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expansive optimal control problems, and
application to averaging of singularly perturbed
systems

Marc Quincampoix*, Jérome Renault!

April 2009

Abstract

We investigate a limit value of an optimal control problem when the horizon converges
to infinity. For this aim, we suppose suitable nonexpansive-like assumptions which does
not imply that the limit is independent of the initial state as it is usually done in the
literature. We apply this new result to study a singularly control perturbed system,
and we obtain a description of the limit dynamics in term of a differential inclusion.

1 Introduction

We consider the following optimal control denoted I';(yo) :

(1) Vi(yo) = inf - / By (s. 1w, yo), u(s))ds.

ueU t =0

where s — y(s, u,yo) denotes the solution to

(2) y'(s) = g(y(s),u(s)), y(0)=yo.

Here U is the set of measurable controls from IR, to a given non empty metric
space U. Throughout the paper, we will suppose Lipschitz regularity of ¢ : IR¢ x
U — IR? which implies that for a given control u in I/ and a given initial condition
Yo, equation (B) has a unique absolutely continuous solution.

The main goal of the paper consists in studying the asymptotic behaviour of
Vi(yo) when t tends to co. This problem has been considered in several papers
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(cf for instance in [B, [1, §]) by approaches ensuring that the limit of Vi(yo) is
independent of yy. In the present paper we exhibit several examples where the
limit exists and depends of yo. Our aim is to obtain a general result which contains
in particular the more easy to state following result, where throughout the paper,
< -,- > stands for the canonical scalar product and B is the associated closed
unit ball..

Proposition 1.1. Assume that g is Lipschitz, that there exists a compact set N
which is - forward - invariant by the control system (B) and that h is a continuous
function which does not depend on u. Assume moreover that :

(3) Y(y1,92) € N, SUB llellf] <y —y2,9(y1,u) — g(y2,v) >< 0.
uelU v
Then problem (1) has a value when t converges to +0oc i.e. there exists V(yo) :=
hmt—>+oo ‘/;(y())

Condition (B) means a non expansive property of the control system, while
the condition

V(1 42) € N?, sup inf < g1 — g, 9(1, 1) = 9(42,0) >< ~Cliyn — gl
expresses a dissipativity property of the control system. The above dissipativity
condition does imply that the limit is independent of yo (cf [[]).

The value function ([) can also be characterized through - viscosity - solution
of a suitable Hamilton-Jacobi equation. In several articles initiated by the pio-
neering work [[Lf] the limit of V;(yo) is obtained by “passing to the limit” on the
Hamilton-Jacobi equation. This required coercivity properties of the Hamiltonian
which could be implied by controlability and/or dissipativity of the control sys-
tem but which are not valid in the nonexpansive case (). Moreover the PDE
approach is out of the scope of the - long enough - present article.

Definition 1.2. The problem I'(yo) := (I't(v0) )i>0 has a limit value if lim;_, o, Vi (yo)
exists. Whenever it exists, we denote this limit by V (yo).

Our main aim consists in giving one sufficient condition ensuring the existence
of the limit value. As a particular case of our main result we obtain proposition
(L3).

It is also of interest to know if approximate optimal controls for the value
Vi(yo) are still approximate optimal controls for the limit value. This leads us to
the following definition.

Definition 1.3.  The problem I'(yo) has a uniform value if it has a limit value
V(yo) and if :

t

1
Ve > 0,3u € U, Tty, Vt > to, g/ h(y(s,u, yo), u(s))ds < V(yo) + €.

s=0



Whenever the uniform value exists, the controller can act (approximately)
optimally independently of the time horizon. On the contrary, if the limit value
exists but the uniform value does not, he really needs to know the time horizon
before choosing a control. We will prove that our results do imply the existence
of a uniform value. We will be inspired by a recent work in the discrete time case
Ly.

As an application to our method, we will investigate the averaging phenome-
nom for the following control singularly perturbed system

i) a(s) = £(x(), y(s), uls), 2(0)
4) { i) ey/(s) = g(x(s), y(s), u(s)) y(0) =

where u € U. This problem has been intensively studied in the literature, we
refer the interested reader to [, [3, [3, [4, [3, [[] and references therein. The
main question concerns the behaviour of solutions to (fl) when & goes to 0. Note
that with some - rather strong assumptions - the solutions (z.(-),y-(-)) converge
to solutions of a system obtained by putting formally ¢ = 0 in (). This is the
so-called Tichonov type result ([[9]). A more interesting case is when one cannot
obtain the convergence of y.(-); this is the context of averaging method.

In the present paper we will give assumptions such that for any 7" > 0 the
z.(+) part of solutions of (f]) are approximated - uniformly on [0, 7] by a solution
of a dynamical system described by the following differential inclusion

X
)

2'(t) € F(x(t),y), t € [0,T].

Such method for control system was first developed by Gaitsgory [[J] and after-
wards developed for instance in [, [[4, [[7] in the case where the limit dynamical
system - the differential inclusion - is independent of y. Once again, the main
novelty of our approach lies in the fact that our assumptions do not imply that
the limit dynamical system is y independent.

Let us explain now, how the paper is organized. The second section contains
some preliminaries and discussions of limit behaviors in examples. In the third
section, we state and prove our main result for the existence of the uniform value.
The last section concerns applications of our approach to the averaging method
for singularly perturbed system.

2 Preliminaries

We now consider the optimal control problems (I'y(yo)): described by ([]) and

(2)8



2.1 Assumptions and Notations

We now describe the assumptions made on g and h.

The function h : IR* x U — IR is measurable and bounded
(5) The function g : IR? x U — IR? is measurable

AL > 0,Y(y,y') € R* Vu € U, ||g(y,u) — g(y',u)| < Llly — ¢/

Ja > 0,Y(y,u) € R x U, ||g(y,w)|| < a(l+ [lyll)

With these hypotheses, given u in U equation (f) has a unique absolutely
continuous solution y(-, u, yo) : IRy — IRY.

Since h is bounded, we will assume without loss of generality from now on
that h takes values in [0, 1].

We denote by G(vo) := {y(t,u,v0),t > 0,u € U} the reachable set (i.e. the
set of states that can be reached starting from o).

We denote the average cost induced by u between time 0 and time ¢ by :

Ye(yo, u) = %/0 h(y(s,u,yo), u(s))ds

The corresponding Value function satisfies Vi(yo) = inf,ecrr 72 (o, u).

2.2 Examples

We present here basic examples. In all these examples, the cost h(y,u) only
depends on the state y. We will prove later that the uniform value exists in
examples 2, 3 and 4.

e Example 1 : here y lies in JR? seen as the complex plane, there is no control
and the dynamic is given by g(y,u) = ¢ y, where i = —1. We clearly have :

1

)
t—oo  27|yp|

Vi(yo)

h(z)dz,

|2I=1yol
and since there is no control, the value is uniform.

e Example 2 : in the complex plane again, but now ¢(y,u) = ¢ y u, where
u € U a given bounded subset of IR, and h is continuous in y.

e Example 3 : g(y,u) = —y + u, where u € U a given bounded subset of IR¢,
and h is continuous in y.

e Example 4 : in IR% The initial state is 3o = (0,0) and the control set
is U = [0, 1]. For a state y = (y1,¥2) and a control u, the dynamic is given by

y'(s) = g(y(s),u(s)) = ( 52((1))((111%1((88)))) ), and the cost is A(y) = 1—y1(1—1ys9).

4



Notice that for any control, yi(s) > y5(s) > 0, and thus yo(t) < y1(¢) for each
t > 0. One can easily observe that G(y,) C [0, 1]2.

If one uses the constant control u = ¢ > 0, we obtain y;(t) = 1 — exp(—et)
and yo(t) = ey1(t). So we have V(1) = 0.

More generally, if the initial state is y = (y1,%2) € [0,1]?, by choosing a
constant control u = ¢ > 0 small, one can show that the limit value exists and

limy oo Vi(y) = 102
Notice that there is no hope here to use an ergodic property, because

fy € [0, 1% lim Vi(y) = lim Vi(yo)} = [0,1] x {0},
and starting from yp it is possible to reach no point in (0, 1] x {0}.

e Example 5 : in IR?, yo = (0,0), control set U = [0,1], g(y,u) = (y2,u), and
h(y1,y2) = 0 if y; € [1,2], = 1 otherwise.

We have u(s) = y4(s) = y{(s), hence we may think of the control u as the
acceleration, ys as the speed and y; as the position of some mobile. If u = ¢

constant, then ys(t) = \/2ey1(t) Vt > 0.

We have v > 0, hence the speed cannot decrease. Consequently, the time
interval where y;(t) € [1, 2] cannot be longer than the time interval where y;(t) €
[0,1), and we have Vr(yo) > 1/2 for each T.

One can prove that Vi(yo) P 1/2 by considering the following controls :

choose t in (0,7) such that (2/t) + (t/2) = T, make a full acceleration up to ¢
and completely stop accelerating after : u(t) = 1 for t < ¢, and u(t) = 0 for t > £.

Consequently the limit value exists and is 1/2. However, for any control u in
U, we either have y(t, u, yo) = yo for all t, or y; (¢, u, yo) o oo So in any case

we have %f; h(y(s,u,yo), u(s))ds — 1. The uniform value does not exist here,

although the dynamic is very regular.

3 Existence results for the uniform value

3.1 A technical Lemma

Let us define V= (yo) := liminf, ;o Vi(yo) and V' (yo) := limsup,_, , o Vi(yo)-
Adding a parameter m > 0, we will more generally consider the costs between
time m and time m + ¢ :

1 m—+t
7m,t(y07 U) = Z / h(y(S, u, y0)> U(S))ds,

and the value of the problem where the time interval [0, m]| can be devoted to
reach a good initial state, is denoted by :

Vint (o) = ;fel{{ Y.t (Yo, ©)-

5



Of course 7¢(yo, ) = Y0,t(yo, u) and Vi(yo) = Vo (yo)-

Lemma 3.1. For every mg in IR, , we have :

sup inf Vi, 1(yo) = V" (y0) 2 V7 (yo) = sup inf Vo i(yo).

t>0 M=o t>0 M=

Proof : We first prove sup,.qinf,,<m, Vint(vo) > V*1(yo). Suppose by contra-
diction that it is false. So there exists € > 0 such that for any t > 0 we have
inf,,<ime Vint(v0) < V*(yo) — € . Hence for any ¢ > 0 there exists m < my with
Vint(yo) < V*(yo) — (¢/2). Now observe that

1 m—t 1 mo+t
Vislo) =inf 5 [ hlus, w0 uo)ds = Gint( [ hly(s, ). u(s))ds
w m uw 0

mo+t m mo +t mo

- h(y(s,u,yo),u(s))ds - h(y(s,u,yo),u(s))ds} 2 Tvmo-‘rt(y()) - 27
m+t 0
Hence e+t m
OTVmoth(yo) - 270 <V (yo) — (¢/2).

Passing to the limsup when ¢ goes to +00 we obtain a contradiction.

We now prove V= (yg) > sup,q infm<o Vint(yo). Assume on the contrary that it
is false. Then there exists ¢ > 0 and ¢ > 0 such that V'~ (yo) +¢& < inf,,<o Vint(%0)-
So for any m > 0, we have V™ (yo) + ¢ < V;,.4(yo). We will obtain a contradiction
by concatenating trajectories. Take T' > 0, and write T' = [t +r, with [ in IN and
rin [0,). For any control u in U, we have : Tyr(yo, u) = t70.+(Yo, ) + ty2.:(yo, 1)
+ o e (Yo, w) + Vi (Yo, w) > 1E(V 7 (yo) + €). Hence

T—r

Yr (Yo, u) > (V™ (wo) +¢).

~

So for T large enough we have Vr(yo) > V™ (yo) + €/2, hence a contradiction by
taking the liminf when 7" — oo . OJ

Remark : it is also easy to show that for each £y > 0, we have inf,,,>0 sup,~,, Vit (Yo) >
V+(y0).

The following quantity will play a great role in the sequel.
Definition 3.2.
V*(yo) = sup inf Vi, +(yo).

t>0 m=0

3.2 Main results

Let us state the first version of our main result (which clearly implies Propo-
sition [[.] stated in the introduction)



Proposition 3.3. Assume that [{J) holds true and furthermore :

(H’1) h(y,u) = h(y) only depends on the state, and is continuous on IR

(H’2) G(yo) is bounded,

(H'3) ¥(y1,y2) € G(y0)®, sup,ep infuey < y1 — Y2, 9(y1, u) — g(y2,v) >< 0.
Then the problem T'(yo) has a limit value which is V*(yo), i.e. Vi(yg) ——

t—-4o00
V*(yo). The convergence of (V) to V* is uniform over G(yo), and we have

V*(y()) = SuptZI infmZO Vm,t(yO) = infmZO SUPt21 Vm,t(yO) = 1irnm—>oo,t—>oo Vm,t(yO)-
Moreover the value of I'(yo) is uniform.

Condition (H’8) can be used to show that (cf Proposition B.H) : V(y1,y2) €
G(y)? , Ve > 0, VT > 0,Vu € U, Fv € U s.t. : YVt € [0,T], |y(t,u,y1) —
y(t,v,y2)|| < |lyr — y2|l + €. Proposition B.3 can be applied to the previous
examples 1, 2 and 3, but not to example 4. Notice that in example 5, we have
V*(yo) = 0 < 1/2 = lim; Vi(yo).

We will prove the following generalization of Proposition B-3. We put Z =
G(yp), and denote by Z its closure in IR?.

Theorem 3.4. Suppose that (f]) holds true and furthermore assume that

(H1) h is uniformly continuous in y on Z uniformly in u. And for each y in Z,
either h does not depend on u or the set {(g(y,u), h(y,u)) € IR x [0,1], u € U}
15 closed.

(H2) : There exist a continuous function A : IR? x IR? — IR, vanishing on the
diagonal (A(y,y) = 0 for each y) and symmetric (A(yr,y2) = A(ya, y1) for all yy
and y3), and a function & : IRy — IRy s.t. &(t) -~ 0 satisfying :

a) For every sequence (z,,), with values in Z and every € > 0, one can find n
such that liminf, A(z,, z,) <e.

b) V(y1,y2) € Z2, Yu € U, 3v € U such that

D 1 Ay, y2)(9(y1,u), 9(y2,v)) < 0 and h(ys, v) — h(yr,u) < &(A(y1, y2)).

Then we have the same conclusions as in Proposition [3.3. The problem T'(yo)
has a limit value which is V*(yo). The convergence of V; to V* is uniform over
Z, and we have V*(yo) = sup;>; infiu>0 Vini(yo) = infrsosups; Vine(ho) =
im0 t—o0 Vint(Yo). Moreover the value of I'(yo) is uniform.

Remarks :

e Although A may not satisfy the triangular inequality nor the separation
property, it may be seen as a “distance” adapted to the problem T'(yy).

e The assumption : “{(g(y, u), h(y,u)) € R? x [0,1], u € U} closed” could be
checked for instance if U is compact and if h and g are continuous with respect
to (y,u).

e D 7 is the contingent epi-derivative (cf []) (which reduces to the upper Dini
derivative if A is Lipschitz), defined by : DTA(z)(a) = liminfy o+ ar—a 3 (A(z +
ta’)—A(z)). If A is differentiable, the condition D T A(y1, y2)(g(y1, ), g(ye, v)) <
0 just reads : < g(y1,u), aiylA(yl,yg) > 4+ < g(yo,v), %A(yl,yg) >< 0.
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e Proposition will be a corollary of Theorem B.4. It corresponds to the
case where : A(yy,12) = |ly1 — v2||>, G(o) is bounded, and h(y,u) = h(y) does
not depend on u (one can just take & (t) = sup{|h(x) — h(y)|, |z — y||* < t}).

e H2a) is a precompacity condition. It is satisfied as soon as G(yp) is bounded.
It is also satisfied if A satisfies the triangular inequality and the usual precom-
pacity condition : for each € > 0, there exists a finite subset C' of Z s.t. :
Vz e Z,3c e C,A(z,c) < e. (see lemma B.13)

e Notice that H2 is satisfied with A = 0 if we are in the trivial case where
inf, h(y,u) is constant.

e Theorem B4 can be applied to example 4, with A(y,y2) = |ly1 — ya|l1 (L'-
norm). In this example, we have for each yi, yo and u : A(y; + tg(yr,u),y2 +
tg(y2, 1)) < A(y1,y2) as soon as t > 0 is small enough.

3.3 Proof of Theorem B.4

We assume in this section that the hypotheses of Theorem B.4 are satisfied,
and we may assume without loss of generality that & is non decreasing and upper
semicontinuous (otherwise we replace &(t) by infesosupyeg i (t)).

3.3.1 A non expansion property

We start with a proposition expressing the fact that the problem is non ex-
pansive with respect to A, the idea being that given two initial conditions y; and
Yo and a control to be played at y;, there exists another control to be played at
y2 such that ¢ — A(y(t,u,y1),y(t,v,y2)) will not increase.

Proposition 3.5. We suppose the hypothesis of Theorem [3.4. Then

Y(y1,92) € Z2, VT >0, Ve > 0,Yu €U, v €U,
vt € [0’ T]’ A(y(t7u>y1)>y(ta U>y2)) < A(yby?) +e,
and for almost every t € (0,77,
h(y(t7 v, y2)a U(t)) - h’(y(ta u, y1)7 U(t)) < d(A(y(t7 u, yl)a y(t7 v, y2)))

Proof: First fix y1,y2 € > 0, T > 0 and u. Let us consider the following set-valued
map ®: R, x ZxZxIR— R*x R x IR

O(t,x,y,1) = coc{(g(z,u(t)), 9(y, v),0)) | v € U, h(y, v)=h(z, u(t)) < a(Az,y))},

where co stands for the convex hull and ¢l for the closure. Notice that ®(t, x,y, 1)
does not depend on . Using (f), H1) and H2)b), one can check that ® is a set
valued map which is upper semicontinuous in (z,y, 1), measurable in ¢ and with
compact convex nonempty values [[, [[Q]. We also denote ® the set valued map
defined as ® but removing the convex hull.

¢ From the measurable Viability Theorem [[[T] (cf also [[] section 6.5), condi-

tion (H2) b) implies that the epigraph of A (restricted to Z? x IR) is viable for
the differential inclusion

(7) (@' (t),y'(t),I'(t)) € D(t, z(t),y(t),1(t)) for a. e. t >0

(6)

8



So starting from (y1, y2, A(y1,y2)), there exists a solution (z(-),y(+),{(-)) to ([)
which stays for any ¢ > 0 in the epigraph of A namely

(8) Az (t), y(1)) < U(t) = Ay, y2), Yt >0,

by noticing that [(-) is a constant.

i From the suppositions made on the dynamics g, the trajectory (z(-),y(+))
remains in a compact set (included in some large enough ball B(0, M)) on the
time interval [0, 7). Because A is uniformly continuous on B(0, M) x B(0, M),
there exists n € (0,1) with
V(z, 2 y,y) € BO,M+1)%, o= +]ly =yl <n = |A(z,y) - A, y)| <e.

Thanks to the Wazewski Relaxation Theorem (cf for instance Th. 10.4.4 in
@) applied to ®, the trajectory (x(-),y(-),{(-)) could be approximated on every
compact interval by a trajectory to the differential inclusion defined by ®. So
there exists (y1(+),y2(+),{(+)) satisfying

(43(0), 95(2), U (1)) € (£, y1(2), (1), U(1)) for a. e. t >0

such that
[(t) =y (O + ly(t) — y2() ]| <, VE € [0,T].
From the choice of n and the very definition of ® we also have for any ¢ € 0,77

{ Ayi(t), y2(t) < A(x(t),y(t) + & < Alyr,v2) +¢
h(y2(t), v(t)) — h(yi (1), u(t)) < a(A(yi(t), y2(t)))

This completes our proof if, from one hand we observe that y1(-) = y(-, u,y1)
and from the other hand, we use Filippov’s measurable selection Theorem (e.g.
Theorem 8.2.10 in []) to @ for finding a measurable control v € U such that

Y2(-) = y(-, v, 2).
QED

3.3.2 The limit value exists

Since & is u.s.c. and non decreasing, we obtain the following consequence of
Proposition B.3.

Corollary 3.6. For every y; and ys in G(yo), for all T > 0,
Vr(y1) = Vr(y2)| < &(Ayr, 92))-

Define now, for each m > 0, G™(yy) as the set of states which can be reached
from xo before time m :

Gm(y()) = {y<t7 Uu, y0)7t S m,u € Z/{}, so that G(y(]) = UmZOGm<y0)

An immediate consequence of the precompacity hypothesis H2a) is the following

9



Lemma 3.7. For every € > 0, there exists mg in IR, such that :
Vz e Gyo), 32 € G™ (o) such that A(z,2') <e.

Proof : Otherwise for each positive integer m one can find z,, in G(yo) such that
A(2zm, z) > e forall zin G™(yp). Use H2a) to find n such that liminf,, A(z,, 2,,) <
e. Since z, € G(yo), there must exist k such that 2z, € G¥(y,). But for each m > k
we have z, € G"(yo), hence A(z,, z,) > €. We obtain a contradiction.

QED

We can already conclude for the limit value.

Proposition 3.8. V,(yo) — V*(yo)-

Proof : Because of lemma B.7], it is sufficient to prove that for every € > 0, there
exists mg such that :

sup inf Vi,:(yo) < sup inf V,,+(yo) + 2¢
>0 m<mo t>0 m=>0

Fix €, and consider 1 > 0 such that &(t) < € as soon as t < 7. Use lemma B.7 to

find mg such that Vz € G(yo), 32" € G™(yp) s.t. A(z,2") <n.

Consider any ¢t > 0. We have inf,,,>0 Vi, ¢(yo) = inf{Vi(2),2 € G(yo)}, and
inf,<me Vimt(vo) = inf{Vi(2), 2 € G™(yo)}. Let z in G(yp) be such that V;(z) <
inf,, Vin:(yo) + €, and consider 2/ € G™(yy) s.t. A(z,2") < n. By corollary B.4,
[Vi(z) — Vi(?')] < &(A(z,2')) < e, so we obtain that

inf Vii(yo) < Vi(2') < Vi(z) + e <inf V. (yo) + 2¢.

m<mg
Passing to the supremum on ¢, this completes the proof.
QED

Remark 3.9. Observe that for obtaining the existence of the value, we have used
a compactness argument (assumption H2)a)) and condition ([§). We did not use
explicitly assumption H2)b) which is only used for obtaining (4).

The rest of the proof is more involved, and is inspired by the proof of Theorem
3.6 in [Ig].
3.3.3 Auxiliary value functions

The uniform value requires the same control to be good for all time horizons,
and we are led to introduce new auxiliary value functions. Given m > 0 and
n > 1, for any initial state z in Z = G(yo) and control v in U, we define

Vmn(2,u) = Sup Yme(z,u), and W, ,(2) = inf vy, (2, u).
te[l,n] ueU

10



Wi is the value function of the problem where the controller can use the time
interval [0, m] to reach a good state, and then his cost is only the supremum for
t in [1,n], of the average cost between time m and m + t. Of course, we have
Win = Vin. We write v, for vy, and W, for Wy ,,.

We easily obtain from proposition B.9, as in corollary B.g, the following result.

Lemma 3.10. For every z and 2’ in Z, for allm >0 and n > 1,
Vinn(2) = Vinn(2)] < &(A(z, 7).
[Winin(2) = Wi ()] < 6(A(z, 7).
The following lemma shows that the quantities W, ,, are not that high.

Lemma 3.11. Vk > 1,Vn > 1,Vm > 0,Vz € Z,

) k
Vinn(z) > lléai Wik(z) — ~

Proof : Fix k, n, m and z, and put A = inf;>,, W x(z). Consider any control u
in U. For any i > m, we have

sup %’,t(zau) = Vi,k(zau) > VVzk(Z) > A.
te(l,k]

So we know that for any ¢ > m, there exists ¢(i) € [1, k] such that v; (2, u) > A.

Define now by induction iy = m, iy = iy + t(i1),..., ig = iq—1 + t(ig—1), where ¢
is such that iy < n+m < ig+t(i,). We have ny, (2, u) > Zz;i t(ip) A > nA—k,
SO Ymn (2, u) > A— % Taking the infimum over all controls, the proof is complete.

QED
We know from Proposition B.§ that the limit value is given by V*. We now
give other formulas for this limit.

Proposition 3.12. For every state z in Z,

inf sup Wi, (2) = inf sup V,,,n(2) = V*(2) =sup inf V,,, ,(2) = sup inf W, ,(2).

m=0 p>1 m=0 p>1 n>1 m=0 n>1m20

Proof of proposition B.13 : Fix an initial state z in Z. We already have
V*(2) = sup;sg infpso Vine(2) > supys; infrso Viee(2). One can easily check
that inf,,>0 Vint(2) <inf,>0 Vino(z) for each positive . So

V*(z) >sup inf V. (2) > sup inf V,:(2) >...sup inf V,,.(2) =V7*(2).
t>1 m20 t>(1/2) m=0 t>0 m20

Consequently V*(z) = sup;>; infy>o Vini(2). Moreover because Vi, < Wi, we
have also V*(2) < supys; infp>0 Win(2).
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We now claim that V*(z) = sup,s; inf,,>0 Wp.(2). It remains to show
V*(2) > sup,s; infus0 Win(2). From Lemma B.11, we know that for all k& > 1,
n > 1and m > 0, we have Vinnk(2) > infiso Wig(z) — %, so inf,, Vink(z) >
inf;>o Wik(z) — % By taking the supremum on n , we obtain

V*(z) = sup mf Vinn(2) > sup 1nf Vinnk(2) > }25 Wk (2).

n>1 m2 n>1 m2

Since k is arbitrary, we have proved our claim.
Since the inequalities

inf sup Wi,n(2) > inf sup Vi, n(2) 2 sup  inf Vi, .(2) = V*(2)

m>0 n>1 m>0 n>1 n>1 m>0

are clear, to conclude the proof of the proposition it is enough to show that
inf,,>0sup,>1 Winn(2) < V*(2).

Fix £ > 0. We have already proved that V*(z) = sup,,>q inf >0 Winn(2), so for
each n > 1 there exists m > 0 such that W, ,,(2) < V*(z) + . Hence for each n,
there exists z/, in G(z) such that Wy, (2)) < V*(z)+¢e. We know from Lemma B.7
that there exists my > 0 such that : V2’ € G( ), 32" € G™(z) st. A(Z, ") < e.
Consequently, for each n > 1, there exists z// in G™°(z) such that A(z,2") <e,
and by lemma this implies that

Wa(zn) < Walz,) +d(e) < V7(2) +e + afe).
Up to now, we have proved that for every & > 0, there exists mg such that :
Vn > 1,3m < mg s.t. Wy, ,(2) < V*(2) + £

Since all costs lie in [0, 1], it is easy to check that |W,, ,(2) = Wi n(2)| < [m—n/|
for each n, m, m’. Hence there exists a finite subset F' of [0,mg] such that :
Vn>1,3m € F s.t. Wy,n(2) < V*(2)+2¢". Considering m in F such that the set
{n positive integer, Wy, ,(2) < V*(z) + 2¢'} is infinite, and noticing that W, , is
non decreasing in n, we obtain the existence of a unique m > 0 such that Vn >
1, Wian(z) < V*(2) + 2¢'. Hence €' being arbitrary, inf,,>osup,~; Wia(2) <
V*(2), concluding the proof of Proposition B.12. -

QED
We now look for uniform convergence properties. By the precompacity condi-
tion H2a), it is easy to obtain that :

Lemma 3.13. For each € > 0, there exists a finite subset C of Z s.t. : Vz €
Z,dce C,A(z,¢c) <e.

We know that (V},),, simply converges to V* on Z. Since |V,,(z) — V()] <
&(A(z, 2")) for all n, z and 2/, we obtain by lemma :

12



Corollary 3.14. The convergence of (V,,), to V* is uniform on Z.

We can proceed similarly to obtain other uniform properties. We have

V*(2) = sup inf W,,,(2) = lim inf W, ,(2)

n>1 m>0 n—+o0o m>0

since inf,,>0 Win(2) is not decreasing in n. Using lemmas B.I0 and B.13, we
obtain that the convergence is uniform, hence we get :

Ve > 0,3dng,Vz € Z, V*(z) —e < ir;fo Winne (2) < V*(2).
By Lemma B.I1], we obtain :
Ve > 0,3ng,Vz € Z,Ym > 0,Vn > 1,V ,(2) > V*(2) —e — —.

Considering n large gives :

9) Ve > 0,3K,Vz € Z,Vn > K, ir;fo Vinn(2) > V¥(2) — ¢

Write now, for each state z and m > 0 : hy,(2) = infrcm sup, s Wi (2).
(hm)m converges to V*, and as before, by Lemmas B.I] and B-I3, we obtain that
the convergence is uniform. Consequently,

(10) Ve >0,3M > 0,Vz € Z,3m < M, supW,,,.(z) <V*(z) +e.

n>1

3.3.4 On the existence of a uniform value

In order to prove that I'(yy) has a uniform value we have to show that for
every € > 0, there exist a control u and a time ng such that for every n > ny,
(Yo, 1) < V*(yo) + €. In this subsection we adapt the proofs of Lemma 4.1 and
Proposition 4.2. in [I§]. We start by constructing, for each n, a control which :
1) gives low average costs if one stops the play at any large time before n, and
2) after time n, leaves the player with a good “target” cost. This explains the
importance of the quantities v,,,. We start with the following

Lemma 3.15. Ve > 0,dM > 0,dK > 1,Vz € Z,I3m < M,Vn > K,3Ju € U such
that :

(11) Vmn(z,u) < V*(2) +¢/2, and V*(y(m + n,u, 2)) < V*(z2) +e.

Proof: Fixe > 0. Take M given by ([(), so that Vz € Z,3m < M, sup,-; Wi.(2) <
V*(2) 4. Take K > 1 given by () such that : Vz € Z, ¥n > K, inf,, V,, n(2) >
V*(z) —e.

Fix an initial state z in Z. Consider m given by ([[0), and n > K. We have to
find w in U satistying ([T7]).

13



We have W, v (2) < V*(2) + ¢ for every n’ > 1, so Wy, 2,(2) < V*(2) + ¢,
and we consider a control u which is e-optimal for W, 2,(2), in the sense that
Vm.on (2, 1) < Wi, 0,(2) + €. We have :

Vi (2, 0) < Uppon(2,u) < Wian(2) + < V*(2) + 2.
Denoting X = y,0(2,u) and Y = ypin.n0(2, u).

X Y

time 0 m m4n m—+ 2n

Since Vpon(z,u) < V*(2) + 2, we have X < V*(2) + 2¢, and (X +VY)/2 =
Ym2n (2, u) < V*(2)+2¢. Since n > K, we also have X > V,,, ,(z) > V*(2)—¢e. And
n > K also gives V,,(y(m+n,u, 2)) > V*(y(m+n,u, z))—e,so V*(y(m+n,u, z)) <
Valy(m +n,u, 2)) +¢ <Y +e. Writing now Y/2 = (X +Y)/2 — X/2 we obtain
Y/2 < (V*(2) + 5¢)/2. So Y < V*(2) + 5¢, and finally V*(y(m + n,u, z)) <
V*(2) + 6e.

QED

We can now conclude the proof of theorem .4

Proposition 3.16. For every state z in Z and € > 0, there exists a control u in
U and Ty such that for every T > Ty, yr(z,u) < V*(2) + €.

Proof : Fix a > 0.
For every positive integer 7, put ¢; = &. Define M; = M(g;) and K; = K (g;)
given by lemma B.T] for ¢;. Define also n; = Max{K;, M"“} > 1.

«

We have : Vi > 1,Vz € Z,3dm(z,i) < M;,Ju € U, s.t.

Vin(zi)ms (2, 0) < V*(2) + % and V*(y(m(z,1) + n;,u,2)) < V*(2) + %_

We now fix the initial state z in Z, and for simplicity write v* for V*(z). We
define a sequence (2, m;, u');>; by induction :

o first put 2! = 2z, m;y = m(z',1) < M, and pick u' in U such that
Vi (21 u') S V(Y + &%, and V¥ (y(my 4+ ng,ut, 2')) < V(') + 4.

o fori > 2, put 2 = y(m;_1+n,_1,u", 27, m; = m(2%, i) < M;, and pick v
in U such that vy, », (2, u') < V*(2")+555 and V*(y(mi+n,, u', 2°)) < V(') 45

Consider finally u in I defined by concatenation : first u' is followed for time
t in [0,m; + ny), then u? is followed for ¢ in [my + ny, my + ny), etc... Since
2t =y(mi_1 +mni_1,u"t, 2171 for each i, we have y(zz;ll m; +nj,u,z) =z for
each i. For each i we have n; > M;,1/a > m;;1/a, so an interval with length n;
is much longer than an interval with length m,;.

length m; length n, length m;  length n;

ut u'
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For each 7 > 1, we have V*(2") < V*(2' ')+ 5%. So V*(2') < +5%55 +5%=...+

§HVH () v+ a— 5 80 U (2, 0) S0F + 0

Let now T be large.
- First assume that T' = my +ny + ... + m;_1 + n;_1 + r, for some positive @
and r in [0, m;]. We have :

yr(z,u) = %/0 h(y(s,u,z),u(s))ds

i—1 i
1 % my 1
< T (;n3> (v +a)+? + T (2;77%)
But m; < an;_; for each j, so

yr(z,u) < v* 4+ 2a + %

- Assume now that T'=mqy +ny+... + m;_1 +n;_1 +m; +r, for some positive
i and r in [0, n;]. The previous computation shows that :

/0 B h(y(s,u, z),u(s))ds < my + (T —r)(v* + 2a).

Since Vi, ; (2, u') < v* 4+ @, we obtain :

Tyr(z,u) = /O_Th(y(s,u,z),u(s))ds—i—/ h(y(s,u, z),u(s))ds,

T—r
my + (T —7)(v* + 20) + r(v* + ),

<
< my 4+ T+ 2a).

Consequently, here also we have :

yr(z,u) <v* 4+ 2a + %

This concludes the proofs of Proposition and consequently, of Theorem
B4
QED

4 Averaging methods for control systems with
singular perturbations

Now we explain how to build a dynamics satisfied by the cluster points of the
family (x.(-)). of solutions to ().
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4.1 Construction of a Limit system

We assume that the functions f and g are bounded continuous on R® x R x U,
and Lipschitz in (z,y) uniformly with respect to u € U :

) 17500 = )] < L = 2]+ 1 = 3]
||g(x1,y1,u) - g(:cg,yQ,u)H < L(Hxl - x2|| + ||y1 - y2”)

Under these assumptions we know that for every fixed control u there exists a
unique solution (z.(-),y:(+)) to the problem (f). We call S.(¢,z,y) the set of all
trajectories of (ff) :

Se(t,z,y) = {(z(+), y(-)) solution of ({)}.

When we consider the system (f) on [0, 7] and we make the change of variable
7 = L we obtain a new system by setting X(7) = z(e7), Y(7) = y(e7) and
U(r) = u(er) for 7 € [0, L]
(12) { X'(1)=ef(X(7),Y(r),U(r)), X(0) ==,
Y'(r) = g(X(7),Y(7),U(7)), Y(0) =y.

When we take formally e = 0 in (), we are led to consider the following
associated system :

(13) Y (1) = g(z,y(7),u(r)), y(0) =y,

where x is fixed in R?. We denote by y,(-,u,y) the unique solution of () cor-
responding to the control v and to the initial value y.

We follow an averaging method (cf for instance [[3], [[7]) : we set, for (z,y) €
R’ x R4, S > 0, and any measurable control u(-),

S
Az, y,S,u) = %/0 f(x,yx(T,u,y),u(T)) dr,

F(z,y,S) = {A(z,y, S u); uel}.

We shall make the following hypothesis on the system :

(A2) There exist compact sets M C R® and N € R? such that
M x N is invariant by (f)) for all e.

There exist ¢ > 0, A and & as in Theorem .4 such that

V(z1, 1) € M2 Y(y1,12) € N2,¥S > 0,Ve > 0,YVu € U, v € U, Yt € [0, 5]
A(ywl (tv u, yl)v yrzx(tv v, y2)) < A(yla y2) + C||SL’1 - x2|| té,

1F (1 g, (8w, 91), ul(t)) = F (22, 4, (0, 92), 0 (@) | < @(A(Y1, 92)) + el — 2o

(A3)

We will denote by M an upper bound of || f|| and ||g|| on the compact set M x N
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Proposition 4.1. We assume Assumptions A1, A2, A3. Then there exists a
function~ : IR — IRy with limg_, o v(S) = 0 and a set-valued map F : M x N —
R® with compact convex nonempty values such that

(14) d(co clF(z,y,S), F(x,y)) <v(5), V(z,y) € M x N, ¥S > 0,
where d stands for the Hausdorff distance and co cl for the closed convex hull.

Proof : For any p € B C IR® and z,y, u, we define

h(x,y,u,p) =< f(x,y,u),p >

1 S
H(z,y,S,p):= inf <pa>= infg/ h(z,ys (T, u,y), u(r), p)dr.
0

a€F (z,y,9) uel

Clearly H(z,y,S,p) = infoccor(zy,s) < p,a >. For x,y, p fixed, using Theorem B.4
and Remark B9, one can deduce that H(z,y, S, p) converges to some H(z,y,p)
when S — 4o0.

We claim that the convergence is uniform in (z,y,p) € M x N x B. To
prove this it is enough to show that the family of functions (H(,-, S, -))s>o from
M x N x B to IR is equicontinuous and to use Ascoli’s Theorem. Fixe > 0,5 > 0,
(x1,12) € M?, (y1,92) € N? and (py, p2) € B?. Take u such that H(xy,ys, S, pa) >
%fos < f(x2, Yuo (T, u, Y2), u(T)), p2 > dr — €. Then there exists some v € U
satisfying A3. So

H(z1,y1,8,p1) — H(w2,y2,5,p2) <

1

S
g/ < f(l’layxl(Tauay1)>v(7_))>pl > =< f(x2>y:c2(7_au7y2)au(7_))>p2 > dT“—E
0

1 S
<3 / < f (@1, (70, 92), 0(7)), p1 — D2 > drt
0

1

S
g/ < f(l’l,yggl(T,U,yl),'U(T)),pg > =< f(x2>y:c2(7_au7y2)au(7_))>p2 > dT“—E
0

< Mle — D2l + &(A(y1,92)) + cl|zy — 22| + €.

Because one can easily obtain the reverse inequality by interchanging xy, y1, p1
and x9, Y2, p2 and because ¢ is arbitrary we have proved our claim.

Observe that because H is bounded positively homogeneous and concave in p
so is H. So we can define the following convex compact subset of R® by

F(z,y)=={a €R’, <a,p>>H(z,y,p), p€R"}.
A straightforward verification shows ([[4).
QED
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4.2 Main result for averaging method

Theorem 4.2. Suppose that conditions A1, A2 hold true. Assume that there
exists a function v : IR — IR, with limg_ . v(S) = 0 and a set-valued map
F: M x N — R® with compact convex nonempty values which is Lipschitz with
respect to x (with a Lipschitz constant independent of y € N ) and which satisfies
).

Then, for any x € M and y € N the solutions of the following differential
inclusion

(15) 2'(s) € F(z(s),y), z(0) ==

approzimate the solutions of the singularly perturbed system (§) in the follo-
wing sense : For any € > 0, and any T > 0 there exists M(T,e) > 0 with
lim. o M(T,e) = 0 such that
a) For any family of solutions (z-(-),ye(-)) to (f)) there ezists a solution x(-)
to ([L3) such that
sup ||z-(t) — z(t)]| < M(T' ).
te[0,T]
b) Conversely fix x(-) a solution to ([IJ) then for any € small enough there
exists a solution (z.(-),y=(+)) to (@) such that

sup ||z.(t) — z(t)]| < M(T,¢).

te[0,T

Proof : The first part of the theorem is a direct consequence of Propositions
1] and 3. Let us prove the second part which is inspired by a method due to
Gaitsgory [[2, [3] (cf also [I4, [T, [7)).

FixT >0,x € M and y € N. We consider .S; > 0 such that lim._,oS. = +o0,
lim,_geS. = 0 and lim._yeS.el% = 0 ( this is possible if we take for instance
Se =1In Li/g) We divide the interval [0, Z] into subintervals [7;,7;11] having the
same length S. (except possibly the last one). This corresponds to a division of
[0, 7] in subintervals [t;, ;1] of length €S, with ¢, = en, [ =0,1,...,[T/(eS:)].

Proof of part a) For any ¢ > 0, fix (z.(-),y.(-)) a solution to (fl) to which
is associated a solution (X.(-),Yz(+)) to ([F). We define a family of points for
1=0,1,...,[T/(eS.)]

(16) o — T
Tiy1 =2+ € J:l—Hl f(xlv Yxl(s - T,Y, U(Tl + ')7 U(S>>d8

and the corresponding interpolating curves X(-)
(17)
{ Xl(()) =T

X1 (1) ==y +€ij [, Yy (s —1,y,U(n + ), U(s))ds. 7 € 17, T41]

We claim that X.(-) is approximated by X;(-) when ¢ — 0.
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Let us define

A(T) i= maxsepn 7 | X () — Xa(s)[], 7 € 71, Ti4a],
Dl(T) ‘= MaXse(r,7] ||}/;() - Y:’L‘L(S -7, Y, U(Tl + ))||>
di(7) = maXsepn, A [ Xe () — 2]

Observe that for s € [, 7]

1Y() = Yauls — 79 Ulm £ )| <
|| / 9(Xe(0), Ya(0), U(0)) — glar, Yalo — 7., Ulm + ), U(0))dor|

(thanks to A1) < L/ | Xo(0) — ]| + ||Ye(o) = Yy, (0 — 71, y, U(m + +))||do.
Tl
Thus

(18) Dy(s) < L/s di(o) + Dy(o)dos € 1, T].

which gives using Gronwall’s Lemma
(19) Dy(s) < LS.dy(1)e™=, Vs € [0, 7], T € [11, T141].
Now we will estimate A;. Pick s € |7, 7].

[Xe(s) = Xi(s)]| <
IIXa(Tz)—$z||+€||/sf(Xe(U),Ye(U),U(U))—f(afz,Y}u(U—Tz,y, U(n+:)), U(o))dol|]

< [|Xe(m) — ] +€L/ 1Xe(0) = @il + [Yelo) = Yo, (0 = 7,9, U(n +-)) || do
)

Thus s
Al(S) S Al(Tl) + €L/ dl(O') + DZ(O')CZO'

U

Taking account of ([9), we obtain

(20) Ay(s) < Ay(m) +eL / (1+ LS.eX5)dy(o)do

T

Since
[ X:(s) — @l = | Xe(m) — 2 +6/0 [(Xe(0),U(0))do|| < [[Xe(mi) — @l +eS:M,

we get
dl(s) < Al(Tl) + €SEM < Al(s) + €SEM
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because clearly A;(7) < A(s). This relation together with (BQ) enables us to
deduce that invoking Gronwall’s Lemma

(21)  Au(s) < (A(m) + 2L(1 + LS.X5)S2M )™ IHES 5 s € [, 71,

Because Ag(7m1) < 2e M S., the relation (P)) taken for s = 74 yields by straight-
forward induction

(22) A(n) < 2eMTeHESee"> )Lt

We have proved our claim saying that X.(-) is approximated by X;(-) when
e— 0.
Now by Proposition [L.1]

1 Ti+1

5 fla, Yo (s =7,y U(n + ), U(s))ds € F(x1,y) +7(S:)B.

Q)

Choose v; € F(x,y)) with
1 Ti+1

(23) ||§/ f(, Yo (s = 1,9, U(n + ), U(s))ds — vl < ~(Se)
€ T

Define the points 7, for [ = 0,1,...,[T/(eS:)] and the associated interpolating
curve ()

(24) No i= T, M41 =M + <C:Sa'Ul
m(t) =m+ult—t), t €t ti]

From the very definition of x;, ; and from (B3), we get
(25) |z —m|| < LeSey(S:) < TH(S:) for l =0,1,...,[T/(eS.)] .

Now

d(nj(t), F(m(t),y)) = d(v, F(m(t),y)) < d(vi, F(ze, y))+oil| (lze—ml+m—m @)]])
Thus by (B5) we get
(26) d(n(t), F(m(t),y)) < ML(T(S:) + (See) M).

Using Filippov’s Theorem (cf for instance Th. 10.4.1 in [{] or [P, [0]), we can
approximate 7;(-) by a solution to the differential inclusion ([[§). There exists
7y(+) solution to ([) such that for any t € [0, 7]

(27)

Im(t) =z ()] < " /0 e~ M d(n(t), F(m(t), y))ds < M (Ty(Sc) + (S-e) M).

Then
nax lz=(t) — z(t)]| < mlaxtg%%(HXe(t/é) — Xi(t/e)|| + | Xu(t/e) = m(@D) + [[m(t) — z (D))
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< 2eMTeHES-e" LT | Ty(§) 4+ 26 S. M + Me ™ (T(S.) + (S.e) M),

in view of (B9), (R3) and (R7) and by the very definition of 7;(-) and X;(-). The
proof of part a) is achieved thanks to the choice of S..

Proof of part b) Fix z(-) a solution to ([[5). For almost any t € [t;,t;41], we
have

d(@'(t), F(z(t),y)) < Lljz(t) — 2(t)]| < M LeS..

Thus, F being convex-valued

1
€S,

tiy1 .
/ 2'(s)ds € F(x(t;),y) +eS.LMB.
t
Take v; € F(z(t;),y) such that
ti41
(28) I / 2'(s)ds — || < eS.LM.
t

We define the family of points (&;); by
(29) Coi=x, §u =&+ S, 1=0,1... [T/(Esa)]

Then .
1+1
z(tir) = z(t) + / 7'(s)ds € z(t;) + eS-v + (eS-)’ LM B.

t

Hence for any [ =0,1...[T/(eS:)]

(30) lz(t) — &l < eS.TML
d(v, F(&,y)) < L*MTeS,

There exist w; € F(&,y)) with v; = w; + hy and by € L?MTeS.B.
Now we define ((x;,u;)); by

T =T,
{ vier = a e [ (o ye (s — 1oy wln + ), wl)), ws)ds

with w(+) is chosen such that
(31)

1 Ti+4+1
||§/ f(iEl,yxl(S — 1,9, w4 ), w(-)), w(s)ds — wy|| < y(Se) + Ll — 2.

Such choice of w(+) is possible because w; € F(&,y) C F(xy,y) + L||§ — x| B

and d(F(Ila Y, Sa)> F(l’[,y)) S V(Sa)'

Now we will estimate d; := || — 2;||. Observe that
1 Ti+1
gl—i-l — Ti41 = gl — X+ 555{'Ul - ? f(zl’ yﬂcz(s - T,Y, ul(Tl + ))a ul('))>ul(8)d5}

I
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€& —x+eS(u — F(:):l,y) +7(S:)B) C & — x4+ eSe(L|z — &l +~(S:))B.

Thus
div1 < di(1+4 LeS:) 4+ eSey(Se).

A straightforward induction gives

(14 LeS.)t -1
LeS.

dl S 7(55)555

Taking into account the elementary inequalities (1 4 $)* < e and Lc_l < e, we
obtain

(32) d; < y(S.)eTe T,

Let us define (x.(-),y.(-)) a solution to (f]). From the same technique developped
in the proof of part a) we obtain that there exists (7, ¢) with lim._ox(7T,e) =0
and such that

(33) max |lze(t)) — x| < &(T,¢).

Clearly if t € [t;, t;41] then
[z(t) — z-(O)[| < [Jz(tr) — ze ()| + 2eS5:M.
So

e [|2(t) = ze(O)ll < 25 M+ lo(t) = &ll + 16 = wll + llz = z=(8)]

< 2eS.M +eS.TML + eTe" ~(S.) + k(T ¢),
thanks to (B0),(B3) and (B3). The proof is complete.

QED

4.3 About the validity of the assumptions for the avera-
ging method

In order to obtain Lipschitz regularity of the set valued map F we need to
require a more precise assumption on the control system

Proposition 4.3. Suppose that conditions A1, A2 hold true and assume that
there exits F' and ~ satisfying [4
a) If we suppose

3C > 0, V(x1,29) € M2, Vy € N,VS > 0,YVu e U, Jv € U,

B 11 15 flan, g (b s ), w(t)) — Fen yoa(t, 0, ), 0(6)dt]] < Cllas — .
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then the set-valued map v € M v+ F(x,y) is Lipschitz continuous (with a Lip-
schitz constant independent of y ).
b) If the following assumption

3C > 0, V(z1,79) € M2, Y(y1,92) € N2,VS > 0,Yu € U,Fv € U, Vt € [0, 5]
(A4) ¢ 1) [|(ay (F, 1, 91) = Yo (8,0, 92) [ < Clllyn — w2l + |21 — 22]]),
ii) || f (21, Yoy (8w, 91), u(t)) — f(22, Yoo (£, 0, 92), 0 ()| < Cllyn — w2l + 21 — 22]).

holds true then (x,y) € M x N — F(x,y) is lipschitz continuous.

Proof : Let us prove a). Fix x1, 9, y. For any control v € U let us denote v, the
control associated with u by condition (B4). Then

1 S
Far.8) = Ul | S ot um)an

ueld

1 S
c Utz [ fm el ). o0t} + Clar =2 .

ueU

Taking the Haussdorff limit when S — +o00 in the above inclusion we obtain in

view of ([[4) : _ B
F(xy,y) C F(zz,y) + Cllzy — 22| B.

This gives a).
We obtain b) in a similar way by associating to any control u a control v,
given by A4 (instead of ([4)) taking into account that ¢ is arbitrary.

QED

Now we may summarize our considerations about a way to check the assump-
tions needed in Theorem {9

Proposition 4.4. Assume that conditions A1, A2, A4 holds true. Then there
exists a Lipchitz convex compact valued set-valued map F such that trajectories
of the associated differential inclusion ([[3) approzimate the solutions of the sin-
gularly perturbed control system (|}) (in the meaning of Theorem [.3).

Proof : Observe first that Assumption A4 implies A3 for A(yy,y3) = Clyr — yo|
and ¢ = C. So by Proposition [£], we are able to define a map F satisfying ([[4)).
Because A4 obviously implies (B4), we deduce from Proposition [[.J - a) that F
is Lipschitz with respect to x.

Now we have checked all the required assumptions of Theorem [L.9 which gives
the wished conclusion.

QED
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In the literature there exist many works with assumptions implying that the
limit system ([J) is independent of y. Such assumptions are usually based on
controlability or dissipativity properties of the fast dynamics () (or equivalently

(L3)). We refer the reader to [, B, [2, [3, 4, [T, [7] and the references therein.

Remarks 4.5. e The most direct application of our non expansive approach is
the case of the system a'(t) = f(x(t),y(t)), ey'(t) = g(y(t),u(t)) where g satisfies

@
o A straightforward calculus shows that condition (A4 ) is also satisfied if we
assume

Y(y1,v2) € N>, Yu € U, v € U, Y(x1,22) € M?,
<y1 — Y2, 9(1,y1,u) — g(x2, y2,u) >< 0.

e Of course our approach contains also several classical conditions where the
limit system 1is y independent, for instance the classical dissipativity condition
-

{ de > Oa V(l'l,l'g) € Mza\v/(ylayQ) S N2,Vu € Ua

<Y1 — Yo, 9(x1,y1,u) — g(T2, Y2, u) >< —cllyr — yal[%
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