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Introduction

Dunkl theory generalizes classical Fourier analysis on R N . It started twenty years ago with Dunkl's seminal work [START_REF] Dunkl | Differential-Difference operators associated to reflextion groups[END_REF] and was further developed by several mathematicians. See for instance the surveys [START_REF] Rösler | Dunkl operators : theory and applications[END_REF][START_REF]Harmonic and stochastic analysis of[END_REF] and the references cited therein.

In this setting, the Paley-Wiener theorem is known to hold for balls centered at the origin. In [START_REF] De Jeu | Paley-Wiener theorems for the Dunkl transform[END_REF], a Paley-Wiener theorem was conjectured for convex neighborhoods of the origin, which are invariant under the underlying reflection group, and was partially proved. Our first result in Section 3 is a proof of this conjecture in the crystallographic case, following the third approach in [START_REF] De Jeu | Paley-Wiener theorems for the Dunkl transform[END_REF].

Generalized translations were introduced in [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF] and further studied in [START_REF] Trimèche | Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators[END_REF][START_REF] Rösler | A positive radial product formula for the Dunkl kernel[END_REF][START_REF] Thangavelu | Convolution operator and maximal function for the Dunkl transform[END_REF]. Apart from their abstract definition, we lack precise information, in particular about their integral representation (τ x f )(y) = R N f (z) dγ x,y (z) , which was conjectured in [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF] and established in few cases, for instance in dimension N = 1 or when f is radial. Our second result in Section 4 is an optimal bound for the integral R |dγ x,y (z)| in dimension N = 1 , improving upon earlier results in [START_REF] Rösler | Bessel-type signed hypergroup on R, in Probability measures on groups and related structures XI[END_REF][START_REF] Thangavelu | Convolution operator and maximal function for the Dunkl transform[END_REF]. Our bound depends on the multiplicity k ≥ 0 and tends from below to √ 2 , as k → +∞ . Our third result in Section 5 deals with the support of the distribution γ x,y in higher dimension, that we determine rather precisely in the crystallographic case.

Background

In this section, we recall some notations and results in Dunkl theory and we refer for more details to the articles [START_REF] Dunkl | Differential-Difference operators associated to reflextion groups[END_REF][START_REF] De Jeu | The Dunkl transform[END_REF] or to the surveys [START_REF] Rösler | Dunkl operators : theory and applications[END_REF][START_REF]Harmonic and stochastic analysis of[END_REF].

Let G ⊂ O(R N ) be a finite reflection group associated to a reduced root system R and k : R → [0, +∞) a G-invariant function (called multiplicity function). Let R + be a positive root subsystem, Γ + the corresponding open positive chamber, Γ + its closure, Γ + = α∈R + R + α the dual cone, and let us denote by x + the intersection point of any orbit G.x in R N with Γ + .

The Dunkl operators T ξ on R N are the following k-deformations of directional derivatives ∂ ξ by difference operators :

T ξ f (x) = ∂ ξ f (x) + α∈R + k(α) α, ξ f (x)-f (σα. x) α, x
, where σ α . x = x-α, x 2 |α| 2 α denotes the reflection with respect to the hyperplane orthogonal to α. The Dunkl operators are antisymmetric with respect to the measure w(x) dx with density

w(x) = α∈R + | α, x | 2 k(α)
. The operators ∂ ξ and T ξ are intertwined by a Laplace-type operator

V f (x) = R N f (y) dµ x (y) (1)
associated to a family of compactly supported probability measures { µ x | x ∈ R N } . Specifically, µ x is supported in the the convex hull

C x = co(G.x) .
For every λ ∈ C N , the simultaneous eigenfunction problem

T ξ f = λ, ξ f ∀ ξ ∈ R N has a unique solution f (x) = E(λ, x) such that E(λ, 0) = 1, which is given by (2) E(λ, x) = V (e λ, . )(x) = R N e λ,y dµ x (y) ∀ x ∈ R N .
Furthermore λ → E(λ, x) extends to a holomorphic function on C N and the following estimate holds :

|E(λ, x)| ≤ e (Re λ) + , x + ∀ λ ∈ C N , ∀ x ∈ R N .
In dimension N = 1, these functions can be expressed in terms of Bessel functions. Specifically,

E(λ, x) = j k-1 2 (λ x) + λ x 2k+1 j k+ 1 2 (λ x) , where j ν (z) = Γ(ν +1) +∞ n=0 (-1) n n! Γ(ν+n+1) z 2 ) 2n are normalized Bessel functions.
The Dunkl transform is defined on L 1 (R N , w(x)dx) by

Df (ξ) = 1 c R N f (x) E(-i ξ, x) w(x) dx , where c = R N e -|x| 2 2 w(x) dx .
We list some known properties of this transform : (i) The Dunkl transform is a topological automorphism of the Schwartz space S(R N ).

(ii) (Plancherel Theorem) The Dunkl transform extends to an isometric automorphism of L 2 (R N , w(x)dx). (iii) (Inversion formula) For every f ∈ S(R N ), and more generally for every f ∈ L 1 (R N , w(x)dx) such that Df ∈ L 1 (R N , w(ξ)dξ), we have

f (x) = D 2 f (-x) ∀ x ∈ R N .
(iv) (Paley-Wiener theorem) The Dunkl transform is a linear isomorphism between the space of smooth functions f on R N with supp f ⊂ B(0, R) and the space of entire functions h on C N such that

(3) sup ξ∈C N (1+|ξ|) M e -R | Im ξ | |h(ξ)| < +∞ ∀ M ∈ N .

A geometric Paley-Wiener theorem

In this section, we prove a geometric version of the Paley-Wiener theorem, which was looked for in [START_REF] De Jeu | Paley-Wiener theorems for the Dunkl transform[END_REF][START_REF] Trimèche | Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators[END_REF][START_REF] De Jeu | Some remarks on a proof of geometrical Paley-Wiener theorems for the Dunkl transform[END_REF], under the assumption that G is crystallographic. The proof consists merely in resuming the third approach in [START_REF] De Jeu | Paley-Wiener theorems for the Dunkl transform[END_REF] and applying it to the convex sets considered in [START_REF] Anker | L p Fourier multipliers on Riemanian symmetric spaces of the noncompact type[END_REF][START_REF] Anker | The spherical Fourier transform of rapidly decreasing functions (a simple proof of a characterization due to Harish-Chandra, Helgason, Trombi and Varadarajan)[END_REF][START_REF] Anker | Handling the inverse spherical Fourier transform[END_REF][START_REF] Anker | Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces[END_REF] instead of the convex sets considered in [START_REF] Opdam | Harmonic analysis for cetain representations of graded Hecke algebras[END_REF]. Recall that the second family consists of the convex hulls

C Λ = co(G.Λ)
of G-orbits G.Λ in R N , while the first family consists of the polar sets

C Λ = { x ∈ R N | x, g.Λ ≤ 1 ∀ g ∈ G } . Λ Λ Figure 1. The sets C Λ and C Λ for the root system A 1 ×A 1 Λ Λ Figure 2.
The sets C Λ and C Λ for the root system B 2

Before stating the geometric Paley-Wiener theorem, let us make some remarks about the sets C Λ and C Λ . Firstly, they are convex, closed, G-invariant and the following inclusion holds :

C Λ ⊂ |Λ| 2 C Λ .
Secondly, we may always assume that Λ = Λ + belongs to the closed positive chamber Γ + and, in this case, we have

C Λ ∩ Γ + = Γ + ∩ Λ -Γ + , C Λ ∩ Γ + = { x ∈ Γ + | Λ, x ≤ 1 } .
Thirdly, on one hand, every G-invariant convex subset in R N is a union of sets C Λ while, on the other hand, every G-invariant closed convex subset in R N is an intersection of sets C Λ . For instance,

B(0, R) = |Λ|=R C Λ = |Λ|=R -1 C Λ .
Fourthly, we shall say that Λ ∈ Γ + is admissible if the following equivalent conditions are satisfied :

(i) Λ has nonzero projections in each irreducible component of (R N , R), (ii) C Λ is a neighborhood of the origin, (iii) C Λ is bounded.
In this case, we may consider the gauge

χ Λ (ξ) = max x∈C Λ x, ξ = min { r ∈ [ 0, +∞) | ξ ∈ r C Λ } on R N .
Theorem 3.1. Assume that Λ ∈ Γ + is admissible. Then the Dunkl transform is a linear isomorphism between the space of smooth functions f on R N with supp f ⊂ C Λ and the space of entire functions h on C N such that

(4) sup ξ∈C N (1+|ξ|) M e -χ Λ (Im ξ) |h(ξ)| < +∞ ∀ M ∈ N .
Proof. Following [START_REF] De Jeu | Paley-Wiener theorems for the Dunkl transform[END_REF], this theorem is first proved in the trigonometric case, which explains the restriction to crystallographic groups, and next obtained in the rational case by passing to the limit. The proof of Theorem 3.1 in the trigonometric case is similar to the proof of the Paley-Wiener Theorem in [START_REF] Opdam | Harmonic analysis for cetain representations of graded Hecke algebras[END_REF][START_REF] Opdam | Lecture notes on Dunkl operators for real and complex reflection groups[END_REF], and actually to the initial proof of Helgason for the spherical Fourier transform on symmetric spaces of the noncompact type. This was already observed in [START_REF] Br | Contributions to the hypergeometric function theory of Heckman and Opdam (sharp estimates, Schwartz space, heat kernel)[END_REF] and will be developed below for the reader's convenience. The limiting procedure, as far as it is concerned, is described thoroughly in [START_REF] De Jeu | Paley-Wiener theorems for the Dunkl transform[END_REF] and needs no further explanation. Thus assume that h is an entire function on C N satisfying (4) and, by resuming the proof of [START_REF] Opdam | Harmonic analysis for cetain representations of graded Hecke algebras[END_REF]Theorem 8.6 (2)], let us show that its inverse Cherednik transform [START_REF] Dunkl | Differential-Difference operators associated to reflextion groups[END_REF] f (x) = const.

R N h(ξ) E(iξ, x) w(ξ) dξ
vanishes outside C Λ . Firstly, one may restrict by G-equivariance to x = g 0 .x + , where x + ∈ Γ + C Λ and g 0 denotes the longest element in G, which interchanges Γ + and -Γ + . Secondly, by expanding

α∈R + ( α, ξ -k α ) E(ξ, x) = g∈G q∈Q + c(-g.ξ) E q (g, g.ξ) e g.ξ+̺+q, x (5) 
becomes

f (x) = const. g∈G det g q∈Q + f g,q (x) e ̺+q, x
, where (6)

f g,q (x) = R N h(g -1 .ξ) E q (g, iξ) e i ξ, x α∈R + Γ(i α, ξ +kα ) Γ(i α, ξ +1)
dξ .

Thirdly, one shows that all expressions (6) vanish, by shifting the contour of integration from R N to R N + i t g 0 .Λ with t > 0, which produces an exponential factor e -ct with c = Λ, x + -1 > 0 , and by letting t → +∞ .

Since every G-invariant convex compact neighborhood of the origin in R N is the intersection of admissible sets C Λ , Theorem 3.1 generalizes as follows. 

sup ξ∈C N (1+|ξ|) M e -χ(Im ξ) |h(ξ)| < +∞ ∀ M ∈ N . Remark 3.3. Notice that the Dunkl transform D always maps C ∞ C (R N ) into H χ (C N
) and that the assumption that G is crystallographic is only used to prove that D is onto.

L p bounds for generalized translations in dimension 1

Dunkl translations are defined on S(R N ) by

(τ x f )(y) = 1 c R N Df (ξ) E(iξ, x) E(iξ, y) w(ξ) dξ ∀ x, y ∈ R N .
They have an explicit integral representation [START_REF] Rösler | Bessel-type signed hypergroup on R, in Probability measures on groups and related structures XI[END_REF] in dimension N = 1 : Proposition 4.1. The following inequality holds, for every x, y ∈ R :

(τ x f )(y) = R f (z) dγ x,y (z) , where (7) dγ x,y (z) =      γ(x, y, z) |z| 2k dz if x, y ∈ R * dδ y (z) if x = 0 dδ x (z) if y = 0 is a signed measure such that R dγ x,y (z) = 1 . Specifically, γ(x, y, z) = d σ(x, y, z) ρ(|x|, |y|, |z|) 1l I |x|,|y| (|z|) ∀ x, y, z ∈ R * , where d = Γ(k+ 1 2 ) √ π Γ(k) , σ(x, y, z) = 1 -x 2 + y 2 -z 2 2 x y + z 2 + y 2 -x 2 2 z y + x 2 + z 2 -y 2 2 x z = (z+x+y) (z+x-y) (z-x+y) 2 x y z ∀ x, y, z ∈ R * , ρ(a, b, c) = { c 2 -(a-b) 2 } k-1 { (a+b) 2 -c 2 } k-1 ( 2 a b c ) 2k-1 = ( 2 b 2 c 2 + 2 a 2 c 2 + 2 a 2 b 2 -a 4 -b 4 -c 4 ) k-1 ( 2 a b c ) 2k-1
(9) R dγ x,y (z) ≤ A k = √ 2 { Γ(k+ 1 2 )} 2 Γ(k+ 1 4 ) Γ(k+ 3 4 ) .
Actually there is equality if

x = y ∈ R * . Moreover A k < -→ √ 2 as k → +∞ .
Remark 4.2. This result improves earlier bounds obtained in [START_REF] Rösler | Bessel-type signed hypergroup on R, in Probability measures on groups and related structures XI[END_REF] and [START_REF] Thangavelu | Convolution operator and maximal function for the Dunkl transform[END_REF], which were respectively 4 and 3 . Case 2 : Assume that x y > 0 . By symmetry, we may reduce to 0 < x ≤ y . Then

R |dγ x,y (z)| = 0 -∞ |dγ x,y (z)| + +∞ 0 |dγ x,y (z)| = 2 d y+x y-x x + y 2 x y z z 2 -x 2 -y 2 + 2 x y 2 x y z k x 2 + y 2 + 2 x y -z 2 2 x y z k-1 z 2k dz .
After performing the change of variables z = x 2 + y 2 -2 x y cos θ and setting y = s x , we get

(10) R |dγ x,y (z)| = Γ(k+ 1 2 ) √ π Γ(k) (1+s) π 0 (1 -cos θ) sin 2k-1 θ √ 1 + s 2 -2 s cos θ dθ .
Denote by F (s) the right hand side of [START_REF] De Jeu | Some remarks on a proof of geometrical Paley-Wiener theorems for the Dunkl transform[END_REF]. Since

F ′ (s) = Γ(k+ 1 2 ) √ π Γ(k) (1-s) π 0 sin 2k+1 θ (1 + s 2 -2 s cos θ) 3 2
dθ is nonpositive, F (s) is a decreasing function on [ 1, +∞ ), which reaches its maximum at s = 1 . Let us compute it :

A k = F (1) = √ 2 Γ(k+ 1 2 ) √ π Γ(k) π 0 (1-cos θ) k-1 2 (1+cos θ) k-1 sin θ dθ = 2 2k Γ(k+ 1 2 ) √ π Γ(k) 1 0 t k-1 2 (1-t) k-1 dt = 2 2k Γ(k+ 1 2 ) √ π Γ(k) B(k+ 1 2 , k) = 2 2k { Γ(k+ 1 2 )} 2 √ π Γ(2k+ 1 2 ) = √ 2 Γ(k+ 1 2 ) Γ(k+ 1 4 ) Γ(k+ 1 
2 ) Γ(k+ 3 4 ) , after performing the change of variables t = 1-cos θ 2 and using standard properties of the beta and gamma functions.

Finally let us show that

A k < -→ √ 2 as k → +∞ . Write A k = √ 2 G(k+ 1 4 ) G(k+ 1 2 ) , where G(u) = Γ(u+ 1 4 ) Γ(u) ∀ u > 0 .
Since the logarithmic derivative Γ ′ Γ of the gamma function is a strictly increasing analytic function on (0, +∞), the logarithmic derivative

G ′ (u) G(u) = Γ ′ (u+ 1 4 ) Γ(u+ 1
is positive. Hence G is an strictly increasing function and A k < √ 2 . On the other hand, using Stirling's formula

Γ(u) ∼ √ 2π u u-1 2 e -u as u → +∞ , we get G(k+ 1 4 ) ∼ G(k+ 1 2 ) hence A k → √ 2 , as k → +∞ .
As a first consequence, we obtain the L 1 → L 1 operator norm of Dunkl translations in dimension N = 1 .

Corollary 4.3. Let x ∈ R * . Then τ x is a bounded operator on L 1 (R, |x| 2k dx), with τ x L 1 →L 1 = A k .
Proof. The inequality τ x L 1 →L 1 ≤ A k follows from ( 9), together with [START_REF] De Jeu | The Dunkl transform[END_REF], and it remains for us to prove the converse inequality. By symmetry, we may assume that x > 0 . Since

A k = lim y→x R |γ(x, y, z)| |z| 2k dz ,
for every 0 < ε < A k , there exists 0 < η < x such that, for every y

∈ [x-η, x+η], (11) 
R |γ(x, y, z)| |z| 2k dz > A k -ε .
Let f be a nonnegative measurable function on R such that

supp f ⊂ [-x-η, -x+η ] and f L 1 = R f (z) |z| 2k dz = 1 . Since γ(x, y, z) ≥ 0 ∀ y < 0 , ∀ z < 0 , γ(x, y, z) ≤ 0 ∀ y > 0 , ∀ z < 0 , we have (τ x f )(y) = -x+η -x-η f (z) |γ(x, y, z)| |z| 2k dz .
Hence, using ( 8) and [START_REF] Opdam | Harmonic analysis for cetain representations of graded Hecke algebras[END_REF], Proof. The proof is straightforward, via the Plancherel formula, and generalizes to higher dimensions. On one hand, the inequality τ x L 2 →L 2 ≤ 1 follows from the estimate |E(iξ, x)| ≤ 1 . On the other hand, let

τ x f L 1 = R (τ x f )(y) |y| 2k dy = -x+η -x-η R |γ(x, -z, -y)| |y| 2k dy f (z) |z| 2k dz is bounded from below by A k -ε . Consequently τ x L 1 →L 1 ≥ A k -ε
f ε (x) = ε k+ 1 2 f (εx)
be a rescaled normalized function in L 2 (R, |x| 2k dx). Then

f ε L 2 = f L 2 = 1 while τ x f ε 2 L 2 = R |E(iξ, x)| 2 ε -2k-1 |Df (ε -1 ξ)| 2 |ξ| 2k dξ = R |E(iεξ, x)| 2 |Df (ξ)| 2 |ξ| 2k dξ tends to R |Df (ξ)| 2 |ξ| 2k dξ = f 2 L 2 = 1
as ε → 0 . This concludes the proof of the lemma.

Eventually, Corollary 4.3 and Lemma 4.4 imply the following result, by interpolation and duality. 

τ x L p →L p ≤ A 2 | 1 p -1 2 |N k
for every x ∈ R N and 1 ≤ p ≤ ∞ .

A support theorem for generalized translations

As mentioned in the introduction, we lack information about Dunkl translations in general. In this section, we locate more precisely the support of the distribution γ x,y , f = (τ x f )(y) which is known [START_REF] Trimèche | Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators[END_REF] to be contained in the closed ball of radius |x|+|y| . (ii) If G is crystallographic, then the support of γ x,y is more precisely contained in z ∈ R N z + x + + y + , z + y + + g 0 .x + and x + + g 0 .y + .

Here g 0 denotes the longest element in G, which interchanges the chambers Γ + and -Γ + , and the partial order on R N associated to the cone Γ + :

a b ⇐⇒ b -a ∈ Γ + .
x + y

xy Figure 3. Support of γ x,y for the root system A 1 ×A 1

x + y

xy Proof. Let h ∈ C ∞ c (R N ) be an auxiliary radial function such that

R N h(x) w(x) dx = 1
and supp h ⊂co(G.u), where u ∈ Γ + is a unit vector. For every ε > 0 and x, y, z ∈ R N , set If G is crystallogaphic, we use Corollary 3.2 (actually the third version of the Paley-Wiener theorem in [START_REF] De Jeu | Paley-Wiener theorems for the Dunkl transform[END_REF]), and deduce from ( 12) that the function z -→ γ ε (x, y, z) is supported in co {G.(x + + y + + ε u)} = co(G.x) + co(G.y) + ε co(G.u) .

γ ε (x, y, z) = 1 c 2 R N Dh(ε ξ) E(i ξ, x) E(i ξ, y) E k (-i ξ, z) w(ξ) dξ .

Equivalently,

γ ε (x, y, z) = 0 =⇒ z + ≺ x + + y + + εu .

Using the symmetries (13), we see that γ ε (x, y, z) = 0 implies also -g 0 .x + ≺ -g 0 .z + + y + + εu i.e. z + ≻ x + + g 0 .y + + εg 0 .u , -g 0 .y + ≺ -g 0 .z + + x + + εu i.e. z + ≻ g 0 .x + + y + + εg 0 .u . We conclude again by letting ε → 0 .

The conclusion of

Corollary 3 . 2 (

 32 Geometric Paley-Wiener Theorem). Let C be a G-invariant convex compact neighborhood of the origin in R N and χ(ξ) = max x∈C x, ξ the dual gauge. Then the Dunkl transform is a linear isomorphism between the space C ∞ C (R N ) of smooth functions f on R N with supp f ⊂ C and the space H χ (C N ) of entire functions h on C N such that

∀

  a, b, c > 0 , and I a,b denotes the interval [ | a-b |, a+b ] . Notice the symmetries , x, z) , γ(-x, -y, -z) , γ(-z, y, -x) = γ(x, -z, -y) .

Proof.Case 1 :

 1 Let x, y ∈ R * . Assume that x y < 0 . Then | |x|-|y| | = | x+y | and |x|+|y| = | x-y | , hence σ(x, y, z) 1l I |x|,|y| (|z|) = z + x + y z (x-y) 2 -z 2 -2 x y 1l I |x|,|y| (|z|) and γ x,y are positive. Thus R |dγ x,y (z)| = R dγ x,y (z) = 1 .

Lemma 4 . 4 .

 44 and we conclude by letting ε → 0 . Let us next compute the L 2 → L 2 operator norm of Dunkl translations. Let x ∈ R . Then τ x is a bounded operator on L 2 (R, |x| 2k dx), with τ x L 2 →L 2 = 1 .

Corollary 4 . 5 ..Remark 4 . 6 .

 4546 Let x ∈ R and 1 ≤ p ≤ ∞ . Then τ x is a bounded operator on L p (R, |x| 2k dx), with τ x L p →L p ≤ A 2 |1/p-1/2| k In the product case, where G = Z N2 acts on R N , we have

Theorem 5 . 1 .

 51 (i) The distribution γ x,y is supported in the spherical shell z ∈ R N |x|-|y| ≤ |z| ≤ |x|+|y| .

Figure 4 .

 4 Figure 4. Support of γ x,y for the root system B 2

Firstly, according to ( 3 )

 3 and (2), ξ -→ Dh(ε ξ) E(i ξ, x) E(i ξ, y) is an entire function on C N satisfying[START_REF] Opdam | Lecture notes on Dunkl operators for real and complex reflection groups[END_REF] Dh(ε ξ) E(i ξ, x) E(i ξ, y) ≤ C M (1+|ξ|) -M e -g 0 .(x + +y + +εu), (Im ξ) + , where g 0 is the longest element in G, which interchanges the chambers Γ + and -Γ + . Secondly,γ x,y , f = 1 c R N Df (ξ) E(i ξ, x) E(i ξ, y) w(ξ) dξ = lim ε→0 1 c R N Dh(ε ξ) Df (ξ) E(i ξ, x) E(i ξ, y) w(ξ) dξ = lim ε→0 R N f (z) γ ε (x, y, z) w(z) dzi.e. the distribution γ x,y is the weak limit of the measures γ ε (x, y, z) w(z) dz . Thirdly, notice the symmetries(13) γ ε (x, y, z) =     γ ε (y, x, z) , γ ε (g.x, g.y, g.z) ∀ g ∈ G ∪ {-Id} , γ ε (-z, y, -x) = γ ε (x, -z, -y) .

  Theorem 5.1 in the crystallographic case is obtained by letting ε → 0 . If G it not crystallographic, we can only use the spherical Paley-Wiener theorem and we obtain this way that γ ε (x, y, z) + |y| + ε , |x| ≤ |z| + |y| + ε , |y| ≤ |x| + |z| + ε , hence |x| -|y|ε ≤ |z| ≤ |x| + |y| + ε .

) -Γ ′ (u) Γ(u)
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