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limit value in some non expansive optimal control problems

Introduction

We consider the following optimal control denoted Γ t (y 0 ) :

(1)

V t (y 0 ) := inf

u∈U 1 t t s=0
h(y(s, u, y 0 ), u(s))ds, where s → y(s, u, y 0 ) denotes the solution to

(2) y ′ (s) = g(y(s), u(s)), y(0) = y 0 .

Here U is the set of measurable controls from IR + to a given non empty metric space U. Throughout the paper, we will suppose Lipschitz regularity of g : IR d × U → IR d which implies that for a given control u in U and a given initial condition y 0 , equation (2) has a unique absolutely continuous solution.

The main goal of the paper consists in studying the asymptotic behaviour of V t (y 0 ) when t tends to ∞. This problem has been considered in several papers (cf for instance in [START_REF] Arisawa | On ergodic stochastic control[END_REF][START_REF] Bettiol | On ergodic problem for Hamilton-Jacobi-Isaacs equations[END_REF][START_REF] Cardaliaguet | Ergodicity of Hamilton-Jacobi equations with a non coercive non convex Hamiltonian in IR 2 /Z 2 preprint[END_REF]) by approaches ensuring that the limit of V t (y 0 ) is independent of y 0 . In the present paper we exhibit several examples where the limit exists and depends of y 0 . Our aim is to obtain a general result which contains in particular the more easy to state following result, where throughout the paper, < •, • > stands for the canonical scalar product and B is the associated closed unit ball.. Proposition 1.1. Assume that g is Lipschitz, that there exists a compact set N which is -forward -invariant by the control system [START_REF] Arisawa | On ergodic stochastic control[END_REF] and that h is a continuous function which does not depend on u. Assume moreover that :

(3) ∀(y 1 , y 2 ) ∈ N 2 , sup u∈U inf v∈U < y 1y 2 , g(y 1 , u)g(y 2 , v) >≤ 0.

Then problem [START_REF] Arisawa | Ergodic problem for the Hamilton Jacobi Belmann equations II[END_REF] has a value when t converges to +∞ i.e. there exists V (y 0 ) := lim t→+∞ V t (y 0 ). Condition (3) means a non expansive property of the control system, while the condition

∀(y 1 , y 2 ) ∈ N 2 , sup u∈U inf v∈U < y 1 -y 2 , g(y 1 , u) -g(y 2 , v) >≤ -C y 1 -y 2 2
expresses a dissipativity property of the control system. The above dissipativity condition does imply that the limit is independent of y 0 (cf [START_REF] Artstein | The value function of singularly perturbed control systems[END_REF]).

The value function [START_REF] Arisawa | Ergodic problem for the Hamilton Jacobi Belmann equations II[END_REF] can also be characterized through -viscosity -solution of a suitable Hamilton-Jacobi equation. In several articles initiated by the pioneering work [START_REF] Lions | Homogenization of Hamilton-Jacobi Equations[END_REF] the limit of V t (y 0 ) is obtained by "passing to the limit" on the Hamilton-Jacobi equation. This required coercivity properties of the Hamiltonian which could be implied by controlability and/or dissipativity of the control system but which are not valid in the nonexpansive case [START_REF] Artstein | The value function of singularly perturbed control systems[END_REF]. Moreover the PDE approach is out of the scope of the -long enough -present article.

Definition 1.2. The problem Γ(y 0 ) := (Γ t (y 0 )) t>0 has a limit value if lim t→∞ V t (y 0 ) exists. Whenever it exists, we denote this limit by V (y 0 ).

Our main aim consists in giving one sufficient condition ensuring the existence of the limit value. As a particular case of our main result we obtain proposition (1.1).

It is also of interest to know if approximate optimal controls for the value V t (y 0 ) are still approximate optimal controls for the limit value. This leads us to the following definition.

Definition 1.3. The problem Γ(y 0 ) has a uniform value if it has a limit value V (y 0 ) and if :

∀ε > 0, ∃u ∈ U, ∃t 0 , ∀t ≥ t 0 , 1 t t s=0 h(y(s, u, y 0 ), u(s))ds ≤ V (y 0 ) + ε.
Whenever the uniform value exists, the controller can act (approximately) optimally independently of the time horizon. On the contrary, if the limit value exists but the uniform value does not, he really needs to know the time horizon before choosing a control. We will prove that our results do imply the existence of a uniform value. We will be inspired by a recent work in the discrete time case [START_REF] Renault | Uniform value in Dynamic Programming[END_REF].

Let us explain now, how the paper is organized. The second section contains some preliminaries and discussions of limit behaviors in examples. In the third section, we state and prove our main result for the existence of the uniform value.

Preliminaries

We now consider the optimal control problems (Γ t (y 0 )) t described by ( 1) and (2).

Assumptions and Notations

We now describe the assumptions made on g and h.

(4)

      
The function h : IR d × U -→ IR is measurable and bounded The function g :

IR d × U -→ IR d is measurable ∃L ≥ 0, ∀(y, y ′ ) ∈ IR 2d , ∀u ∈ U, g(y, u) -g(y ′ , u) ≤ L y -y ′ ∃a > 0, ∀(y, u) ∈ IR d × U, g(y, u) ≤ a(1 + y )
With these hypotheses, given u in U equation ( 2) has a unique absolutely continuous solution y(•, u, y 0 ) :

IR + → IR d .
Since h is bounded, we will assume without loss of generality from now on that h takes values in [0, 1].

We denote by G(y 0 ) := {y(t, u, y 0 ), t ≥ 0, u ∈ U} the reachable set (i.e. the set of states that can be reached starting from y 0 ).

We denote the average cost induced by u between time 0 and time t by :

γ t (y 0 , u) = 1 t t 0 h(y(s, u, y 0 ), u(s))ds
The corresponding Value function satisfies V t (y 0 ) = inf u∈U γ t (y 0 , u).

Examples

We present here basic examples. In all these examples, the cost h(y, u) only depends on the state y. We will prove later that the uniform value exists in examples 2, 3 and 4.

• Example 1 : here y lies in IR 2 seen as the complex plane, there is no control and the dynamic is given by g(y, u) = i y, where i 2 = -1. We clearly have :

V t (y 0 ) ---→ t→∞ 1 2π|y 0 | |z|=|y 0 | h(z)dz,
and since there is no control, the value is uniform.

• Example 2 : in the complex plane again, but now g(y, u) = i y u, where u ∈ U a given bounded subset of IR, and h is continuous in y.

• Example 3 : g(y, u) = -y + u, where u ∈ U a given bounded subset of IR d , and h is continuous in y.

• Example 4 : in IR 2 . The initial state is y 0 = (0, 0) and the control set is U = [0, 1]. For a state y = (y 1 , y 2 ) and a control u, the dynamic is given by

y ′ (s) = g(y(s), u(s)) = u(s)(1 -y 1 (s)) u 2 (s)(1 -y 1 (s))
, and the cost is h(y) = 1-y 1 (1-y 2 ).

Notice that for any control, y ′ 1 (s) ≥ y ′ 2 (s) ≥ 0, and thus y 2 (t) ≤ y 1 (t) for each t ≥ 0. One can easily observe that G(y 0 ) ⊂ [0, 1] 2 .

If one uses the constant control u = ε > 0, we obtain y 1 (t) = 1exp(-εt) and y 2 (t) = εy 1 (t). So we have V t (y 0 ) ---→ t→∞ 0.

More generally, if the initial state is y = (y 1 , y 2 ) ∈ [0, 1] 2 , by choosing a constant control u = ε > 0 small, one can show that the limit value exists and lim t→∞ V t (y) = y 2 .

Notice that there is no hope here to use an ergodic property, because

{y ∈ [0, 1] 2 , lim t→∞ V t (y) = lim t→∞ V t (y 0 )} = [0, 1] × {0},
and starting from y 0 it is possible to reach no point in (0, 1] × {0}.

• Example 5 : in IR 2 , y 0 = (0, 0), control set U = [0, 1], g(y, u) = (y 2 , u), and

h(y 1 , y 2 ) = 0 if y 1 ∈ [1, 2], = 1 otherwise.
We have u(s) = y ′ 2 (s) = y ′′ 1 (s), hence we may think of the control u as the acceleration, y 2 as the speed and y 1 as the position of some mobile. If u = ε constant, then y 2 (t) = 2εy 1 (t) ∀t ≥ 0.

We have u ≥ 0, hence the speed cannot decrease. Consequently, the time interval where y 1 (t) ∈ [1, 2] cannot be longer than the time interval where y 1 (t) ∈ [0, 1), and we have V T (y 0 ) ≥ 1/2 for each T .

One can prove that V T (y 0 ) ---→

T →∞ 1/2 by considering the following controls : choose t in (0, T ) such that (2/ t) + ( t/2) = T , make a full acceleration up to t and completely stop accelerating after : u(t) = 1 for t < t, and u(t) = 0 for t ≥ t.

Consequently the limit value exists and is 1/2. However, for any control u in U, we either have y(t, u, y 0 ) = y 0 for all t, or y 1 (t, u, y 0 ) ---→ t→∞ +∞. So in any case we have 1 t t 0 h(y(s, u, y 0 ), u(s))ds ---→ t→∞ 1. The uniform value does not exist here, although the dynamic is very regular.

Existence results for the uniform value 3.1 A technical Lemma

Let us define V -(y 0 ) := lim inf t→+∞ V t (y 0 ) and V + (y 0 ) := lim sup t→+∞ V t (y 0 ). Adding a parameter m ≥ 0, we will more generally consider the costs between time m and time m + t :

γ m,t (y 0 , u) = 1 t m+t m h(y(s, u, y 0 ), u(s))ds,
and the value of the problem where the time interval [0, m] can be devoted to reach a good initial state, is denoted by :

V m,t (y 0 ) = inf u∈U γ m,t (y 0 , u).
Of course γ t (y 0 , u) = γ 0,t (y 0 , u) and V t (y 0 ) = V 0,t (y 0 ).

Lemma 3.1. For every m 0 in IR + , we have :

sup t>0 inf m≤m 0 V m,t (y 0 ) ≥ V + (y 0 ) ≥ V -(y 0 ) ≥ sup t>0 inf m≥0 V m,t (y 0 ).
Proof : We first prove sup t>0 inf m≤m 0 V m,t (y 0 ) ≥ V + (y 0 ). Suppose by contradiction that it is false. So there exists ε > 0 such that for any t > 0 we have

inf m≤m 0 V m,t (y 0 ) ≤ V + (y 0 ) -ε . Hence for any t > 0 there exists m ≤ m 0 with V m,t (y 0 ) ≤ V + (y 0 ) -(ε/2). Now observe that V m,t (y 0 ) = inf u 1 t m+t m h(y(s, u, y 0 ), u(s))ds = 1 t inf u { m 0 +t 0 h(y(s, u, y 0 ), u(s))ds - m 0 +t m+t h(y(s, u, y 0 ), u(s))ds - m 0 h(y(s, u, y 0 ), u(s))ds} ≥ m 0 + t t V m 0 +t (y 0 ) -2 m 0 t . Hence m 0 + t t V m 0 +t (y 0 ) -2 m 0 t ≤ V + (y 0 ) -(ε/2).
Passing to the limsup when t goes to +∞ we obtain a contradiction. We now prove V -(y 0 ) ≥ sup t>0 inf m≤0 V m,t (y 0 ). Assume on the contrary that it is false. Then there exists ε > 0 and t > 0 such that V -(y 0 ) + ε ≤ inf m≤0 V m,t (y 0 ). So for any m ≥ 0, we have V -(y 0 ) + ε ≤ V m,t (y 0 ). We will obtain a contradiction by concatenating trajectories. Take T > 0, and write T = lt + r, with l in IN and r in [0, t). For any control u in U, we have : T γ T (y 0 , u) = tγ 0,t (y 0 , u) + tγ t,t (y 0 , u)

+ ... + tγ (l-1)t,t (y 0 , u) + rγ lt,r (y 0 , u) ≥ lt(V -(y 0 ) + ε). Hence γ T (y 0 , u) ≥ T -r T (V -(y 0 ) + ε).
So for T large enough we have V T (y 0 ) ≥ V -(y 0 ) + ε/2, hence a contradiction by taking the liminf when T → ∞ .

Remark : it is also easy to show that for each t 0 ≥ 0, we have inf

m≥0 sup t>t 0 V m,t (y 0 ) ≥ V + (y 0 ).
The following quantity will play a great role in the sequel.

Definition 3.2. V * (y 0 ) = sup t>0 inf m≥0
V m,t (y 0 ).

Main results

Let us state the first version of our main result (which clearly implies Proposition 1.1 stated in the introduction) Proposition 3.3. Assume that (4) holds true and furthermore : (H'1) h(y, u) = h(y) only depends on the state, and is continuous on

IR d . (H'2) G(y 0 ) is bounded, (H'3) ∀(y 1 , y 2 ) ∈ G(y 0 ) 2 , sup u∈U inf v∈U < y 1 -y 2 , g(y 1 , u) -g(y 2 , v) >≤ 0.
Then the problem Γ(y 0 ) has a limit value which is V * (y 0 ), i.e. V t (y 0 ) ----→ t→+∞ V * (y 0 ). The convergence of (V t ) t to V * is uniform over G(y 0 ), and we have

V * (y 0 ) = sup t≥1 inf m≥0 V m,t (y 0 ) = inf m≥0 sup t≥1 V m,t (y 0 ) = lim m→∞,t→∞ V m,t (y 0 ). Moreover the value of Γ(y 0 ) is uniform.
Condition (H'3) can be used to show that (cf Proposition 3.5) :

∀(y 1 , y 2 ) ∈ G(y 0 ) 2 , ∀ε > 0, ∀T ≥ 0, ∀u ∈ U, ∃v ∈ U s.t. : ∀t ∈ [0, T ],
y(t, u, y 1 )y(t, v, y 2 ) ≤ y 1y 2 + ε. Proposition 3.3 can be applied to the previous examples 1, 2 and 3, but not to example 4. Notice that in example 5, we have

V * (y 0 ) = 0 < 1/2 = lim t V t (y 0 ).
We will prove the following generalization of Proposition 3.3. We put Z = G(y 0 ), and denote by Z its closure in IR d . Theorem 3.4. Suppose that (4) holds true and furthermore assume that (H1) h is uniformly continuous in y on Z uniformly in u. And for each y in Z, either h does not depend on u or the set {(g(y, u), h(y, u)) ∈ IR d × [0, 1], u ∈ U} is closed. (H2) : There exist a continuous function ∆ : IR d × IR d -→ IR + , vanishing on the diagonal (∆(y, y) = 0 for each y) and symmetric (∆(y 1 , y 2 ) = ∆(y 2 , y 1 ) for all y 1 and y 2 ), and a function α :

IR + -→ IR + s.t. α(t) --→ t→0 0 satisfying : a) For every sequence (z n ) n with values in Z and every ε > 0, one can find n such that lim inf p ∆(z n , z p ) ≤ ε. b) ∀(y 1 , y 2 ) ∈ Z2 , ∀u ∈ U, ∃v ∈ U such that D ↑ ∆(y 1 , y 2 )(g(y 1 , u), g(y 2 , v)) ≤ 0 and h(y 2 , v) -h(y 1 , u) ≤ α(∆(y 1 , y 2 )).
Then we have the same conclusions as in Proposition 3.3. The problem Γ(y 0 ) has a limit value which is V * (y 0 ). The convergence of V t to V * is uniform over Z, and we have

V * (y 0 ) = sup t≥1 inf m≥0 V m,t (y 0 ) = inf m≥0 sup t≥1 V m,t (y 0 ) = lim m→∞,t→∞ V m,t (y 0 ). Moreover the value of Γ(y 0 ) is uniform.
Remarks :

• Although ∆ may not satisfy the triangular inequality nor the separation property, it may be seen as a "distance" adapted to the problem Γ(y 0 ).

• The assumption : "{(g(y, u), h(y, u)) ∈ IR d × [0, 1], u ∈ U} closed" could be checked for instance if U is compact and if h and g are continuous with respect to (y, u).

• D ↑ is the contingent epi-derivative (cf [START_REF] Aubin | Set-Valued Analysis Birkhaüser[END_REF]) (which reduces to the upper Dini derivative if ∆ is Lipschitz), defined by : D↑∆

(z)(α) = lim inf t→0 + ,α ′ →α 1 t (∆(z + tα ′ )-∆(z)). If ∆ is differentiable, the condition D ↑ ∆(y 1 , y 2 )(g(y 1 , u), g(y 2 , v)) ≤ 0 just reads : < g(y 1 , u), ∂ ∂y 1 ∆(y 1 , y 2 ) > + < g(y 2 , v), ∂ ∂y 2 ∆(y 1 , y 2 ) >≤ 0. • Proposition 3.
3 will be a corollary of Theorem 3.4. It corresponds to the case where : ∆(y 1 , y 2 ) = y 1y 2 2 , G(y 0 ) is bounded, and h(y, u) = h(y) does not depend on u (one can just take α(t) = sup{|h(x)h(y)|, xy 2 ≤ t}).

• H2a) is a precompacity condition. It is satisfied as soon as G(y 0 ) is bounded. It is also satisfied if ∆ satisfies the triangular inequality and the usual precompacity condition : for each ε > 0, there exists a finite subset C of Z s.t. :

∀z ∈ Z, ∃c ∈ C, ∆(z, c) ≤ ε. (see lemma 3.13)
• Notice that H2 is satisfied with ∆ = 0 if we are in the trivial case where inf u h(y, u) is constant.

• Theorem 3.4 can be applied to example 4, with ∆(y 1 , y 2 ) = y 1y 2 1 (L 1norm). In this example, we have for each y 1 , y 2 and u : ∆(y 1 + tg(y 1 , u), y 2 + tg(y 2 , u)) ≤ ∆(y 1 , y 2 ) as soon as t ≥ 0 is small enough.

Proof of Theorem 3.4

We assume in this section that the hypotheses of Theorem 3.4 are satisfied, and we may assume without loss of generality that α is non decreasing and upper semicontinuous (otherwise we replace α(t) by inf ε>0 sup t ′ ∈[0,t+ε] α(t ′ )).

A non expansion property

We start with a proposition expressing the fact that the problem is non expansive with respect to ∆, the idea being that given two initial conditions y 1 and y 2 and a control to be played at y 1 , there exists another control to be played at y 2 such that t → ∆(y(t, u, y 1 ), y(t, v, y 2 )) will not increase. Proposition 3.5. We suppose the hypothesis of Theorem 3.4. Then (5)

       ∀(y 1 , y 2 ) ∈ Z2 , ∀T ≥ 0, ∀ε > 0, ∀u ∈ U, ∃v ∈ U, ∀t ∈ [0, T ], ∆(y(t, u, y 1 ), y(t, v, y 2 )) ≤ ∆(y 1 , y 2 ) + ε, and for almost every t ∈ [0, T ], h(y(t, v, y 2 ), v(t)) -h(y(t, u, y 1 ), u(t)) ≤ α(∆(y(t, u, y 1 ), y(t, v, y 2 ))).
Proof : First fix y 1 , y 2 ε > 0, T > 0 and u. Let us consider the following set-valued map Φ :

IR + × Z × Z × IR → IR d × IR d × IR Φ(t, x, y, l) := co cl{(g(x, u(t)), g(y, v), 0)) | v ∈ U, h(y, v)-h(x, u(t)) ≤ α(∆(x, y))},
where co stands for the convex hull and cl for the closure. Notice that Φ(t, x, y, l) does not depend on l. Using (4), H1) and H2)b), one can check that Φ is a set valued map which is upper semicontinuous in (x, y, l), measurable in t and with compact convex nonempty values [START_REF] Aubin | Set-Valued Analysis Birkhaüser[END_REF][START_REF] Deimling | Multivalued Differential Equations, De gruyter Seris in Nonlinear Analysis and Apllications[END_REF]. We also denote Φ the set valued map defined as Φ but removing the convex hull.

¿From the measurable Viability Theorem [START_REF] Frankowska | Measurable Viability Theorems and Hamilton-Jacobi-Bellman Equation[END_REF] (cf also [START_REF] Carja | Viability, Invariance and Applications[END_REF] section 6.5), condition (H2) b) implies that the epigraph of ∆ (restricted to Z2 × IR) is viable for the differential inclusion [START_REF] Aubin | Set-Valued Analysis Birkhaüser[END_REF] (x ′ (t), y ′ (t), l ′ (t)) ∈ Φ(t, x(t), y(t), l(t)) for a. e. t ≥ 0 So starting from (y 1 , y 2 , ∆(y 1 , y 2 )), there exists a solution (x(•), y(•), l(•)) to ( 6) which stays for any t ≥ 0 in the epigraph of ∆ namely (7) ∆(x(t), y(t)) ≤ l(t) = ∆(y 1 , y 2 ), ∀t ≥ 0, by noticing that l(•) is a constant. ¿From the suppositions made on the dynamics g, the trajectory (x(•), y(•)) remains in a compact set (included in some large enough ball B(0, M)) on the time interval [0, T ]. Because ∆ is uniformly continuous on B(0, M) × B(0, M), there exists η ∈ (0, 1) with

∀(x, x ′ , y, y ′ ) ∈ B(0, M + 1) 4 , x -x ′ + y -y ′ < η =⇒ |∆(x, y) -∆(x ′ , y ′ )| < ε.
Thanks to the Wazewski Relaxation Theorem (cf for instance Th. 10.4.4 in [START_REF] Aubin | Set-Valued Analysis Birkhaüser[END_REF]) applied to Φ, the trajectory (x(•), y(•), l(•)) could be approximated on every compact interval by a trajectory to the differential inclusion defined by Φ. So there exists (y From the choice of η and the very definition of Φ we also have for any

1 (•), y 2 (•), l(•)) satisfying (y ′ 1 (t), y ′ 2 (t), l ′ (t)) ∈ Φ(t,
t ∈ [0, T ] ∆(y 1 (t), y 2 (t)) ≤ ∆(x(t), y(t)) + ε ≤ ∆(y 1 , y 2 ) + ε h(y 2 (t), v(t)) -h(y 1 (t), u(t)) ≤ α(∆(y 1 (t), y 2 (t)))
This completes our proof if, from one hand we observe that y 1 (•) = y(•, u, y 1 ) and from the other hand, we use Filippov's measurable selection Theorem (e.g. Theorem 8.2.10 in [START_REF] Aubin | Set-Valued Analysis Birkhaüser[END_REF]) to Φ for finding a measurable control v ∈ U such that y 2 (•) = y(•, v, y 2 ). QED

The limit value exists

Since α is u.s.c. and non decreasing, we obtain the following consequence of Proposition 3.5.

Corollary 3.6. For every y 1 and y 2 in G(y 0 ), for all T > 0,

|V T (y 1 ) -V T (y 2 )| ≤ α(∆(y 1 , y 2 )).
Define now, for each m ≥ 0, G m (y 0 ) as the set of states which can be reached from x 0 before time m :

G m (y 0 ) = {y(t, u, y 0 ), t ≤ m, u ∈ U}, so that G(y 0 ) = ∪ m≥0 G m (y 0 ).
An immediate consequence of the precompacity hypothesis H2a) is the following Lemma 3.7. For every ε > 0, there exists m 0 in IR + such that :

∀z ∈ G(y 0 ), ∃z ′ ∈ G m 0 (y 0 ) such that ∆(z, z ′ ) ≤ ε.
Proof : Otherwise for each positive integer m one can find z m in G(y 0 ) such that ∆(z m , z) > ε for all z in G m (y 0 ). Use H2a) to find n such that lim inf m ∆(z n , z m ) ≤ ε. Since z n ∈ G(y 0 ), there must exist k such that z n ∈ G k (y 0 ). But for each m ≥ k we have z n ∈ G m (y 0 ), hence ∆(z m , z n ) > ε. We obtain a contradiction.

QED

We can already conclude for the limit value.

Proposition 3.8. V t (y 0 ) ---→ t→∞ V * (y 0 ).
Proof : Because of lemma 3.1, it is sufficient to prove that for every ε > 0, there exists m 0 such that :

sup t>0 inf m≤m 0 V m,t (y 0 ) ≤ sup t>0 inf m≥0 V m,t (y 0 ) + 2ε
Fix ε, and consider η > 0 such that α(t) ≤ ε as soon as t ≤ η. Use lemma 3.7 to find m 0 such that ∀z ∈ G(y 0 ), ∃z ′ ∈ G m 0 (y 0 ) s.t. ∆(z, z ′ ) ≤ η.

Consider any t > 0. We have inf m≥0 V m,t (y 0 ) = inf{V t (z), z ∈ G(y 0 )}, and

inf m≤m 0 V m,t (y 0 ) = inf{V t (z), z ∈ G m 0 (y 0 )}. Let z in G(y 0 ) be such that V t (z) ≤ inf m V m,t (y 0 ) + ε, and consider z ′ ∈ G m 0 (y 0 ) s.t. ∆(z, z ′ ) ≤ η. By corollary 3.6, |V t (z) -V t (z ′ )| ≤ α(∆(z, z ′ )) ≤ ε, so we obtain that inf m≤m 0 V m,t (y 0 ) ≤ V t (z ′ ) ≤ V t (z) + ε ≤ inf m V m,t (y 0 ) + 2ε.
Passing to the supremum on t, this completes the proof. QED Remark 3.9. Observe that for obtaining the existence of the value, we have used a compactness argument (assumption H2)a)) and condition [START_REF] Aubin | Viability Theory Birkhauser[END_REF]. We did not use explicitly assumption H2)b) which is only used for obtaining [START_REF] Aubin | Viability Theory Birkhauser[END_REF].

The rest of the proof is more involved, and is inspired by the proof of Theorem 3.6 in [START_REF] Renault | Uniform value in Dynamic Programming[END_REF].

Auxiliary value functions

The uniform value requires the same control to be good for all time horizons, and we are led to introduce new auxiliary value functions. Given m ≥ 0 and n ≥ 1, for any initial state z in Z = G(y 0 ) and control u in U, we define

ν m,n (z, u) = sup t∈[1,n] γ m,t (z, u), and W m,n (z) = inf u∈U ν m,n (z, u).
W m,n is the value function of the problem where the controller can use the time interval [0, m] to reach a good state, and then his cost is only the supremum for t in [1, n], of the average cost between time m and m + t. Of course, we have W m,n ≥ V m,n . We write ν n for ν 0,n , and W n for W 0,n .

We easily obtain from proposition 3.5, as in corollary 3.6, the following result.

Lemma 3.10. For every z and z ′ in Z, for all m ≥ 0 and n ≥ 1,

|V m,n (z) -V m,n (z ′ )| ≤ α(∆(z, z ′ )). |W m,n (z) -W m,n (z ′ )| ≤ α(∆(z, z ′ )).
The following lemma shows that the quantities W m,n are not that high.

Lemma 3.11. ∀k ≥ 1, ∀n ≥ 1, ∀m ≥ 0, ∀z ∈ Z, V m,n (z) ≥ inf l≥m W l,k (z) - k n . 
Proof : Fix k, n, m and z, and put A = inf l≥m W l,k (z). Consider any control u in U. For any i ≥ m, we have

sup t∈[1,k] γ i,t (z, u) = ν i,k (z, u) ≥ W i,k (z) ≥ A.
So we know that for any i ≥ m, there exists

t(i) ∈ [1, k] such that γ i,t(i) (z, u) ≥ A.
Define now by induction i 1 = m, i 2 = i 1 + t(i 1 ),..., i q = i q-1 + t(i q-1 ), where q is such that i q ≤ n + m < i q + t(i q ). We have nγ m,n (z, u)

≥ q-1 p=1 t(i p )A ≥ nA -k, so γ m,n (z, u) ≥ A-k n .
Taking the infimum over all controls, the proof is complete. QED

We know from Proposition 3.8 that the limit value is given by V * . We now give other formulas for this limit. Proposition 3.12. For every state z in Z,

inf m≥0 sup n≥1 W m,n (z) = inf m≥0 sup n≥1 V m,n (z) = V * (z) = sup n≥1 inf m≥0 V m,n (z) = sup n≥1 inf m≥0 W m,n (z).
Proof of proposition 3.12 : Fix an initial state z in Z. We already have

V * (z) = sup t>0 inf m≥0 V m,t (z) ≥ sup t≥1 inf m≥0 V m,t (z). One can easily check that inf m≥0 V m,t (z) ≤ inf m≥0 V m,2t (z) for each positive t. So V * (z) ≥ sup t≥1 inf m≥0 V m,t (z) ≥ sup t≥(1/2) inf m≥0 V m,t (z) ≥ . . . sup t>0 inf m≥0 V m,t (z) = V * (z). Consequently V * (z) = sup t≥1 inf m≥0 V m,t (z). Moreover because V m,t ≤ W m,t we have also V * (z) ≤ sup t≥1 inf m≥0 W m,t (z).
We now claim that V * (z) = sup t≥1 inf m≥0 W m,t (z). It remains to show V * (z) ≥ sup t≥1 inf m≥0 W m,t (z). From Lemma 3.11, we know that for all k ≥ 1, n ≥ 1 and m ≥ 0, we have

V m,nk (z) ≥ inf l≥0 W l,k (z) -1 n , so inf m V m,nk (z) ≥ inf l≥0 W l,k (z) -1 n .
By taking the supremum on n , we obtain

V * (z) = sup n≥1 inf m≥0 V m,n (z) ≥ sup n≥1 inf m≥0 V m,nk (z) ≥ inf l≥0 W l,k (z).
Since k is arbitrary, we have proved our claim. Since the inequalities

inf m≥0 sup n≥1 W m,n (z) ≥ inf m≥0 sup n≥1 V m,n (z) ≥ sup n≥1 inf m≥0 V m,n (z) = V * (z)
are clear, to conclude the proof of the proposition it is enough to show that inf m≥0 sup n≥1 W m,n (z) ≤ V * (z). Fix ε > 0. We have already proved that V * (z) = sup n≥1 inf m≥0 W m,n (z), so for each n ≥ 1 there exists m ≥ 0 such that W m,n (z) ≤ V * (z) + ε. Hence for each n, there exists z ′ n in G(z) such that W 0,n (z ′ n ) ≤ V * (z) + ε. We know from Lemma 3.7 that there exists m 0 ≥ 0 such that : ∀z ′ ∈ G(z), ∃z ′′ ∈ G m 0 (z) s.t. ∆(z ′ , z ′′ ) ≤ ε. Consequently, for each n ≥ 1, there exists z ′′ n in G m 0 (z) such that ∆(z ′ n , z ′′ n ) ≤ ε, and by lemma 3.10 this implies that

W n (z ′′ n ) ≤ W n (z ′ n ) + α(ε) ≤ V * (z) + ε + α(ε).
Up to now, we have proved that for every ε ′ > 0, there exists m 0 such that :

∀n ≥ 1, ∃m ≤ m 0 s.t. W m,n (z) ≤ V * (z) + ε ′ . Since all costs lie in [0, 1], it is easy to check that |W m,n (z) -W m ′ ,n (z)| ≤ |m -m ′ |
for each n, m, m ′ . Hence there exists a finite subset F of [0, m 0 ] such that :

∀n ≥ 1, ∃m ∈ F s.t. W m,n (z) ≤ V * (z) + 2ε ′ .
Considering m in F such that the set {n positive integer, W m,n (z) ≤ V * (z) + 2ε ′ } is infinite, and noticing that W m,n is non decreasing in n, we obtain the existence of a unique m ≥ 0 such that ∀n ≥ 1, W m,n (z) ≤ V * (z) + 2ε ′ . Hence ε ′ being arbitrary, inf m≥0 sup n≥1 W m,n (z) ≤ V * (z), concluding the proof of Proposition 3.12.

QED

We now look for uniform convergence properties. By the precompacity condition H2a), it is easy to obtain that : Lemma 3.13. For each ε > 0, there exists a finite subset C of Z s.t. : ∀z ∈ Z, ∃c ∈ C, ∆(z, c) ≤ ε.

We know that (V n ) n simply converges to V * on Z. Since |V n (z) -V n (z ′ )| ≤ α(∆(z, z ′ )) for all n, z and z ′ , we obtain by lemma 3.13 : Corollary 3.14. The convergence of (V n ) n to V * is uniform on Z.

We can proceed similarly to obtain other uniform properties. We have

V * (z) = sup n≥1 inf m≥0 W m,n (z) = lim n→+∞ inf m≥0 W m,n (z)
since inf m≥0 W m,n (z) is not decreasing in n. Using lemmas 3.10 and 3.13, we obtain that the convergence is uniform, hence we get :

∀ε > 0, ∃n 0 , ∀z ∈ Z, V * (z) -ε ≤ inf m≥0 W m,n 0 (z) ≤ V * (z).
By Lemma 3.11, we obtain :

∀ε > 0, ∃n 0 , ∀z ∈ Z, ∀m ≥ 0, ∀n ≥ 1, V m,n (z) ≥ V * (z) -ε - n 0 n .
Considering n large gives :

(8) ∀ε > 0, ∃K, ∀z ∈ Z, ∀n ≥ K, inf m≥0 V m,n (z) ≥ V * (z) -ε
Write now, for each state z and m ≥ 0 : h m (z) = inf m ′ ≤m sup n≥1 W m ′ ,n (z). (h m ) m converges to V * , and as before, by Lemmas 3.10 and 3.13, we obtain that the convergence is uniform. Consequently, [START_REF] Carja | Viability, Invariance and Applications[END_REF] ∀ε > 0, ∃M ≥ 0, ∀z ∈ Z, ∃m ≤ M, sup n≥1 W m,n (z) ≤ V * (z) + ε.

On the existence of a uniform value

In order to prove that Γ(y 0 ) has a uniform value we have to show that for every ε > 0, there exist a control u and a time n 0 such that for every n ≥ n 0 , γ n (y 0 , u) ≤ V * (y 0 ) + ε. In this subsection we adapt the proofs of Lemma 4.1 and Proposition 4.2. in [START_REF] Renault | Uniform value in Dynamic Programming[END_REF]. We start by constructing, for each n, a control which : 1) gives low average costs if one stops the play at any large time before n, and 2) after time n, leaves the player with a good "target" cost. This explains the importance of the quantities ν m,n . We start with the following Lemma 3.15. ∀ε > 0, ∃M ≥ 0, ∃K ≥ 1, ∀z ∈ Z, ∃m ≤ M, ∀n ≥ K, ∃u ∈ U such that : [START_REF] Deimling | Multivalued Differential Equations, De gruyter Seris in Nonlinear Analysis and Apllications[END_REF] ν m,n (z, u) ≤ V * (z) + ε/2, and V * (y(m + n, u, z)) ≤ V * (z) + ε.

Proof : Fix ε > 0. Take M given by ( 9), so that ∀z ∈ Z, ∃m ≤ M, sup n≥1 W m,n (z) ≤ V * (z) + ε. Take K ≥ 1 given by ( 8) such that :

∀z ∈ Z, ∀n ≥ K, inf m V m,n (z) ≥ V * (z) -ε.
Fix an initial state z in Z. Consider m given by ( 9), and n ≥ K. We have to find u in U satisfying [START_REF] Deimling | Multivalued Differential Equations, De gruyter Seris in Nonlinear Analysis and Apllications[END_REF].

We have W m,n ′ (z) ≤ V * (z) + ε for every n ′ ≥ 1, so W m,2n (z) ≤ V * (z) + ε, and we consider a control u which is ε-optimal for W m,2n (z), in the sense that ν m,2n (z, u) ≤ W m,2n (z) + ε. We have :

ν m,n (z, u) ≤ ν m,2n (z, u) ≤ W m,2n (z) + ε ≤ V * (z) + 2ε. Denoting X = γ m,n (z, u) and Y = γ m+n,n (z, u). time 0 m m + n m + 2n X Y Since ν m,2n (z, u) ≤ V * (z) + 2ε, we have X ≤ V * (z) + 2ε, and (X + Y )/2 = γ m,2n (z, u) ≤ V * (z)+2ε. Since n ≥ K, we also have X ≥ V m,n (z) ≥ V * (z)-ε. And n ≥ K also gives V n (y(m+n, u, z)) ≥ V * (y(m+n, u, z))-ε, so V * (y(m+n, u, z)) ≤ V n (y(m + n, u, z)) + ε ≤ Y + ε. Writing now Y /2 = (X + Y )/2 -X/2 we obtain Y /2 ≤ (V * (z) + 5ε)/2. So Y ≤ V * (z) + 5ε, and finally V * (y(m + n, u, z)) ≤ V * (z) + 6ε.

QED

We can now conclude the proof of theorem 3.4.

Proposition 3.16. For every state z in Z and ε > 0, there exists a control u in U and T 0 such that for every T ≥ T 0 , γ T (z, u) ≤ V * (z) + ε.

Proof : Fix α > 0.

For every positive integer i, put ε i = α 2 i . Define M i = M(ε i ) and K i = K(ε i ) given by lemma 3.15 for ε i . Define also n i = Max{K i , M i+1 α } ≥ 1. We have : ∀i ≥ 1, ∀z ∈ Z, ∃ m(z, i) ≤ M i , ∃u ∈ U, s.t. ν m(z,i),n i (z, u) ≤ V * (z) + α 2 i+1 and V * (y(m(z, i) + n i , u, z)) ≤ V * (z) + α 2 i .

We now fix the initial state z in Z, and for simplicity write v * for V * (z). We define a sequence (z i , m i , u i ) i≥1 by induction :

• first put z 1 = z, m 1 = m(z 1 , 1) ≤ M 1 , and pick u 1 in U such that ν m 1 ,n 1 (z 1 , u 1 ) ≤ V * (z 1 ) + α 2 2 , and V * (y(m 1 + n 1 , u 1 , z 1 )) ≤ V * (z 1 ) + α 2 .

• for i ≥ 2, put z i = y(m i-1 +n i-1 , u i-1 , z i-1 ), m i = m(z i , i) ≤ M i , and pick u i in U such that ν m i ,n i (z i , u i ) ≤ V * (z i )+ α 2 i+1 and V * (y(m i +n i , u i , z i )) ≤ V * (z i )+ α 2 i .

Consider finally u in U defined by concatenation : first u 1 is followed for time t in [0, m 1 + n 1 ), then u 2 is followed for t in [m 1 + n 1 , m 2 + n 2 ), etc... Since z i = y(m i-1 + n i-1 , u i-1 , z i-1 ) for each i, we have y( i-1 j=1 m j + n j , u, z) = z i for each i. For each i we have n i ≥ M i+1 /α ≥ m i+1 /α, so an interval with length n i is much longer than an interval with length m i+1 .

. . . u u 1 u i length m 1 length n 1 length m i length n i

For each i ≥ 1, we have

V * (z i ) ≤ V * (z i-1 ) + α 2 i-1 . So V * (z i ) ≤ + α 2 i-1 + α 2 i-2 ...+ α 2 + V * (z 1 ) ≤ v * + α -α 2 i . So ν m i ,n i (z i , u i ) ≤ v * + α.
Let now T be large.

-First assume that T = m 1 + n 1 + ... + m i-1 + n i-1 + r, for some positive i and r in [0, m i ]. We have : Consequently, here also we have :

γ T (z, u) ≤ v * + 2α + m 1 T .
This concludes the proofs of Proposition 3.16 and consequently, of Theorem 3.4.

  But m j ≤ αn j-1 for each j, soγ T (z, u) ≤ v * + 2α + m 1 T .-Assume now that T = m 1 + n 1 + ... + m i-1 + n i-1 + m i + r, for some positive i and r in [0, n i ]. The previous computation shows that :T -r 0 h(y(s, u, z), u(s))ds ≤ m 1 + (Tr)(v * + 2α). Since ν m i ,n i (z i , u i ) ≤ v * + α, we obtain : T γ T (z, u) = T -r 0 h(y(s, u, z), u(s))ds + T T -r h(y(s, u, z), u(s))ds, ≤ m 1 + (Tr)(v * + 2α) + r(v * + α), ≤ m 1 + T (v * + 2α).
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