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THREE RESULTS IN DUNKL ANALYSIS

BECHIR AMRI, JEAN-PHILIPPE ANKER & MOHAMED SIFI

In memory of Andrzej Hulanicki (1933-2008),
a distinguished polish mathematician, a guide and a friend,
who has left many orphans in Wroctaw and around the world.
We miss you.

ABSTRACT. In this article, we establish first a geometric Paley—Wiener theorem for the
Dunkl transform in the crystallographic case. Next we obtain an optimal bound for the
LP — LP? norm of Dunkl translations in dimension 1. Finally we describe more precisely
the support of the distribution associated to Dunkl translations in higher dimension.

1. INTRODUCTION

Dunkl theory generalizes classical Fourier analysis on RY. It started twenty years ago
with Dunkl’s seminal work [[j] and was further developed by several mathematicians. See
for instance the surveys [[@, []] and the references cited therein.

In this setting, the Paley—Wiener theorem is known to hold for balls centered at the
origin. In [[J], a Paley-Wiener theorem was conjectured for convex neighborhoods of
the origin, which are invariant under the underlying reflection group, and was partially
proved. Our first result in Section J is a proof of this conjecture in the crystallographic
case, following the third approach in [f].

Generalized translations were introduced in [[4] and further studied in [B1), [7, ).
Apart from their abstract definition, we lack precise information, in particular about
their integral representation

(r=f)(y) = RNf (2) day(2) ,

which was conjectured in [[4] and established in few cases, for instance in dimension
N =1 or when f is radial. Our second result in Section [] is an optimal bound for the

integral
[ o)
R

in dimension N =1, improving upon earlier results in [[J, B3]. Our bound depends on
the multiplicity k>0 and tends from below to v/2, as k — +oo. Our third result in
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Section [ deals with the support of the distribution ~,, in higher dimension, that we
determine rather precisely in the crystallographic case.

2. BACKGROUND

In this section, we recall some notations and results in Dunkl theory and we refer for
more details to the articles [, §] or to the surveys [[I{, [q.

Let G € O(RY) be a finite reflection group associated to a reduced root system R
and k : R — [0, +00) a G—invariant function (called multiplicity function). Let Rt be
a positive root subsystem, I', the corresponding open positive chamber, T, its closure,
I+= Y aer+ Rya the dual cone, and let us denote by x, the intersection point of any
orbit G.o in RN with T .

The Dunkl operators T; on RY are the following k—deformations of directional deriva-
tives 0¢ by difference operators:

Tef (@) = 0cf () + X o k@) {0, € Lbclises)
<Oé, Z‘>
2|
to a. The Dunkl operators are antisymmetric with respect to the measure w(z) dz with

density
w(@) = [T aeps |, z) 2K
The operators 0: and T are intertwined by a Laplace-type operator

(1) Vf(x) = RNf (y) dpa(y)

associated to a family of compactly supported probability measures {p,|z € RY}.
Specifically, p, is supported in the the convex hull

C*= co(G.x).
For every A€ C¥, the simultaneous eigenfunction problem
Tef=(\&f  VEERY
has a unique solution f(x)=E(A,z) such that E(X,0)=1, which is given by

2) B\ z) = V(e®))(z) = /R MV d(y) Y reRN,

where o,. 0 = 1r— a denotes the reflection with respect to the hyperplane orthogonal

Furthermore \ — E(\,x) extends to a holomorphic function on CV and the following
estimate holds:
|E(\, z)| < @V v e vzeRY.
In dimension N = 1, these functions can be expressed in terms of Bessel functions.

Specifically,
where N

: o -n" z\2n

Ju(z) = T'(v+1) ano m (5)2

are normalized Bessel functions.
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The Dunkl transform is defined on L*(R™, w(x)dx) by

/ F() B(—i€,2)w(z) dz,

c :/ e 2 w(r)dr.
RN

We list some known properties of this transform :

where

(i) The Dunkl transform is a topological automorphism of the Schwartz space S(RY).

(ii) (Plancherel Theorem) The Dunkl transform extends to an isometric automor-
phism of L*(RY, w(z)dx).

(iii) (Inversion formula) For every f € S(RY), and more generally for every f €
LY RN w(z)dz) such that Df € LY (RY, w(£)dE), we have

f(x) =D*(—z) VazecRY.

(iv) (Paley-Wiener theorem) The Dunkl transform is a linear isomorphism between
the space of smooth functions f on RY with supp f C B(0, R) and the space of
entire functions h on C¥ such that

(3) SUP gecNy (1+\5\)M6‘R|Im5‘\h(£)\ < +00 VMeN.
3. A GEOMETRIC PALEY-WIENER THEOREM

In this section, we prove a geometric version of the Paley—Wiener theorem, which was
looked for in [@, BT, 0], under the assumption that G is crystallographic. The proof
consists merely in resuming the third approach in [[] and applying it to the convex sets
considered in [, B, B, f] instead of the convex sets considered in [[I]. Recall that the
second family consists of the convex hulls

C™ = co(G.\)
of G-orbits G.A in R, while the first family consists of the polar sets
Cpr={2eRY | (z,9.A\)<1 ¥V geG}.

FIGURE 1. The sets C* and C, for the root system A;x A,
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FIGURE 2. The sets C* and C, for the root system B,

Before stating the geometric Paley—Wiener theorem, let us make some remarks about
the sets C* and C,. Firstly, they are convex, closed, G-invariant and the following
inclusion holds:

CA C ‘A‘z C A -
Secondly, we may always assume that A=A, belongs to the closed positive chamber T';
and, in this case, we have

CAAT, = To n(A-T9),
CyNTy = {wel | (Az) <1},
Thirdly, on one hand, every G-invariant convex subset in R" is a union of sets C* while,

on the other hand, every G-invariant closed convex subset in RY is an intersection of
sets C. For instance,

e A
BOR) = J 0" =y Cn
Fourthly, we shall say that A €T, is admissible if the following equivalent conditions are

satisfied :

(i) A has nonzero projections in each irreducible component of (RY, R),
(i) C* is a neighborhood of the origin,
(iii) Cy is bounded.
In this case, we may consider the gauge
Xa(§) = maxgec, (z,€) = min {r€ [0, +00) | {€rC* }
on RV,
Theorem 3.1. Assume that A€T, is admissible. Then the Dunkl transform is a linear

isomorphism between the space of smooth functions f on RN with supp f C Cy and the
space of entire functions h on CV such that

(4) SupgecN(1+|§|)M e7xamé) |p ()| < 400 VMeN.
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Proof. Following [J]], this theorem is first proved in the trigonometric case, which explains
the restriction to crystallographic groups, and next obtained in the rational case by
passing to the limit. The proof of Theorem B.J in the trigonometric case is similar to
the proof of the Paley~Wiener Theorem in [[J], [Z, and actually to the initial proof of
Helgason for the spherical Fourier transform on symmetric spaces of the noncompact
type. This was already observed in [[J] and will be developed below for the reader’s
convenience. The limiting procedure, as far as it is concerned, is described thoroughly
in [{] and needs no further explanation.

Thus assume that h is an entire function on C¥ satisfying (f]) and, by resuming the
proof of [[J], Theorem 8.6 (2)], let us show that its inverse Cherednik transform

) fla) = const. [ h(e) Blig,) @(6) de

vanishes outside C}. Firstly, one may restrict by G—equivariance to = gg.z,, where
rrel' \Cy and gy denotes the longest element in G, which interchanges I'y and —I'..
Secondly, by expanding

{HaeR+(<d’€>_ka)} E(& ) = deGquwC(_g'S) E’q(g’gf)6<g-f+9+q,x>

(B) becomes

where
(6) fralw) = /R h(g ) Eylg. i) e @ {T] | St e,

Thirdly, one shows that all expressions () vanish, by shifting the contour of integration
from RY to RN+ itgy.A with ¢ >0, which produces an exponential factor e~¢* with
c=(A,z,)—1>0, and by letting t— +00. O

Since every G-invariant convex compact neighborhood of the origin in RY is the
intersection of admissible sets Cx, Theorem B.1] generalizes as follows.

Corollary 3.2 (Geometric Paley-Wiener Theorem). Let C' be a G-invariant convex
compact neighborhood of the origin in RY and x(§) = max,ec(z, &) the dual gauge.
Then the Dunkl transform is a linear isomorphism between the space C¥(RY) of smooth
functions f on RY with supp f CC and the space H,(CN) of entire functions h on CN
such that

sup ceen (1+€))M e X8 [h(£)] < +o00 YV MeN.

Remark 3.3. Notice that the Dunkl transform D always maps C&F(RYN) into H, (CV)
and that the assumption that G is crystallographic is only used to prove that D is onto.
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4. [ BOUNDS FOR GENERALIZED TRANSLATIONS IN DIMENSION 1

Dunkl translations are defined on S(R™) by

(f)y) =1 | Df()E(i&,2) E(i&,y)w(&)dé  Vax,yeR".

RN

They have an explicit integral representation [[J] in dimension N=1:

(T f)(y /f 2) dvey(2)

where
V(@ y,2) [ dz if @,y €R?
(7) dVzy(2) = § doy(2) if =0
do,(z) if y=0
is a signed measure such that / dvsy(2) = 1. Specifically,
R

V(w,y,2) = do(z,y,2) p(lzl |yl [2]) 11, , (2])  Vo,y,zeR,

where
d— I'(k+3)
VTR
R 224 q2 —g? 224 22 g2
U(Z’,y,Z)— 1 2zy + 22y + 2z
_ (ztaty) (Zzzxy—zy) (z=z+y) Vz,y,z € RY,
L @) (o e
p(a,b,c) - (2abc)2k*1
(20224 20?2+ 20?2 —a*— br—ct) k-1
= (2abc)2h—1 Va,b,c>0,

and I,, denotes the interval [|a—b|,a+0b]. Notice the symmetries

Wy, z,2),
(8) ’7(!13', Y, Z) - 7(_357 Y, _Z> )
7(_Za Y, —ZL’) = 7($7 -z, _y) :

Proposition 4.1. The following inequality holds, for every xz,y€R:
{D(k+3))
) /}d%’y )| < A= V2 i -

Actually there is equality if xt=yeR*. Moreover Ar—5V2 as k——+o0.

Remark 4.2. This result improves earlier bounds obtained in [[3 and [B3], which were
respectively 4 and 3.
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Proof. Let x,yeR*.

Case 1: Assume that xy<0. Then ||z|—|y|| =|z+y]| and |z|+|y| = |z—y], hence
_ ztaz+y (z—y)?—22 ..
o(x,y,2) ﬂ[‘z"‘y‘(‘ZD = 27 e ﬂ[‘z"‘y‘(‘ZD and ,, are positive. Thus

[l = [ e =1.

Case 2: Assume that zy>0. By symmetry, we may reduce to 0<x<y. Then

[ lsta = [ Zo|d%,y<z>| + [Tl

ytx
2_ .2 .2 Lk 2 2 _ 2\ k-1
— 2d/ T4y (z zé—y +2xy) (m +y“+2zxy—z ) szdZ.
Y

2xyz 2y z 2xyz
—x

After performing the change of variables z = \/ 22+ y?—2xycosf and setting y=su,
we get

D(k+1) " —cos 0) sin?*—1p
(10> A|d7m,y(z)‘ = ﬁl"(?ﬁ (1+S>/0 (i/1+s2z2scos€ do

Denote by F'(s) the right hand side of ([[(]). Since

~

/ reed) - ™ sin2k+1lg
F(S) = =Tk (1 S)/O (1+52—2sc050)% d0

is nonpositive, F(s) is a decreasing function on [1,+00 ), which reaches its maximum
at s=1. Let us compute it:

A= F(1) = %/0 (l—COSH)k_% (14cosH)F=1 sind db

VAT (k)

o2k D(k+3) 1 7y _ o2k AP+ T(k+3) T(k+3)
=2 \/Er(i) B(]H_E’k) =2 ﬁr(2l§+%) o \/§ F(k+§) F(k+§) ’

1—cosf
2

1
= 2% ”’“*5)/ th=2 (1—t)* " dt
0

after performing the change of variables t= and using standard properties of the

beta and gamma functions.

Finally let us show that Ay =, V2 as k—+oo. Write

G(k+3 I(ut+d
Ak:ﬁcgkiig’ where G(u) = (1“(2)4) Vu>0.

Since the logarithmic derivative %’ of the gamma function is a strictly increasing analytic
function on (0, +00), the logarithmic derivative

G'(u) I (ut
G(u) I'(u+

I
Al
|
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is positive. Hence G is an strictly increasing function and A, <+/2. On the other hand,
using Stirling’s formula

T(u) ~ V2ru*"2 e™ as u— 400,
we get G(k+1) ~ G(k+3) hence A, — V2, as k — +oo. O

As a first consequence, we obtain the L' — L' operator norm of Dunkl translations in
dimension N=1.

Corollary 4.3. Let v € R*. Then 7, is a bounded operator on L'(R,|x|**dx), with
| Tellpir = Ag.

Proof. The inequality ||7, | 111 < Ay follows from (), together with (f), and it remains
for us to prove the converse inequality. By symmetry, we may assume that x>0. Since

A=ty [ eyl dz,
for every 0<e< Ayg, there exists O<7]<x]R such that, for every yé€ [x—n, z+1n],
(11) / v(2,y, 2)| |2|*dz > Ap—¢.
Let f be a nonnegative measuﬂiable function on R such that
supp f C [—x—n,—z+n] and | f]. :/Rf(z) |2|*dz = 1.

Since

Y(z,y,2) >0 Vy<0,V=2<0,
Y(z,y,2) <0 Vy>0,V=2<0,

we have
+n

D] = [ 16 b2 | de.
Hence, using (B) and ({LT]),

7ot = [ 1@l = [ ] [ ez ol dy } £ 12 o=

is bounded from below by Ay —¢e. Consequently ||7,|;1_71 > Ar—e and we conclude
by letting ¢ —0. O

—x+n

Let us next compute the L? — L? operator norm of Dunkl translations.

Lemma 4.4. Let © € R. Then 7, is a bounded operator on L*(R,|z|*dz), with
| Tell2—r2 = 1.

Proof. The proof is straightforward, via the Plancherel formula, and generalizes to higher
dimensions. On one hand, the inequality ||7.||z2_z2 < 1 follows from the estimate
|E(i€,z)|<1. On the other hand, let

fola) = "2 f(ea)
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be a rescaled normalized function in L?(R, |z|**dz). Then

[ fellze = fllze =1
while
I fole = [ 1BGE @) DR R € de
= [ 1Btz 0F DFOF 1€ de
tends to
[ 1D R de = 171z =1
as € — 0. This concludes the proof of the lemma. O

Eventually, Corollary [I.J and Lemma [I.4 imply the following result, by interpolation
and duality.

Corollary 4.5. Let x € R and 1 < p < oo. Then 7, is a bounded operator on
LP(R, |z|%dz), with |7, r—pe < AP

Remark 4.6. In the product case, where G=75% acts on RY, we have

P EET)
p 2
< A,

el o <

for every x€RY and 1<p<oo.

5. A SUPPORT THEOREM FOR GENERALIZED TRANSLATIONS

As mentioned in the introduction, we lack information about Dunkl translations in
general. In this section, we locate more precisely the support of the distribution

(Yo, [) = (T f)(Y)
which is known [B] to be contained in the closed ball of radius |z|+|y|.
Theorem 5.1. (i) The distribution 7., tis supported in the spherical shell
{=€R | [Jol—lyl| < || < lal+lyl }.
(ii) If G is crystallographic, then the support of 7., is more precisely contained in
{zeRY ‘ 2r S Te+ys, 20 Yt go-dg and T+ go.yy |

Here go denotes the longest element in G, which interchanges the chambers I'y and —I'y,
and < the partial order on RY associated to the cone I't :

a<b <= b—acl+.
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8
+
<

FIGURE 3. Support of v,, for the root system A;xA,;

1
1
1
o Tty

FIGURE 4. Support of v,, for the root system Bs

Proof. Let h€C®(RY) be an auxiliary radial function such that

/RNh(x) w(z)dr =1

and supp h C — co(G.u), where u €T, is a unit vector. For every £> 0 and z,y,z€R"Y,
set

wop2) = & [ Dhe€) B(16.0) BE ) Bul—i€.2) w(e) ds.
Firstly, according to (f) and (),
§ — Dh(e€) E(i&,x) E(i&,y)
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is an entire function on C¥ satisfying
(12) | Dh(e€) B(i&,2) E(i€,y)| < O (L4[E])™ e (ooetvrten.tmos)

where gy is the longest element in G, which interchanges the chambers I'y and —I7, .
Secondly,

G £) = 1 [ PIHO Blig.2) Blig.a) w(e) de
— lim,_o ! /R Dh(e€) DF(E) BG& ) BGE,y) w(€)

=lim. .o [ f(2)7:(z,y,2)w(z)dz
RN

i.e. the distribution =, , is the weak limit of the measures 7.(x,y, z) w(z) dz. Thirdly,
notice the symmetries

76 (y7 ZI}', Z) )
(13) Ve(@,y,2) =  1:(9-7,9.9.9.2) VgeGU{-Id},
7&(_2:’ Y, _$) = 76(1'7 —Z, _y) .
If G is crystallogaphic, we use Corollary B.J (actually the third version of the Paley—

Wiener theorem in [f]]), and deduce from ([J) that the function z —— ~.(z,y,2) is
supported in

co{G.(r3+ys+eu)} = co(G.x) + co(G.y) + e co(G.u) .
Equivalently,
Ye(m,y,2) #0 = 2z, <z 4y, +eu.

Using the symmetries ([[J), we see that v.(x,y, z) # 0 implies also

— 00T+ =< —Qgo.2++ysr+eu le zy>= T+ goY+r+Egou,
—00.Y+ = —Go-2yt+xi+eu e zp> gory+ys+egou.
The conclusion of Theorem p.]] in the crystallographic case is obtained by letting e —0.

If G it not crystallographic, we can only use the spherical Paley—Wiener theorem and
we obtain this way that ~.(x,y, z) # 0 implies

2| < lz| +lyl + e,
] < |zl +Jyl + e,
lyl <z + [z + ¢,
hence
[l = Iyl | = < [zl < Jal + |yl + .
We conclude again by letting ¢ —0. U
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