connection.
Integrating q along the saddle connection we get a complex number
(defined up to multiplication by −1). Considered as a planar vector,
this complex number represents the affine holonomy vector along the
saddle connection. In particular, its Euclidean length is the modulus
of its holonomy vector. Note that a saddle connection persists under
any small deformation of the surface.

Local coordinates for a stratum of Abelian differentials are obtained
by integrating the holomorphic 1–form along a basis of the relative
homology H1(S, Σ; Z), where Σ denotes the set of conical singularities
of S. Equivalently, this means that local coordinates are defined by
the relative cohomology H1(S, Σ; C).

Local coordinates in a stratum of quadratic differentials are obtained
in the following way: one can naturally associate to a quadratic differ-

ential (S, q) ∈ Q(kα1

1 , . . . , kαr
r ) a double cover p : Ŝ → S such that p∗q

is the square of an Abelian differential ω. The surface Ŝ admits a nat-

ural involution τ , that induces on the relative cohomology H1(Ŝ, Σ; C)

an involution τ ∗. It decomposes H1(Ŝ, Σ; C) into an invariant subspace

H1
+(Ŝ, Σ; C) and an anti-invariant subspace H1

−(Ŝ, Σ; C). One can show

that the anti-invariant subspace H1
−(Ŝ, Σ; C) gives local coordinates for

the stratum Q(kα1

1 , . . . , kαr
r ).
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1.2. Interval exchange maps and linear involutions. The first
return map of the vertical flow of a translation surface on a horizontal
open segment X defines an interval exchange map. That is, a one-
to-one map from X\{x1, . . . , xd−1} to X\{x′

1, . . . , x
′
d−1} which is an

isometry and preserves the natural orientation of X. The relation be-
tween translation surfaces and interval exchanges transformations has
been widely studied in the last 25 years (see [Vee82, Ma82, MMY05,
AGY06, AV07] etc. . . ).

X

X
T

X1 X2 X3 X4

T (X1)T (X2)T (X3)T (X4)

x1 x2 x3

x′

1
x′

2
x′

3

π = ( 1 2 3 4
4 3 2 1 )

Figure 1. An interval exchange map and its corre-
sponding permutation.

We encode an interval exchange map T in the following way: the set
X\{x1, . . . , xd−1} is a union of d intervals that we label by {1, . . . , d}
from the left to the right. The length of these intervals is then a vector
λ with positive entries. Applying the map T , the interval number i
becomes the interval number π(i). This defines a permutation π of
{1, . . . , d}. The vector λ is called the continuous datum of T and π is
called the combinatorial datum. We usually represent π by a table of
two lines:

π =

(
1 2 . . . d

π−1(1) π−1(2) . . . π−1(d)

)
.

We can naturally identify two interval exchange maps if they share
the same continuous and combinatorial data.

The vertical foliation of a translation surface is a oriented measured
foliation on a smooth oriented surface. A generalization of interval
exchange maps for any measured foliation on a surface (oriented or not)
was introduced by Danthony and Nogueira [DN90] as linear involution.
The linear involutions corresponding to oriented flat surfaces with Z/2Z
linear holonomy were studied in detail by Lanneau and the author in
[BL09].

Let X ⊂ S be an open horizontal segment. We choose on X an orien-
tation. This is equivalent to fix a “left end” on X, or to fix a “positive
vertical direction” in a neighborhood of X. A linear involution must
encode the successive intersections of X with a vertical geodesic. It
is done in the following way: we say that we are in X × {0} if the
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geodesic intersects X in the positive direction and in X × {1} in the
complementary case. Then, the first return map with this additional
directional information gives a map from X × {0, 1} to itself.

X1 X3X2 X4 X5

X6 X7 X8 X9 X10

a

a
bb

c

c

d

d

e

e

(a)

X1 X3X2 X4 X5

X6 X7 X8 X9 X10

T (X1) T (X3)

T (X2)T (X4)

T (X5)

T (X6)

T (X7)

T (X8) T (X9)

T (X10)

X×{0}

X×{1}

T

(x,0)
(y,1)

T (x,0)
T (y,1)

(b)

Figure 2. A linear involution associated to a measured
foliation on a flat surface.

Definition 1.2. Let f be the involution of X×{0, 1} given by f(x, ε) =
(x, 1−ε). A linear involution is a map T , from X×{0, 1} into itself, of

the form f◦T̃ , where T̃ is an involution of X×{0, 1} without fixed point,
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continuous except on a finite set of point ΣT , and which preserves the
Lebesgue measure. In this paper we will only consider linear involutions
with the following additional condition: the derivative of T̃ is −1 at
(x, ε) if (x, ε) and T (x, ε) belong to the same connected component,
and −1 otherwise.

On a flat surface, the first return map of the vertical foliation on a
horizontal segment defines a linear involution, and that the fact that
the underlying flat surface is oriented corresponds precisely to our ad-
ditional condition. A linear involution such that T (X×{0}) = X×{0}
(up to a finite subset) corresponds to an interval exchange map T0, by
restricting T on X × {0} (note that the restriction of T on X × {1}
is naturally identified with T−1

0 ). Therefore, we can identify the set of
interval exchange maps with a subset of the linear involutions.

A linear involution is encoded by a combinatorial datum called gen-
eralized permutation and by continuous data. This is done in the fol-
lowing way: X × {0}\ΣT is a union of l open intervals X1 ⊔ . . . ⊔ Xl,
where we assume by convention that Xi is the interval at the place
i, when counted from the left to the right. Similarly, X × {1}\ΣT is
a union of m open intervals Xl+1 ⊔ . . . ⊔ Xl+m. For all i, the image
of Xi by the map T̃ is a interval Xj, with i 6= j, hence T̃ induces an
involution without fixed points on the set {1, . . . , l + m}. To encode
this involution, we attribute to each interval Xi a symbol such that Xi

and T̃ (Xi) share the same symbol. Choosing the set of symbol to be
{1, . . . , d}, we get a two-to-one map π : {1, . . . , l + m} → {1, . . . , d},
with d = l+m

2
. Note that π is not uniquely defined by T since we can

compose it on the left by any permutation of {1, . . . , d}.

Definition 1.3. A generalized permutation of type (l, m), with l+m =
2d, is a two-to-one map π : {1, . . . , 2d} → {1, . . . , d}. It is called
reduced if for each k, the first occurrence in {1, . . . , l + m} of the label
k ∈ {1, . . . , d} is before the first occurrence of any label k′ > k.

We will usually represent such generalized permutation by a table of
two lines of symbols, with each symbol appearing exactly two times.

π =

(
π(1) . . . π(l)

π(l + 1) . . . π(l + m)

)
.

In the table representation of a generalized permutation, a symbol
might appear two times in a line, and zero time in the other line.
Therefore, we don’t necessarily have l = m. A linear involution defines
a reduced generalized permutation by the previous construction in a
unique way.
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Example 1.4. The reduced generalized permutation π associated to the
linear involution of Figure 2 is the following:

π =

(
1 2 3 2 4
4 5 1 3 5

)
.

Remark 1.5. As we have seen before, an interval exchange map can
be seen as a linear involution. Also, the table representations of the
corresponding combinatorial data are the same. In the next, the defi-
nitions and statements that we give are valid for linear involutions and
for interval exchanges maps, unless stated otherwise.

1.3. Rauzy induction and Rauzy classes. When T : X → X is
a interval exchange transformation, the first return map of T on a
subinterval X ′ ⊂ X is still an interval exchange map. The image of T
by the Rauzy induction R is the first return map of T on the biggest
subinterval X ′ ( X which has the same left end as X, and such that
R(T ) has the same number of intervals as T (see [Vee82, MMY05]).

Similarly, we can define Rauzy induction for linear involutions be
considering first return maps on X ′ × {0, 1}, when X ′ ⊂ X (see Dan-
thony and Nogueira [DN90]).

Let T = (π, λ) be a linear involution X and denote by (l, m) the
type of π. We identify X with the interval (0, L). If λπ(l) 6= λπ(l+m),
then the Rauzy induction R(T ) of T is the linear involution obtained
by the first return map of T to

(
0, max(L − λπ(l), L − λπ(l+m))

)
× {0, 1}.

The combinatorial data of the new linear involution depends only on
the combinatorial data of T and whether λπ(l) > λπ(l+m) or λπ(l) <
λπ(l+m). We say that T has type 0 or type 1 respectively. The cor-
responding combinatorial operations are denoted by R0 and R1 cor-
respondingly. Note that if π is a given generalized permutation, the
subsets {T = (π, λ), λπ(l) > λπ(l+m)} or {T = (π, λ), λπ(l) < λπ(l+m)}
can be empty because π(l) = π(l+m) or because the nontrivial relation∑l

i=1 λπ(i) =
∑l+m

j=l+1 λπ(j) that must be fulfilled by λ.

Let us fix some terminology: let k ∈ {1, . . . , l + m}, the other oc-
currence of the symbol π(k) is the unique integer k′ ∈ {1, . . . , l + m},
distinct from k, such that π(k′) = π(k). In order to describe the combi-
natorial Rauzy operations R0 and R1, we first define two intermediary
maps R′

0, R
′
1:

(1) We define R′
0 in the following way:

• If the other occurrence k of the symbol π(l) is in {l+1, . . . , l+
m − 1}, then we define R′

0(π) to be of type (l, m) obtained by
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removing the symbol π(l + m) from the occurrence l + m and
putting it at the occurrence k + 1, between the symbols π(k)
and π(k + 1).
• If the other occurrence k of the symbol π(l) is in {1, . . . , l−1},
and if there exists another symbol α, whose both occurrences
are in {l + 1, . . . , l + m}, then we we define R′

0(π) to be of
type (l + 1, m − 1) obtained by removing the symbol π(l + m)
from the occurrence l + m and putting it at the occurrence k,
between the symbols π(k−1) and π(k) (if k = 1, by convention
the symbol π(l +m) is put on the left of the first symbol π(1)).
• Otherwise R′

0π is not defined.
(2) The map R′

1 is obtained by conjugating R′
0 with the transforma-

tion that interchanges the two lines in the table representation.

Then, R0(π) (resp. R1(π)) is obtained by renumbering R′
0(π) (resp.

R′
1(π)) to get a reduced generalized permutation. For another defini-

tion of R0 and R1 in terms of the map π, we refer to [BL09].

Example 1.6. Let us consider the generalized permutation π = ( 1 2 3 4 3
2 4 5 5 1 ).

We have

R′
0(π) =

(
1 2 1 3 4 3
2 4 5 5

)
= R0(π),

and

R′
1(π) =

(
1 3 2 3 4
2 4 5 5 1

)
so R1(π) =

(
1 2 3 2 4
3 4 5 5 1

)
.

( 1 2 3 4
4 3 2 1 )

( 1 2 3 4
4 1 3 2 )

( 1 2 3 4
4 2 1 3 ) ( 1 2 3 4

2 4 3 1 )

( 1 2 3 4
3 2 4 1 )

( 1 2 3 4
3 1 4 2 )

( 1 2 3 4
2 4 1 3 )

0

1

Figure 3. An example of a Rauzy diagram for permutations.
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( 1 1 2
2 3 3 )

( 1 2 2
3 3 1 )

( 1 1
2 2 3 3 ) ( 1 1 2 2

3 3 )

0

1

Figure 4. An example of a Rauzy diagram for general-
ized permutations.

Definition 1.7. A Rauzy class is a minimal subset of reduced gener-
alized permutations (or permutations) which is invariant be the com-
binatorial Rauzy maps R0,R1. A Rauzy diagram is the oriented graph
whose vertices are the set of elements of a Rauzy class, and whose edges
correspond to the transformations R0 and R1.

Remark 1.8. In this paper, we will speak only of Rauzy class of irre-
ducible permutations or generalized permutations (see a definition of
irreducible in the next section).

1.4. Suspension data and Zippered rectangles construction.

Starting from a linear involution T , we want to construct a flat surface
S and a horizontal segment X such that the corresponding first return
map of the vertical foliation gives T . Such pair (S, X) will be called a
suspension over T , and the parameters encoding this construction will
be called suspension datum.

Definition 1.9. Let T = (π, λ) be a linear involution and let (λk)k∈{1,...,d}

be the lengths of the corresponding intervals. Let {ζk}k∈{1,...,d} be a col-
lection of complex numbers such that:

(1) ∀k ∈ {1, . . . , d} Re(ζk) = λk.
(2) ∀1 ≤ i ≤ l − 1 Im(

∑
j≤i ζπ(j)) > 0

(3) ∀1 ≤ i ≤ m − 1 Im(
∑

1≤j≤i ζπ(l+j)) < 0

(4)
∑

1≤i≤l ζπ(i) =
∑

1≤j≤m ζπ(l+j).

The collection ζ = {ζi}i∈{1,...,d} is called a suspension datum over T .
The existence of a suspension datum depends only on π, hence we will
say that π is irreducible if (π, λ) admits a suspension data.
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We refer to [BL09] (Section 3) for a combinatorial criterion of ir-
reducibility for the case when π does not correspond to an interval
exchange map.

This notion of irreducibility is relevant when we consider Rauzy
classes for generalized permutations. Indeed, if π is irreducible and
if π′ is in the Rauzy class generated by π (i.e. the set of descendants of
π after iterating the combinatorial Rauzy inductions), then π′ is irre-
ducible and π is in the Rauzy class generated by π′. Therefore, being
in the same Rauzy class is then an equivalent relation on the set of irre-
ducible generalized permutations. However, this is not necessarily true
if we consider the whole set of generalized permutations (see [BL09],
section 5).

ζ1

ζ1

ζ2
ζ2

ζ3

ζ3

ζ4

ζ4

ζ5

ζ5

Figure 5. A suspension over a linear involution.

Given an interval exchange mapT and a suspension data, there is
a well known construction due to Veech, that gives a translation sur-
face and a horizontal segment whose corresponding return map of the
vertical geodesic flow is T (see [Vee82, MMY05]). This construction
is called the zippered rectangles construction. One can generalize this
construction to linear involutions ([Boi08, BL09]). Given a suspension
datum ζ over a linear involution T = (π, λ), we get a flat surface S
and a open horizontal segment X (see Figure 5) with an orientation.
The first return map of the vertical foliation of S on X is precisely the
linear involution (π, Re(ζ)). Furthermore, the segment X also satisfies
the following properties:

(1) the segment X is adjacent to a singularity on its left,
(2) there is a vertical geodesic of S that starts from a singularity

and passes through the right end of X before intersecting X,
(3) any vertical geodesic of S intersects X.

We write (S, X) = Z(π, ζ). In fact, the converse is true:

Lemma 1.10. Let S be a flat surface and X be a open horizontal
segment S with a choice of orientation. We assume that X satisfies the
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properties (1)–(2) stated previously, and intersects any vertical saddle
connection in its interior.

There exists a unique suspension datum (π, ζ), with π reduced, such
that (S, X) = Z(π, ζ).

Proof. For the case of translation surfaces, the fact that S is obtained
by the zippered rectangles construction is a well known fact, and the
corresponding permutation and suspension data come from the first
return map of the vertical geodesic flow. For the case of quadratic
differentials, a proof when the surface has no vertical saddle connections
can be found in [Boi08] (Proposition 2.2.). The proof in our case is
similar. We give a sketch and refer to [Boi08] for details.

Let T = (π, λ) be the linear involution associated to X. Up to a finite
subset ΣT , X×{0, 1} is a finite union of open subsets X1 . . . , Xl+m, such
that T|Xi

is a translation or a half-turn. Let k 6= k′ be in {1, . . . , l+m}
such that π(k) = π(k′). There is an embedded rectangle R whose
horizontal edges are identified with Xk and Xk′. A point in X cannot
be in the interior of R since T is the first return map on X of the
vertical foliation. Assume that a vertical side of R contains at least
two singularities, then it contains a vertical saddle connection, which
therefore intersects X. Since X is an open interval, a subset of X is
contained in the interior of R, which contradicts the previous assertion.

With this additional argument, one can check that the construction
given in [Boi08], Proposition 2.2 defines the suspension datum ζ in a
similar way.

�

The Rauzy induction on interval exchange maps or on linear involu-
tions admits a natural extension on the space of suspension data. This
is called the Rauzy–Veech induction. Let T = (π, λ) be a linear invo-
lution and let ζ be a suspension over T . We define R(π, ζ) = (π′, ζ ′)
as follows.

• If T = (π, λ) has type 0, then R(π, ζ) = (R0π, ζ ′), with ζ ′
k = ζk

if k 6= π(l) and ζ ′
π(l) = ζπ(l) − ζπ(l+m).

• If T = (π, λ) has type 1, then R(π, ζ) = (R1π, ζ ′), with ζ ′
k = ζk

if k 6= π(l + m) and ζ ′
π(l+m) = ζπ(l+m) − ζπ(l).

Remark 1.11. The pair (π′, ζ ′) defines a suspension datum over R(T ).
If we denote (S, X) = Z(π, ζ) and (S ′, X ′) = Z(π′, ζ ′), the two flat sur-
faces S and S ′ can be naturally identified, and X ′ ⊂ X (see Figure 6).

Let π be a permutation or a generalized permutation and let ζ be
a suspension data. Since the set of suspension data associated to π is
connected (in fact convex) and the zippered rectangles construction is
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Figure 6. Rauzy-Veech induction on a suspension over
an interval exchange transformation.

continuous with respect to the variations of ζ , then all surfaces obtained
from a permutation π with the zippered rectangles construction belong
to the same connected component of stratum C(π).

Let C be a connected component of a stratum of the moduli space
of Abelian differentials or of quadratic differentials. We denote by TC

the set

TC = {(π, ζ), C(π) = C, ζ is a suspension data for π},

and HC the quotient of this set by the Rauzy–Veech induction. The
following proposition is clear.

Proposition 1.12. The connected components of HC are in one-to-
one correspondence with the set of Rauzy classes C corresponding to a
connected component of the moduli space of Abelian or quadratic dif-
ferentials differentials.

2. Rauzy classes and covering of a stratum

According to remark 1.11, the zippered rectangles construction pro-

vides a natural map Ẑ from HC to the ramified covering Ĉ of C, ob-
tained by considering the pairs (S, l), where S ∈ C and l is a horizontal
separatrix adjacent to a singularity of S.

Lemma 2.1. The map Ẑ is a homeomorphism on its image.

Proof. First, let S be such that there exists (π, ζ) ∈ TC with Z(π, ζ) =

(S, ∗). It is well known that ζ , with the condition
∑l

i=1 ζi =
∑l+m

j=l+1 ζj,
defines local coordinates of the ambient stratum. This implies that Z

is open, and so is Ẑ.

Now we show that Ẑ is injective. The pair (S, l) ∈ Ĉ is in the

image of Ẑ if and only if there exists a segment X ⊂ l, that satisfies
the hypothesis of Lemma 1.10. For such segment, there exists a unique
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(π, ζ) such that Z(π, ζ) = (S, X). Now let X ′ be another such segment,
then we must have X ⊂ X ′ or X ′ ⊂ X, and X ′ defines a new suspension
data (π′, ζ ′). We assume for instance that X ′ ⊂ X. We claim that
there exists an integer n ≥ 0 such that Rn(π, ζ) = (π′, ζ ′). Assuming

the claim, we can conclude that there exists a unique class [(π, ζ)] ∈ Ĉ

in the preimage of (S, l) by the map Ẑ.
When S is a translation surface without vertical saddle connections,

the claim is Proposition 9.1 of [Vee82]. We prove the claim in the
general case. Let us consider the (possibly finite) sequence of iterates
of (π, ζ) by the Rauzy induction. We denote Rn(π, ζ) = (π(n), ζ (n)) and
T (n) the corresponding linear involution. We identify the interval X(n)

(resp. X ′) with the interval ]0, x(n)[ (resp. ]0, x′[) of R. Three cases are
possible.

(1) There exists n > 0 such that x(n) < x′. We denote by n0

the biggest index such that x(n0) > x′. By definition, of X ′,
there is a vertical geodesic γ starting from x′ and that hits a
singularity before intersecting the interval ]0, x′[. We assume
that it doesn’t intersect the interval ]0, x(n0)[. Then T (n0) is
not defined on (x′, ε), for ε corresponding to the direction of
γ. We know by hypothesis that R(π(n0), ζ (n0)) exists, and by
definition of the Rauzy induction, we have x(n0+1) = x′. Hence,
(π′, ζ ′) = R(n0+1)(π, ζ).

If γ intersects ]x′, x(n0)[ before hitting a singularity, then we
consider x′′ ∈]x′, x(n0)[ the greatest intersection point. We must
have x′′ ≤ x(n0+1) which contradicts the hypothesis on n0.

(2) There exists n such that x(n) > x′ and R(π(n), ζ (n)) is not
defined. This means that there exists x(n+1) ≥ x′ such that
T (n)(x(n+1), 0) and T (n)(x(n+1), 1) are not defined. Then there
is a saddle connection γ that intersects X(n) only in the point
x(n+1). Hence, X ′ =]0, x′[ does not intersect γ, contradicting
the hypothesis on X ′.

(3) The sequence (π(n), ζ (n)) is infinite and for all n, x(n) > x′.
The sequence (x(n))n converges to x(∞) ≥ x′. According to the
proof of Proposition 4.2 in [BL09] T (n)(x(∞), 0) and T (n)(x(∞), 1)
are not defined for n large enough. Then, there is a saddle
connection γ that intersect X(n) only in the point x(∞). Hence,
X ′ =]0, x′[ does not intersect γ, contradicting the hypothesis on
X ′.

�



RAUZY CLASSES 15

Proposition 2.2. The complement of Ẑ(HC) is contained in a subset

of Ĉ which is a countable union of real analytic codimension 2 subsets.

Proof. If S has no horizontal saddle connections, any horizontal geo-
desic is dense. Hence, a horizontal segment X adjacent to a singularity
will intersect all the vertical saddle connections, as soon as this segment
is long enough and by Lemma 1.10, the pair (S, X) is in the image of
Z for a well chosen X. We can also apply Lemma 1.10 if S has no
vertical saddle connection.

Now if (S, l) ∈ Ĉ is such that S has no vertical or no horizontal saddle

connections, then (S, l) is in the image of Ẑ. Hence, the complement

of the image of Ẑ is contained in the set of elements in Ĉ whose cor-
responding flat surface has at least a vertical and a horizontal saddle
connections. This set is a countable union of real analytic codimension
2 subsets. �

Corollary 2.3. The number of Rauzy classes corresponding to a con-
nected component C of the moduli space of Abelian or quadratic differ-

entials is equal to the number of connected components of Ĉ.

Proof. From Proposition 1.12 and Lemma 2.1, we just need to prove

that the number of connected components of Ĉ is equal to the number

of connected component of Ẑ(HC). It is a standard fact that removing
a codimension two subset to a smooth manifold does not change its
number of connected components. In our case, we remove to an orbifold
a countable union of codimension 2 subsets.

Let x1 and x2 be elements of Ẑ(HC) and in the same connected com-

ponent of Ĉ. We want to construct a path in Ẑ(HC) that joins x1 and

x2. Up to considering a local chart of Ĉ, we can assume that x1 and
x2 are in an open subset Ω of Ck, and there is a finite group G act-

ing on Ω such that Ω/G is homeomorphic to an open subset U of Ĉ.
By definition, a real analytic codimension 2 subset in U corresponds
to a real analytic codimension 2 subset of Ω. Hence, the elements of
U\Ẑ(HC) correspond to a countable union ∪i∈NFi of smooth codimen-
sion 2 subsets of Ω. Without loss of generality, we can assume that
Ω is convex. Consider a real hyperplane H separating x1 and x2. For
each codimension 2 subset Fi, the set of elements y ∈ H such that at
least one of the segments [x1, y] or [x2, y] contains an element of Fi is of
measure zero for the natural Lebesgue measure in H . Hence, the set of
elements y ∈ H such that at least one of the segments [x1, y] or [x2, y]
intersects ∪i∈NFi is of measure zero. So, there is an element x ∈ H ∩Ω
such that neither [x1, x] nor [x, x2] intersects ∪i∈NFi. This defines a
suitable path joining x1 and x2. This concludes the proof. �
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Proposition 2.4. The number of distinct Rauzy classes corresponding
to a connected component C of the moduli space of Abelian or qua-
dratic differentials, is equal to the number of connected component of
the covering of C that we obtain by marking a singularity.

Proof. Remark that if two separatrices l1 and l2 are adjacent to the
same singularity, the two pairs (S, l1) and (S, l2) are in the same con-

nected component of Ĉ, then apply Corollary 2.3. �

3. Moduli space of Abelian differentials with a marked

singularity

In this section, we assume that C is a connected component of the
moduli space of Abelian differentials. Recall that the degree of a sin-
gularity in a translation surface is the integer k such that the corre-
sponding conical angle is (k + 1)2π.

The goal of this section is to prove Proposition 3.5, which will com-
plete the proof of the Main Theorem for Abelian differentials.

3.1. Connected components of the moduli space of Abelian

differentials. Here, we recall the classification of the connected com-
ponents of the strata of the moduli space of Abelian differentials, due
to Kontsevich and Zorich [KZ03].

Definition 3.1. A flat surface S is called hyperelliptic if there exists
an orientation preserving involution τ which preserves the flat metric
such that S/τ is a (flat) sphere.

Sometimes, a connected component of a stratum consists only of
hyperelliptic flat surfaces. In this situation it is called a hyperelliptic
connected component.

Let γ be a smooth curve in S that does not contains any singularity.
We parametrize γ by arc length. In a translation surface, there is a
natural identification between C and the tangent space of a regular
point. Hence, we can see γ′ as a closed path in the unit sphere of C

and compute its index that we denote by Ind(γ).

Definition 3.2. Let (αi, βi)i∈{1,...,g} be a collection of paths represent-
ing a symplectic basis for the homology H1(S; Z). We define the parity
of the spin structure of S to be:

g∑

i=1

(Ind(αi) + 1) (Ind(βi) + 1) mod 2.
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If all the singularities of the surface are of even degree, one can show
that the parity of the spin structure does not depend on the choice
of the paths and is an invariant of the connected component of the
corresponding stratum. Now we can state the classification of these
connected components.

Theorem (Kontsevich-Zorich). Let H = H(kα1

1 , . . . , kαr
r ) be a stratum

in the moduli space of Abelian differentials, with ki 6= kj for i 6= j
and ki 6= 0 for all i. Let g be the corresponding genus. The stratum
H admits one, two, or three connected components according to the
following rules:

(1) If H = H(2g − 2) or H(g − 1, g − 1), then H contains one
hyperelliptic connected component. If g = 2, this component
is the whole stratum, and if g = 3, there is exactly one other
connected component.

(2) If g ≥ 4 and if k1, . . . , kr are even, then there are exactly two
connected components of H, with different parities of spin struc-
tures, and that are not hyperelliptic components.

(3) In any other case, the stratum H is connected.

Note that in the previous statement, the cases 1 and 2 can occur
simultaneously. For instance, the stratum H(6) has three connected
components: one hyperelliptic, and two others that are distinguished
by the parities of the corresponding spin structures.

3.2. Connected components of the moduli spaces of marked

translations surfaces. We consider the ramified covering Cm of C to
be the moduli space of pairs (S, P ), where S ∈ C and P is a singularity
of S. According to Proposition 2.4, we must count the number of
connected components of Cm.

We want to show that (S1, P1) and (S2, P2) in Cm are in the same
connected components if and only if the degree of P1 is equal to the
degree of P2.

If (S1, P1) and (S2, P2) are in the same connected components of Cm

, then the degree of P1 is clearly equal to the degree of P2. We want to
prove the converse. Since Cm is a ramified covering of C, it is enough
to show this for S1 = S2.

Definition 3.3. Let S be a translation surface. A saddle connection
on S is simple if, up to a small deformation of S inside the ambient
stratum, there are no other saddle connections parallel to it.

.
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Lemma 3.4. Let S ∈ C and P1, P2 be two singularities of the same
degree. If there exists a simple saddle connection between P1 and P2,
then (S, P1) and (S, P2) are in the same connected component of Cm.

Proof. We denote by γ the simple saddle connection between P1 and P2,
and by k the degree of P1 and P2. We can also assume that γ is vertical
and up to a slight deformation of S, there is no saddle connections
parallel to γ. Now we apply to S the Teichmüller geodesic flow, and
we get a surface S ′ = gtS. There is a natural bijection from the saddle
connections of S to the saddle connections of gtS. The holonomy vector
v = (v1, v2) of a saddle connection becomes vt = (e−tv1, e

tv2). This
implies that the length of a given saddle connection in S ′ divided by
the length of γ′ corresponding to γ tends to infinity, as t tends to
infinity. The set of holonomy vectors of saddle connections is discrete,
and therefore, if t is large enough, we can assume that the saddle
connection γ′ is very small compared to any other saddle connection of
S ′. The two singularities corresponding to P1 and P2, that we denote
by P ′

1 and P ′
2, are the endpoints of γ′. It is sufficient to show that

(S ′, P ′
1) and (S ′, P ′

2) are in the same connected component of Ĉ.

ρ

ρ
ρ

ρ
ρ

ρ
ρ − ε

ρ − ερ − ε

ρ − ε

ρ + ε

ρ + ε

2ε

4π + 4π6π

P ′
1

P ′
2

Figure 7. Breaking up a zero, after Eskin, Masur and Zorich

If t is large enough, then S ′ = gt.S is obtained from another strata,
after breaking a zero of degree 2k into two zeros of degree k, using the
procedure introduced by Eskin, Masur and Zorich in [EMZ03], (Sec-
tion 8.1). We give here a short description. We start from a singularity
of degree 2k. A neighborhood of such singularity is obtained by gluing
(4k+2) Euclidean half disks in a cyclic order. The singularity breaking
procedure consists in changing continuously the way these half disks
are glued together (see Figure 7). This breaks the singularity of degree
2k into two singularities of degree k, and with a small saddle connec-
tion joining them. This saddle connection corresponds to γ′. In this
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procedure, we can continuously turn the parameter defining γ′, and
therefore (S ′, P ′

1) and (S ′, P ′
2) are in the same connected component of

Cm (see Figure 8).

P ′
1

P ′
1 P ′

1P ′
2

P ′
2

P ′
2

Figure 8. Interchanging two zeros of the same degree.

�

Now given a flat surface S ∈ C and two singularities P, Q of the
same degree, one would like to find a simple saddle connection that
joins P and Q. In fact, it is enough it enough to find a broken line that
consists of simple saddle connections whose endpoints are singularities
of the same degree as P and Q. This is the main idea the proof in the
following proposition.

Proposition 3.5. Let C be a connected component of a stratum in
the moduli space of Abelian differentials and let H(kα1

1 , . . . , kαr
r ), with

ki 6= kj for i 6= j, be the ambient stratum. Then Cm admits exactly r
connected components.

Proof. For each k, we show that the subset of Cm corresponding to a
singularity of degree k is connected. For this, it is enough to find a
surface S ∈ C, and a collection of simple saddle connections connecting
all the singularities of degree k. Without loss of generality, we assume
that k = k1.

We use the following construction: we start from a surface S0 ∈
H(α1k1, k

α2

2 , . . . , kαr
r ). Then, we break the singularity of degree α1k1

into a singularity of degree k1 and a singularity of degree (α1−1)k1. We
get a surface S1 ∈ H(k1, (α1 − 1)k1, k

α2

2 , . . . , kαr
r ), and a small simple

saddle connection between a singularity P1 of degree k1 and a singu-
larity Q1 of degree (α1 − 1)k1. Then, we break the singularity Q1 into
a singularity P2 of degree k1 and a singularity Q2 of degree (α1 − 2)k1.
There is a simple saddle connection between P2 and Q2, if we choose



20 CORENTIN BOISSY

well our breaking procedure, and if the newly created saddle connec-
tion is small enough, then there persists a saddle connection between
P1 and P2.

Iterating this process, we finally get a surface S in H(kα1

1 , kα2

2 , . . . , kαr
r )

and P1, . . . , Pα with a saddle connection γi between Pi and Pi+1, for
all 1 ≤ i ≤ α. Moreover, all the singularities Pi and the corresponding
saddle connections γi are in a flat disk D. Each γi can be assumed to
be very short compared to any other saddle connection which is not
entirely in D. Now assume that one of the saddle connection γi is not
simple. Then, up to a small deformation of S, there is another saddle
connection γ′

i ⊂ D which is homologous to γi. Hence, γi and γ′
i are

the boundary of a metric disk D′ ⊂ D. The boundary of D′ consists
of two parallel saddle connections of the same length. Therefore, we
can glue them together by a suitable isometry, and obtain a flat sphere
that contains at most two poles that correspond to the end points of γi

and γ′
i. Such flat sphere cannot not satisfy the Gauss-Bonnet equality,

which contradicts the fact that γi is not simple.
Hence, we have proven that our construction provides a surface S,

with a broken line that consists of a union of simple saddle connections
joining all the singularities of degree k. We can apply Lemma 3.4
for each pairs Pi, Pi+1, and we get that the {(S, Pi)}i∈{1,...,α} are in
the same connected component of the corresponding moduli space of
marked translation surfaces. It remains to check that S can be taken
in any connected component of H(kα1

1 , . . . , kαr
r ).

If S0 is in H(2g − 2), and S is in H(g − 1, g − 1), then S is in the
hyperelliptic connected component if and only if the same is true for
S0 (see [KZ03]).

If S0 is not in the hyperelliptic connected component of H and if all
the singularities of S have even degree, then breaking up a singularity
does not change the parity of the spin structure. Indeed, the breaking
procedure does not change the metric outside a small disk and the
paths that we choose to compute the parity of spin structure can avoid
this disk. Hence, starting from S0 with even or odd spin structure, we
get an even or an odd spin structure.

Therefore, in any connected component C, there is a surface S ob-
tained by the construction. This proves the proposition. �
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4. Moduli space of quadratic differentials with a marked

singularity

Remark 4.1. In this section, we deal with the moduli space of quadratic
differentials. Therefore, the order of a singularity is the integer k ≥ −1
such that that the corresponding conical angle is (k + 2)π.

We want to prove similar results as in the previous section for the
case of quadratic differentials and in particular, Proposition 4.4, which
will complete the proof of the Main Theorem. Although the main
ideas of the proof are similar, there are some technical difficulties. For
instance, the “quadratic” version of Lemma 3.4 is still true, but the
proof needs some additional tools. Indeed, the “singularity breaking
procedure” introduced in the previous section does not work when we
break a singularity of even order into two singularities of odd order.
We need for this another construction.

4.1. Breaking a singularity: nonlocal constructions. Similarly
to Masur and Zorich (see [MZ], Section 6), we can break a singularity
P of order 2k in the following way: start from a surface S0 with a singu-
larity of order 2k, and other singularities of order n1, . . . , ns. Consider
an angular sector of angle π between two consecutive vertical separa-
trices of P . We denote by I this sector and by II the image of I by a
rotation of angle (k +1)π, and of center P . Then, choose a closed path
ν transverse to the vertical foliation that starts from the singularity P ,
sector I and ends at P , sector II. We also ask that the path ν does
not intersect any singularity except P in its end points. Then, we cut
a surface along this path and paste in a “curvilinear annulus” with two
opposite sides isometric to ν, and with vertical height of length ε (see
Figure 9). We get a surface with singularities of order k, k, n1, . . . , ns,
with the same holonomy as S0, and with a simple saddle connection γ
joining the two newly created singularities of order k. We denote this
flat surface by S = Ψ(S0, ν, ε). Similarly, we can perform the same
construction, using the foliation Fθ of angle θ, and a path ν transverse
to the foliation Fθ. We get a surface Ψθ(S0, ν, ε).

Note that giving an orientation to ν gives an orientation to γ in the
following way: ν defines a element [ν] in the homotopy group of S\Σ,
were Σ is the set of conical singularities of S. The intersection number
between γ and [ν] is ±1 depending on the orientation of γ. We then fix
the orientation of γ such that this intersection number is one. Then,
we can consider S = Ψ(S0, ν, ε) as an element of Cm by saying that the
marked point of S is the starting point of γ.
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ν
III

γ

Figure 9. Breaking a zero of order two into two zeros
of order one.

This construction was generalized by the author to polygonal curves
in [Boi08], section 3. Such curve must still be transverse to the vertical
foliation in a neighborhood of the singularity P and must have non-
trivial linear holonomy (if k is odd). If ν is such path, then for ε small
enough, we get a surface S = Ψ(S0, ν, ε) as described in the previous
paragraph (by a surgery performed in a neighborhood of ν). This new
construction is more flexible and we have the following facts.

(1) Ψ(S0, ν, ε) depends continuously on ε and on S0.
(2) If γ ⊂ S is a vertical saddle connection joining two different sin-

gularities and is very small compared to any other saddle con-
nection of S, then there exists a flat surface S0 and ν0 ⊂ S0 such
that S = Ψ(S0, ν0, ε) (see [Boi08], proof of Proposition 4.6).

(3) The flat surface Ψ(S0, ν0, ε) does not change under small per-
turbations of ν0 (see [Boi08], Corollary 3.5).
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(4) Let ν1 be another path on S0 that does not intersect any sin-
gularities except P and starts and ends on sectors I, II of P
respectively. There exists S1 in a neighborhood of S0 such
that Ψ(S0, ν1, ε) = Ψ(S1, ν0, ε), and S1 can be chosen arbitrar-
ily close to S0 as soon as ε is small enough ([Boi08], proof of
Lemma 4.5).

4.2. Connected components of the moduli space of quadratic

differentials. In this section, we recall the the classification of con-
nected components of the stratum in the moduli space of quadratic
differentials, that will be needed.

Theorem (E. Lanneau). The hyperelliptic connected components are
given by the following list:

(1) The subset of surfaces in Q(k1, k1, k2, k2), that are a double cov-
ering of a surface in Q(k1, k2,−1s) ramified over s poles. Here
k1 and k2 are odd, k1 ≥ −1 and k2 ≥ 1, and k1 + k2 − s = −4.

(2) The subset of surfaces in Q(k1, k1, 2k2 + 2), that are a double
covering of a surface in Q(k1, k2,−1s) ramified over s poles and
over the singularity of order k2. Here k1 is odd and k2 is even,
k1 ≥ −1 and k2 ≥ 0, and k1 + k2 − s = −4.

(3) The subset of surfaces in Q(2k1 + 2, 2k2 + 2), that are a dou-
ble covering of a surface in Q(k1, k2,−1s) ramified over all the
singularities. Here k1 and k2 are even, k1 ≥ 0 and k2 ≥ 0, and
k1 + k2 − s = −4.

Theorem (Lanneau). In the moduli space of quadratic differentials,
the nonconnected strata have two connected components and are in the
following list:

• The strata that contain a hyperelliptic connected component, ex-
cept the following ones, that are connected: Q(−1,−1,−1,−1),
Q(−1,−1, 1, 1), Q(−1,−1, 2), Q(1, 1, 1, 1), Q(1, 1, 2) and Q(2, 2).

• The strata Q(12), Q(−1, 9), Q(−1, 3, 6), and Q(−1, 3, 3, 3).

4.3. Connected components of the moduli space of marked

quadratic differentials. The next lemma is a “quadratic” version of
Lemma 3.4

Lemma 4.2. Let C be a connected component of a stratum in the mod-
uli space of quadratic differentials. Let S ∈ C and P1, P2 be two sin-
gularities of the same order k, with k 6= −1. We assume that there
exists a simple saddle connection between P1 and P2. Then (S, P1) and
(S, P2) are in the same connected component of Cm.
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Proof. When k is even, the proof is exactly the same as in Lemma 3.4.
So we assume that k is odd. As in the proof of Lemma 3.4, we can
assume that the simple saddle connection of the hypothesis is very
small compared to any other saddle connection. There exists S0, a
path ν0 ⊂ S0, and ε such that (S, P1) = Ψ(S0, ν0, ε). Fixing S0, we can
make ε arbitrarily small since ε 7→ Ψ(S0, ν0, ε) is continuous.

Then, we consider a homotopy (νθ)θ∈[0,(k+1)π], such that ν0 = ν0, and
νθ is a polygonal curve transverse to the foliation Fθ in a neighborhood
of P . The map θ 7→ Ψθ(S0, ν

θ, ε) is well defined and continuous for ε
small enough. This way, we get a surface Ψ(S0, ν1, ε). The path ν1

starts from the sector II and ends in the sector I of P . It is natural to
compare ν1 with ν−1

0 (i.e. ν0 with reverse orientation), but these two
paths are a priori very different (see Figure 10).

ν0

νθ ν1

Ψ(S0, ν0, ε) Ψθ(S0, ν
θ, ε) Ψ(S0, ν1, ε)

S0S0S0

Figure 10. Interchanging two singularities of odd order

Using the results stated in section 4.1, there exists S1 in a neighbor-
hood of S0 such that Ψ(S0, ν1, ε) = Ψ(S1, ν

−1
0 , ε). The surface S1 can

be arbitrarily close to S0 as soon as ε is small enough. Then, we choose
a small path joining S1 and S0, and we get therefore a path joining
Ψ(S1, ν

−1
0 , ε) to Ψ(S0, ν

−1
0 , ε).

Hence, we have built a path joining Ψ(S0, ν0, ε) to Ψ(S0, ν
−1
0 , ε). The

first (marked) surface is (S, P1) while the second one is (S, P2). The
lemma is proven. �

A surface in Cm might contain poles. The previous lemma does not
work in this case. We need the following
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Lemma 4.3. Let C be a connected component of a stratum in the mod-
uli space of quadratic differentials. Let S ∈ C and P1, P2 two poles. We
assume that there exists a saddle connection between P1 and P2. Then
(S, P1) and (S, P2) are in the same connected component of Cm.

Proof. In this case, the saddle connection γ joining P1 and P2 is never
simple. Indeed, P1 and P2 are in the boundary of a cylinder whose
waist curves are parallel to γ. One side of this cylinder consists of γ,
the opposite side is a union of saddle connections that are necessary
parallel to γ. So γ cannot be simple.

In this case, (S, P1) and (S, P2) can be joined by performing a suitable
Dehn twist on the corresponding cylinder. �

Proposition 4.4. Let C be a connected component of a stratum in
the moduli space of quadratic differentials. Let Q(kα1

1 , . . . , kαr
r ) be the

ambient stratum, with ki 6= kj for i 6= j. Then Cm admits exactly r
connected components.

Proof. We must show that the subset of Cm that corresponds to surfaces
with a marked point of order k, where k is a fixed element of k1, . . . , kr

is connected. Without loss of generality, we can assume that k = k1.
First we assume that k1 = −1. According to Lanneau ([Lan08]),

there is a surface S in C whose horizontal foliation consists of one
cylinder, i.e. we can present it as a rectangle with the two vertical sides
that are identified by a translation, and whose horizontal sides admit
a partition of segments which come by pairs, and for each pair, the
segments are of the same length and are identified either by translation
or by a half-turn. We can also assume that the corners of the rectangle
correspond to singularities. Now, let P1 and P2 be two singularities of
order −1. Each pole corresponds to two adjacent segments that are
identified with each other by a half-turn. If these two singularities are
on opposite sides of the rectangle, then we get a saddle connection
joining P1 and P2 by considering the line joining P1 and P2 in the
rectangle. If P1 and P2 are in the same side of the rectangle, then
we can slightly deform the corresponding segments in the 1-cylinder
decomposition, and this way join the two poles P1 and P2 by a saddle
connection (see Figure 11)

Now we assume that k1 6= −1. We first explain the general con-
struction. By a similar argument as in Proposition 3.5, we start from
a surface S0 with a singularity P of order αk1 and we break this singu-
larity into α singularities of order k1, P1, . . . , Pα. There is a collection
of saddle connections joining Pi to Pi+1 for each 1 ≤ i ≤ α − 1. We
can assume that P1, . . . , Pα are in a small metric disk D. Now assume
that one of the saddle connection γi is not simple. Then, up to a slight
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Figure 11. Interchanging two poles on a surface with
a 1-cylinder decomposition.

deformation of S, there is another saddle connection γ′
i parallel to γi,

such that S\
(
γi∪γ′

i

)
admits a connected component with trivial linear

holonomy (since γi and γ′
i are ĥomologous, see [MZ], Proposition 1 and

Theorem 1). However, since S0 has nontrivial linear holonomy, S\D
has nontrivial linear holonomy too. Hence, γi and γ′

i are the boundary
of a small metric disk D′ ⊂ D, which is a contradiction. However, as
we will see, we cannot reach any connected component C in this way.

1- We first assume that the stratum Q = Q(kα1

1 , . . . , kαr
r ) does not

contain a hyperelliptic connected component and is not one of the ex-
ceptional stratum. Then our connected component C is the whole stra-
tum. If we start from an initial flat surface S0 ∈ Q(α1k1, k

α2

2 , . . . , kαr
r )

and perform the previous construction, we get a surface S ∈ C and sim-
ple saddle connections joining all its singularities of order k1. We must
check that the stratum Q(α1k1, k

α2

2 , . . . , kαr
r ) is not empty. The only

strata that are empty are Q(∅),Q(1,−1),Q(3, 1) and Q(4). Hence, we
must have Q 6= Q(2, 2) and Q 6= Q(1, 1, 1, 1). But these two strata
consist only of hyperelliptic flat surfaces, hence Q is not one of them
by assumption. Therefore, we have built a surface S ∈ C such that
(S, P ) is in the same connected component of Cm for any singularity P
of order k1.

2- Now we assume that the stratum Q is Q(k1, k1, k2, k2), with k1 6=
k2 and or is Q(k1, k1, 2k2). This stratum has one or two connected
components, one of them being hyperelliptic. One can show that in
each stratum, on almost any surface S, there are simple saddle connec-
tions joining the singularities order k1. (see [Boi07], Theorem 3.1 in
the case of the hyperelliptic component and [Boi07] Lemma 4.1 for the
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other component). If Q = Q(2k1, 2k2) with k1 6= k2, there is nothing
to prove.

3- Assume that Q = Q(−1, 3, 3, 3). This stratum has two connected
components Cred and Cirr. If we start from S0 ∈ Q(−1, 9) and break
the singularity of order 9 into three singularities of order 3 as explained
previously, we obtain either a surface in Cred or a surface in Cirr depend-
ing in which connected component we start (see Lanneau [Lan08]). If
the stratum Q is one of the other exceptional strata, there is nothing
to prove.

4- We assume that Q = Q(k, k, k, k). Let C be the hyperelliptic
connected component of Q and S ∈ C. We denote by P1,1,P1,2, P2,1

and P2,2 the singularities of S, such that the hyperelliptic involution τ
interchange Pi,1 and Pi,2 for i ∈ {1, 2}. If there is a saddle connection
γ joining P1,i to P2,j for some i, j. Then, τ(γ) is distinct from γ and
is parallel to γ, even after a small deformation of S. Therefore γ is
not simple. Hence, S is not obtained from Q(4k) by breaking the
singularity as before.

We can assume that k 6= −1, since this case was already studied.
There is a one-to-one mapping from C to Q(k, k,−12k+4). Hence,
Cm is a covering of Q(k, k,−12k+4)m. There exists a surface S0 ∈
Q(k, k,−12k+4) with a simple saddle connection joining its two sin-
gularities P1 and P2 of order k. We can assume that S is the dou-
ble covering of S0 ramified over the poles, and that the singularities
corresponding to Pi are Pi,1 and Pi,2. For each i, there is a simple
saddle connection joining Pi,1 and Pi,2, hence the two marked surfaces
(S, Pi,1) and (S, Pi,2) are in the same connected component of Cm. Now
we start from (S, P1,1) ∈ Cm. The corresponding marked surface in
Q(k, k,−12k+4) is (S0, P1). We then consider a path joining (S0, P1)
and (S0, P2) and can lift it to a path joining (S, P1,1) to (S, P2,k), for
some k ∈ {1, 2}. Hence, (S, P1,1) and (S, P2,1) are in he same connected
component of Cm. This proves that Cm is connected.

Let C be the nonhyperelliptic connected component of Q(k, k, k, k).
The classification of connected components by Lanneau implies that
k ≥ 1. Then, starting from S0 ∈ Q(4k) and breaking the singularity
into four singularities of degree k as before gives a surface S ∈ C, since
it cannot be in the hyperelliptic connected component as explained
before. Hence Cm is connected.

5- If Q = Q(2k, 2k), the proof is analogous as in the previous case.
�
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