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Abstract

We report an analysis of intramolecular dynamics of the highly excited planar carbonyl sulfide

(OCS) below and at the dissociation threshold by the Fast Lyapunov Indicator (FLI) method. By

mapping out the variety of dynamical regimes in the phase space of this molecule, we obtain the

degree of regularity of the system versus its energy. We combine this stability analysis with a

periodic orbit search, which yields a family of elliptic periodic orbits in the regular part of phase

space an a family of in-phase collinear hyperbolic orbits associated with the chaotic regime.

1



I. INTRODUCTION

Multidimensional, complex systems tend to overwhelm the researcher with data: think

of fluid dynamical data from the oceans or the millions of trajectories that today’s powerful

computers can generate in an instant. In many areas of science and engineering, experimental

techniques to observe real-time dynamical phenomena have also developed at a pace far more

rapid than the theory required to make sense of such data. In chemistry, a recent example

is the rapid development of techniques to study single molecules, such as proteins [1, 2].

For low-dimensional systems, the geometric framework of dynamical systems theory has

provided a way of understanding these data. This point of view, first espoused by Poincaré,

asks about the relationship between all possible trajectories, rather than the evolution of

individual trajectories. This leads immediately to the notion of phase space structure as a

key notion for making sense of the many and varied regimes that a nonlinear dynamical

system can exhibit. However, techniques for mining high-dimensional plethora of data for

any underlying structures and geometry have thus far lagged badly behind our ability to

generate it.

For Hamiltonian systems with two degrees of freedom, a Poincaré section constructed

by a plane section (of dimension 2) of a set of individual trajectories lying on the energy

surface of dimension 3 is able to give a clear picture of the dynamics, e.g., of regular versus

chaotic regions of phase space. Analyzing the dynamics of higher- dimensional systems by

extrapolating this technique is not straightforward since the Poincaré section has dimension

4 for systems with three degrees of freedom. One method to understand high-dimensional

systems has been developed by Laskar [3, 4, 5] and relies on visualizing the dynamics in

the frequency space. For instance, for three degrees of freedom, this frequency space is of

dimension 2 which makes its analysis tractable. It is known as Frequency Map Analysis

(FMA) because it is based on extracting the principal frequencies of quasiperiodic trajec-

tories. Clearly, this method is well-suited for nearly integrable systems whose phase space

contains many invariant tori. This method has also been extended to weakly chaotic regimes

by computing a diffusion coefficient in frequency. The FMA has been first developed in ce-

lestial mechanics, and has subsequently been applied in various other fields, like atomic

physics [6, 7], particle accelerators [8, 9, 10] and chemistry [11, 12]. For strongly chaotic

systems, the notion of frequency and diffusion in frequency are not well defined, so any
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Fourier-based analysis like this one must be used with extra caution.

In order to understand the dynamics of high-dimensional systems in the strongly chaotic

regime, the computation of Lyapunov exponents based on the linearized flow has been

used extensively [13]. However, Lyapunov exponents being infinite-time quantities, the long

computational times required for their reliable computation are not suited for an extensive

analysis of phase space. Geometrical approaches based on the geodesic deviation equations

to study dynamics of many-dimensional continuous dynamical systems have been developed

in [14]. Also noteworthy are the investigations of Berry and coworkers concerning the non-

uniformity of the dynamical properties of Hamiltonian systems representing atomic clusters

with up to 13 atoms. In particular, they explored how regular and chaotic behavior may vary

locally with the topography of the potential energy surfaces (PES) [15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25]. By analyzing local Lyapunov functions and Kolmogorov entropies, they

showed that when systems have just enough energy to go through a saddle in the potential

energy surface, the system’s trajectories become collimated and regularized through the

saddle regions, developing approximate local invariants of the motion different from those in

the potential well. Recently, numerical methods based on linear stability analysis have been

designed to analyze trajectories of Hamiltonian systems, which were obtained by numerical

integration of the flow. The aim of these methods is to obtain pictures of the phase space and

highlight relevant structures [26, 27, 28]. It has been shown that the relevant information

on a typical trajectory is obtained by integrating the flow for a short time. For instance,

distinguishing between regular and chaotic trajectories, or even between weakly and strongly

chaotic trajectories is possible after a short integration of the equations of motion. The Fast

Lyapunov Indicator (FLI) method is one of these highly practical methods.

In this article, we use the FLI method to analyze the internal dynamics of the carbonyl

sulfide (OCS) molecule. In its planar and rotationless configuration, this molecule has three

coupled modes (two stretching modes and one bending mode). We show how this method

helps to visualize the dynamics of highly excited molecules without resorting to dimensional

reduction schemes with their attendant flaws and loss of information. In particular, the Fast

Lyapunov Indicator method shows global pictures of the dynamics, highlighting regular and

chaotic zones. We combine the analysis of the dynamics of OCS with a determination of the

main periodic orbits. Our numerical investigations yield the following picture : The regular

region is located in the center of the configuration space and is characterized by a family of
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elliptic periodic orbits. The strongly chaotic region is entered when the CS stretching mode

is highly excited and this region is characterized by a set of collinear hyperbolic periodic

orbits which have an additional property of being ’in-phase’ (meaning that the bending

mode is frozen and the two stretching modes are vibrating with the same frequency).

In Sec. II, we briefly give the explicit expression of the flow of the OCS. In Sec. III, we

explain the basics of the Lyapunov indicator method. The numerical results are given in

Sec. IV.

II. THE MODEL

The classical model of the planar (rotationless) carbonyl sulfide OCS molecule has been

studied in details in Refs. [29, 30, 31, 32, 33, 34]. The coordinates of this system are

two interatomic distances R1 = d(C, S), R2 = d(C, O), the bending angle of the molecule

α = ÔCS, and three momenta P1, P2, Pα which are conjugate to R1, R2 and α, respectively

. We note that the third interatomic distance R3 = d(O, S) is expressible as a function of

R1, R2 and α :

R3 =
(

R2
1 + R2

2 − 2R1R2 cos α
)1/2

.

The Hamiltonian for this system is

H(R1, R2, α, P1, P2, Pα) = T (R1, R2, α, P1, P2, Pα) + V (R1, R2, α), (1)

where T is the kinetic part of the Hamiltonian and V is the potential. The kinetic part has

the form [35]

T =
µ1

2
P 2

1 +
µ2

2
P 2

2 + µ3P1P2 cos α

+P 2
α

(

µ1

2R2
1

+
µ2

2R2
2

−
µ3 cos α

R1R2

)

− µ3Pα sin α

(

P1

R2
+

P2

R1

)

,

where µi are the reduced masses. The analytic expression of the potential has been proposed

based on existing experimental data [36] and can be summarized as :

V (R1, R2, α) =

3
∑

i=1

Vi(Ri) + VI(R1, R2, R3), (2)

where Vi are Morse potentials for each diatomic pair

Vi(R) = Di

(

1 − e−βi(R−R∗

i
)
)2

,
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and VI is the interaction potential of the Sorbie-Murrell form given in Ref. [29] :

VI = P (R1, R2, R3)

3
∏

i=1

(

1 − tanh γi(Ri − R
(0)
i )

)

,

where R
(0)
i are the equilibrium distances of the planar OCS which is a collinear (α = π)

configuration : R
(0)
1 = 2.9508 (in atomic units) R

(0)
2 = 2.2030 and R

(0)
3 = R

(0)
1 + R

(0)
2 . The

function P is a quartic polynomial in each of its variables. All the coefficients of the potential

are provided in Ref. [29].

The planar OCS is an example of a general triatomic molecule with three strongly coupled

modes : OC and CS stretching modes, represented by R1(t) and R2(t) and a bending mode,

represented by α(t). Any perturbation introduced into one of the modes will be redistributed

among the two other modes. It was shown in Ref. [29] that the dynamics of the system is

highly irregular at the energies close to the dissociation threshold, which occurs at E = 0.1

(in atomic units).

III. THE FAST LYAPUNOV INDICATOR METHOD

The Fast Lyapunov Indicator (FLI) method was introduced in Ref. [37] and rigorous

results can be found for the case of near integrable systems in Ref. [26]. The method is

similar to the computation of finite time Lyapunov exponents [38]. Given a d-dimensional

flow
dx

dt
= f(x),

we are looking at the evolution of a vector v which is given by the tangent flow

dv

dt
= Df(x) · v,

where Df is the matrix of the variations of the flow given by the velocity field f , i.e.

[Df ]ij = ∂fi/∂xj . We integrate the above system of equations starting with initial conditions

x0 and v0. In principle, one should consider the dynamics of the d× d Jacobian matrix J(t)

which is given by
dJ

dt
= Df(x)J,

(where J(0) is the d × d identity matrix), in order to study the stability of a given trajec-

tory [39]. The evolution of v is thus given by v(t) = J(t)v0. However, for practical purposes,
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we only integrate the equations for v(t) starting with a given v0 fixed once and for all. We

will omit the dependence on v0 which will be a valid assumption for large time since most

of the vectors v0 will follow the dynamics of the most unstable eigenvector of J(t).

The Lyapunov indicator is based on the computation of the dynamical variable φ(t) which

is defined as follows:

φ(t;x0) = max
0≤t′≤t

log ‖v(t′;x0)‖, (3)

where v(t;x0) is a tangent vector of the flow at time t for the trajectory starting with initial

conditions x0. The Lyapunov indicator φ(t;x0) is a monotonically increasing function of

time. Not only can it distinguish regular from chaotic motion but is also an indicator of

resonant and nonresonant trajectories for nearly integrable systems [26].

For instance, a chaotic trajectory is characterized by an exponential separation of nearby

trajectories. The resulting Lyapunov indicator grows linearly in time (the coefficient of this

growth will be asymptotically the largest Lyapunov exponent). In the regular region, a good

model is provided by considering an integrable Hamiltonian with action-angle coordinates

(A, ϕ) ∈ Rd×Td where Td is the d-dimensional torus. The Hamiltonian writes H0 = H0(A)

and the equations of motion are the following ones

dA

dt
= 0,

dϕ

dt
=

∂H0

∂A
= ω(A).

The tangent flow is given by

dv

dt
=





0 0

ω
′(A) 0



 · v,

where ω
′(A) is a d × d matrix whose elements are ∂ωi/∂Aj . Since A is constant along a

trajectory, the evolution of the vector v is linear in time. Therefore, the Lyapunov indicator

evolves like

φ(t) ≈ log t.

More precise results are obtained in the nearly integrable regime [26]. There is a linear

growth in the chaotic region and a logarithmic growth in the regular region. For t large

enough, the Fast Lyapunov indicator makes a clear distinction between regular and chaotic

trajectories as we will show numerically for the OCS molecule. Our numerical observation is

that this indicator achieves this distinction very early in time compared with other existing

methods.
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The maps of the dynamics are obtained by examining the values of this Lyapunov indi-

cator at a fixed time as a function of initial conditions.

x0 7→ φ(t;x0).

In spirit, this method is very similar to Frequency Map Analysis [5, 40] where instead of a

Lyapunov indicator, a diffusion in frequency is plotted as function of the initial conditions.

The main feature of the FLI method is that it reveals the important phase space structures

which makes the method an appropriate tool for the investigation of the classical phase

space of highly excited molecules.

IV. NUMERICAL RESULTS

We investigated the phase space structures including existing resonances and periodic

trajectories and analyzed the stability properties for different regions in the configuration

space of OCS.

In what follows we consider trajectories with initial conditions in the configuration space

(R1, R2), i.e. we consider initially that P1 = P2 = Pα = 0 and the initial value of the angle

α is determined by the energy integral V (R1, R2, α) = E. The FLI as a function of time is

computed in the time interval t ∈ [0, 1] (the unit of time is one picosecond), which is long

enough for the system to show the characteristic dynamics. The integration of the equations

of motion is carried out using a standard variable order Adams-Bashforth-Moulton PECE

solver. Figure 1 depicts the variations of the Lyapunov indicator φ as a function of time

for four distinct trajectories at an energy E = 0.09 (in atomic units, where the value of the

energy is given with respect to the equilibrium energy) : one periodic, one quasiperiodic,

one weakly chaotic and one strongly chaotic orbit. A projection on the plane (R1, R2) of

each of these four trajectories computed for t ∈ [0, 1] is depicted on Fig. 2. These figures

show the power of the Fast Lyapunov indicator: Not only can it distinguish between regular

and chaotic trajectories but also between resonant and non-resonant regular trajectories

and between weakly and strongly chaotic trajectories. To set the scale, this distinction is

made as early as at time t = 1. As a comparison, the molecule has a period of 0.063 in the

periodic case (the periodic orbit Oa, see below), i.e. t = 1 corresponds to about 15 periods

of oscillation of the molecule.
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Fields of Fast Lyapunov Indicators were computed on an equally spaced grid of initial

conditions in the configuration space (R1, R2) for different energies. The computations for

the FLI are carried out on the time interval t ∈ [0, 1]. For each initial condition (R1, R2),

the maximum value attained by FLI during the time interval [0, 1] ps is plotted. The result

is the Lyapunov field for a given value of the energy. Figure 3 depicts the Lyapunov field

for E = 0.09. The dark regions of this Lyapunov field are associated with regular regions

and the white regions with chaotic trajectories.

In order to check these results, we computed the main periodic orbits and their stability

at this energy. We found these periodic orbits by a novel variational method which provides

a very robust determination of periodic orbits of flows [41, 42]. This method can determine

periodic orbits of flows regardless of their stability properties (elliptic or hyperbolic periodic

orbits). A brief description follows.

We start from a point in the configuration subspace and evolve it for some time. We take

R1 = 3 to be our Poincaré section by noticing that most of the time the orbit intersects this

hyperplane. The flow becomes a map on the Poincaré section. As the symbolic dynamics of

this system is yet unexplored, to obtain cycles of different topological length, we look for the

near-recurrence of the map on the section for one iteration, two iterations, three iterations,

etc. The resulting orbit segment is represented by a discrete set of points and its frequency

components are obtained by a Fast Fourier Transform. After removing the high-frequency

part, we transform the data back to the phase space and obtain a closed smooth loop, which

becomes our starting guess for a periodic orbit. A Newton descent flow will drive the orbit

toward a genuine periodic orbit by penalizing the discrepancy between the approximate flow

and the true flow along the loop [41, 42]. Table I lists all the elliptic periodic orbits we have

obtained using this method : Two projections of each periodic orbit are given, one on the

plane (R1, P1) and the other on the plane (R2, P2). The period T is also given in picosecond

as well as the value of the resonance m : n : k. These integers are computed using the

following procedure : We compute by frequency analysis the main frequencies ω1, ω2 and ω3

of the three signals, respectively, z1(t) = R1 + iP1, z2(t) = R2 + iP2 and z3 = α + iPα. The

integers m, n, k are such that ω1/ω2 = m/n, ω2/ω3 = n/k. Each of these periodic orbits

intersects the configuration space at two different points. These points are represented on

Fig. 3. Our main observation is that the center of the configuration space is weakly chaotic
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and characterized by two elliptic periodic orbits Oa and Ob.

We have also computed the main hyperbolic periodic orbits of OCS. The intersection of

these periodic orbits with the configuration space is plotted on Fig. 3. We notice that the

boundary of the configuration space which mostly chaotic is characterized by hyperbolic

periodic orbits. Moreover, by frequency analysis we show that these hyperbolic periodic

orbits are collinear ones, i.e., the bending mode is frozen and the stretching modes are

in-phase ( 1 : 1 : 0 resonances).

We note that the chaotic trajectories appear when R1 is large or R1 is small. Therefore

the stretching mode CS appears to lead the dynamics of the molecule. Moreover since in-

phase collinear hyperbolic periodic orbits appear when R1 is large, these type of periodic

orbits are likely to lead the chaotic behavior near the dissociation threshold.

The resulting data on FLI values for all the initial conditions corresponding to the different

dynamical regimes allow one to introduce a classification of the orbits and to compute the

percentage of the regular and irregular orbits for the system for different values of the energy

and to compare those results with an existing classification. In Ref. [29] the classification

was done by using the behavior of the Lyapunov exponents for microcanonically chosen

trajectories at different energies. Here, we examine the evolution of FLI curves for different

initial conditions in the configuration space. As a result the threshold value of the FLI

can be introduced for filtering regular and irregular motions. We have noticed that for the

majority of trajectories studied the motion is chaotic or weakly chaotic above the value

φc = 10 (which is evaluated at t = 1).

Figure 4 depicts the Lyapunov fields for six different values of the energy, from E = 0.05

up to the dissociation energy E = 0.1. One can observe the evolution of the global stability

of the system as the energy is increased. Dark regions correspond to low values of FLI,

that is to say, to regular regions, whereas light regions are associated with high values of

the FLI where chaotic trajectories are predominant. The color scale is chosen to be the

same for each energy in order to observe in a clearer way the changes in phase space as

energy increases. The FLI field for the energy E = 0.05 consists of a dark region in the

center associated with a set of elliptic periodic and quasiperiodic orbits with frequency

ratios ω1/ωα = 2, ω2/ωα = 2 where ω1, ω2 and ωα are the main frequencies of the signals

R1(t) + iP1(t), R2(t) + iP2(t) and α(t) + iPα(t), respectively. Smaller dark regions are

associated with higher order resonances. Most of trajectories are quasiperiodic for this
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energy since the values of the FLI φ(t = 1) are smaller than φc. As the energy is increased

to E = 0.0639 some regular motions lose stability and chaotic motions appear. They can be

seen in the lower left corner of the configuration space (R1, R2). Highlighted ridges spiraling

around the central resonance region are associated with hyperbolic periodic trajectories.

They separate the main resonant zone with the frequency ratios ω1/ωα = 2, ω2/ωα = 2

from other higher order resonant zones. We notice that the FLI fields do not provide a

precise determination of the locations of hyperbolic periodic orbits because its resolution is

not sharp enough and some regions do overlap. For the energies E = 0.07 and E = 0.08

more chaotic trajectories appear and the overall dynamics is more chaotic. This is indicated

by the increasing number of points with higher values of the FLI (the value of FLI reaches 22

for the E = 0.08 ) in the configuration space. We notice that at E = 0.07 a bifurcation of the

main resonance 2 : 2 : 1 has occurred. The central island which leads the regular dynamics

for E < 0.07 is split into two parts. These regular parts are connected and survive for larger

energies, even near the dissociation threshold. They are associated with a resonance 1 : 4 : 1.

For the energy E = 0.098, only a few regular regions around elliptic periodic orbits remain.

They are separated by a large set of initial conditions corresponding to chaotic motions. We

identify all the surviving resonances by computing the frequency ratios for the trajectories

generated inside the islands.

For energies close to dissociation (see for instance Fig. 1(f)), most of the Lyapunov field

consists of initial conditions associated with strongly chaotic motions : The values of the

FLI φ(t = 1) are larger than 16 except several resonant islands and the percentage of regular

behavior is below 30%. These remaining islands correspond to elliptic periodic orbits. Large

dark zones appear on th right hand side of the FLI fields for R1 > 4.8. In order to get insight

into the presence of low values of the FLI for initial conditions in regions where we expect

a priori strongly chaotic motions, the time sequences for R1 and R2 and the evolution of

the FLI are plotted on Figs. 5 and 6 for two typical trajectories with initial conditions such

that R1 > 4.75. Here the FLI is defined as φ(t) = log ‖v(t)‖ for convenience. We observe

that for the trajectory corresponding to the dissociation of the molecule (see Fig. 5) the

value of the FLI grows slowly (logarithmically). This is due to the fact that C and O atoms

are moving under the influence of Morse potential V2 mostly. Contributions from the other

terms in the potential are too small to affect the dynamics. The system is very close to

integrability. For the trajectory near the dissociation (see Fig. 6) we observe an intermittent
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behavior in the time sequence for the R2. Regular oscillations are interrupted by higher

amplitude peaks. Regular motion corresponds to the intervals of time when the S atom is

far from the CO bond to affect the dynamics. During this interval of time the quantity

of the FLI is decreasing. This has a significant effect on the resulting largest value of FLI

at the end of the interval of time. From the FLI fields, we observe that the region with

high values of the FLI is sharply joint at R1 ∈ [4.7, 4.8] with the region where trajectories

dissociate or demonstrate an intermittent behaviour discussed above. At this stage, it is not

clear whether there is a surface barrier dividing phase space into twoparts with completely

distinct dynamics and what the conditions are on an initial configuration of the OCS for the

trajectories to show one or the other type of dynamical behaviour.

We use the FLI field data to compute the percentage of regular versus irregular orbits

for the system at different energies. We compare our results with an existing classification

in Ref. [29]. The percentage of regular motions for different values of the energy E is

plotted versus E on Fig. 7. Our computations give the bounds for the critical energy for

the onset of irregularities in the system which are 0.05 < Ec < 0.0639. This result agrees

with the value for the critical energy E = 0.0639 calculated in Ref. [29]. However at the

energy close to dissociation (E = 0.098), we observe many more regular trajectories than

the estimate given in Ref. [29]. This can be due to the fact that in our studies we calculated

FLI for 132 × 110 trajectories whereas the previous stability analysis was performed for 20

microcanonically distributed trajectories in Ref. [29], and also to the fact that we consider

initial trajectories in the configuration space (i.e. with zero kinetic energy). For the interval of

energy 0.07 < E < 0.08 we see a significant change in the dynamical behavior of the system.

About 15% of regular trajectories lose their stability. Therefore most of the important

bifurcations in this system happen in this interval of energy.

Conclusions

We have applied the Fast Lyapunov Indicator method in the phase space of highly excited

planar OCS. This method is based on an analysis of the linear stability of trajectories. It

gives pictures of the dynamical regimes in phase space, analogous to Poincaré sections for

systems with two degrees of freedom. In conjunction with a search of periodic orbits, this

method gives insights into the dynamics of intramolecular energy flow in highly excited
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molecules. We have applied this method to planar OCS with energies below and at the

dissociation threshold. The main results are as follows: When the energy is well-distributed

among the three modes in the center of the configuration space, the behavior is regular.

When the bending mode is frozen and the two stretching modes are in phase (O and S are

vibrating in opposite phase) chaotic behavior is seen. We have provided pictures of phase

space for different values of the energy below and at the dissociation threshold : It allows

one to identify the mechanism of transition to chaos and dissociation.
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[37] C. Froeschlé, E. Lega, R. Gonczi, Celest. Mech. Dyn. Astron. 67, 41 (1997).

[38] T. Okushima, Phys. Rev. Lett. 91, 254101 (2003).
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FIGURES CAPTIONS

Figure 1.

FLI versus time curves for the OCS system for the initial conditions for chaotic, weakly

chaotic, quasiperiodic and periodic orbits respectively: a) ( 2.762, 1.911 ),

b) ( 3.67, 2.307595 ), c) ( 3.65, 2.307595 ), d) ( 3.615178, 2.307595 ).

Figure 2.

Trajectories in the configuration space for the three initial conditions of Fig. 1. Trajectories

(b) and (c) are chosen in the vicinity of the periodic orbit Oa which is represented by the

trajectory (d). The time of integration is 1ps.

Figure 3.

Contour plot for the FLI values in the configuration space (R1, R2) of the OCS molecule

for E = 0.09. The circles represent elliptic periodic orbits and crosses represent collinear

hyperbolic periodic orbits.

Figure 4

Contour plots for the FLI values in the configuration space (R1, R2) of the OCS molecule

given at the energies: a) E = 0.05, b) E = 0.0639, c) E = 0.07, d) E = 0.08, e) E = 0.098,

f) E = 0.1.

Figure 5

Time series of R1, R2 and the FLI evolution for the trajectory at the dissociation energy

E = 0.1. Initial condition : R1 = 4.8, R2 = 2.145.

Figure 6

Time series of R1, R2 and the FLI evolution for the trajectory near the dissociation energy.

Initial condition : R1 = 5.02, R2 = 2.11.

Figure 7

Percent of regular trajectories versus energy for the OCS. The interval of energy is

E ∈ [ 0.05, 0.098 ].
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Name Projection T (ps) (R1, R2) m : n : k

(R1, P1) and (R2, P2)

Oa 3 3.5

−20

0

20

2.2 2.3 2.4

−20

−10

0

10

20

0.063 (3.615178, 2.307595) 1 : 1 : 1

(2.998235, 2.482408)

Ob 2.6 2.8 3 3.2

−20

0

20

2 2.5
−40

−20

0

20

40

0.122 (3.189711, 2.654841) 2 : 3 : 1

(3.222491, 2.168308)

Oc 2.5 3 3.5
−50

0

50

2 2.5

−50

0

50

0.087 (2.493375, 2.339454) 2 : 2 : 1

(3.002806, 1.869968)

Od 3 3.5
−40

−20

0

20

40

2 2.5
−50

0

50

0.195 (2.821580, 2.714920) 4 : 11 : 3

(2.978729, 2.203665)

Oe 2.5 3 3.5 4

−50

0

50

2 2.5

−50

0

50

0.049 (3.911413, 1.983623) 1 : 1 : 0

(2.485514, 2.155984)

TABLE I: Characteristics of the main elliptic periodic orbits : two projections on the planes

(R1, P1) and (R2, P2) are given. We also provide the period T expressed in picoseconds and the

two points which are the intersections of the orbits with the configuration space.
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