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1 Introduction

The aim of this paper is to provide a study of different models of the
mechanical non-linear stress-strain behaviour of arteries.

2 Generic Model for the SEF

We use a cylindrical coordinate system with the pricipal directions eθ

(circumferential), ez (axial) an er (radial).

Fig. 1 – Parameters characterizing the loaded state and the zero-stress state
geometry of an artery. L, zero-stress state axial length ; l, loaded state axial
length ; Ri, zero-stress state inner radius ; Ro, zero-stress state outer radius ;
R, zero-stress state radius of wall point ;Θ, opening angle ; ri, loaded state
inner radius ; ro, loaded state outer radius ; r, loaded state radius of wall
point.

The SEF is expressed in a cylindrical coordinate system in terms of local
Green strains (Eθ, Er, Ez) or stretch ratios (λθ, λr, λz) which are related to
each other via the relation

λk =
√

2Ek + 1 k = θ, z, r (1)
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Each stretch ratio can be expressed with the parameters of the different
states (2) as follows :
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(2)

It is assumed that the arterial wall material is incompressible, so that

λθλzλr = 1

Solving the system (2) under the boundary condition that the outer radius
in the Zero Stress State Ro should be mapped to the outer radius in the
stretched and pressurized state, ro = r(Ro), we find :

r(R) =

√

r2
o − (R2

o −R2)
π − Θ

λzΘ
(3)

In the absence of body forces the equilibrium equations are

div σ = 0 (4)

where σ is the Cauchy Stress tensor and div denotes the spatial diver-
gence of the spatial tensor field. Note that in cylindrical polar coordinates
(r, θ, z), because of the geometrical and constitutive symmetry, the only non-
trivial component of (4) is the following, with boundary conditions related
to po and pi, the external and internal pressure :
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dσr

dr
+
σr − σθ

r
= 0 with ri ≤ r ≤ r0

σr(r0) = −p0

σr(ri) = −pi

(5)

The internal pressure is then obtained in the form :

pi =
∫ ro

ri

(σθ − σr)
dr

r
(6)
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For axisymmetric loading, the stress-strain relationships can be derived
by means of a strain energy function ψ(Er, Eθ, Ez). In this case, the radial,
circumferential and longitudinal stresses are given by :
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σr = λ2
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∂ψ

∂Er
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σθ = λ2
θ

∂ψ

∂Eθ
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σz = λ2
z
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∂Ez

+ q

(7)

Many SEF have been proposed for constitutive models of arteries wall.
In the next sections, some of this models are detailed and compute.

In order to study the different models, we are interesting in the different
following variables :

– the diameter of arterial wall : D = 2 × ri,

– the compliance : C =
∂D(P )

∂P
where P is the intraluminal pressure,

– the distensibility : Dd =
∂D(P )

D∂P
,

– the thickness : h = ro − ri,

– the young’s modulus : E =
∂P ×D

∂D × h
,

– the pulse wave velocity compute : PWV =

√

Eh

2ρri

, where ρ is the blood

density (ρ = 1.05).
Some characteristics of the Cauchy-Green deformation tensor :

C = 2E + 1 (8)

will be although usefull :
– the first invariant : I1 = tr(C) = λ2

θ + λ2

r
+ λ2

z

– the invariant with respect to a vector vθ definig a fiber orientation
defined in tensor notation by : I4 = vαCvα.
In absence of torsion and if vα is in the eθ − ez plane at an angle α to
the circumferential direction eθ, I4 takes on the following form :

I4 = λ2
θ cos2 α+ λ2

z sin2 α
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.
– Similarly, we can define the invariant I4′ in respect to a vector vα′

having a second fiber direction defined by an angle α′.

3 Choung and Fung model

3.1 mathematical model

The most widely known SEF for arteries is probably the exponential-
polynomial SEF of Chuong and Fung [1]. It displays both non-linearity and
anisotropy :

ψ(Er, Eθ, Ez) =
c

2
(exp(b1E2

θ
+b2E2

z+b3E2
r+b4EθEz+b5EzEr+b6ErEθ) −1) (9)

where c is an elastic constant and b1 to b6 are parameters describing the
contributionof the principal strains. This model is purely phenomenological.

3.2 Computational results

Using (9) and (6) it is easy to compute the model associate to the SEF
of Choung and Fung.

The differents parameters used are obtained by fitted experimental datas
from rat carotid artery (see [3]) :



















































c = 222.24 kPa
b1 = 0.2634
b2 = 0.2135
b3 = 0.3759
b4 = 0.1832
b5 = 0.1951
b6 = 0.

(10)

We consider the parameters of the artery as follow :
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L = 1.
l = 1.3
Ro = 0.5845E − 03
Ri = 0.4415E − 03
Θ = 60.

(11)

Tab. 1 – Curves of pressure and compliance for Choung model.

Tab. 2 – Curves of distensibility and thickness for Choung model.
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Tab. 3 – Curves of pulse wave velocity for Choung model.

4 Holzapfel model

4.1 mathematical model

Holzapfel and Gasser [2] develop a constitutive law for the description
of the passive mechanical response of arterial tissue. This SEF is split into
two different parts, one associated with isotropic deformations et the other
associated with anisotropic deformations :

ψ = ψiso + ψaniso (12)

where
ψiso =

c

2
(I1 − 3) (13)

and

ψaniso =
k1

k2

[

1

2
(expk2(I4−1)2 −1) +

1

2
(expk2(I

4′
−1)2

]

(14)

We consider for I4 and I4′ invariants, α = α′ and then I4 = I4′ .
In the Holzapfel model, c and k1 are positive material constants with the

dimension of the stress and k2 is a dimensionless parameter.
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4.2 Computational results

The differents parameters used are obtained by fitted experimental datas
from rat carotid artery (see [3]) :


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c = 44.24 kPa
k1 = 0.206 kPa
k2 = 1.465
α = 39.76◦

(15)

We consider the parameters of the artery as follow :
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L = 1.
l = 1.3
Ro = 0.5845E − 03
Ri = 0.4415E − 03
Θ = 60.

(16)

Tab. 4 – Curves of pressure and compliance for Holzapfel model.
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Tab. 5 – Curves of distensibility and thickness for Holzapfel model.

Tab. 6 – Curves of pulse wave velocity for Holzapfel model.

5 Zulliger model

5.1 mathematical model

The general approach is similar to the above model concerning the se-
paration of the SEF into isotropic and anisotropic parts. In this case, the
isotropic ψiso is assumed to represent the elastin alone, using the total wall
cross-section area which is composed of elastin felast :
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ψiso = felastψelast (17)

where
ψelast = celast(I1 − 3)3/2 (18)

In a similar way, the anisotropic component is assumed to represent only
the load bearing collagen fibers :

ψaniso = fcollψcoll (19)

where fcoll is the corresponding area fraction of collagen.
To describe the ensemble of circumferentially oriented collagen fibers,

it is assumed that the engagement of the collagen fibers when stretched
is distributed in some statistical manner, with the log-logistic probability
distribution function :

ρfiber(E) =


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0 for E ≤ E0

k

b

(

E − E0

b

)k−1

[

1 +
(

E − E0

b

)k
]2 for E > E0

(20)

where b > 0 is a scaling parameter and k > 0 defines the shape of the
distribution. To prevent any collagen fibers exerting a force when the tissue
is in its ZSS, E0 = 0. An individual collagen fiber’s SEF is described by :

ψfiber(E
′) =







0 for E ′ ≤ 0

ccoll
1

2
E ′2 for E ′ > 0

(21)

where ccoll is the elastic constant associated with the collagen, and E ′ the
local strain in direction of the fiber.

We then have the whole contribution for the collagen :

ψcoll(Eθ) = ψfiber ⋆ ρfiber =
∫

∞

−∞

ψfiber(E
′).ρfiber(Eθ − E ′)dE ′

=
∫ Eθ

0
ψfiber(E

′).ρfiber(Eθ − E ′)dE ′

(22)
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The passive components of the arterial wall (elastin and collagen) are
treated together under the form :

ψpassive = felastψelast + fcollψcoll (23)

In contrast to previous models that included the effects of smooth muscle
contraction through generation of an active stress, in this study, the model
proposed by Zulliger and all consider the vascular muscle as a structural
element whose contribution to load bearing is modulated by the contraction
[4].

To extend the mechanical description of the arterial wall to include the
effects of VSM tone, Zulliger and all propose adding an additional term to
the above-mentioned SEF (24) :

ψ = ψpassive + S1S2fV SMψV SM (24)

where fV SM is the cross-sectional area fratiocn of VSM, and ψV SM is a
SEF describing the VSM when maximally contracted.

S1 is a nondimensional function describing the level of VSM tone :

S2 =

{

1 0.680 < λV SM
θ /λpre < 1.505

0 otherwise
(25)

where λV SM
θ is the circumferebntial stretch of the VSM when the artery

is in its maximally contracted state :

λV SM
θ = λθλpre (26)

and 1/λpre can be understood as length of an isolated VSM cell under
the isotonic maximal contraction relative to the length of the same VSM cell
when fully relaxed and embedded in the extracellular matrix.

S2 incorporates the range of stretch at which the VSM develops maximal
force under isometric contraction :

S1 =



















0 fully relaxed
1 maximally contracted

Sbasal + (1 − Sbasal)
1

2

[

1 + Erf

(

Q− µ√
2σ

)]

normal tone

(27)
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Q is a function of the VSM deformation :

Q = αθEθ + αzEz + αrEr + 3 (28)

where αθ, αz and αr describe the sensitivity of the VSM to deformations
in the corresponding directions. Sbasal represents the VSM basal tone contrac-
tion. It is assume a Gaussian distribution of the VSM cell activation level as a
function of deformation Q.The Gaussian distribution is characterized by the
critical engagement deformation, µ, and a half-width, σ, and is represented
by the error function Erf .

When maximally contracted, the VSM cells’ contribution to the total SEF
is assumed to be described by the following relationship

ψV SM = cV SM

[

λV SM
θ − log(λV SM

θ ) − 1
]

(29)

CV SM takes the role of an elastic modulus.

5.2 Computational results

5.3 Parameters

We consider the parameters of the artery as follow :
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l = 1.
Ro = 0.5845E − 03
Ri = 0.4415E − 03
Θ = 60.

(30)

The differents parameters used are obtained by fitted experimental datas
from left common carotid (LCC) artery of E+/+ mouse in the normatensive
case :
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Sbasal = 0.052
µ = 4.81
λpre = 1.83
σ = 0.133
αθ = αr = αz = 2.
felast = 0.306
celast = 52.103

fcoll = 0.203
ccoll = 200.106

k = 21.
b = 1.6

fV SM = 0.491
cV SM = 73.2.103

(31)

To understand the behavior of each component (elastin, collagen and
VSM), it can be useful to cancel the action of the other.

5.3.1 Action of the elastin

We consider fcoll = fV SM = 0.

Tab. 7 – Curves of pressure and compliance for Zulliger model with only
action of elastin .
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Tab. 8 – Curves of distensibility and thickness for Zulliger model with only
action of elastin .

Tab. 9 – Curves of pulse wave velocity for Zulliger model with only action
of elastin .

5.3.2 Action of the collagen

We consider felast = fV SM = 0.
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Tab. 10 – Curves of pressure and compliance for Zulliger model with only
action of collagen.

Tab. 11 – Curves of distensibility and thickness for Zulliger model with only
action of collagen.
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Tab. 12 – Curves of pulse wave velocity for Zulliger model with only action
of collagen.

5.3.3 Action of the elastin and the collagen

We consider fV SM = 0.

Tab. 13 – Curves of pressure and compliance for Zulliger model with only
action of elastin and collagen.

16



Tab. 14 – Curves of distensibility and thickness for Zulliger model with only
action of elastin and collagen.

Tab. 15 – Curves of pulse wave velocity for Zulliger model with only action
of elastin and collagen.

5.3.4 Action of the VSM

We consider felast = fcoll = 0.
First of all, we study the behavior of the parameters taking place in the

model in function of the stretch ratios.
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Tab. 16 – Curves of S1 and S2 parameters for Zulliger model with only
action of VSM.

We are now interesting of each components of the circumferential stress.

Tab. 17 – Curves of λV SM
θ and EV SM

θ for Zulliger model with only action of
VSM.
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Tab. 18 – Curves of the circumferential stress σθ for Zulliger model with only
action of VSM.

Concerning the same variables studies for the other model, we have the
differents following curves.

Tab. 19 – Curves of pressure and thickness for Zulliger model with only
action of VSM.

The curves of distensibility, compliance and pulse wave velocity have no
interest due to the shape of the pressure curve.
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5.3.5 Action of all the components

Tab. 20 – Curves of pressure and compliance for Zulliger model.

Tab. 21 – Curves of distensibility and thickness for Zulliger model.

20



Tab. 22 – Curves of pulse wave velocity for Zulliger model.
Some of this curves presents a curious behavior for some value of pres-

sure. The next ones show some particular parts of the pulse wave velocity,
distensibility and compliance curves.

Tab. 23 – Zoom on the distenbility curves for Zulliger model.
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Tab. 24 – Zoom on the compliance curves for Zulliger model.

Tab. 25 – Zoom on the pulse wave velocity curves for Zulliger model.

5.3.6 Variation of the total wall cross-section area composed by

elastin

We consider fV SM = 0 because of the above curves and we study the
effect of the variation of elastin on the outer radius with a fixed pressure.

We make felast vary from 0 to 1. We use the same parameters as above.
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Pressure = 10 kPa

Tab. 26 – Curves of outer radius function of felast for P = 10kPa.

Pressure = 20 kPa

Tab. 27 – Curves of outer radius function of felast for P = 20kPa.
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Pressure = 30 kPa

Tab. 28 – Curves of outer radius function of felast for P = 30kPa.

Pressure = 40 kPa

Tab. 29 – Curves of outer radius function of felast for P = 40kPa.
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