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Résumé : Nous présentons DL8, un algorithme permettant d’apprendre des arbres
de décision sous contraintes. Cet algorithme permet d’optimiser des critères de
taille, de profondeur et de précision de l’arbre. Un algorithme exact est intéres-
sant du point de vue pratique comme du point de vue purement scientifique. Il
peut, par exemple, être utilisé comme référence pour évaluer les performances et
comprendre le comportement des systèmes d’apprentissage d’arbres de décision
utilisant des heuristiques. Du point de vue applicatif, il peut permettre de décou-
vrir des arbres ne pouvant pas être appris par ces systèmes d’apprentissage. DL8
repose essentiellement sur la relation existant entre les contraintes applicables aux
arbres de décision et celles applicables aux itemsets. Nous proposons d’exploiter
des treillis d’itemsets pour extraire des arbres de décision optimaux en temps li-
néaire et donnons différentes stratégies permettant de construire ces treillis effica-
cement. Nos expériences montrent que la précision en test de DL8 est meilleure
que celle de systèmes tel que C4.5 en utilisant les mêmes contraintes, ce qui
confirme les résultats stipulant qu’une recherche exhaustive n’entraine pas force-
ment un sur-apprentissage. Ces expériences prouvent également que DL8 est un
outil utile et intéressant pour apprendre des arbres de décision sous contraintes.

Mots-clés : Arbres de décision, recherche d’itemsets fréquents, treillis d’itemsets,
analyse de concepts formels, fouille de données sous contraintes.

1 Introduction

Decision trees are among the most popular prediction models in machine learning
and data mining, because there are efficient, relatively easily understandable learning
algorithms and the models are easy to interpret. From this perspective, it is surprising
that mining decision trees under constraints has not been given much attention. For the
problems listed below, currently no broadly applicable algorithm exists even though
steps in this direction were made by Fromont et al. (2007) for the last problem :

– given a dataset D, find the most accurate tree on training data in which each leaf
covers at least n examples ;

– given a dataset D, find the k most accurate trees on training data in which the
majority class in each leaf covers at least n examples more than any of the minority
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classes ;
– given a dataset D, find the most accurate tree on training data in which each leaf

has a high statistical correlation with the target class according to a χ2 test ;
– given a dataset D, find the smallest decision tree in which each leaf contains at

least n examples, and the expected accuracy is maximized on unseen examples ;
– given a dataset D, find the shallowest decision tree which has an accuracy higher

than minacc ;
– given a dataset D, find the smallest decision tree which has an accuracy higher than

minacc.

In the interactive process that knowledge discovery in databases is, the ability to pose
queries that answer these questions can be very valuable.

Most known algorithms for building decision trees, for instance C4.5, use a top-down
induction paradigm, in which a good split is chosen heuristically. If such algorithms do
not find a tree that satisfies the specified constraints, this does not mean that a tree
satisfying the constraints does not exist—it only means that the chosen heuristic is
not good enough to find it. An exact algorithm could be desirable to answer queries
without uncertainty. Furthermore, to assess the quality of heuristic learners, it is of
interest to know for a sufficiently large number of datasets what their true optimum
on training data under some given constraints is. This would allow us to gain further
insight in the behavior of decision trees under constraints. For instance, Murphy &
Pazzani (1997) reported that for small, mostly artificial datasets, small decision trees
are not always preferable in terms of generalization ability, while Quinlan & Cameron-
Jones (1995) showed that when learning rules, exhaustive searching and overfitting are
orthogonal. An efficient algorithm for learning decision trees under constraints allows
us to investigate these observations for larger datasets and more complex models.

It is important to point out that we are essentially interested in the interaction between
constraints and predictive behavior, as we believe that this may aid users to gain more
insight in their data. If there are no constraints on size or support, it is almost always
possible to learn a decision tree that is 100% accurate on training data by continuing
to grow a tree as long as necessary. Theoretical results have been obtained that bound
the size that a tree should have to obtain arbitrarily high accuracy (Kearns & Mansour
(1999); Dietterich et al. (1996)) given access to an oracle. Nock & Nielsen (2004) also
give some results to bound the worst-case reduction in error in each test node of the
tree. These results provide valuable insight in the quality of heuristic learners, as they
show that under certain circumstances heuristic learners are capable of finding accurate
decision trees on training data within a bounded number of steps. These results however
do not address any of the example queries listed above. Similarly, interesting results
have also been obtained in the framework of PAC learning, where learners are required
that can obtain high accuracy on training data in reasonable time ; however, only very
limited types of decision trees have been studied in this framework (Auer et al., 1995).

To the best of our knowledge, few attempts have been made to compute exact optimal
trees in a setting which optimizes decision trees under a wide range of constraints ; most
people have not seriously considered the problem as it is known to be NP hard (Hyafil
& Rivest, 1976), and therefore, an efficient algorithm can most likely not exist. In this
paper, our hypothesis is that this theoretical limitation does not mean that optimal trees
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might not be computable in practice in many datasets. The tool that we intend to use
are frequent itemset miners (Agrawal et al., 1996; Zaki et al., 1997). The problem of
frequent itemset mining, which has been studied extensively in the data mining com-
munity, is also not efficiently solvable in theory, but in practice these algorithms have
been applied successfully. We investigate to what extent we can use these algorithms
to solve the theoretically hard problem of finding decision trees under constraints. As
a result, we propose DL8, an exact algorithm for building decision trees that does not
rely on the traditional approach of heuristic top-down induction. Its key feature is that
it exploits a relation between constraints on itemsets and decision trees. Even though
our algorithm is not expected to work on all possible datasets, we will provide evidence
that for a reasonable number of datasets, our approach is feasible and therefore a useful
addition to the data mining toolbox.

This paper is organized as follows. In Section 2, we introduce the concepts of decision
trees and itemsets. In Section 3, we describe precisely which optimal trees we consider.
In Section 4, we motivate the use of such optimal trees. In section 5, we present our
algorithm and its connection to frequent itemset mining. In Section 6, we compare the
accuracy and size of the trees computed by our system with the trees learned by C4.5.
Section 7 gives related work. We conclude in Section 8.

2 Itemset Lattices for Decision Tree Mining

Let us first introduce some background information about frequent itemsets and deci-
sion trees.

Let I = {i1, i2, . . . , im} be a set of items and let D = {T1, T2, . . . , Tn} be a bag of
transactions, where each transaction Tk is an itemset such that Tk ⊆ I. A transaction
Tk contains a set of items I ⊆ I iff I ⊆ Tk. The transaction identifier set (TID-set)
t(I) ⊆ {1, 2, . . . n} of an itemset I ⊆ I is the set of identifiers of all transactions that
contain itemset I . The frequency of an itemset I ⊆ I is defined to be the number of
transactions that contain the itemset, i.e. freq(I) = |t(I)| ; the support of an itemset
is support(I) = freq/|D|. An itemset I is said to be frequent if its support is higher
than a given threshold minsup ; this is written as support(I) ≥ minsup (or, equivalently,
freq(I) ≥ minfreq).

In this work, we are interested in finding frequent itemsets for databases that contain
examples labeled with classes c ∈ C. If we compute the frequency freqc(I) of an
itemset I for each class c separately, we can associate to each itemset the class la-
bel for which its frequency is highest. The resulting rule I → c(I), where c(I) =
argmaxc′∈C freqc′(I) is called a class association rule.

A decision tree aims at classifying examples by sorting them down a tree. The leaves
of a tree provide the classifications of examples (Quinlan, 1993). Each node of a tree
specifies a test on one attribute of an example, and each branch of a node corresponds to
one of the possible values of the attribute. We assume that all tests are boolean ; nominal
attributes are transformed into boolean attributes by mapping each possible value to a
separate attribute. The input of a decision tree learner is then a binary matrix B, where
Bij contains the value of attribute i of example j.

Our results are based on the following observation :
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FIG. 1 – An itemset lattice for items {A,¬A,B,¬B,C,¬C} ; binary decision tree
A(B(C(l,l),l),C(l,l)) is hidden in this lattice

Observation 1
Let us transform a binary table B into transactional form D such that Tj = {i|Bij =
1} ∪ {¬i|Bij = 0}. Then the examples that are sorted down every node of a decision
tree for B are characterized by a set of items occurring in D.

For example, consider the decision tree in Figure 4. We can determine the leaf to
which an example belongs by checking which of the itemsets {B}, {¬B,C} and
{¬B,¬C} it includes. We denote this set of items with leaves(T ). Similarly, the item-
sets that correspond to paths in the tree are denoted with paths(T ). In this case, paths(T ) =
{∅, {B}, {¬B}, {¬B, C}, {¬B,¬C}}. The leaves of a decision tree correspond to
class association rules, as leaves have associated classes. In decision tree learning, it
is common to specify a minimum number of examples that should be covered by each
leaf. For association rules, this would correspond to giving a support threshold.

The accuracy of a decision tree is derived from the number of misclassified examples
in the leaves : accuracy(T ) = |D|−e(T )

|D| , where

e(T ) =
∑

I∈leaves(T )

e(I) and e(I) = freq(I)− freqc(I)(I).

A further illustration of the relation between itemsets and decision trees is given in
Figure 1. In this figure, every node represents an itemset ; an edge denotes a subset
relation. Highlighted is one possible decision tree, which is nothing else than a set of
itemsets. The branches of the decision tree correspond to subset relations. In the figure,
A(L,R) denotes a binary decision tree where A is the attribute at the root node and L, R
are the left and right children of the tree. l denotes a leaf.

From the theory of frequent itemset mining, it is known that itemsets form a lattice
(these are typically depicted as in Figure 1). In this paper we present DL8, an algorithm
for mining Decision trees from Lattices.
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3 Queries for Decision Trees

The problems that we address in this paper, can be seen as queries to a database.
These queries consist of three parts. The first part specifies the constraints on the nodes
of the decision trees.

1. T1 := {T |T ∈ DecisionTrees,∀I ∈ paths(T ), p(I)}

The set T1 is called the set of locally constrained decision trees and DecisionTrees is
the set of all possible decision trees. The predicate p(I) expresses a constraint on paths.
In our simplest setting, p(I) := (freq(I) ≥ minfreq). The predicate p(I) must fulfill
these properties :

– the evaluation of p(I) must be independent of the tree T of which I is part.
– p must be anti-monotonic. A predicate p(I) on itemsets I ⊆ I is called anti-

monotonic iff p(I) ∧ (I ′ ⊆ I)⇒ p(I ′).
We can distinguish two types of local constraints : coverage-based constraints, such

as frequency, of which the fulfillment is entirely dependent on t(I) and pattern-based
constraints, such as the size of itemsets, of which the fulfillment depends on the pro-
perties of the (items in the) itemset itself. In the following, we consider only coverage-
based constraints ; extensions to pattern-based constraints are possible, but beyond the
scope of this paper.

The second (optional) part expresses constraints that refer to the tree as a whole.

2. T2 := {T |T ∈ T1, q(T )}

Set T2 is called the set of globally constrained decision trees. Formula q(T ) is a conjunc-
tion of constraints of the form f(T ) ≤ θ, where f(T ) can be

– e(T ), to constrain the error of a tree on a training dataset ;
– ex(T ), to constrain the expected error on unseen examples, according to some pre-

defined estimate ;
– size(T ), to constrain the number of nodes in a tree ;
– depth(T ), to constrain the length of the longest root-leaf path in a tree.
In the mandatory third step, we express a preference for a tree in the set T2.

3. output argminT∈T2
[r1(T ), r2(T ), . . . , rn(T )]

The tuples r(T ) = [r1(T ), r2(T ), . . . , rn(T )] are compared lexicographically and de-
fine a ranked set of globally constrained decision trees ; ri ∈ {e, ex, size, depth}. Our
current algorithm requires that at least e and size or ex and size be used in the ranking ;
If depth (respectively size) is used in the ranking before e or ex, then q must contain
an atom depth(T ) ≤ maxdepth (respectively size(T ) ≤ maxsize).

We do not constrain the order of size(T ), e(T ) and depth(T ) in r. We are minimizing
the ranking function r(T ), thus, our algorithm is an optimization algorithm. The trees
that we search for are optimal in terms of the problem setting that is defined in the
query. To illustrate our querying mechanism we will now give several examples :

Query 1 (Small Accurate Trees with Frequent leaves)

T := {T | T ∈ DecisionTrees, ∀I ∈ paths(T ), freq(I) ≥ minfreq}
output argminT∈T [e(T ), size(T )].
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In other words, we have p(T ) := (freq(I) ≥ minfreq), q(T ) := true and r(T ) :=
[e(T ), size(T )]. This query investigates all decision trees in which each leaf covers at
least minfreq examples of the training data. Among these trees, we find the smallest
most accurate one. In some cases, one is not interested in large trees, even if they are
more accurate. To retrieve Accurate Trees of Bounded Size, Query 1 can be transformed
such that q(T ) := size(T ) ≤ maxsize.

One possible scenario in which DL8 can be used, is the following. Assume that we
have already applied a heuristic decision tree learner, such as C4.5, and we have some
idea about decision tree error (maxerror) and size (maxsize). Then we can run the fol-
lowing query :

Query 2 (Accurate Trees of Bounded Size and Accuracy)

T1 := {T | T ∈ DecisionTrees, ∀I ∈ paths(T ), freq(I) ≥ minfreq}
T2 := {T | T ∈ T1, size(T ) ≤ maxsize, e(T ) ≤ maxerror}
output argminT∈T2

[size(T ), e(T )].

This query finds the smallest tree that achieves at least the same accuracy as the tree
learned by C4.5.

The previous queries aim at finding compact models that maximize training set ac-
curacy. Such trees might however overfit training data. Another application of DL8 is
to obtain trees with high expected accuracy. Several algorithms for estimating test set
accuracy have been presented in the literature. One such estimate is at the basis of the
reduced error pruning algorithm of C4.5. Essentially, C4.5 computes an additional pe-
nalty term x(freq1(I), . . . freqn(I)) for each leaf I of the decision tree, from which we
can derive a new estimated number of errors

ex(T ) =
∑

I∈leaves(T )

e(I) + x(freq1(I), . . . freqn(I)).

We can now also be interested in answering the following query.

Query 3 (Small Accurate Pruned Trees)

T := {T | T ∈ DecisionTrees, ∀I ∈ paths(T ), freq(I) ≥ minfreq}
output argminT∈T [ex(T ), size(T )].

This query would find the most accurate tree after pruning such as done by C4.5. Effec-
tively, the penalty terms make sure that trees with less leaves are sometimes preferable
even if they are less accurate.

4 Motivating Examples

To motivate our work, it is useful to briefly consider two examples that illustrate what
kind of trees cannot be found if the well-known information gain (ratio) heuristic of
C4.5 is used to answer Query 1 of Section 3.
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A B C Class #
1 1 0 1 40×

1 1 1 1 40×

1 0 1 1 5×

0 0 0 0 10×

0 0 1 1 5×

FIG. 2 – Database 1

A B C Class #
1 1 1 1 30×

1 1 0 0 20×

0 1 0 0 8×

0 1 1 0 12×

0 0 0 1 12×

0 0 1 0 18×

FIG. 3 – Database 2
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1 0

FIG. 4 – An example tree

C

BA

0 101

1 0

0101

A
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001 B

10

1 0

0101

1 0

(a) Smallest (b) Learned using heuristics

FIG. 5 – Two accurate trees for database 2

As a first example, consider the database in Figure 2, in which we have 2 target
classes. Assume that we are interested in answering Query 1 with minfreq = 10. An
optimal tree exists (see Figure 4), but a heuristic learner will not find it, as it prefers
attribute A in the root : A has information gain 0.33 (resp. ratio 0.54), while B only has
information gain 0.26 (resp. ratio 0.37). The tree that is found by C4.5 contains a single
test instead of two, as the examples that contain {¬A} cannot be split further without
violating the constraints.

As a second example, consider the database in Figure 3, which is a variation of the
XOR problem. Then the correct answer to Query 1 with minfreq = 1 is given in Fi-
gure 5(a), but the use of information gain (ratio) would yield the tree in Figure 5(b), as
the information gain (resp. ratio) of A is 0.098 (resp. 0.098), while the information gain
of C is 0.029 (resp. 0.030).

We learn from these examples that the proportions of examples can ‘fool’ heuristic
decision trees into an suboptimal shape as already noticed by (Page & Ray, 2003). We
can also see in these examples that the smallest most accurate tree is not necessarily
smaller or larger than the tree found by C4.5.

5 The DL8 Algorithm

We will now present the DL8 algorithm for answering decision tree queries. Pseudo-
code of the algorithm is given in Algorithm 1.

Parameters of DL8 are the local constraint p, the ranking function r, and the global
constraints ; each global constraint is passed in a separate parameter ; global constraints
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that are not specified, are assumed to be set to∞. The most important part of DL8 is its
recursive search procedure. Given an input itemset I , DL8-RECURSIVE computes one
or more decision trees for the transactions t(I) that contain the itemset I . More than
one decision tree is returned only if a depth or size constraint is specified. Let r(T ) =
[r1(T ), . . . , rn(T )] be the ranking function, and let k be the index of the obligatory error
function in this ranking. If r1, . . . , rk−1 ∈ {depth, size} then, for every allowed value of
depth d and size s, DL8-RECURSIVE outputs the best tree T that can be constructed for
the transactions t(I) according to the ranking [rk(T ), . . . , rn(T )], such that size(T ) ≤ s
and depth(T ) ≤ d.

In DL8-RECURSIVE, we use several functions : l(c), which returns a tree consisting
of a single leaf with class label c ; n(i, T1, T2), which returns a tree that contains test
i in the root, and has T1 and T2 as left-hand and right-hand branches ; et(T ), which
computes the error of tree T when only the transactions in TID-set t are considered ; and
finally, we use a predicate pure(I) ; predicate pure blocks the recursion if all examples
t(I) belong to the same class.

The algorithm is most easily understood if maxdepth =∞, maxsize =∞, maxerror =
∞ and r(T ) = [e(T )] ; in this case, DL8-RECURSIVE combines only two trees for each
i ∈ I, and returns the single most accurate tree in line 26.

The correctness of the DL8 algorithm is essentially based on the fact that the left-
hand branch and the right-hand branch of a node in a decision tree can be optimized
independently. In more detail, the correctness follows from the following observations.

(line 1-2) the valid ranges of sizes and depths are computed here if a size or depth
constraint was specified ;

(line 4) for each depth and size satisfying the constraints DL8-RECURSIVE finds the
most accurate tree possible. Some of the accuracies might be too low for the given
constraint, and are removed from consideration.

(line 11) a candidate decision tree for classifying the examples t(I) consists of a single
leaf.

(line 12) if all examples in a set of transactions belong to the same class, continuing
the recursion is not necessary ; after all, any larger tree will not be more accurate
than a leaf, and we require that size is used in the ranking.

(line 15) in this line the anti-monotonic property of the predicate p(I) is used : an
itemset that does not satisfy the predicate p(I) cannot be part of a tree, nor can
any of its supersets ; therefore the search is not continued if p(I ∪{i}) = false or
p(I ∪ {¬i}) = false.

(line 14–25) these lines make sure that each tree that should be part of the output T ,
is indeed returned. We can prove this by induction. Assume that for the set of
transactions t(I), tree T should be part of T as it is the most accurate tree that
is smaller than s and shallower than d for some s ∈ S and d ∈ D ; assume T is
not a leaf, and contains test i in the root. Then T must have a left-hand branch T1

and a right-hand branch T2. Tree T1 must be the most accurate tree that can be
constructed for t(I∪{i}) with size at most size(T1) and depth at most depth(T1) ;
similarly, T2 must be the most accurate tree that can be constructed for t(I∪{¬i})
under depth and size constraints. We can inductively assume that trees with these



Apprentissage d’arbres de decisions optimaux

Algorithm 1 DL8(p, pb, maxsize,maxdepth,maxerror, r)

1: if maxsize 6=∞ then← {1, 2, . . . , maxsize} else S ← {∞}
2: if maxdepth 6=∞ then D ← {1, 2, . . . , maxdepth} else D ← {∞}
3: T ←DL8-RECURSIVE(∅)
4: if maxerror 6=∞ then {T ← {T |T ∈ T , e(T ) ≤ maxerror}
5: if T = ∅ then return undefined
6: return argminT∈T r(T )
7:

8: procedure DL8-RECURSIVE(I )
9: if DL8-RECURSIVE(I) was computed before then

10: return stored result
11: C ← {l(c(I))}
12: if pure(I) then
13: store C as the result for I and return C
14: for all i ∈ I do
15: if p(I ∪ {i}) = true and p(I ∪ {¬i}) = true then
16: T1 ← DL8-RECURSIVE(I ∪ {i})
17: T2 ← DL8-RECURSIVE(I ∪ {¬i})
18: for all T1 ∈ T1, T2 ∈ T2 do
19: C ← C ∪ {n(i, T1, T2)}
20: end if
21: T ← ∅
22: for all d ∈ D, s ∈ S do
23: L ← {T ∈ C|depth(T ) ≤ d ∧ size(T ) ≤ s}
24: T ← T ∪ {argminT∈L[rk = et(I)(T ), . . . , rn(T )]}
25: end for
26: store T as the result for I and return T
27: end procedure

constraints are found by DL8-RECURSIVE(I ∪ {i}) and DL8-RECURSIVE(I ∪
{¬i}) as size(T1), size(T2) ≤ maxsize and depth(T1), depth(T2) ≤ maxdepth.
Consequently T (or a tree with equal statistics) must be among the trees found
by combining results from the two recursive procedure calls in line 19.

A key feature of DL8-RECURSIVE is that in line 26 it stores every result that it com-
putes. Consequently, DL8 avoids that optimal decision trees for any itemset are com-
puted more than once. We do not need to store entire decision trees with every itemset.
It is sufficient to store their roots and statistics (error, possibly size and depth), as left-
hand and right-hand subtrees can be recovered from the stored results for the left-hand
and right-hand itemsets if necessary.

As with most data mining algorithms, the most time consuming operations are those
that access the data. Different strategies can be considered to obtain the frequency
counts that are necessary to check the constraints and compute accuracies. The most
straightforward approach, referred to as DL8-SIMPLE, would compute the item fre-
quencies while DL8 is executing. In this case, once DL8-RECURSIVE is called for an
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itemset I , the frequencies of I are obtained by scanning the data. We can then store
the result to avoid later recomputations. Another, less naive, strategy could be used,
based on the observation that every itemset that occurs in a tree, must satisfy the local
constraint p. If p is a minimum frequency constraint, we can use a frequent itemset
miner to obtain the frequencies in a preprocessing step. DL8 can then operate on the
resulting set of itemsets, annotating every itemset with optimal decision trees. Many
frequent itemset miners have been studied in the literature ; all of these can be used
with small modifications to output the frequent itemsets in a convenient form and de-
termine frequencies in multiple classes (Agrawal et al., 1996; Zaki et al., 1997). If we
assume that the output of the frequent itemset miner consists of a graph structure such
as Figure 1, then DL8 can operate in time linear in the number of edges of this graph.

Early experiments showed that these approaches were not efficient enough to build
the lattice in reasonable runtimes for sufficiently low supports. We provide now a new
approach to compute more efficiently the information needed to retrieve the trees.

5.1 The Constrained Frequent Itemset Mining Approach

The key observation is that the frequent itemset miners may compute frequencies
of itemsets that can never be part of a decision tree. For instance, assume that {A} is a
frequent itemset, but {¬A} is not ; then no tree answering example Query 1 will contain
a test for attribute A ; itemset {A} is redundant. In this section, we show that an additio-
nal local, anti-monotonic constraint can be used in the frequent itemset mining process
to make sure that no such redundant itemsets are enumerated. Proofs of theorems in this
section can be found in (Nijssen & Fromont, 2007).

If we consider the DL8-SIMPLE algorithm, an itemset I = {i1, . . . , in} is stored
only if there is an order [ik1

, ik2
, . . . , ikn

] of the items in I (which corresponds to an
order of recursive calls to DL8-RECURSIVE) such that for none of the proper prefixes
I ′ = [ik1

, ik2
, . . . , ikm

] (m < n) of this order :
– the ¬pure(I ′) predicate is false in line (12) ;
– the conjunction p(I ′ ∪ {ikm+1

}) ∧ p(I ′ ∪ {¬ikm+1
}) is false in line (15).

It is helpful to negate the pure predicate, as one can easily see that ¬pure is an anti-
monotonic predicate (every superset of a pure itemset, must also be pure). From now
on, we will refer to ¬pure as a leaf constraint, as it defines a property that is only
allowed to hold in the leaves of a tree.

We can now formalize the principle of itemset relevancy.

Definition 1
Let p1 be a local anti-monotonic tree constraint and p2 be an anti-monotonic leaf
constraint. Then the relevancy of I , denoted by rel(I), is defined by

rel(I) =























p1(I) ∧ p2(I) if I = ∅ (Case 1)
true if ∃i ∈ I s.t.

rel(I − i) ∧ p2(I − i)∧
p1(I) ∧ p1(I − i ∪ ¬i) (Case 2)

false otherwise (Case 3)
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Theorem 1
Let L1 be the set of itemsets stored by DL8-SIMPLE, and let L2 be the set of itemsets
{I ⊆ I|rel(I) = true}. Then L1 = L2.

Relevancy is a property that can be pushed in a frequent itemset mining process.

Theorem 2
Itemset relevancy is an anti-monotonic property.

It is relatively easy to integrate the computation of relevancy in frequent itemset mi-
ning algorithms, as long as the order of itemset generation is such that all subsets of an
itemset I are enumerated before I is enumerated itself. Assume that we have already
computed all relevant itemsets that are a subset of an itemset I . Then we can determine
for each i ∈ I if the itemset I − i is part of this set, and if so, we can derive the class
frequencies of I− i∪¬i using the formula freqk(I− i∪¬i) = freqk(I− i)− freqk(I).
If for each i either I − i is not relevant, or predicate p(I − i∪¬i) fails, we can prune I .

Pruning of this kind can be integrated in both depth-first and breadth-first frequent
itemset miners. Consequently, frequent itemset miners that incorporate two additional
constraints can be used to obtain exactly those itemsets that are necessary for building
decision trees.

In case depth is the first ranking function, level-wise algorithms such as APRIORI

have an important benefit : after each level of itemsets is generated, we could run DL8
to obtain the most accurate tree up to that depth. APRIORI can stop at the lowest level
at which a tree is found that fulfills the constraints.

5.2 The Closure-Based Direct Approach

In the simple single-step approach, we stored the optimal decision trees for every
itemset separately. However, if the local constraint is only coverage based, it is easy to
see that for two itemsets I1 and I2, if t(I1) = t(I2), the result of DL8-RECURSIVE(I1)
and DL8-RECURSIVE(I2) must be the same. To reduce the number of results that we
have to store, we should avoid storing such duplicate sets of results.

The solution that we propose is to compute for every itemset its closure. Let i(t) be
the function which computes

i(t) = ∩k∈tTk

for a TID-set t, then the closure of itemset I is the itemset i(t(I)). An itemset I is closed
iff I = i(t(I)). If t(I1) = t(I2) it is easy to see that also i(t(I1)) = i(t(I2)). Thus, in
the trie data structure that is used in the DL8-SIMPLE, we could index the results on
i(t(I)) instead of I itself.

We incorporate this observation as follows in Algorithm 1. In line 9, we first compute
the closure I ′ in the data. We use this closure to check if DL8-RECURSIVE(I) was
already computed earlier by searching for I ′ in a trie data structure. In line 26, we
associate the result to I ′ instead of I itself.

Our single-step approach which relies on closed itemset indexing is called DL8-
CLOSED. Our implementation of DL8-CLOSED is based on optimization strategies
that are common in depth-first frequent itemset miners, such as the use of projected
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databases, with modifications that make sure that the space complexity of our algorithm
is θ(n + m), where n is the size of the trie that stores all closed itemsets, and m is the
size of the binary matrix that contains the data. More details about this implementation
can be found in (Nijssen & Fromont, 2007).

6 Experiments

Experiments that compare the efficiency of the different implementations of DL8
and other itemset miners can be found in (Nijssen & Fromont, 2007). Our investigations
showed that high runtimes are not as much a problem as the amount of memory required
for storing huge amounts of itemsets. DL8-CLOSED proved to be the most efficient of
our implementations and was used for the following experiments.

We compared the decision trees learned by DL8 with the trees learned by C4.5. In
particular, we want to answer these questions for exhaustively determined trees :

– how well do they generalize to test data ?
– do the results of Quinlan & Cameron-Jones (1995) that oversearching and overfit-

ting are orthogonal also apply to constrained decision trees ?
– do the results of Murphy & Pazzani (1997) and Provost & Domingos (2003) that

small decision trees are not always desirable in terms of predictive accuracy, also
apply to constrained decision trees ?

In our experiments, we used J48, which is the Java implementation of C4.5 (Quinlan,
1993) in WEKA (Witten & Frank, 2005). The experiments shown in Figure 1 were per-
formed on 20 UCI datasets (Newman et al., 1998). The three first columns of the table
give a brief description of the datasets in terms of the number of examples and the num-
ber of attributes after binarization. Numerical data were discretized before applying our
mining algorithms. We used Weka’s unsupervised discretization method with a number
of bins equal to 4. We limited the number of bins in order to reduce the number of crea-
ted attributes. We used a stratified 10-fold cross-validation to compute the training and
test accuracies of both systems.

In these experiments, we used minimum frequency as the local constraint. We lowe-
red the minimum frequency to the lowest value that still allowed the computation to be
performed within the memory of our computers. For J48, results are provided for pru-
ned trees and unpruned trees ; for DL8 results are provided in which the e (unpruned)
and ex (pruned) error functions are optimized (cf. Queries 1 and 3 of Section 3). Both
algorithms were applied with the same minimum frequency setting ; for J48 results are
also provided for its default minfreq = 2 setting. We used a corrected two-tailed t-test
(Nadeau & Bengio, 2003) with a significance threshold of 5% to compare the test ac-
curacies of both systems. A test set accuracy result is in bold when it is significantly
better than its counterpart result on the other system.

The experiments show that both with and without pruning the optimal trees computed
by DL8 have a better training accuracy than the trees computed by J48 with the same
frequency values. On the test data, in both cases, DL8 is significantly better than J48 on
9 of the 20 datasets ; only on 1 dataset is the result significantly worse. The experiments
also show that the pruned trees computed by DL8 are on average 1.5 times larger than
those computed by J48 with pruning. In one case (vehicle), the test accuracy result of
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Unpruned Pruned Pruned Freq = 2
Number Freq Train acc Test acc Size Train acc Test acc Size Test acc size

Datasets Ex Att # % J48 DL8 J48 DL8 J48 DL8 J48 DL8 J48 DL8 J48 DL8 J48 J48

anneal 812 55 50 6.1 0.78 0.78 0.77 0.75 4.0 12.0 0.78 0.78 0.77 0.78 3.4 4.2
anneal 812 55 15 1.8 0.83 0.85 0.79 0.81 31.8 39.4 0.82 0.84 0.80 0.82 13.6 25.4 0.82 44.4
a-credit 653 75 50 7.6 0.87 0.88 0.85 0.87 5.0 9.8 0.86 0.88 0.86 0.87 3.0 9.8 0.84 36.4
balance 625 25 5 0.8 0.86 0.89 0.82 0.82 84.8 86.2 0.85 0.87 0.81 0.80 42.2 48.6
balance 625 25 2 0.3 0.90 0.90 0.82 0.81 99.0 114.4 0.89 0.89 0.80 0.80 72.4 65.4
breast-w 683 55 40 5.8 0.93 0.97 0.93 0.95 3.4 9.6 0.93 0.97 0.93 0.95 3.4 7.6
breast-w 683 55 30 4.3 0.96 0.96 0.95 0.95 6.8 7.0 0.96 0.97 0.95 0.95 6.8 9.4 0.96 15.6

chess 3196 42 200 6.2 0.91 0.91 0.91 0.90 9.0 13 0.91 0.95 0.90 0.95 8.6 13.0 0.99 54.4
diabetes 768 49 100 7.6 0.75 0.76 0.76 0.75 8.4 9.0 0.75 0.76 0.74 0.74 4.8 8.4
diabetes 768 49 15 1.9 0.79 0.83 0.75 0.72 26.4 55.4 0.79 0.82 0.74 0.74 20.4 32.4 0.74 69
g-credit 1000 89 150 15 0.72 0.74 0.71 0.73 6.4 7.0 0.72 0.74 0.71 0.73 5.8 6.8
g-credit 1000 89 100 10 0.73 0.75 0.70 0.70 6.4 11.6 0.73 0.75 0.70 0.71 6.2 9.6 0.71 163
heart-c 296 55 30 10.1 0.77 0.84 0.74 0.77 4.4 11.8 0.77 0.84 0.73 0.78 3.6 11.8
heart-c 296 55 10 3.3 0.85 0.91 0.80 0.75 14 22.7 0.85 0.90 0.80 0.81 11.2 22.2 0.78 31.6
ionosph 351 196 50 14.2 0.83 0.86 0.79 0.84 4.0 7.4 0.83 0.86 0.79 0.84 4 6.8 0.86 34.6
mushro 8124 119 800 9.8 0.92 0.97 0.92 0.97 5.0 11.0 0.92 0.97 0.92 0.97 5.0 11.0 1.0 16.8

pendigits 7494 97 800 10.6 0.51 0.67 0.50 0.68 11.6 15 0.51 0.67 0.51 0.67 11.6 15.0 0.95 340
p-tumor 336 32 5 1.4 0.53 0.60 0.40 0.37 56.6 74.2 0.52 0.58 0.39 0.39 42.6 55.4
p-tumor 336 32 2 0.5 0.63 0.71 0.40 0.36 116.4 152.2 0.60 0.67 0.40 0.40 81.2 105.2
segment 2310 108 300 12.9 0.55 0.72 0.55 0.72 7.0 11.0 0.55 0.72 0.55 0.72 7.0 11.0
segment 2310 108 200 8.6 0.72 0.83 0.73 0.83 12.6 15.0 0.73 0.83 0.73 0.83 12.6 15.0 0.95 112.6
soybean 630 51 70 11.1 0.51 0.51 0.49 0.49 12.0 12.0 0.51 0.51 0.49 0.49 11.8 11.8
soybean 630 51 60 9.5 0.51 0.55 0.50 0.55 13.0 15.0 0.51 0.55 0.50 0.55 11.2 15.0
soybean 630 51 50 7.9 0.55 0.59 0.52 0.59 14.6 16.8 0.55 0.59 0.51 0.58 14.2 16.8 0.82 88
splice 3190 3466 700 21.9 0.74 0.74 0.74 0.73 5.0 5.0 0.74 0.74 0.74 0.73 5.0 5.0 0.94 126.8

thyroid 3247 46 80 2.4 0.91 0.92 0.91 0.91 1.0 13.4 0.91 0.91 0.91 0.91 1.0 3.0 0.91 34.2
vehicle 846 109 100 11.8 0.60 0.64 0.58 0.63 10.8 10.0 0.60 0.64 0.57 0.63 11.0 9.0 0.70 138

vote 435 49 20 4.5 0.96 0.97 0.96 0.94 3.0 15.0 0.96 0.96 0.96 0.94 3.0 7.6
vote 435 49 15 3.4 0.96 0.97 0.95 0.94 3.4 18.0 0.96 0.97 0.96 0.95 3.0 9.2 0.96 12.6

vowel 990 80 100 10.1 0.36 0.39 0.34 0.33 11.0 14.4 0.36 0.39 0.34 0.33 11.0 14.4
vowel 990 80 70 7.0 0.39 0.46 0.35 0.40 17.0 20.6 0.39 0.45 0.35 0.40 16.8 20.2 0.78 290
yeast 1484 42 100 6.7 0.53 0.55 0.50 0.53 13.8 15.4 0.53 0.55 0.51 0.53 11.4 13.8
yeast 1484 42 10 0.6 0.61 0.67 0.52 0.50 107.2 171.0 0.60 0.65 0.54 0.52 56.0 104.6
yeast 1484 42 2 0.1 0.74 0.82 0.49 0.48 501.2 724.2 0.68 0.75 0.53 0.50 186.0 307.2 0.53 186.0

TAB. 1 – Comparison of J48 and DL8 accuracies and size with and without pruning
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DL8 is significantly better than the one given by J48 for a smaller tree. In the other
cases where DL8’s accuracy is significantly better, the pruned trees of DL8 are 3 to 9
nodes larger than those of J48. These results confirm earlier findings which show that
smaller trees are not always desirable ; under the same setting of constraints, we also
find that it is not harmful at all to search exhaustively.

7 Related work

The search for optimal decision trees dates back to the 70s, when several dynamic
programming algorithms for building such trees were proposed (Garey, 1972; Meisel &
Michalopoulos, 1973; Payne & Meisel, 1977; Schumacher & Sevcik, 1976; Lew, 1978).
This early work concentrated on finding small summarizations of input data, and did not
study the prediction of unseen examples. Optimization criteria were based on the cost
of attributes, and the size or the depth of a tree. Afterwards, attention mostly shifted
to heuristic decision tree learners, which were found to obtain satisfactory results for
many datasets in a fraction of the runtime ; theoretical results were obtained that show
to what extent heuristic decision trees can be considered optimal (Kearns & Mansour,
1999; Dietterich et al., 1996; Nock & Nielsen, 2004). Still, the idea of exhaustively
finding optimal decision trees under certain constraints was also studied (Auer et al.,
1995; Murphy & Pazzani, 1997), but only for much smaller datasets and smaller types
of trees than studied in this paper. Recently Blanchard et al. (2007) presented a dynamic
programming algorithm that is quite similar to DL8 and its early ancestors. A new
optimization criterion was introduced for finding optimal dyadic decision trees, which
use a fixed mechanism for discretization of data. This algorithm was only applied on
smaller datasets than our algorithm, and did not investigate the link with data mining
algorithms.

Algorithmically, the tree-relevancy constraint is closely related to the condensed re-
presentation of δ-free itemsets (Boulicaut et al., 2003). Indeed, for δ = minsup × |D|
and p(I) := (freq(I) ≥ minfreq), it can be shown that if an itemset is δ-free, it is also
tree-relevant. DL8-CLOSED employs ideas that have also been exploited in the formal
concept analysis (FCA) community and in closed itemset miners (Pasquier et al., 1999).

A popular topic in data mining is currently the selection of itemsets from a large set
of itemsets found by a frequent itemset mining algorithm (see for instance, Yan et al.
(2005)). DL8 can be seen as one such algorithm for selecting itemsets. It is however
the first algorithm that outputs a well-known type of model, and provides accuracy
guarantees for this model.

8 Conclusions

We presented DL8, an algorithm for finding decision trees that maximize an opti-
mization criterion under constraints, and successfully applied this algorithm on a large
number of datasets.

We showed that there is a clear link between DL8 and frequent itemset miners, which
means that it is possible to apply many of the optimizations that have been proposed
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for itemset miners also when mining decision trees under constraints. It is an open
question how fast decision tree miners could become if they were thoroughly integrated
with algorithms such as LCM or FP-Growth. Furthermore, since memory requirement
seems to be the most challenging problem, new condensed representations could be
developed to represent the information that is used by DL8 more compactly.

In the experiments, we compared the test set accuracies of trees mined by DL8 and
C4.5. Under the same frequency thresholds, we found that the trees learned by DL8
are often significantly more accurate than trees learned by C4.5. When we compare
the best settings of both algorithms, J48 performs significantly better in 45% of the
datasets. Efficiency considerations prevented us from applying DL8 on the thresholds
where C4.5 performs best, but preliminary results indicate that the best accuracies are
not always obtained for the lowest possible frequency thresholds.

Still, our conclusion that trees mined under declarative constraints perform well both
on training and test data, means that constraint-based tree miners deserve further study.
Many open questions regarding the instability of decision trees, the influence of size
constraints, heuristics, pruning strategies, and so on, may be answered by further studies
of the results of DL8. Future challenges include extensions of DL8 to other types of
data, constraints and optimization criteria. DL8’s results could be compared to many
other types of decision tree learners (Page & Ray, 2003; Provost & Domingos, 2003).

Given that DL8 can be seen as a relatively cheap type of post-processing on a set of
itemsets, DL8 suits itself perfectly for interactive data mining on stored sets of patterns.
This means that DL8 might be a key component of inductive databases (Imielinski &
Mannila, 1996) that contain both patterns and data.
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