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Stimulation of pyrene mineralization in freshwater sediments by bacterial and plant bioaugmentation

As a means to study the fate of PAHs in freshwater sediments, pyrene mineralization was examined in microcosms spiked with 14 C-pyrene. Some microcosms were planted with reeds (Phragmites australis) and/or inoculated with a pyrene-degrading strain, Mycobacterium sp. 6PY1. Mineralization rates recorded over a 61-d period showed that reeds promoted a significant enhancement of pyrene degradation, which possibly resulted from a root-mediated increase of oxygen diffusion into the sediment layer, as indicated by in situ redox measurements. In inoculated microcosms, mineralization reached a higher level in the absence (8.8%) than in the presence of plants (4.4%). Mineralization activity was accompanied by the release of water-soluble pyrene oxidation products, the most abundant of which was identified as 4,5-diphenanthroic acid. Pyrene was recovered from plant tissues, including stems and leaves, at concentrations ranging between 40 and 240µg/g dry weight. Plants also accumulated labeled oxidation products likely derived from microbial degradation. Pyrenedegrading strains were 35-70 fold more abundant in inoculated than in non-inoculated microcosms. Most of the pyrene-degrading isolates selected from the indigenous microflora, were identified as M. austroafricanum strains. Taken together, the results of this study show that plants or PAH-degrading bacteria enhance pollutant removal, but their effects are not necessarily cumulative.

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants which form upon combustion of fossil fuels and organic compounds. Oil spills occurring during transport, use or disposal operations are other main sources of PAH pollution. Oil spills were shown to have long-term toxic effects on marine wild life, essentially because of the persistence of PAHs in seashore sediments [START_REF] Peterson | Long-term ecosystem response to the Exxon Valdez oil spill[END_REF]. The fate of these compounds in natural ecosystems and their impact on living organisms is, however, poorly understood. Once in soils or sediments, PAHs undergo various transformations including sequestration in organic matter and microbial degradation. Sequestered PAHs represent a fraction which is not extractable in solvent as a result of either a tight but non-covalent binding to the humic material present in organic matter [START_REF] Guthrie | Determination of [C-13]pyrene sequestration in sediment microcosms using flash pyrolysis GC-MS and C-13 NMR[END_REF], or the formation of covalently-bound residues between oxidized PAH metabolites and the humic material [START_REF] Eschenbach | Fate and stability of nonextractable residues of [ 14 C]PAH in contaminated soil under environmental stress conditions[END_REF][START_REF] Richnow | The use of 13C-labelled polycyclic aromatic hydrocarbons for the analysis of their transformation in soil[END_REF]. Sequestration and the poor watersolubility of PAHs are frequently invoked to explain the resistance of PAHs to microbial degradation in soils and sediments [START_REF] Johnsen | Principles of microbial PAH-degradation in soil[END_REF].

In order to improve or accelerate removal of PAHs from contaminated soils, bioaugmentation treatments involving selected microorganisms [START_REF] Korda | Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatments and commercial microorganisms currently used[END_REF] or plants [START_REF] Newman | Phytodegradation of organic compounds[END_REF] have been proposed. Using selected bacteria, successful enhancement of PAH degradation in soils [START_REF] Grosser | Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils[END_REF], and sediment [START_REF] Heitkamp | Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem[END_REF] have been reported in laboratory studies. However, the success of inoculation experiments is often limited as the survival of the selected strains and their in situ degradation activity depends on whether soils offer favorable conditions, such as suitable pH and salinity [START_REF] Kastner | Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAHdegrading bacteria introduced into soil[END_REF].

Moreover, PAH biodegradation does not always correlate with reduced toxicity, as toxic byproducts may accumulate in soils [START_REF] Phillips | Monitoring bioremediation in creosote-contaminated soils using chemical analysis and toxicity tests[END_REF]. Little information is available about the nature and quantity of metabolites released in soils upon PAH degradation. Phytoremediation, i.e. the use of plants to help in the removal of contaminants, is considered a promising approach to eliminate organic pollutants such as PAHs from the soil [START_REF] Newman | Phytodegradation of organic compounds[END_REF].

Laboratory or greenhouse experiments show that various types of plants promote PAH degradation in soils by stimulating microbial metabolism in the rhizosphere [START_REF] Binet | Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass[END_REF][START_REF] Liste | Plant-promoted pyrene degradation in soil[END_REF].

Dissipation of PAHs in the rhizosphere has been correlated with a decrease in toxicity [START_REF] Joner | Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil[END_REF]. However, it is still unclear how roots exert their positive effect. In addition, the effect of byproducts resulting from the biodegradation of PAHs and their possible uptake by plants are rarely studied in phytoremediation experiments, although one study has addressed the distribution of pyrene and its metabolites in soil and plants following degradation in the rhizosphere [START_REF] Chen | Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.)[END_REF]. Little is also known about the potential of aquatic plants such as reeds to promote the removal of PAHs from contaminated sediments.

In this study, we investigated the biotransformation of pyrene in a natural fresh water sediment which had not been previously exposed to PAH contamination. Sediments were spiked with 14 C-labeled pyrene, and the mineralization of this compound was studied in microcosm systems. We investigated the effects of reeds and of a PAH-degrading bacterium [START_REF] Krivobok | Identification of pyrene-induced proteins in Mycobacterium sp. 6PY1 : Evidence for two ringhydroxylating dioxygenases[END_REF] on pyrene degradation, analyzed the metabolites released, and monitored the accumulation of radiolabeled by-products by the plants. The possible mechanisms by which the rhizosphere of reeds stimulates microbial PAH degradation in aquatic sediment, are discussed.

Experimental Section

Plant and bacterial organisms. Mycobacterium sp. 6PY1 was previously isolated from a PAH-contaminated soil and selected for its ability to grow on pyrene as sole carbon source [START_REF] Krivobok | Identification of pyrene-induced proteins in Mycobacterium sp. 6PY1 : Evidence for two ringhydroxylating dioxygenases[END_REF].This bacterium was grown on a mineral salts medium [MSM, [START_REF] Walter | Degradation of pyrene by Rhodococcus sp. UW1[END_REF]] supplemented with benzoate (5 mM), as previously described [START_REF] Krivobok | Identification of pyrene-induced proteins in Mycobacterium sp. 6PY1 : Evidence for two ringhydroxylating dioxygenases[END_REF]. Young Phragmites australis plants (4 leaves, 1-month old) as well as cuttings were obtained from a laboratory culture. Plants showing the closest morphological aspects were selected in order to obtain comparable planted microcosms. Plant growth was monitored by the cumulated length of leaves and mass increase.

Sediments

The sediment samples were taken from a natural fresh water lake located in the Savoie region of the French Alps (Lac d'Aiguebelette). The sediment was removed from an area of the shore devoid of reeds and other plants. It consisted of light grey, calcareous particles, which were sieved to below 2 mm and stored in 2 L bottles at 7°C until needed. A detailed physicochemical analysis (available upon request) revealed that the sediment had a pH of 7.7, a low content of organic carbon (TOC = 1.4%), and low levels of heavy metals. The overall content of the 16 priority PAHs was 30 ppb, including 2.9 ppb of pyrene.

Set up of microcosms

Microcosm experiments were carried out in 2.5 L polycarbonate jars designed for anaerobic incubation of Petri dishes (GasPak, Fisher Labosi, France). A 5-mm hole was made through the lid and was sealed with a rubber stopper. This modification allowed the insertion of a 250-mm needle (gauge 17) and a 50 mm needle (gauge 19) as air inlet and outlet, respectively. In each empty jar, a mixture of [4,5,9,10-14 C]-pyrene (2.6 µCi, specific activity 55 mCi/mmol; Amersham Pharmacia Biotech, Orsay, France) and 15 mg unlabeled pyrene dissolved in cyclohexane was introduced, and the solvent was allowed to evaporate. Then, 300 g of wet sediment and 50 ml water were placed in the jars, which were subsequently shaken on a rotary shaker at 120 rpm for 3.5 h. Five sets of microcosms were prepared which differed by the following additions : A, no addition; B, planted with P. australis; C, planted with P. australis and inoculated with strain 6PY1; D, inoculated with strain 6PY1; E, treated with 0.33% w/w sodium azide (control). Duplicates of microcosms A, D and E; and triplicates B and C were prepared. Strain 6PY1 was added as benzoate-grown cells so as to obtain an initial population of 1.4 10 7 bacteria per g of wet sediment. The bacterial inoculum (3 ml) was from an early stationary phase culture. Upon dilution in the microcosms, the residual benzoate concentration was calculated to be lower than 0.6 µM, which was judged negligible. Inoculated as well as control microcosms were further shaken 30 min at 120 rpm. When applicable, seven plants of P. australis including four young shoots and three cuttings, were introduced per microcosm. Finally, the microcosms were supplemented with 250 ml sterile water, closed, and incubated at room temperature (23 ± 2°C) in a fume cupboard. Microcosms containing plants were illuminated 16 h per day with two daylight fluorescent lamps (Osram Fluora, 36W/77). Each microcosm was gassed with humidified, sterile air at a roughly constant flow rate (1-1.5 l/h) via a manifold connected to a compressed air cylinder.

Measurements of 14 CO 2 evolution

The gas outlet of each microcosm was connected via silicon rubber tubing to a cartridge containing 3 g of hydrophobic resin (Amberlite XAD-2, Supelco) to trap pyrene and other organic molecules, followed by two consecutive CO 2 traps. Each CO 2 trap consisted of a sealed glass tube containing a 15-ml solution of 1 N NaOH, with a 1-ml plunging pipette as a gas-inlet and a 19-gauge needle as an outlet. The trapping solution was replaced every week.

The trapped radioactivity was estimated on 1-ml samples mixed with 7 ml of Ready Value cocktail (Beckman) in scintillation vials. The mixtures were left overnight then counted using a Beckman LS6500 scintillation counter.

Redox potential measurements in the sediment layer

Redox potentials were measured with small-size platinum electrodes (Orion Ionizer 407A or Ingold XM100) at defined depths in the sediment layer. The electrodes were calibrated with two different pH buffers (pH 4.01 and 7.00) saturated with quinhydrone. Redox potentials were normalized versus the standard hydrogen electrode. For these measurements, separate experiments were carried out in 12-L glass carboys containing a 10-cm deep sediment layer planted with reeds. Redox determinations were made in the rhizosphere region at various distances of the roots and in dark zones of the sediment as indicated in Fig. 2B.

Processing of the microcosms at the end of the incubation

Plants were carefully removed, rinsed with water, and subjected to growth measurements.

Plants from triplicate microcosms were then pooled, and analyzed for radioactivity and pyrene content as described below. The decanted water phase of each microcosm was filtered through a 75 mm-diameter, 0.2 µm Nalgene filter, analyzed by scintillation counting, and stored at 4°C in the dark in sterile screw-capped flasks until needed. Sediment samples (50 g wet mass) from the microcosms were mixed with 100 ml of 0.1M Tris-HCl, pH 7.5, in 250-ml closed flasks and incubated for 16 h at 20°C on a shaker at 200 rpm. After decantation for 24 h at 4°C, the supernatant aqueous phase was filtered through a glass fiber filter (Whatman GF/B), subjected to radioactivity counting, and stored in closed bottles at 4°C. The washed sediments were then subjected to organic solvent extraction.

Extraction of pyrene and 14 C-labeled molecules from water, sediments and plants

Aqueous samples (25 to 40 ml) were acidified by adding trifluoroacetic acid to 0.1% final concentration, then applied to solid phase extraction cartridges (Upticlean C18U, 500/6, Interchim). After washing with 10 ml of 0.1% trifluoroacetic acid, the cartridges were eluted successively with 50% and 100% methanol, 5 ml each. Since 80-90% of the bound radioactivity was eluted with 50% methanol, only the latter extracts were further analyzed by thin-layer chromatography. Sediment samples (10 g wet weight) were solvent-extracted by a standard Soxhlet procedure, using either methanol or dichloromethane. Briefly, samples were mixed with 30 g of anhydrous sodium sulfate, then loaded into cartridges for a 5h-extraction using a Buchi apparatus. The extract was taken to dryness under a stream of nitrogen and dissolved in 4 ml methanol before HPLC analysis or radioactivity counting.

Before extraction, plants from triplicate microcosms were pooled (only plants grown from seedlings were considered). Plants were cut out into five lots: roots, lower stems, upper stems, lower leaves, upper leaves. Each lot was air-dried, weighted, and solvent-extracted as above.

Extracts were concentrated to a volume of 2 ml, and subjected to scintillation counting, HPLC and TLC analysis.

Chromatographic analyses

HPLC analysis was carried out on a Waters system equipped with a photodiode array detector (model 996), piloted by a Millenium software. Separation were performed on a VYDAC C18 column (25 cm by 4.6 mm i.d., Interchim), operated isocratically at 22°C, at a flow rate of 1 ml/min with methanol as mobile phase. The sample injection volume was 10 µl. For calibration, standard solutions of pyrene in methanol were used, at concentrations ranging between 5 and 50 µg.ml -1 (5 to 50 ppm). Calculations of concentrations in samples were made on the basis of peak area.

TLC was performed on silica plates (20× 20 cm; Merck) to which 5-µl samples were applied.

Plates were developed first with hexane/acetone (80/20), and then with benzene/acetone/acetic acid (85/10/5). Radioactive spots were localized after exposure of the plates to X-ray films (Kodak Biomax) for at least one week at 20°C. Spots of interest were isolated by scraping the silica plate and transferring the material into Pasteur pipettes. Labeled compounds were eluted with 1.2 ml methanol. After evaporating the solvent under vacuum, the dry samples were derivatized with BSTFA/TCMS (99:1) (Supelco) and subjected to GC-MS analysis as previously described [START_REF] Krivobok | Identification of pyrene-induced proteins in Mycobacterium sp. 6PY1 : Evidence for two ringhydroxylating dioxygenases[END_REF][START_REF] Willison | Isolation and characterization of a novel sphingomonad capable of growth with chrysene as sole carbon and energy source[END_REF].

Microbiological analyses

Total bacteria present in sediment samples were counted by epifluorescence microscopy after extraction and staining of the bacteria with a kit allowing to distinguish between live and dead cells (BacLight viability kit, Molecular probes, Oregon, USA). Bacteria were extracted from 1.0 to 1.5 g of wet sediment by 3 cycles of a treatment consisting of Vortex shaking for 10 s in 3 volumes of sterile phosphate buffer, followed by a 1-min incubation in a ultrasonic bath (Fisher, model FB11011). After letting the suspension decant for 5 min, 100-µl samples were mixed with the same volume of BacLight stain and incubated for 15 min. Aliquots (5 µl) were then observed under a Zeiss Axioskop microscope, and the bacteria present in 10 fields were counted. Bacterial counts per g of sediment were then calculated. Enumeration of bacteria able to degrade pyrene was performed by plating aliquots of suspension on solid MSM medium coated with a layer of solid pyrene, using a method adapted from [START_REF] Kiyohara | Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates[END_REF]. The presence of pyrene-degrading micro-organisms was indicated by the appearance of circular clearing zones in the opaque pyrene layer after 7-10 d incubation at 25°C.

Isolation and identification of pyrene-degrading strains

Pyrene-degrading strains were isolated from the center of clearing zones on pyrene-coated plates and identified by PCR amplification and sequencing of the 16S rRNA gene, as described previously [START_REF] Moune | Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns[END_REF]. The PCR products from various isolates were sequenced partially and the complete sequence was then determined for representative strains (C-6, C-7, C-8).

The sequence of C-8 was found to be identical to the previously determined sequence of Mycobacterium sp. 6PY1, which is closely related to the species M. gilvum [START_REF] Krivobok | Identification of pyrene-induced proteins in Mycobacterium sp. 6PY1 : Evidence for two ringhydroxylating dioxygenases[END_REF]. The sequences of strains C-7 (Stenotrophomonas sp.) and C-6 (M. austroafricanum) have been deposited in the EMBL Nucleotide Sequence Database under the accession numbers AJ871633 and AJ871634, respectively.

Results

Effects of P. australis and Mycobacterium 6PY1 on pyrene mineralization in freshwater sediment

The sediment used in this study was from a natural lake in the French Alps. It consisted mainly of limestone, with a low content of organic matter (TOC of 13 g/kg dry matter), and a low background level of PAHs (approx. 30 µg/kg dry matter).

Twelve microcosms containing identical amounts of sediment spiked with [ 14 C]-pyrene were prepared as described under Materials and Methods, and incubated for 61 days in closed jars.

The microcosms were divided into five sets, some of which were planted with P. australis (B), some were inoculated with Mycobacterium sp. 6PY1 (D), some received both types of organisms (C) while non-inoculated (A) or biocide-treated (E) microcosms served as controls.

Strain 6PY1 was previously described as a pyrene-degrading bacterium isolated from a polluted soil [START_REF] Krivobok | Identification of pyrene-induced proteins in Mycobacterium sp. 6PY1 : Evidence for two ringhydroxylating dioxygenases[END_REF]. Benzoate-grown cells were used to inoculate the microcosms since benzoate was found to induce the pyrene catabolic enzymes [START_REF] Krivobok | Identification of pyrene-induced proteins in Mycobacterium sp. 6PY1 : Evidence for two ringhydroxylating dioxygenases[END_REF]. Quantitative monitoring of the 14 CO 2 evolved by the microcosms showed that pyrene mineralization became significant after 30 days in non-inoculated microcosms confirming that the natural sediment contained microorganisms able to mineralize pyrene (Fig. 1). P. australis appeared to stimulate pyrene biodegradation, as the mineralization rates observed in B microcosms reached higher levels than in A microcosms devoid of plants (Fig. 1A). This stimulation was probably due to the effect of rhizosphere on microbial metabolism, as will be discussed later. Microcosms inoculated with strain 6PY1 showed an immediate and high rate of pyrene mineralization, which slowly declined over 9 weeks of incubation (Fig. 1B). This result suggested that the inoculated bacterial strain not only enhanced pyrene degradation but also survived in the microcosms over a long period of time, an assumption that is supported by the microbiological analyses presented below . In C microcosms which had received both plants and strain 6PY1, the mineralization rate was found to be lower than in D microcosms which only received strain 6PY1. Hence, plants and selected bacteria which separately enhanced pyrene biodegradation appeared to have antagonistic effects when used in combination.

Carbon balance of pyrene transfer and degradation

At the end of the incubation, the distribution of pyrene and labeled metabolites in the aqueous, gaseous and solid phases of the microcosms was determined. The volatile organic fraction was trapped on hydrophobic resin cartridges placed at the microcosm outlets, and analyzed. It consisted essentially of pyrene and accounted for less than 0.06% of the initial amount based on HPLC quantification. The amount of radioactivity recovered from the overlying water of the microcosms varied widely, reaching levels that correlated with the pyrene mineralization rates (Table 1). This result indicated that pyrene biodegradation was associated with the release of water-soluble metabolites, the accumulation of which suggested that they were not further degraded by microorganisms. The nature of these metabolites was investigated below. In control microcosms where no pyrene mineralization occurred, the presence of the PAH in the overlying water was undetectable by HPLC analysis. It could not be detected either upon TLC analysis of the radioactive material extracted from the water phase (see below and Fig. 3). Analysis of sediment washings also showed a correlation between the amount of released radioactivity and the extent of pyrene mineralization. The amount found in washings was even greater than in the overlying water, indicating that a large proportion of the metabolites were present in interstitial water and sequestered in the pores of the sediment.

The residual concentration of pyrene in the sediment was estimated either by 14 C-counting or by HPLC determination, each method involving a separate extraction procedure. The two sets of data, presented in Table 1, gave consistent results, showing that the most extensive removal of pyrene occurred in microcosms inoculated with strain 6PY1, in which mineralization was the highest. Significant pyrene removal was also observed in microcosms harboring plants, while no difference in pyrene content was noticeable between microcosms containing sediment only and the control microcosms containing biocide. These data are qualitatively in accord with those presented above, in that the extent of pyrene removal was correlated with the levels of pyrene biodegradation in relevant microcosms. However, the recovery of pyrene in control microcosms, or the recovery of labeled carbon in other microcosms (calculated as the sum of the radioactivity found in the gaseous, liquid and solid phases of the microcosms) ranged between 43% and 65% (Table 1). Possible explanations for such low recoveries will be discussed later.

Bioaccumulation of pyrene and metabolites in P. australis

During the 61-day incubation period in microcosms, plants showed good growth as judged from the increase in the length of stems and leaves, and from the overall gain of plant mass.

The incorporation of pyrene and labeled metabolites in plants was estimated in solvent extracts of the plant tissues by HPLC quantification and radioactivity counts (Table 2). Pyrene was detectable in all tissues of P. australis grown on contaminated sediments, the highest levels being found in roots. Substantial amounts of pyrene were also measured in stems and leaves, with higher accumulations in the lower part of these tissues. Interestingly, plants grown on sediments which had been inoculated with strain 6PY1 accumulated much less pyrene than plants grown on non-inoculated sediment (Table 2), suggesting that bacterial biodegradation significantly reduced the bioavailability of the PAH for plants. Nevertheless, these plants incorporated a similar amount (roots) or twice as much (stems and leaves) of labeled compounds as plants grown in non-inoculated microcosms, suggesting that they accumulated water-soluble metabolites resulting from bacterial catabolism. Calculations based on the specific activity of 14 C-pyrene indicated that pyrene accounted for about 8% of the radio-labeled compounds found in roots and around 1% or less in stems and leaves. Even in plants from non-inoculated microcosms where PAH biodegradation was limited, metabolites rather than pyrene appeared to be the major labeled compounds found in plant tissues (Table 2).

Evidence for root-mediated oxygen diffusion into the sediment layer

In the course of the microcosm incubation, the sediment layer, initially light grey in color, turned dark, presumably because the anaerobic conditions which prevailed below the surface favored the precipitation of metallic sulfides. Looking through the transparent bottom of the jars, we noticed that plant roots were bordered with clear zones contrasting with the dark background (see Fig. 2A). This observation suggested that plant roots released oxygen into the sediment, thereby promoting the oxidation of sulfides in the vicinity of the roots. In order to test this hypothesis, redox measurements were carried out through the sediment layer of planted microcosms using microelectrodes. As illustrated in Fig. 2B, positive redox potentials were found in the clear zones surrounding the roots whereas negative values were recorded in the dark parts of the sediment. Hence, it is inferred that the plant-mediated delivery of oxygen to the rhizosphere might be the primary explanation for the stimulation of bacterial pyrene mineralization by P. australis.

.

Identification of 14 C-labeled metabolites

The radioactive compounds found in the overlying water of each microcosm were extracted and analyzed by thin layer chromatography. The autoradiography revealed only three resolved spots, the intensity of which was correlated with the extent of pyrene mineralization in the microcosms (Fig. 3). None of these spots was detectable in the control microcosms containing biocide. The major spot, with an R f of 0.38, was identified as 4,5-diphenanthroic acid based on the following criteria: identical R f by TLC, identical retention time by GC and same mass spectrum as the authentic compound, which has been previously characterized (J.C. Willison, unpublished data). The compound that migrated with a R f of 0.58 was identified as 4phenanthroic acid based on the same criteria, whereas the third spot of lowest intensity (R f of 0.45) was too scarce to give a significant signal by GC-MS. As discussed below, the two identifiable compounds are known to be metabolites produced by pyrene-degrading bacteria such as Mycobacterium 6PY1. Curiously, in one of the replicate microcosms (C2), the spot of 4,5-diphenanthroic acid was undetectable, suggesting that it might have been converted to more hydrophilic byproducts which were not isolated by the extraction method used. Such a conversion might have been carried out by bacterial strains able to metabolize 4,5diphenanthroic acid, which would have grown to a higher density in this particular microcosm.

It should be noted that pyrene was undetectable in the overlying water of the microcosms, even in controls in which biodegradation was inhibited. On the other hand, analysis of sediment extracts by TLC showed that the 14 C-label was almost entirely associated with pyrene, while trace amounts of the above-cited metabolites were detected in those microcosms where biodegradation was highest (data not shown).

Enumeration and identification of pyrene-degrading strains

The bacterial population of the sediment after 61 days was found to be higher in microcosms which harbored plants than in those which did not, and was higher in those which received a bacterial amendment than in non-inoculated microcosms (Fig. 4). The proportion of living bacteria (green cells with the BacLight stain) was higher than 90% in all microcosms. The number of pyrene-degrading bacteria was 35-to 70-fold higher in sediments inoculated with strain 6PY1 than in non-inoculated controls.

Two different strains able to degrade pyrene were isolated from the sediment of noninoculated microcosms which harbored plants. Based on the analysis of 16S rRNA gene sequences, one of these strains, C-6, was identified as a strain of Mycobacterium austroafricanum (100% sequence identity in a 1274 nt overlap with M. austroafricanum ATCC 33464; accession no. X93182) and the other strain, C-7, was identified as a member of the genus Stenotrophomonas, with close affiliation to S. maltophilia (99.1% sequence identity in a 1302 nt overlap with S. maltophilia LMG 10857; accession no. AJ131117). Members of both species have been previously shown to degrade various PAHs, including pyrene. Three out of 4 strains isolated from inoculated microcosms containing plants were found to have identical 16S rRNA sequences to strain 6PY1, with the other strain being identified as M. austroafricanum. Lastly, all five isolates recovered from the sediment of unamended microcosms were identified as M. austroafricanum. Hence, it seems likely that the latter species was present in the indigenous microflora of the sediment, and that this bacterium played a major role in the observed pyrene mineralization in non inoculated microcosms.

Discussion

Fate of pyrene in the sediment and in situ biodegradation

In this study, we examined the fate and biotransformation of pyrene in the sediment from a natural aquatic ecosystem. The distribution of pyrene in the microcosms, as monitored by radioactivity counting and chromatographic measurements, showed that it was exclusively found in the sediment layer and virtually absent from the overlying water. However, calculations based on radioactivity counting indicated that only around 60% of the labeled carbon initially introduced in the microcosms was recovered at the end of the 2-month incubation. A plausible explanation is that part of the pyrene was tightly bound to sediment particles or sequestered in micropores, and could not be extracted with solvent. Previous studies have shown that PAHs and pyrene in particular become partly non-extractable due to sequestration in soil or sediment, and that the proportion of non-extractable PAH increases with aging (2-4). For instance, Guthrie et al [START_REF] Guthrie | Determination of [C-13]pyrene sequestration in sediment microcosms using flash pyrolysis GC-MS and C-13 NMR[END_REF] found that the solvent recovery of pyrene from a spiked sediment gradually decreased by 53 to 77% upon aging for 60 days. In the same study, the authors showed that pyrene was sequestered as a complex with humic acids. The formation of non-extractable PAH residues in soil was shown, in other studies, to increase with the molecular mass and the Kow of the PAH [START_REF] Northcott | Partitioning, extractability, and formation of nonextractable PAH residues in soil. 1. Compound differences in aging and sequestration[END_REF].

The chosen sediment was characterized by a low background level of PAHs, and a low organic content allowing limited microbial development, as judged from the relatively low bacterial density (< 10 8 cells/g sediment). Nevertheless, indigenous bacteria endowed with pyrene-mineralizing activity were readily detected in this habitat, consistent with the observation that PAH-degrading bacteria are well-adapted to oligotrophic conditions [START_REF] Johnsen | Principles of microbial PAH-degradation in soil[END_REF]. Pyrene mineralization was observed after a delay of at least 20 days, during which pyrenedegrading bacteria probably multiply at the expense of the supplied PAH used as carbon source. This delay might also be partly due to the time of induction of pyrene catabolic enzymes, at least at the beginning of the incubation, since in most bacterial species studied so far, the synthesis of such enzymes appeared to be inducible [START_REF] Krivobok | Identification of pyrene-induced proteins in Mycobacterium sp. 6PY1 : Evidence for two ringhydroxylating dioxygenases[END_REF][START_REF] Heitkamp | Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium[END_REF][START_REF] Molina | Cross-induction of pyrene and phenanthrene in a Mycobacterium sp isolated from polycyclic aromatic hydrocarbon contaminated river sediments[END_REF].

Pyrene degradation led to the accumulation in the microcosms of a few water soluble metabolites. Two of these metabolites, identified as 4,5-diphenanthroic acid and 4phenanthroic acid, were previously found in axenic cultures of several Mycobacterium strains grown on pyrene [START_REF] Dean-Ross | Degradation of pyrene by Mycobacterium flavescens[END_REF][START_REF] Heitkamp | Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products[END_REF][START_REF] Schneider | Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site[END_REF]. Interestingly, the same metabolites were detected in inoculated and non-inoculated microcosms, suggesting that the pyrene degradation pathway of indigenous bacteria was similar to that proposed for strain 6PY1 [START_REF] Krivobok | Identification of pyrene-induced proteins in Mycobacterium sp. 6PY1 : Evidence for two ringhydroxylating dioxygenases[END_REF]. Consistent with this proposal, we observed the most abundant pyrene-degrading bacterial species isolated from the sediment was a M. austroafricanum strain. The accumulation of the two metabolites also indicated that they were poorly degraded by the microbial community of the sediment. Hence, 4,5diphenanthroic and 4-phenanthroic acids might be considered easily detectable and relevant biomarkers for pyrene biodegradation activity in contaminated ecosystems.

Plant-mediated stimulation of pyrene degradation

P. australis plants were found to stimulate pyrene biodegradation in non-inoculated microcosms,. Previous studies describing the stimulating effect of plants on the removal of organic pollutants from contaminated soils have led to the general idea that plants may favor bacterial metabolism through root exudates, not only by providing carbon sources, but also by secreting substances which could enhance bacterial degradation of organic pollutants [START_REF] Singer | Secondary plant metabolites in phytoremediation and biotransformation[END_REF]. In the present study, the beneficial effect of P. australis on pyrene degradation may result primarily from the ability of plant roots to bring oxygen into the sediment. Redox measurements inside the sediment layer, strongly suggested that oxygen diffused from the roots into the sediment layer, thereby stimulating bacterial metabolism. Considering the high oxygen demand of PAH catabolism, the delivery of oxygen by plant roots might be expected to particularly favor pyrene mineralization. Furthermore, pyrene-degrading bacteria were found to be twice as abundant in microcosms harboring plants as in control microcosms.

In microcosms pre-inoculated with strain 6PY1, pyrene mineralization was found to be diminished about two-fold due to the presence of plants. This observation, which apparently contrasts with the stimulating effect discussed above, might have one of the following explanations : (i) recycling of mineralized carbon through CO 2 fixation, (ii) enhanced competition against strain 6PY1 in the rhizosphere (iii) inhibition of PAH catabolism by compounds released in root exudates. The first hypothesis supposed that plants would have incorporated labeled carbon equivalent to the difference in the amount of released 14 CO 2 between microcosms with and without plants. Calculations based on the radioactivity recovered from plant tissues indicated that 14 C-plant incorporation could not account for more than 2% of this difference, thus ruling out a significant recycling of the labeled carbon through CO 2 fixation. On the other hand, the plant rhizosphere did not create conditions disadvantaging strain 6PY1 or other PAH-degrading bacteria, since these bacteria were found to be as abundant in planted and non-planted sediments. As last hypothesis, it is possible that root exudates delivered by plants either provide carbon sources to bacteria that are more readily assimilated than pyrene, or generate compounds which could lower induction of catabolic enzymes in pyrene-degrading bacteria. Accordingly, it was recently observed that root exudates inhibited the expression of naphthalene catabolic genes in a PAH-degrading Pseudomonas strain [START_REF] Kamath | Effect of root-derived substrates on the expression of nah-lux genes in Pseudomonas fluorescens HK44: Implications for PAH biodegradation in the rhizosphere[END_REF].

Pyrene bioaccumulation by plants

Pyrene analysis in plant tissues revealed that it accumulated at concentrations varying along a decreasing gradient from roots to leaf tips. This distribution suggested that pyrene entered the b Fraction of the radioactivity in the tissues that corresponds to undegraded 14 C-pyrene, as calculated from the pyrene content of tissues (HPLC assay) and the specific activity of 14 C-pyrene (0.173 µCi/mg as determined experimentally from the solution used to spike the sediment). 
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TABLE 1 : Distribution of pyrene and labeled compounds released in microcosms after 61 d (%) a .

 1 Percents were calculated on the basis of the initial amount of 14 C-pyrene applied (± standard error) b Replicate numbers for each microcosm series are indicated in parentheses c Numbers are taken from Fig.1and refer to the endpoints at 61 d.

	E(2)	D(2)	C(3)	B(3)	A(2)	Series b	Microcosm
	none (+ azide)	strain 6PY1	P. australis + 6Y1	P. australis	None	introduced	Organisms
	0.062 ± 0.005	8.85 ± 0.3	4.4 ± 0.7	0.46 ± 0.12	0.18 ± 0.07	pyrene c	Mineralized
	0.63 ± 0.004 1.00 ± 0.05	1.88 ± 0.3 5.83 ± 0.19	1.69 ± 0.09 4.61 ± 0.22	0.82 ± 0.01 1.08 ± 0.14	0.55 ± 0.02 1.04 ± 0.06	overlying water Sedim. washings	Soluble 14 C-label released in
	62.8 ± 13.8 59.1 ± 2.5	26.2 ± 2.1 31.8 ± 0.0	35.2 ± 6.2 35.1 ± 2.6	51.8 ± 8.2 48.7 ± 5.3	58.9 ± 8.9 65.3 ± 5.5	14 C counts HPLC	Residual pyrene
	64.5 ± 13.9	42.8 ± 2.9	45.9 ± 7.2	54.2 ± 8.5	60.7 ± 9.0	recovery	Total 14 C

a

TABLE 2 : Pyrene and 14 C radioactivity recovered from the tissues of P. australis grown on 14 C-pyrene-spiked sediments

 2 

		Plant extracts from non-inoculated	Plant extracts from microcosms
	Tissues	microcosms (B)	inoculated with strain 6PY1(C)
		14 C a	Pyrene a	Pyrene b	14	C a	Pyrene a	Pyrene b
		(10 3 cpm/g)	(µg/g)	(% of 14 C)	(10 3 cpm/g)	(µg/g)	(% of 14 C)
	Roots	186	242	50	160	32.2	7.8
	Upper leaves	94.5	46.7	19	170	2.23	0.5
	Lower leaves	96.3	282	112	157	4.04	1.0
	Upper stems	76.3	40.3	20	144	4.88	1.3
	Lower stems	78.7	58.2	28	157	2.92	0.7

a Determined from scintillation counts or HPLC assays. Data are normalized to gram of tissue dry mass

plant through the roots and diffused to the upper parts through the vascular system. The amounts of pyrene found in roots (250 µg/g), stems and leaves (5 times less on average) were much greater than the limit of solubility of pyrene in water (0.16 mg/L) indicating that a significant bioaccumulation of the PAH occurred in the plants. In microcosms inoculated with strain 6PY1, plants accumulated 10-to 20-fold less pyrene but instead, incorporated radiolabeled oxidation products. In this case, bacterial metabolism probably diminished the availability of pyrene to plant roots, and also caused a release of hydrosoluble metabolites which probably penetrate more easily into the plants. The exact nature of the labeled products found in the plants remains to be determined, as well as the mechanism by which they become sequestered.
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