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Application of the lent particle method

to Poisson driven SDE’s

Nicolas BOULEAU and Laurent DENIS

Abstract

We apply the Dirichlet forms version of Malliavin calculus to stochastic differen-
tial equations with jumps. As in the continuous case this weakens significantly the
assumptions on the coefficients of the SDE. In spite of the use of the Dirichlet forms
theory, this approach brings also an important simplification which was not available
nor visible previously : an explicit formula giving the carré du champ matrix, i.e. the
Malliavin matrix. Following this formula a new procedure appears, called the lent
particle method which shortens the computations both theoretically and in concrete
examples. In this paper which uses the construction done in [7] we restrict ourselves
to the existence of densities, smoothness will be studied separately.

AMS 2000 subject classifications: Primary 60G57, 60H05 ; secondary 60J45,60G51
Keywords: stochastic differential equation, Poisson functional, Dirichlet Form, energy
image density, Lévy processes, gradient, carré du champ

1 Introduction

During the last twenty years a significant development of the theory of Dirichlet forms
occured in the direction of improving regularity results or lightening hypotheses of Malli-
avin calculus [23]. With respect to the Malliavin analysis on Wiener space, what brings
the Dirichlet forms approach is threefold: a) The arguments hold under only Lipschitz
hypotheses, e.g. for regularity of solutions of stochastic differential equations cf [6], this
is due to the celebrated property that contractions operate on Dirichlet forms and the
Émile Picard iterated scheme may be performed under the Dirichlet norm. b) A general
criterion exists, the energy image density property (EID), proved on the Wiener space for
the Ornstein-Uhlenbeck form, and in several other cases (but still a conjecture in general
since 1986 cf [5]), which provides an efficient tool for obtaining existence of densities in
stochastic calculus. c) Dirichlet forms are easy to construct in the infinite dimensional
frameworks encountered in probability theory (cf [6] Chap.V) and this yields a theory of
errors propagation, especially for finance and physics cf [3], but also for numerical analysis
of PDE’s and SPDE’s cf [31].

Extensions of Malliavin calculus to the case of stochastic differential equations with
jumps have been soon proposed and gave rise to an extensive literature. The approach is
either dealing with local operators acting on the size of the jumps (cf [2] [11] [24] etc.) or
acting on the instants of the jumps (cf [10] [12]) or based on the Fock space representation
of the Poisson space and finite difference operators (cf [26] [27] [18] etc.). In all cases the
arguments are somewhat intricate.
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We have obtained results which simplify highly the approach with local operators cf
[7]. Based on Dirichlet forms on the general Poisson space they gather the advantages of
Dirichlet forms methods and simplicity of use. It may be summarized in the following way:
in order to calculate the Malliavin matrix, we add a particle to the system, compute the
gradient of the functional on this particle, and take back the particle before integrating
by the Poisson measure. The main formula is

Γ[F ] =

∫

X
ε−(γ[ε+F ]) dN.

where γ is the carré du champ operator on the state space, Γ the carré du champ operator
on the Poisson space and ε+, ε− are the operations of adding and cancelling a particle.

Let us present this method, called the lent particle method, on a simple example. Let
Y be a real Lévy process with absolutely continuous Lévy measure ν = kdx, thus such
that 1 + ∆Ys 6= 0 almost surely. We equip the space R \ {0} with the Dirichlet form on
L2(ν) with carré du champ operator

γ[u](x) = x2u′
2
(x)1{|x|< 1

2
}.

The link of Y with the associated random Poisson measure N with intensity dt × σ

is ∀h ∈ L2
loc(R

+),
∫ t
0 h(s) dYs =

∫

1[0,t](s)h(s)xÑ (dsdx) where Ñ is the compensated
measure N − dt × σ.

Let us consider the Doléans-Dade exponential

E(Y )t = eYt
∏

s 6 t

(1 + ∆Ys)e
∆Ys . (1)

In order to study the regularity of the pair (Yt, E(Y )t), we proceed as follows:

1. We add a particle (α, y) i.e. a jump to Y at time α 6 t with size y what gives

ε+(α,y)(E(Y )t) = eYt+y
∏

s 6 t

(1 + ∆Ys)e
∆Ys(1 + y)e−y = E(Y )t(1 + y).

2. We compute γ[ε+E(Y )t] = (E(Y )t)
2y21{|y|< 1

2
}.

3. We take back the particle before integrating w.r.t. N :

ε−γ[ε+E(Y )t] =
(

E(Y )t(1 + y)−1
)2
y21{|y|< 1

2
}

and
Γ[E(Y )t] =

∑

α 6 t

(

E(Y )t(1 + ∆Yα)
−1
)2

∆Y 2
α1{|∆Yα|<

1
2
}.

As easily seen, by a similar computation, the matrix Γ of the pair (Yt, E(Yt)) is given by

Γ =
∑

α 6 t

(

1 E(Y )t(1 + ∆Yα)
−1

E(Y )t(1 + ∆Yα)
−1

(

E(Y )t(1 + ∆Yα)
−1
)2

)

∆Y 2
α1{|∆Yα|<

1
2
}.
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Hence the density of the pair (Yt, E(Yt)) under hypotheses yielding (EID) lies on the
condition

dim L
((

1
E(Y )t(1 + ∆Yα)

−1

)

α ∈ JT

)

= 2

where JT denotes the jump times of Y with size less that 1
2 between 0 and t. This is

guaranteed if Y has an infinite Lévy measure.
Hence, summarizing our hypotheses (see Lemma 1 below)

Let Y be a real Lévy process whose Lévy measure is infinite, absolutely continuous
w.r.t. Lebesgue measure and whose density dominates a positive continuous function near
0, then the pair (Yt, E(Y )t) possesses a density on R

2.
The aim of the present article is to apply the lent particle method to stochastic differ-

ential equations with jumps.
We shall begin by explaining the method (Sections 2.1 and 2.2). The only difference

with our treatment in [7] is that we work here on a product probability space in order to
be able to put also a Brownian motion or other semi-martingales in the studied SDE. With
respect to the note [4] we have introduced a clearer new notation, as in [7] the operator
ε− is shared from the integration by N .

The SDE we consider is described in Section 2.3 with the assumptions done.
The argument dealing to the Malliavin matrix is concentrated in Section 2.6 thanks to

the lent particle method.
We give some examples in Section 3 of SDE driven by Lévy processes when the Lévy

measure is underdimensioned and the diffusion matrix is degenerated. This improves
known results on the Lévy area (Section 3.2). We end by lightening assumptions on
existence of density for a McKean-Vlasov type non-linear SDE (Section 3.3) and for stable-
like processes (Section 3.4).

2 Notations and hypotheses.

2.1 Dirichlet structures and Poisson measures.

Let (X,X , ν,d, γ) be a local symmetric Dirichlet structure which admits a carré du champ
operator i.e. (X,X , ν) is a measured space, ν is σ-finite and the bilinear form

e[f, g] =
1

2

∫

γ[f, g] dν,

is a local Dirichlet form with domain d ⊂ L2(ν) and carré du champ operator γ (see
Bouleau-Hirsch [6], Chap. I). We assume that for all x ∈ X, {x} belongs to X and that ν
is diffuse (ν({x}) = 0 ∀x). The structure (X,X , ν,d, γ) is called the bottom structure.

We are given N a Poisson random measure on [0,+∞[×X with intensity dt × ν(du)
defined on the probability space (Ω1,A1,P1) where Ω1 is the configuration space, A1 the
σ-field generated by N and P1 the law of N . We set Ñ = N − dt× ν.

We suppose that the bottom structure and N satisfy the following hypothesis :

Hypothesis (H0). The structure (X,X , ν,d, γ) with generator (a,D(a)) is such that

there exists a subspace H of D(a)
⋂

L1(ν), dense in L1(ν) ∩ L2(ν) and such that ∀f ∈
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H, γ[f ] ∈ L2(ν).

Hypothesis (H0) implies what we call the bottom core hypothesis in [7] and denote
(BC). It is a technical condition due to the fact that the carré du champ takes its values in
L1 and we need a set of test functions for which it has its values in L2. This condition is
not so restrictive. In the case of a Poisson measure induced by a real Lévy process whose
Lévy measure is absolutely continuous w.r.t. the Lebesgue measure, the following Lemma
gives a way to fulfill it:

Lemma 1. Let r ∈ N
∗, (X,X ) = (Rr,B(Rr)) and ν = kdx where k is non-negative and

Borelian. We are given ξ = (ξij)1 6 i,j 6 r an R
r×r-valued and symmetric Borel function.

We assume that there exist an open set O ⊂ R
r and a function ψ continuous on O and

null on R
r \O such that

1. ν(∂O) = 0,

2. k > 0 on O ν-a.e. and is locally bounded on O

3. ξ is locally bounded and locally elliptic on O in the sense that for any compact subset
K in O, there exists positive constants cK and CK such that

∀x = (x1, · · · , xr) ∈ K,
∑

i,j

|ξi,j(x)| 6 CK and

r
∑

i,j=1

ξij(x)xixj > cK |x|2,

4. k > ψ > 0 ν-a.e. on O

5. for all i, j ∈ {1, · · · , r}, ξi,jψ belongs to H1
loc(O).

We denote by H the subspace of functions f ∈ L2(ν) ∩ L1(ν) such that the restriction of
f to O belongs to C∞

0 (O) (i.e. C∞ with compact support in O). Then, the bilinear form
defined by

∀f, g ∈ H, e(f, g) =

r
∑

i,j=1

∫

O
ξi,j(x)∂if(x)∂jg(x)ψ(x) dx

is closable in L2(ν). Its closure, (d, e), is a local Dirichlet form on L2(ν) which admits a
carré du champ γ. Moreover, it satisfies hypothesis (H0) and property (EID) i.e. for any
d and for any R

d-valued function U whose components are in the domain of the form

U∗[(detγ[U,U t]) · ν] ≪ λd

where det denotes the determinant and λd the Lebesgue measure on (Rd,B(Rd)).

Proof. First of all, since ν(∂O) = 0, it is clear that H is dense in L2(ν) ∩L1(ν). We have

∀f, g ∈ H, e(f, g) = −
∫

Rr

a(f)(x)g(x) ν(dx),

where a(f) = 1O(x)(k(x))−1
∑

i,j ∂j(ξi,jψ∂if). Since k > ψ on O, it is clear that for any

compact set K ⊂ O, k−1 is bounded on K. From this, it is clear that a(f) belongs to
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L2(ν). So, a is an operator with dense domain, symmetric and −a is non-negative hence
it is closable. As a consequence, the bilinear form (H, e) is also closable and it is clear
that its closure is a Dirichlet form on L2(ν) and that the carré du champ operator γ is
given by

∀f ∈ H, γ(f)(x) =

r
∑

i,j=1

ξi,j(x)∂if(x)∂jf(x)
ψ(x)

k(x)
,

with the convention 0
0 = 0.

This ensures that hypothesis (H0) is satisfied.
The (EID) property can be proved using standard arguments (see Theorem 2 in [7]).

Hypothesis (H0) is satisfied in several other cases not so simple to describe (cf [15]
Section 3.1).

When the aim is to obtain density for R
d-valued random variables, d > 1, and only in

that case, we have to suppose additional conditions :
Hypothesis (H1): The structure (X,X , ν,d, γ) satisfies (EID).

Hypothesis (H2): X admits a partition of the form: X = B
⋃

(
⋃+∞
k=1Ak) where for all k,

Ak ∈ X with ν(Ak) < +∞ and ν(B) = 0, in such a way that for any k ∈ N
∗ may be

defined a local Dirichlet structure with carré du champ:

Sk = (Ak,X|Ak
, ν|Ak

,dk, γk),

with ∀f ∈ d, f|Ak
∈ dk and γ[f ]|Ak

= γf [f|Ak
].

Hypothesis (H3): Any finite product of structures Sk satisfies (EID).

The need for hypotheses (H1) to (H3) lies in the argument followed in [7] to prove
(EID) on the Poisson space. As mentionned above, no case is known where (EID) fails for
a local Dirichlet structure with carré du champ. In the classical applications hypotheses
(H0) to (H3) are fulfilled.

We consider also another probability space (Ω2,A2,P2) on which an R
n-valued semi-

martingale Z = (Z1, · · · , Zn) is defined, n ∈ N
∗. We adopt the following assumption on

the bracket of Z and on the total variation of its finite variation part. It is satisfied if both
are dominated by the Lebesgue measure, uniformly w.r.t. w:
Assumption on Z:

There exists a positive constant C such that for any square integrable R
n-valued pre-

dictable process h:

∀t > 0, E[(

∫ t

0
hsdZs)

2] 6 C2
E[

∫ t

0
|hs|2ds]. (2)

The presence of this semimartingale and of the following framework is due to the form
of the SDE that we will study below cf equation (8). This form will be discussed in §2.3.

We shall work on the product probability space:

(Ω,A,P) = (Ω1 × Ω2,A1 ⊗A2,P1 × P2).

As in [7], starting from the Dirichlet structure on the bottom space (X,X , ν) we con-
struct a Dirichlet form on L2(Ω1,A1,P1) and then by considering the product of this
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Dirichlet structure with the trivial one on L2(Ω2,A2,P2), we obtain a Dirichlet structure
(Ω,A,P,D, E ,Γ) with domain D ⊂ L2(Ω,A,P) and carré du champ operator Γ. As we
assume (H0) to (H3) we know that it satisfies (EID) (cf [7] or Song [32]).
Finally we denote by (At) > 0 the natural filtration of the Poisson random measure N on
[0,+∞[×X.

2.2 Expression for the gradient and the carré du champ operator

Following [7] §3.2.2, we are given an auxiliary probability space (R,R, ρ) such that the
dimension of the vector space L2(R,R, ρ) is infinite and we construct a random Poisson
measure N⊙ρ on [0,+∞[×X×R with compensator dt×ν×ρ such that if N =

∑

i ε(αi,ui)

then N ⊙ ρ =
∑

i ε(αi,ui,ri) where (ri) is a sequence of i.i.d. random variables independent

of N whose common law is ρ and defined on some probability space (Ω̂, Â, P̂) so that N⊙ρ
is defined on the product probability space: (Ω,A,P) × (Ω̂, Â, P̂).
We assume that the Hilbert space d is separable so that the bottom Dirichlet structure
admits a gradient operator, D, and we choose a version of it with values in the space
L2

0(R,R, ρ) = {g ∈ L2(R,R, ρ);
∫

R g(r)ρ(dr) = 0}.
We denote it by ♭.
Let us recall some important properties:

• ∀u ∈ d, Du = u♭ ∈ L2(X ×R,X ⊗R, ν × ρ).

• ∀u ∈ d,
∫

R ‖u♭‖2(·, r)ρ(dr) = γ[u].

• (chain rule in dim 1) if F : R → R is Lipschitz then ∀u ∈ d, (F ◦ u)♭ = (F ′ ◦ u)u♭.

• (chain rule in dim d) if F is C1 (continuously differentiable) and Lipschitz from R
d

into R then

∀u = (u1, · · · , ud) ∈ dd, (F ◦ u)♭ =
d
∑

i=1

(F ′
i ◦ u)u♭i .

Finally, although not necessary, we assume for simplicity that constants belong to dloc
(see Bouleau-Hirsch [6] Chap. I Definition 7.1.3.) and that

1 ∈ dloc which implies γ[1] = 0 and 1♭ = 0. (3)

We now introduce the creation and annihilation operators ε+ and ε−:

∀(t, u) ∈ [0,+∞[×X,∀w1 ∈ Ω1, ε
+
(t,u)(w1) = w11{(t,u)∈suppw1} + (w1 + ε(t,u)})1{(t,u)/∈suppw1}

∀(t, u) ∈ [0,+∞[×X,∀w1 ∈ Ω1, ε
−
(t,u)(w1) = w11{(t,u)/∈suppw1} + (w1 − ε(t,u)})1{(t,u)∈suppw1}.

In a natural way, we extend these operators on Ω by setting if w = (w1, w2):

ε+(t,u)(w) = (ε+(t,u)(w1), w2) and ε−(t,u)(w) = (ε−(t,u)(w1), w2),

and then to the functionals by

ε+H(w, t, u) = H(ε+(t,u)w, t, u) and ε−H(w, t, u) = H(ε−(t,u)w, t, u).
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We now recall the main Theorem of [7] which gives an explicit formula for a gradient of
the upper structure (Ω,A,P,D, E ,Γ).
Let us introduce some notations. The space D0 was introduced in hypothesis (H0). We
denote D the completion of D0 ⊗ L2([0,+∞[, dt) ⊗ d with respect to the norm

‖H‖D =

(

E

∫ ∞

0

∫

X
ε−(γ[H])(w, t, u)N(dt, du)

) 1
2

+ E

∫ ∞

0

∫

X
(ε−|H|)(w, t, u)η(t, u)N(dt, du)

=

(

E

∫ ∞

0

∫

X
γ[H](w, t, u)ν(du)dt

)
1
2

+ E

∫ ∞

0

∫

X
|H|(w, t, u)η(t, u)ν(du)dt,

where η is a fixed positive function in L2(R+ ×X, dt × dν).
Finally we denote by PN the measure PN = P(dw)Nw(dt, du). One has to remember that
the image of P × ν × dt by ε+ is nothing but PN whose image by ε− is P × ν × dt (see
Lemma 13 in [7]).

Theorem 2. The Dirichlet form (D, E) admits a gradient operator that we denote by ♯

and given by the following formula:

∀F ∈ D, F ♯ =

∫ +∞

0

∫

X×R
ε−((ε+F )♭) dN ⊙ ρ ∈ L2(P × P̂). (4)

Formula (4) is justified by the following decomposition:

F ∈ D
ε+−I7−→ ε+F−F ∈ D

ε−((.)♭)7−→ ε−((ε+F )♭) ∈ L2
0(PN×ρ)

d(N⊙ρ)7−→ F ♯ ∈ L2(P×P̂)

where each operator is continuous on the range of the preceding one and where L2
0(PN ×ρ)

is the closed set of elements G in L2(PN × ρ) such that
∫

RGdρ = 0 PN -a.e.
Moreover, we have for all F ∈ D

Γ[F ] = Ê(F ♯)2 =

∫ +∞

0

∫

X
ε−(γ[ε+F ]) dN, (5)

where Ê denotes the expectation with respect to probability P̂.

Proof. This is a slight modification of Theorem 17 in [7].

Let us recall without proof some properties of this structure which are quite natural.

Proposition 3. If h ∈ L2(R+, dt) ⊗ d, then Ñ(h) =
∫ +∞
0

∫

X h(t, u)Ñ (ds, du) belongs to
D and

Γ[Ñ(h)] =

∫ +∞

0

∫

X
γ[h(t, ·)](u)N(dt, du). (6)

(

Ñ(h)
)♯

=

∫ +∞

0

∫

X×R
h♭(t, u, r)N ⊙ ρ(dt, du, dr). (7)
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Remark 1. Theorem 1 gives a method for obtaining Γ[F ] for F ∈ D or F ∈ D
n, then with

the hypotheses giving (EID) it suffices to prove det Γ[F ] > 0 P-a.s. to assert that F has
a density on R

n. Let us mention a stronger condition which may be also usefull in some
applications. By the following lemma that we leave to the reader

Lemma 4. Let Mα be random symmetric positive matrices and µ(dα) a random positive
measure. Then {det

∫

Mαµ(dα) = 0} ⊂ {
∫

detMαµ(dα) = 0},

it is enough to have
∫

det ε−(γ[ε+F ])dN > 0 P-a.s. hence enough that det ε−(γ[ε+F ])
be > 0 PN -a.e. We obtain finally, by lemma 13 of [7], that a sufficient condition for the
density of F is det γ[ε+F ] > 0 P × ν × dt-a.e. (or equivalently that the components of
the vector (ε+F )♭ be P × ν × dt-a.e. linearly independent in L2(ρ) ).

2.3 The SDE we consider.

Let d ∈ N
∗, we consider the following SDE :

Xt = x+

∫ t

0

∫

X
c(s,Xs− , u)Ñ(ds, du) +

∫ t

0
σ(s,Xs−)dZs (8)

where x ∈ R
d, c : R

+×R
d×X → R

d and σ : R
+×R

d → R
d×n satisfy the set of hypotheses

below denoted (R).

Comment. With respect to the classical form of the SDE’s related to Markov processes
with jumps, as e.g. Ikeda-Watanabe [17] Chap IV §9, we put the Brownian part in the
semi-martingale Z. Let us emphasize that the Malliavin calculus that we construct, does
not concern Z but only N . In fact Z could be replaced by a more general random measure
with hypotheses assuring existence and uniqueness of the solution. In most applications
we have in mind there is no Brownian motion at all, since otherwise this induces strong
regularity properties and classical Malliavin calculus applies.

Assumption (R): For simplicity, we fix all along this article a finite terminal time T > 0.
We assume that N and Z are as explained in §2.1. We suppose equation (8) is such that :

1. There exists η ∈ L2(X, ν) such that:
a) for all t ∈ [0, T ] and u ∈ X, c(t, ·, u) is differentiable with continuous derivative and

∀u ∈ X, sup
t∈[0,T ],x∈Rd

|Dxc(t, x, u)| 6 η(u),

b) ∀(t, u) ∈ [0, T ] × U, |c(t, 0, u)| 6 η(u),
c) for all t ∈ [0, T ] and x ∈ R

d, c(t, x, ·) ∈ d and

sup
t∈[0,T ],x∈Rd

γ[c(t, x, ·)](u) 6 η(u),

d) for all t ∈ [0, T ], all x ∈ R
d and u ∈ X, the matrix I +Dxc(t, x, u) is invertible and

sup
t∈[0,T ],x∈Rd

∣

∣

∣(I +Dxc(t, x, u))
−1
∣

∣

∣ 6 η(u).
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2. For all t ∈ [0, T ] , σ(t, ·) is differentiable with continuous derivative and

sup
t∈[0,T ],x∈Rd

|Dxσ(t, x)| < +∞.

3. As a consequence of hypotheses 1. and 2. above, it is well known that equation (8)
admits a unique solution X such that E[supt∈[0,T ] |Xt|2] < +∞. We suppose that for all

t ∈ [0, T ], the matrix (I+
∑n

j=1Dxσ·,j(t,Xt−)∆Zjt ) is invertible and its inverse is bounded
by a deterministic constant uniformly with respect to t ∈ [0, T ].

Remark 2. Assumption (R.3) is satisfied if for example one assumes that there exists a
constant a > 0 such that for all t ∈ [0, t], all x ∈ X and all j ∈ {1, · · · , n}

|∆Zjt | 6 a and |Dxσ·,j(t, x)| 6
1

na
.

But it may be verified also without these inequalities. For example when Z is a Lévy
process, because of the independence of the jumps to the past, the invertibility of (I +
∑n

j=1Dxσ·,j(t,Xt−)∆Zjt ) is guaranteed in the case d = n by the assumption that the Lévy

measure has a density on R
d and it remains only to verify the bound of the inverse.

2.4 Spaces of processes

We denote by P the predictable sigma-field on [0, T ] ×Ω and we define the following sets
of processes:

• H : the set of real valued processes (Xt)t∈[0,T ], defined on (Ω,A,P), which belong to
L2([0, T ] × Ω).

• HP : the set of predictable processes in H.

• HD : the set of real valued processes (Ht)t∈[0,T ], which belong to L2([0, T ]; D) i.e.
such that

‖H‖2
HD

= E[

∫ T

0
|Ht|2dt] +

∫ T

0
E(Ht)dt < +∞.

• HD,P : the subvector space of predictable processes in HD.

• HD⊗d,P : the set of real valued processes H defined on [0, T ] × Ω × X which are
predictable and belong to L2([0, T ]; D ⊗ d) i.e. such that

‖H‖2
HD⊗d,P

= E[

∫ T

0

∫

X
|Ht|2ν(du)dt]+

∫ T

0

∫

X
E(Ht(·, u))ν(du)dt+E[

∫ T

0
e(Ht)dt] < +∞.

We define H0
D,P to be the set of elementary processes in HD,P of the form

Gt(w) =
m−1
∑

i=0

Fi(w)1]ti,ti+1](t),
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where m ∈ N
∗, 0 6 t0 6 · · · tm 6 T and for all i, Fi ∈ D and is Ati-measurable.

We also consider H0
D⊗d,P , the set of elementary processes in HD⊗d,P : H belongs to H0

D⊗d,P

if and only if

Ht(w, u) =

m−1
∑

i=0

Fi(w)1]ti,ti+1](t)gi(u),

where for all i ∈ {0, · · · ,m− 1}, Fi ∈ D and is Ati-measurable and gi ∈ d.
The proof of the following lemma is straightforward:

Lemma 5. H0
D,P is dense in HD,P and H0

D⊗d,P is dense in HD⊗d,P .
Let Y ∈ HD,P , c and σ satisfying the set of assumptions (R), then

(t, w, u) −→ c(t, Yt(w), u) ∈ HD⊗d,P

(t, w) −→ σ(t, Yt(w)) ∈ HD,P .

Notation: We shall consider R
d-valued processes, so Hd,Hd

D
,. . ., will denote the spaces of

R
d-valued processes such that each coordinate belongs respectively to H,HD,. . ., equipped

with the standard norm of the product topology.
The above spaces yield the following results allowing to perform the Émile Picard iteration
procedure with respect to the Dirichlet norm :

Proposition 6. Let H ∈ HD⊗d,P and G ∈ Hn
D,P , then:

1. The process

∀t ∈ [0, T ], Xt =

∫ t

0

∫

X
H(s,w, u)Ñ (ds, du)

is a square integrable martingale which belongs to HD and such that the process
X− = (Xt−)t∈[0,T ] belongs to HD,P . The gradient operator satisfies for all t ∈ [0, T ]:

X
♯
t (w, ŵ) =

∫ t

0

∫

X
H♯(s,w, u, ŵ)dÑ (ds, du)+

∫ t

0

∫

X×R
H♭(s,w, u, r)N⊙ρ(ds, du, dr).

(9)
Moreover

∀t ∈ [0, T ], ‖ Xt ‖D 6
√

2 ‖ H ‖HD⊗d,P
(10)

‖ X ‖HD
6

√
2T ‖ H ‖HD⊗d,P

(11)

and
‖ X− ‖HD,P

6
√

2T ‖ H ‖HD⊗d,P
. (12)

2. The process

∀t ∈ [0, T ], Yt =

∫ t

0
G(s,w)dZs

is a square integrable semimartingale which belongs to HD, Y − = (Yt−)t∈[0,T ] belongs
to HD,P and

∀t ∈ [0, T ], Y ♯
t (w, ŵ) =

∫ t

0
G♯(s,w, ŵ)dZs. (13)

10



We also have the following estimates:

∀t ∈ [0, T ], ‖ Yt ‖D 6 C ‖ G ‖Hn
D,P

and ‖ Yt− ‖D 6 C ‖ G ‖Hn
D,P
,

‖ Y ‖HD
6 C

√
T ‖ G ‖Hn

D,P
and ‖ Y − ‖HD,P

6 C
√
T ‖ G ‖Hn

D,P
.

Proof. 1. Assume first that H ∈ H0
D⊗d,P ,

H(w, s, u) =
m−1
∑

i=0

Fi(w)1]ti,ti+1](s)gi(u).

Then, X is a square integrable martingale and we have:

∀t ∈ [0, T ],Xt =
∑

i

FiÑ(1]ti∧t,ti+1∧t] · gi).

So, Xt belongs to D and thanks to the functional calculus :

X
♯
t =

∑

i

(

F
♯
i · Ñ(1]ti∧t,ti+1∧t] · gi) + Fi ·

(

Ñ(1]ti∧t,ti+1∧t] · gi)
)♯
)

=
∑

i

(

F
♯
i · Ñ(1]ti∧t,ti+1∧t] · gi) + Fi ·

∫

]ti∧t,ti+1∧t]

∫

X×R
g♭i (u, r)N ⊙ ρ(ds, du, dr)

)

=

∫ t

0

∫

X
H♯(w, s, u, ŵ)dÑ (ds, du) +

∫ t

0

∫

X×R
H♭(w, s, u, r)N ⊙ ρ(ds, du, dr).

This yields:

E(Xt) =
1

2
EÊ|X♯|2

6 E

[
∫ t

0

∫

X
Ê

[

|H♯(s, u, ŵ)|2
]

ν(du)ds

]

+ E

[
∫ t

0

∫

X×R
|H♭(s, u, r)|2ν(du)ρ(dr)ds

]

= 2

(∫ t

0

∫

X
E(H(s, u)ν(du))ds + E[

∫ t

0
e(H(s, ·))ds]

)

,

so we obtain inequalities (10) and (11) in this case and then for general H ∈ HD⊗d,P by
density.
As both X and X♯ are stochastic integrals w.r.t. random measure, we deduce that
lims→t,s<tXt exists in L2(Ω,P), lims→t,s<tX

♯
t exists in L2(Ω×Ω̂,P×P̂) so that, by standard

arguments, lims→t,s<tXt exists in D and as we have

∀s < t, ‖ Xs ‖D 6
√

2 ‖ H ‖HD⊗d,P
,

what yields this part of the proposition.
2. For the second part, consider first G ∈ (H0

D,P)n

Gt(w) =

m−1
∑

i=0

Fi(w)1]ti,ti+1](t).

11



We have

Yt =

m−1
∑

i=0

Fi(Zti+1∧t − Zti∧t),

Y
♯
t =

m−1
∑

i=0

F
♯
i (Zti+1∧t − Zti∧t).

Thanks to the bounds (2), we easily obtain

E[|Yt|2] 6 CE

∫ t

0
|Gs|2 ds,

and

E(Yt) =
1

2
EÊ[|Y ♯

t |2] 6
C2

2
ÊE

∫ t

0
|G♯s|2ds = C2

∫ t

0

n
∑

j=1

E(Gjs)ds.

It is now easy to conclude, using a density argument, similarly to the proof of the first
part.

2.5 Preliminary results on the solution of equation (8).

Proposition 7. The equation (8) admits a unique solution X in Hd
D
. Moreover, the

gradient of X satisfies:

X
♯
t =

∫ t

0

∫

U
Dxc(s,Xs−, u) ·X♯

s−Ñ(ds, du) +

∫ t

0

∫

X×R
c♭(s,Xs−, u, r)N ⊙ ρ(ds, du, dr)

+

∫ t

0
Dxσ(s,Xs−) ·X♯

s−dZs

Proof. We define inductively a sequence (Xr) of R
d-valued semimartingales by X0 = x

and

∀r ∈ N, ∀t ∈ [0, T ], Xr+1
t = x+

∫ t

0

∫

X
c(s,Xr

s− , u)Ñ (ds, du) +

∫ t

0
σ(s,Xr

s−)dZs.

As a consequence of Proposition 6, it is clear that for all r, Xr belongs to Hd
D

and that
we have ∀t ∈ [0, T ]

X
r+1,♯
t =

∫ t

0

∫

U
Dxc(s,X

r
s−, u) ·Xr,♯

s−Ñ(ds, du) +

∫ t

0

∫

U×R
c♭(s,Xr

s−, u, r)N ⊙ ρ(ds, du, dr)

+

∫ t

0
Dxσ(s,Xr

s−) ·Xr,♯
s−dZs.

This is the iteration procedure due to Émile Picard and it is well-known that

lim
r→+∞

E[ sup
t∈[0,T ]

|Xt −Xr
t |2] = 0. (14)
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Moreover, thanks to the hypotheses we made on the coefficients, it is easily seen that there
exists a constant κ such that for all r ∈ N

∗ and all t ∈ [0, T ]

EÊ

[

|Xr+1,♯
t |2

]

6 κ

(

1 +

∫ t

0
EÊ

[

|Xr,♯
s−|2

]

ds

)

so that by induction we deduce

∀r ∈ N, ∀t ∈ [0, T ], EÊ

[

|Xr,♯
t |2

]

6 κeκt.

Hence, the sequence (Xr) is bounded in Hd
D

which is an Hilbert space. Therefore, there
is a sequence of convex combinations of Xr which converges to a process Y ∈ Hd

D
. But,

by (14) we a priori know that Xr tends to X in L2([0, T ]; Rd) so that Y is nothing but X.
This proves that X belongs to Hd

D
and the relation satisfied by the gradient is consequence

of relations (9) and (13).

We can now explicit a formula for the carr du champ operator of Xt, using the linear
equation satisfied by X♯. The obtained formula (Theorem 9 below) is known for long time
(cf [2]) but established here under much weaker regularity assumptions similar to those of
[11]. Let us emphasize that we obtain this formula without the intensity of the Poisson
measure being the Lebesgue measure as supposed by these authors.

Let us define the R
d×d-valued process Us by

dUs =

n
∑

j=1

Dxσ.,j(s,Xs−)dZjs .

Then the following R
d×d-valued process is the derivative of the flow generated by X:

Kt = I +

∫ t

0

∫

X
Dxc(s,Xs−, u)Ks−Ñ(ds, du) +

∫ t

0
dUsKs−

Under our hypotheses, for all t > 0, the matrix Kt is invertible as a consequence of the
following proposition which extends classical formulas about linear equations (e.g. [28]
Chap V §9 Thm 52).

Proposition 8. Let Σt be a d× d-matrix semimartingale such that I + ∆Σt is invertible
∀t a.s. Let Kt be the solution of

Kt = I +

∫ t

0
dΣsKs−. (15)

a) Then Kt is invertible and its inverse K̄t satisfies

K̄t = I −
∫ t

0
K̄s−dΣs +

∑

s 6 t

K̄s−(∆Σs)
2(I + ∆Σs)

−1 +

∫ t

0
K̄sd < Σc,Σc >s . (16)

b) The d× 1-solution of Vt = Vα +
∫ t
]α dΣsVs− is given by Vt = KtK̄αVα.

c) Let Rt be a d× 1-semimartingale. The solution of St = Rt +
∫ t
0 dΣsSs− is given by

St = R0 +Kt[

∫ t

0
K̄s−dRs −

∑

s 6 t

K̄s−∆Σs(I + ∆Σs)
−1∆Rs −

∫ t

0
K̄sd < Σc,Σc >s].
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Proof. By Ito’s formula the solutions to (15) and (16) satisfy

dKtK̄t = dΣtKt−K̄t− −Kt−K̄t−dΣt

+[Kt−K̄t−(∆Σt)
2 − ∆ΣtKt−K̄t−∆Σt](I + ∆Σt)

−1

+Kt−K̄t−d < Σc,Σc >t − < dΣcK−, K̄−dΣ
c >t

this equation is Lipschitz with respect to the unknown KK̄ and is verified by the identity
matrix, what gives the first assertion of the proposition. The remaining is similar.

Here K̄t = (Kt)
−1 satisfies:

K̄t = I −
∫ t

0

∫

X
K̄s−(I +Dxc(s,Xs−, u))

−1Dxc(s,Xs−, u)Ñ(ds, du)

−
∫ t

0
K̄s−dUs +

∑

s 6 t

K̄s−(∆Us)
2(I + ∆Us)

−1 +

∫ t

0
K̄sd < U c, U c >s .

2.6 Obtaining the Malliavin matrix thanks to the lent particle method.

Theorem 9. For all t ∈ [0, T ],

Γ[Xt] = Kt

∫ t

0

∫

X
K̄sγ[c(s,Xs−, ·)]K̄∗

s N(ds, du)K∗
t ,

where for any matrix D, D∗ denotes its transpose.

Proof. We apply the lent particle method:

Let (α, u) ∈ [0, T ] ×X. We put X
(α,u)
t = ε+(α,u)Xt. We have,

X
(α,u)
t = x+

∫ α

0

∫

X
c(s,X

(α,u)
s−

, u′)Ñ(ds, du′) +

∫ α

0
σ(s,X

(α,u)
s−

)dZs + c(α,X
(α,u)
α− , u)

+

∫

]α,t]

∫

X
c(s,X

(α,u)
s−

, u′)Ñ(ds, du′) +

∫

]α,t]
σ(s,X

(α,u)
s−

)dZs.

Let us remark that X
(α,u)
t = Xt if t < α so that, taking the gradient with respect to the

variable u, we obtain:

(X
(α,u)
t )♭ = (c(α,X

(α,u)
α− , u))♭ +

∫

]α,t]

∫

X
Dxc(s,X

(α,u)
s−

, u′) · (X(α,u)
s−

)♭Ñ(ds, du′)

+

∫

]α,t]
Dxσ(s,X

(α,u)
s−

) · (X(α,u)
s−

)♭dZs.

Let us now introduce the process K
(α,u)
t = ε+(α,u)(Kt) which satisfies the following SDE:

K
(α,u)
t = I +

∫ t

0

∫

X
Dxc(s,X

(α,u)
s−

, u′)K
(α,u)
s− Ñ(ds, du′) +

∫ t

0
dU (α,u)

s K
(α,u)
s−

and its inverse K̄
(α,u)
t = (K

(α,u)
t )−1. Then, using the flow property, (Prop (8)b), we have:

∀t > 0, (X
(α,u)
t )♭ = K

(α,u)
t K̄(α,u)

α (c(α,Xα− , u))♭.
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(Let us note that at this stage Remark 1 of Section 2.2 could be used to get a sufficient
condition of density of Xt.)
Keeping in mind that the measures P× ν and PN are mutually singular, let us emphasize
that this result is an equality P × ν(du) × ρ-a.e. (cf Thm 1 above or [7] Prop 18). Now,
we calculate the carré du champ and then we take back the particle:

∀t > 0, ε−(α,u)γ[(X
(α,u)
t )] = KtK̄αγ[c(α,Xα− , ·)]K̄∗

αK
∗
t

which is an equality PN -a.e. (cf Thm 1 or [7] Prop 18).
Finally integrating with respect to N we get

∀t > 0, Γ[Xt] = Kt

∫ t

0

∫

X
K̄sγ[c(s,Xs− , ·)](u)K̄∗

sN(ds, du)K∗
t

which ends the proof.

Remark 3. We could also write Γ[Xt] as

Kt

∫ t

0

∫

X
K̄s−(I+Dxc(s,Xs− , u))

−1γ[c(s,Xs− , ·)](u)(I+(Dxc(s,Xs− , u))
∗)−1K̄∗

s− N(ds, du)K∗
t .

Remark 4. With the assumptions (R) that we have taken on the SDE (8), Xt is in D

and Γ[Xt] given by the above formulae is in L1(P). Now, let us recall that there exists
a powerfull Borelian localization procedure in any local Dirichlet structure with carré du
champ (cf [6] Chap. I §7.1). In practice, assumptions (R) may be lightened in such a
way that significant positive quantities be only finite almost everywhere, then the above
formulae are still true with Xt ∈ Dloc and Γ[Xt] finite a.s. and property (EID) applies as
well.

3 Some applications.

3.1 The regular case

This is the case where we assume that X is a topological space and that coefficient c is
regular with respect to the jumps size. More precisely, we have the following

Proposition 10. Assume that X is a topological space, that the intensity measure ds× ν

of N is such that ν has an infinite mass near some point u0 in X. If the matrix (s, y, u) →
γ[c(s, y, ·)](u) is continuous on a neighborhood of (0, x, u0) and invertible at (0, x, u0), then
the solution Xt of (8) has a density for all t ∈]0, T ].

Proof. Let us fix t ∈]0, T ]. As ν has infinite mass near u0, as X is right continuous and
γ[c] continuous, N admits almost surely a jump at time s ∈]0, t] with size u ∈ X such that
γ[c(s,Xs− , ·)](u) is invertible. As a consequence,

Γ[Xt] > KtK̄sγ[c(s,Xs− , ·)](u)K̄∗
sK

∗
t ,

for the relation order in the set of non-negative symmetric matrixes. As Γ[Xt] dominates
an invertible matrix, it is also invertible and this permits to conclude.

Now, the method can yield existence of density for Xt even when the matrix γ[c(s, x, ·)]
is everywhere singular. A example of such a situation was given in [7] §5.3.
We now turn out to study other degenerated examples.
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3.2 Lévy’s stochastic area.

This example will show that the method can detect densities even when both the matrix
γ[c] is non invertible and the Lévy measure singular.

Let X(t) = (X1(t),X2(t)) be a Lévy process with values in R
2 with Lévy measure σ.

We suppose that the hypotheses of the method are fulfilled, we shall explicit this later on.
Let us consider for the moment a general gradient on the bottom space :

f ♭ = f ′1ξ1 + f ′2ξ2

where f ′i = ∂f
∂xi
, and ξ1, ξ2 are functions defined on R

2×R which satisfy:
∫

R ξ1(·, r)ρ(dr) =
∫

R ξ2(·, r)ρ(dr) = 0,
∫

R ξ
2
1(x1, x2, r)ρ(dr) = α11(x1, x2),

∫

R ξ1(x1, x2, r)ξ2(x1, x2, r)ρ(dr) =
α12(x1, x2),

∫

R ξ
2
2(x1, x2)ρ(dr) = α22(x1, x2), so that

γ[f ] = α11f
′2
1 + 2α12f

′
1f

′
2 + α22f

′2
2 .

Let be

V = (X1(t),X2(t),

∫ t

0
X1(s−)dX2(s) −

∫ t

0
X2(s−)dX1(s)).

We have for 0 < α < t and x = (x1, x2) ∈ R
2,

ε+(α,x)V = V + (x1, x2,X1(α−)x2 + x1(X2(t) −X2(α)) −X2(α−)x1 − x2(X1(t) −X1(α))

= V + (x1, x2, x1(X2(t) − 2X2(α)) − x2(X1(t) − 2X1(α)))

because ε+V is defined P × ν×dα-a.e. and ν × dα is diffuse, so

(ε+V )♭ = (ξ1, ξ2, ξ1(X2(t) − 2X2(α)) − ξ2(X1(t) − 2X1(α)))

and

γ[ε+V ] =





α11 α12 Aα11 −Bα12

α12 α22 Aα12 −Bα22

Aα11 −Bα12 Aα12 −Bα22 A2α11 − 2ABα12 +B2α22





denoting A = (X2(t) − 2X2(α)) et B = (X1(t) − 2X1(α)).
The operator ε− gives a functional defined PN -a.e. so that for example

ε−(α,x1,x2)
(X(t)) = X(t) − ∆Xα PN (dαdx1dx2)-a.e.

This yields
ε−A = X2(t) − ∆X2(α) − 2X2(α−) let us denote it Ã

ε−B = X1(t) − ∆X1(α) − 2X1(α−) let us denote it B̃

and eventually

Γ[V ] =
∑

α 6 t





α11(∆Xα) α12(∆Xα) Ãα11(∆Xα) − B̃α12(∆Xα)

∼ α22(∆Xα) Ãα12(∆Xα) − B̃α22(∆Xα)

∼ ∼ Ã2α11(∆Xα) − 2ÃB̃α12(∆Xα) + B̃2α22(∆Xα)





the symbol ∼ denoting the symmetry of the matrix.
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3.2.1. First case.

Let us consider the case α12 = 0. We are in this case if ν possesses a density satisfying our
hypotheses which are fulfilled as soon as we assume those of Lemma 1, and under these
assumptions, with same notation, we may choose α11 = α22 = ((x2

1 + x2
2)
ψ(x)
k(x) ). We have

Γ[V ] =
∑

α 6 t

|∆Xα|2
ψ(∆Xα)

k(∆Xα)





1 0 Ã

0 0 0

Ã 0 Ã2



+ |∆Xα|2
ψ(∆Xα)

k(∆Xα)





0 0 0

0 1 B̃

0 B̃ B̃2





Hence X has a density if the dimension of the vector space spanned by









1
0

X2(t) − ∆X2(α) − 2X2(α−)



 ,





0
1

X1(t) − ∆X1(α) − 2X1(α−)



 , α ∈ JT





is equal to 3, where JT = {α ∈ [0, t], ∆Xα ∈ O}.
Let us suppose that ν(O) = +∞. Then one of the projections of O on the axes has an

infinite mass. Let us suppose it is that of X1.
The process X1(t) − ∆X1(α) − 2X1(α−) = X1(t) − X1(α) − X1(α−) cannot remain

constant for α ∈ JT since the Lévy measure of X1 is infinite, and therefore JT is dense in
R+ and each point of JT is the limit of an increasing sequence (αk) of points of JT such
that |∆X1(αk)| → 0. The constancy of X1(t) − ∆X1(α) − 2X1(α−) would imply that of
−2X1(α−) and there will be no jumps. Thus, V has a density if the Lévy measure, ν, of
X satisfies hypotheses of Lemma 1 and ν(O) = +∞.

Example 1. Let us take the Lévy measure of (X1,X2) expressed in polar coordinates as

ν(dρ, dθ) = g(θ)dθ.1]0,1[(ρ)
dρ

ρ

with g locally bounded and such that it dominates a continuous and positive function
near 0. Then V = (X1(t),X2(t),

∫ t
0 X1(s−)dX2(s) −

∫ t
0 X2(s−)dX1(s)) has a density (and

condition (0.4) of [9] or of [27] prop1.1 are not fulfilled).

3.2.2. Second case.

Let us suppose ξ2 = λ(x1, x2)ξ1. We are in this case if the measure ν is carried by a
graph in R

2 and image of a measure on R. For instance if X2 is taken to be [X1] the Lévy
measure is carried by the graph x2 = x2

1.
Then α12 = λα11 et α22 = λ2α11. We have

Γ[V ] =
∑

α 6 t

α11(∆Xα)





1 λ Ã− λB̃

λ λ2 λÃ− λ2B̃

Ã− λB̃ λÃ− λ2B̃ (Ã− λB̃)2



 .
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where λ is taken on the jumps : λ(∆Xα). If α11 6= 0, V has a density as soon as

dim L









1
λ

Ã− λB̃



 , α ∈ JT



 = 3 (17)

with Ã−λB̃ = −X2(α−)+λ(∆X(α))X1(α−)+X2(t)−X2(α)−λ(∆X(α))(X1(t)−X1(α)).

In order to study condition (17) let us reason on the set

A = {ω : dim L









1
λ

Ã− λB̃



 , α ∈ JT



 < 3}

There exist a, b, c (dépending on ω) such that ∀α ∈ JT

a+ bλ+ c(Ã− λB̃) = 0.

If the Lévy measure of X is infinite, JT is dense in R+, each point of JT is limit of an
increasing sequence (αk) of points of JT such that |∆X(αk)| → 0. If the function λ goes
to zero at zero, the process a+ c(X2(t)− 2X2(α−)) vanishes on JT . If the Lévy measure
of X2 is also infinite, X2(α−) cannot remain constant when α varies, hence c = a = b = 0.

Thus, choosing α11 = x2
1 ∧ 1 (or α11 = X2

1
ψ(x)
k(x) if one assumes hypotheses of Lemma

1), if λ tends to zero at zero, if the Lévy measure of X2 is infinite, and such that there
exists a bottom structure (R2\{0},B, σ,d, γ) allowing (BC) and (EID) on the upper space,
then V has a density.

Example 2. This applies to V = (X1(t), [X1]t,
∫ t
0 X1(s−)d[X1](s) −

∫ t
0 [X1](s−)dX1(s)).

The Lévy measure of (X1, [X1]) is carried by the curve x2 = x2
1. We have λ(x1, x2) =

2x1. We arrive to the sufficient condition : V has a density as soon as the Lévy measure
of X1 satisfies hypotheses of Lemma 1 with ν(O) = +∞.

3.3 McKean-Vlasov type equation driven by a Lévy process.

The following nonlinear stochastic differential equation

{

Xt = X0 +
∫ t
0 σ(Xs−, Ps) dYs t ∈ [0, T ]

∀s ∈ [0, T ], Ps is the probability law of Xs
(18)

where Y is a Lévy process with values in R
d, independent of X0, and σ : R

k × P(Rk) 7→
R
k×d where P(Rk) denotes the set of probability measures on R

k, generalizes the McKean-
Vlasov model. It has been studied by Jourdain, Méléard and Woyczynski [20] who proved,
by a fixed point argument, that equation (18) admits a solution as soon as σ is Lipschitz
continuous on R

k ×P(Rk) equipped with the product of the canonical metrics on R
k and

a modified Wasserstein metrics on probability measures.
When Y is a one-dimensional Lévy process and k = 1, these authors obtained the

existence of a density for Xt using a Malliavin calculus in the Bichteler-Gravereaux-Jacod
spirit under the assumptions that σ does not vanish, admits two bounded derivatives with
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respect to the first variable, and the Lévy measure of Y dominates an absolutely continuous
measure with C2-density and infinite mass, and additional technical conditions.

We would like to illustrate the lent particle method by simplifying their proof and
lightening the hypotheses.

The clever remark — evident after a while of reflection — used by these authors, and
usefull for us too, is that as soon existence for equation (18) has been proved, it may be
considered for Malliavin calculus as an equation of the form

Xt = X0 +

∫ t

0
a(Xs−, s) dYs

which is a particular case of our present study.
Let us proceed with the following hypotheses :
(i) a is C1 ∩ Lip with respect to the first variable uniformly in s and

sup
t,x

|(I +Dxa)
−1(x, t)| 6 η

(ii) the Lévy measure of Y is such that a Dirichlet structure may be chosen such that
(H0) and (EID) be fulfilled on the Poisson space (we shall detail this assumption later on).

By the lent particle method we obtain

Γ[Xt] = Kt

[

∑

α∈JT

Kαa(Xα−, α)γ[j, j∗ ](∆Yα)a∗(Xα−, α)K
∗
α

]

K∗
t (19)

where JT is the random set of jump times of Y before t, γ is the carré du champ of the
bottom structure, j is the identity map on R

d, Kt is the solution of

Kt = I +

∫ t

0
dZsKs−

where dZs =
∑d

i=1Dxa.i(Xs−, s) dY
i
s , and K the inverse of K.

As a consequence of formula (19) we can conclude that Xt possesses a density on R
k

under the following hypotheses :
1o) the Lévy measure of Y satisfies hypotheses of Lemma 1 with ν(O) = +∞. Then

we may choose the operator γ to be

γ[f ] =
ψ(x)

k(x)

d
∑

i=1

x2
i

d
∑

i=1

(∂if)2 for f ∈ C∞
0 (Rd)

and the identity map j belongs to d and γ[j, j∗](x) = ψ(x)
k(x) |x|2I. (see [7] for a weaker

assumption and the proof of (EID) on the Poisson space).
2o) a satisfies (i), is continuous with respect to the second variable at 0, and such that

the matrix aa∗(X0, 0) is invertible.
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3.4 Stable-like processes.

The passage between a Lévy kernel ν(t, x, dy) with which is expressed the generator of a
Markov process with jumps, with standard notation

Lf(t, x) =
1

2

d
∑

ij=1

aij(t, x)∂
2
ijf(x) +

d
∑

i=1

∂if(x)

+

∫

Rd\{0}

(

f(x+ y) − f(x) − 1|y|<1

d
∑

i=1

∂if(x)yi

)

ν(t, x, dy)

(20)

to the Poisson random measure N(dt, du) to be used for the SDE able to yield the Markov
process as solution

dXt = σ(t,Xt)dBt + b(t,Xt)dt +

∫

c(t,Xt−, u)Ñ (dt, du)

is theoretically always possible thanks to a result of El Karoui-Lepeltier [13]. But this
general procedure yields for c(t, x, u) a function with few regularity (as the theorem al-
lowing to simulate any probability law on R

d thanks to a random variable defined on [0, 1]
equipped with the Lebesgue measure, cf [8] Chap. I Thm A.3.1).

The study of the correspondence between ν(t, x, dy) and the pair (c(t, x, u), N(dt, du))
has been deepened by Tsuchiya [33] in order to find conditions on ν(t, x, dy) such that
a function c(t, x, u) may be found verifying the Lipschitz hypotheses guaranteeing the
existence of a solution to the SDE, hence of the Markov process with generator (20).

He applies this study to the case of so-called stable-like processes of order α(x) intro-
duced in dimension one by Bass [1], whose generator may be symbolically written

L = −(−∆)
α(x)

2 (21)

and he obtains the existence of the Markov process for α Lipschitz and such that 0 6 α(x) <
2. (see also [19] Chap. 4).

This example is pushed further by Hiraba [16] who studies the density of the corre-
sponding Markov semi-group using the Malliavin calculus in combining the approaches of
[2] and [21]. He obtains the existence of a density under the hypothesis that α(x) is C4

bounded with bounded derivatives and 0 < λ1 6 α(x) 6 λ2 < 2 (see also Negoro [25] for
an analytic proof of this result under C∞ assumptions).

The method of Dirichlet forms allows several improvements of this subject. First about
the correspondence between ν(t, x, dy) and the pair (c(t, x, u), N(dt, du)) it is not necessary
to deal with a Poisson measure whose intensity be the Lebesgue measure but only that it
carries a Dirichlet form satisfying hypotheses (H0) to (H3). The choice of the operator γ
is also flexible.

Second the existence of densities may be performed under weaker assumptions on the
function c(t, x, u).

Let us write explicitly this example. The operator

Af(x) =

∫

Rd\{0}
(f(x+ y) − f(x) −Dxf(x).y1|y|<1)ζ(α(x))

dy

|y|1+α(x)
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represents the symbol (21) if Aeiu.x = eiu.x(−|u|α(x)) and this is realized if the function ζ
is such that

ζ(β)

∫

Rd\{0}
(1 − cos ξ.y)

dy

|y|d+β = |ξ|β

what gives (cf [16])

ζ(β) = (sin
πβ

2
)
Γ(1 + β)Γ(d+β2 )

π
d+1
2 Γ(1+β

2 )
.

As these authors let us except the large jumps for the sake of simplicity. We have to obtain
the operator

A0f(x) =

∫

|y|<u0

(f(x+ y) − f(x) −Dxf.y)K(x, dy)

with

K(x,A) = ζ(α(x))

∫

Sd−1

dσ

∫ ∞

0
1A\{0}(rσ)

dr

r1+α

thanks to an SDE of the form

Xt = x+

∫ t

0

∫

Sd−1×R+

c(Xs−, σ, z)Ñ (ds, dσ, dz).

Here Sd−1 is the unit sphere in R
d and dσ the area measure. If we choose the intensity of N

to be dtdσdz on R+×Sd−1×R+ and the function c(x, σ, z) = C(x, z)σ, the condition is that
the image of the measure dz on R+ by the function C(x, z) be the measure ζ(α(x)) dr

r1+α(x)

and this yields the function

c(x, σ, z) =

(

α(x)z

ζ(α(x))
+ u

−α(x)
0

)− 1
α(x)

σ.

Our hypotheses on the bottom structure are fulfilled, we may choose γ[j, j∗] = (|x|2 ∧ 1)I
on R

d. If we suppose

α of class C1 ∩ Lip and 0 < λ1 6 α(x) 6 λ2 < 2 (22)

the assumptions R1a) and R1b) are fulfilled and the condition R1c) has been proved by
Hiraba ([16] Remark 3.6 p. 43 et seq.).

We can conclude that under hypotheses (22) there exists a Markov process whose
transition semi-group admits A0 as generator and this semi-group possesses a density.

4 Comments.

The simplest case of SDE with jumps is the case of Lévy processes themselves. If Y is a
Lévy process with values in R

d the method gives

Γ[Yt, Y
∗
t ] =

∑

α∈JT

γ[j, j∗](∆Yα)

where j is the identity. In this case it does not seem that one could do better than the
Sato criterion [29] (or [30] Thm 27.7). This induces the following natural question: when
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a Lévy measure ν is carried by a Lipschitzian curve in R
d and carries a Dirichlet form

satisfying
∑

s 6 t γ[j, j
∗](∆Ys) > 0 a.s. is it necessary such that ν̃⋆n ≪ λd for some n where

ν̃ = (|x|2 ∧ 1)ν ?
When dealing with SDE’s driven by Lévy processes our approach supposes some reg-

ularity for the Lévy measure of the driver process because of the existence of the bottom
Dirichlet form and technical condition (H0). It does not need this Lévy measure possesses
a density (cf [7] §2.3 and Example 2 above). Then the existence of density for the solution
is obtained under weaker hypotheses than those of Léandre (cf [21] [22]) because there is
no growth condition for the Lévy measure near the origin, and also because we do not need
that the measures on R from which the Lévy measure is a sum of images, have C1-densities.
A similar remark may be done when comparing our hypotheses with those of Ishikawa and
Kunita [18] who suppose non degeneracy of the Lévy measure of the driver Lévy process.
As said in the introduction, the main advantage of the Dirichlet forms method is to allow
only C1 ∩ Lip coefficients. Now these authors obtain also smoothness results that we do
not discuss in the present paper.

In another work we are studying the extension of our arguments to smoothness results
thanks to the fact that the gradient defined by formula (4) may be easily iterated.

Lévy processes and random Poisson measures do possess strong regularizing properties
due to the fact that the jumps are independent of the strict past (cf [7] examples 5.1 to 5.3).
This phenomenon has been deepened by Fournier and Giet [14] who obtained density for
the solution of an SDE driven by a Lévy process supposing only an absolutely continuous
Lévy measure and without using the Malliavin calculus. Even if their hypotheses on the
coefficients are slightly stronger than ours, this shows that the Malliavin calculus in the
spirit of [2] which seems to be the most powerful for this aim, have to be crossed with
other techniques in order to capture all regularizing properties of Lévy processes.

In this perspective, we believe that the simplification brought by the lent particle
method gives a tool easier to adapt with various arguments.
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