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THREE RESULTS IN DUNKL ANALYSISB�ECHIR AMRI, JEAN{PHILIPPE ANKER & MOHAMED SIFIIn memory of Andrzej Hulaniki (1933{2008),a distinguished polish mathematiian, a guide and a friend,who has left many orphans in Wro law and around the world.We miss you.Abstrat. In this artile, we establish �rst a geometri Paley{Wiener theorem for theDunkl transform in the rystallographi ase. Next we obtain an optimal bound for theLp ! Lp norm of Dunkl translations in dimension 1. Finally we desribe more preiselythe support of the distribution assoiated to Dunkl translations in higher dimension.1. IntrodutionDunkl theory generalizes lassial Fourier analysis on RN . It started twenty years agowith Dunkl's seminal work [5℄ and was further developed by several mathematiians. Seefor instane the surveys [16, 7℄ and the referenes ited therein.In this setting, the Paley{Wiener theorem is known to hold for balls. In [9℄, a Paley{Wiener theorem was onjetured for onvex sets and partially proved. Our �rst resultin Setion 3 is a proof of this onjeture in the rystallographi ase, following the thirdapproah in [9℄.Generalized translations were introdued in [14℄ and further studied in [21, 17, 22℄.Apart from their abstrat de�nition, we lak preise information, in partiular abouttheir integral representation (�xf)(y) = ZRNf(z) dx;y(z) ;whih was onjetured in [14℄ and established in few ases, for instane in dimensionN =1 or when f is radial. Our seond result in Setion 4 is an optimal bound for theintegral ZR jdx;y(z)jin dimension N =1 , improving upon earlier results in [13, 22℄. Our bound depends onthe multipliity k� 0 and tends from below to p2 , as k ! +1 . Our third result inSetion 5 deals with the support of the distribution x;y in higher dimension, that wedetermine rather preisely in the rystallographi ase.Date: April 23, 2009.2000 Mathematis Subjet Classi�ation. Primary 33C52 ; Seondary 42B10, 43A32, 33C80, 22E30.Key words and phrases. Dunkl operator, Paley{Wiener theorem, generalized translations.Authors partially supported by DGRST projet 04/UR/15-02 and CMCU program 07G 1501.1



2 B. AMRI, J.{PH. ANKER, M. SIFI2. BakgroundIn this setion, we reall some notations and results in Dunkl theory and we refer formore details to the artiles [5, 8℄ or to the surveys [16, 7℄.Let G � O(RN ) be a �nite reetion group assoiated to a redued root system Rand k : R ! [0;+1) a G{invariant funtion (alled multipliity funtion). Let R+ bea positive root subsystem, �+ the orresponding open positive hamber, �+ its losure,�+=P�2R+ R+� the dual one, and let us denote by x+ the intersetion point of anyorbit G:x in RN with �+ .The Dunkl operators T� on RN are the following k{deformations of diretional deriva-tives �� by di�erene operators :T�f(x) = ��f(x) +P�2R+k(�) h�; �i f(x)�f(��: x)h�; xi ;where ��: x = x� h�; xi2 j�j2 � denotes the reetion with respet to the hyperplane orthogonalto �. The Dunkl operators are antisymmetri with respet to the measure w(x) dx withdensity w(x) = Q�2R+ j h�; xi j 2k(�) :The operators �� and T� are intertwined by a Laplae{type operatorV f(x) = ZRNf(y) d�x(y)(1)assoiated to a family of ompatly supported probability measures f�x j x 2 RN g .Spei�ally, �x is supported in the the onvex hullC x = o(G:x) :For every �2C N, the simultaneous eigenfuntion problemT�f = h�; �i f 8 �2RNhas a unique solution f(x)=E(�; x) suh that E(�; 0)=1, whih is given by(2) E(�; x) = V (e h�; : i)(x) = ZRNe h�;yi d�x(y) 8 x2RN :Furthermore � 7! E(�; x) extends to a holomorphi funtion on C N and the followingestimate holds : jE(�; x)j � e h(Re �)+; x+i 8 �2C N ; 8 x2RN :In dimension N = 1, these funtions an be expressed in terms of Bessel funtions.Spei�ally, E(�; x) = jk� 12 (� x) + �x2k+1 jk+ 12 (� x) ;where j�(z) = �(�+1)X+1n=0 (�1)nn! �(�+n+1) �z2)2nare normalized Bessel funtions.



THREE RESULTS IN DUNKL ANALYSIS 3The Dunkl transform is de�ned on L1(RN; w(x)dx) byDf(�) = 1 ZRNf(x)E(�i �; x)w(x) dx ;where  = ZRN e� jxj22 w(x) dx :We list some known properties of this transform :(i) The Dunkl transform is a topologial automorphism of the Shwartz spae S(RN ).(ii) (Planherel Theorem) The Dunkl transform extends to an isometri automor-phism of L2(RN; w(x)dx).(iii) (Inversion formula) For every f 2 S(RN ), and more generally for every f 2L1(RN; w(x)dx) suh that Df 2L1(RN; w(�)d�), we havef(x) = D2f(�x) 8 x2RN :(iv) (Paley{Wiener theorem) The Dunkl transform is a linear isomorphism betweenthe spae of smooth funtions f on RN with supp f�B(0; R) and the spae ofentire funtions h on C N suh thatsup �2CN (1+j�j)M e�R j Im � j jh(�)j < +1 8M 2N :3. A geometri Paley{Wiener theoremIn this setion, we prove a geometri version of the Paley{Wiener theorem, whih waslooked for in [9, 21, 10℄, under the assumption that G is rystallographi. The proofonsists merely in resuming the third approah in [9℄ and applying it to the onvex setsonsidered in [1, 2, 3, 4℄ instead of the onvex sets onsidered in [11℄. Reall that theseond family onsists of the onvex hullsC� = o(G:�)of G{orbits G:� in RN , while the �rst family onsists of the polar setsC� = f x2RN j hx; g:�i�1 8 g2G g :Notie that we may always assume that �=�+ belongs to the losed positive hamber�+ and, in this ase, thatC� \ �+ = �+ \ ��� �+� ;C� \ �+ = f x2�+ j h�; xi � 1 g :Let us �nally introdue the gauge��(�) = maxx2C�hx; �i = min f r2 [ 0;+1) j �2r C� gon RN .



4 B. AMRI, J.{PH. ANKER, M. SIFITheorem 3.1. The Dunkl transform is a linear isomorphism between the spae of smoothfuntions f on RN with supp f � C� and the spae of entire funtions h on C N suhthat sup �2CN (1+j�j)M e���(Im �) jh(�)j < +1 8M 2N :Proof. Following [9℄ this theorem is �rst proved in the trigonometri ase, whih explainsthe restrition to rystallographi groups, and next obtained in the rational ase bypassing to the limit. As observed in [19℄, the proof of Theorem 3.1 in the trigonometriase is similar to the proof of the Paley{Wiener Theorem in [11, 12℄, and atually tothe initial proof of Helgason for the spherial Fourier transform on symmetri spaes ofthe nonompat type. The limiting proedure, as far as it is onerned, is thoroughlydesribed in [9℄. �Sine every G{invariant losed onvex set in RN is the intersetion of a family ofsubsets C�, Theorem 3.1 generalizes as follows.Corollary 3.2. Let C be a G{invariant onvex ompat neighborhood of the origin inRN and �(�) = maxx2Chx; �i the dual gauge. Then the Dunkl transform is a linearisomorphism between the spae C1C (RN ) of smooth funtions f on RN with supp f�Cand the spae H�(C N ) of entire funtions h on C N suh thatsup �2CN (1+j�j)M e��(Im �) jh(�)j < +1 8M 2N :Remark 3.3. Notie that the Dunkl transform D always maps C1C (RN ) into H�(C N )and that the assumption that G is rystallographi is only used to prove that D is onto.4. Lp bounds for generalized translations in dimension 1Dunkl translations are de�ned on S(RN ) by(�xf)(y) = 1 ZRNDf(�)E(i�; x)E(i�; y)w(�) d� 8 x; y2RN :They have an expliit integral representation [13℄ in dimension N=1 :(�xf)(y) = ZR f(z) dx;y(z) ;where(3) dx;y(z) = 8><>: (x; y; z) jzj2k dz if x; y2R�dÆy(z) if x=0dÆx(z) if y=0is a signed measure suh that ZR dx;y(z) = 1 . Spei�ally,(x; y; z) = d �(x; y; z) �(jxj; jyj; jzj) 1l Ijxj;jyj(jzj) 8 x; y; z 2 R� ;



THREE RESULTS IN DUNKL ANALYSIS 5where d = �(k+ 12 )p��(k) ;�(x; y; z) = 1� x2+ y2�z22 xy + z2+ y2 �x22 z y + x2+ z2�y22x z= (z+x+y) (z+x�y) (z�x+y)2x y z 8 x; y; z 2 R� ;�(a; b; ) = f 2� (a�b)2gk�1 f (a+b)2� 2gk�1( 2 a b  ) 2k�1= ( 2 a2b2+2 a22+2 b22�a4� b4� 4) k�1( 2 a b  ) 2k�1 8 a; b;  > 0 ;and Ia;b denotes the interval [ j a�b j; a+b ℄ . Notie the symmetries(4) (x; y; z) = 8><>: (y; x; z) ;(�x;�y;�z) ;(�z; y;�x) = (x;�z;�y) :Proposition 4.1. The following inequality holds, for every x; y2R :(5) ZR ��dx;y(z)�� � Ak = p2 f�(k+ 12 )g2�(k+ 14 ) �(k+ 34 ) :Atually there is equality if x=y2R� . Moreover Ak <�!p2 as k!+1 .Remark 4.2. This result improves earlier bounds obtained in [13℄ and [22℄, whih wererespetively 4 and 3 .Proof. Let x; y2R� .Case 1 : Assume that x y<0 . Then j jxj�jyj j = j x+y j and jxj+jyj = j x�y j , hene�(x; y; z) 1l Ijxj;jyj(jzj) = z+x+ yz (x�y)2� z2� 2x y 1l Ijxj;jyj(jzj) and x;y are positive. ThusZR jdx;y(z)j = ZR dx;y(z) = 1 :Case 2 : Assume that x y>0 . By symmetry, we may redue to 0<x�y . ThenZR jdx;y(z)j = Z 0�1jdx;y(z)j + Z +10 jdx;y(z)j= 2 d Z y+xy�x x+ y2x y z� z2�x2� y2+2x y2x y z �k �x2+ y2 +2xy� z22xy z �k�1 z2k dz :After performing the hange of variables z =p x2+ y2� 2 x y os � and setting y=s x ,we get(6) ZR jdx;y(z)j = �(k+ 12 )p��(k) (1+s) Z �0 (1� os �) sin2k�1�p1+ s2� 2 s os � d� :Denote by F (s) the right hand side of (6). SineF 0(s) = �(k+ 12 )p��(k) (1�s) Z �0 sin2k+1�(1+ s2� 2 s os �) 32 d�



6 B. AMRI, J.{PH. ANKER, M. SIFIis nonpositive, F (s) is a dereasing funtion on [ 1;+1 ), whih reahes its maximumat s=1 . Let us ompute it :Ak = F (1) = p2 �(k+ 12 )p� �(k) Z �0 (1�os �)k� 12 (1+os �)k�1 sin � d�= 22k �(k+ 12 )p��(k) Z 10 tk� 12 (1�t)k�1 dt= 22k �(k+ 12 )p��(k) B(k+ 12 ; k) = 22k f�(k+ 12 )g2p� �(2k+ 12 ) = p2 �(k+ 12 )�(k+ 14 ) �(k+ 12 )�(k+ 34 ) ;after performing the hange of variables t= 1�os �2 and using standard properties of thebeta and gamma funtions.Finally let us show that Ak <�!p2 as k!+1 . WriteAk = p2 G(k+ 14 )G(k+ 12 ) ; where G(u) = �(u+ 14 )�(u) 8 u>0 :Sine the logarithmi derivative �0� of the gamma funtion is a stritly inreasing analytifuntion on (0;+1), the logarithmi derivativeG0(u)G(u) = �0(u+ 14 )�(u+ 14 ) � �0(u)�(u)is positive. Hene G is an stritly inreasing funtion and Ak<p2 . On the other hand,using Stirling's formula �(u) � p2� uu� 12 e�u as u! +1 ;we get G(k+ 14) � G(k+ 12) hene Ak !p2 , as k ! +1 . �As a �rst onsequene, we obtain the L1! L1 operator norm of Dunkl translations indimension N=1 .Corollary 4.3. Let x 2 R� . Then �x is a bounded operator on L1(R; jxj2kdx), withk�xkL1!L1 = Ak .Proof. The inequality k�xkL1!L1� Ak follows from (5), together with (4), and it remainsfor us to prove the onverse inequality. By symmetry, we may assume that x>0 . SineAk = limy!x ZR j(x; y; z)j jzj2k dz ;for every 0<"<Ak , there exists 0<�<x suh that, for every y2 [x��; x+� ℄,(7) ZR j(x; y; z)j jzj2k dz > Ak� " :Let f be a nonnegative measurable funtion on R suh thatsupp f� [�x��;�x+� ℄ and f L1 =ZRf(z) jzj2kdz = 1 :



THREE RESULTS IN DUNKL ANALYSIS 7Sine ( (x; y; z) � 0 8 y<0 ; 8 z<0 ;(x; y; z) � 0 8 y>0 ; 8 z<0 ;we have ��(�xf)(y)�� = Z �x+��x�� f(z) j(x; y; z)j jzj2k dz :Hene, using (4) and (7),�xf L1 = ZR ��(�xf)(y)�� jyj2k dy = Z �x+��x�� nZR j(x;�z;�y)j jyj2k dy o f(z) jzj2k dzis bounded from below by Ak� " . Consequently k�xkL1!L1 � Ak� " and we onludeby letting "!0 . �Let us next ompute the L2!L2 operator norm of Dunkl translations.Lemma 4.4. Let x 2 R . Then �x is a bounded operator on L2(R; jxj2kdx), withk�xkL2!L2 = 1 .Proof. The proof is straightforward, via the Planherel formula, and generalizes to higherdimensions. On one hand, the inequality k�xkL2!L2 � 1 follows from the estimatejE(i�; x)j�1 . On the other hand, letf"(x) = "k+ 12 f("x)be a resaled normalized funtion in L2(R; jxj2k dx). Thenkf" kL2 = kf kL2 = 1while k�x f" k 2L2 = ZR jE(i�; x)j2 "�2k�1 jDf("�1�)j2 j�j2k d�= ZR jE(i"�; x)j2 jDf(�)j2 j�j2k d�tends to ZR jDf(�)j2 j�j2k d� = kfk 2L2 = 1as "! 0 . This onludes the proof of the lemma. �Eventually, Corollary 4.3 and Lemma 4.4 imply the following result, by interpolationand duality.Corollary 4.5. Let x 2 R and 1 � p � 1 . Then �x is a bounded operator onLp(R; jxj2kdx), with k�xkLp!Lp � A2 j1=p�1=2jk .Remark 4.6. In the produt ase, where G=ZN2 ats on RN , we have �x Lp!Lp � A2 j 1p� 12 jNkfor every x2RN and 1�p�1 .



8 B. AMRI, J.{PH. ANKER, M. SIFI5. A support theorem for generalized translationsAs mentioned in the introdution, we lak information about Dunkl translations ingeneral. In this setion, we loate more preisely the support of the distributionh x;y; f i = (�xf)(y)whih is known [21℄ to be ontained in the losed ball of radius jxj+jyj .Theorem 5.1. (i) The distribution x;y is supported in the spherial shell� z2RN �� ��jxj�jyj�� � jzj � jxj+jyj	 :(ii) If G is rystallographi, then the support of x;y is more preisely ontained in� z2RN �� z+4x++y+; z+ < y++g0:x+ and x++g0:y+ 	 :Here g0 denotes the longest element in G, whih interhanges the hambers �+ and ��+,and 4 the partial order on RN assoiated to the one �+ :a 4 b () b� a 2 �+ :
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Figure 1. Support of x;y for the root system B2Proof. Let h2C1 (RN ) be an auxiliary radial funtion suh thatZRNh(x)w(x) dx = 1and supp h�� o(G:u), where u2�+ is a unit vetor. For every "> 0 and x; y; z2RN ,set "(x; y; z) = 12 ZRNDh(" �)E(i �; x)E(i �; y)Ek(�i �; z)w(�) d� :



THREE RESULTS IN DUNKL ANALYSIS 9Firstly, aording to the spherial Paley{Wiener theorem and to (2),� 7�! Dh(" �)E(i �; x)E(i �; y)is an entire funtion on C N satisfying(8) ��Dh(" �)E(i �; x)E(i �; y) �� � CM (1+j�j)M e�h g0:(x++y++"u); (Im �)+i ;where g0 is the longest element in G, whih interhanges the hambers �+ and ��+ .Seondly, hx;y; f i = 1 ZRNDf(�)E(i �; x)E(i �; y)w(�) d�= lim"!0 1 ZRNDh(" �)Df(�)E(i �; x)E(i �; y)w(�) d�= lim"!0 ZRNf(z) "(x; y; z)w(z) dzi.e. the distribution x;y is the weak limit of the measures "(x; y; z)w(z) dz . Thirdly,notie the symmetries(9) "(x; y; z) = 8><>: "(y; x; z) ;"(g:x; g:y; g:z) 8 g2G [ f�Idg ;"(�z; y;�x) = "(x;�z;�y) :If G is rystallogaphi, we use Corollary 3.2 (atually the third version of the Paley{Wiener theorem in [9℄), and dedue from (8) that the fontion z 7�! "(x; y; z) issupported in o fG:(x++ y++ " u)g = o(G:x) + o(G:y) + " o(G:u) :Equivalently, "(x; y; z) 6= 0 =) z+� x++ y++ "u :Using the symmetries (9), we see that "(x; y; z) 6= 0 implies also(�g0:x+� �g0:z++ y++ "u i.e. z+� x++ g0:y++ "g0:u ;�g0:y+� �g0:z++x++ "u i.e. z+� g0:x++ y++ "g0:u :The onlusion of Theorem 5.1 in the rystallographi ase is obtained by letting "!0 .If G it not rystallographi, we an only use the spherial Paley{Wiener theorem andwe obtain this way that "(x; y; z) 6= 0 implies8><>: jzj � jxj+ jyj+ " ;jxj � jzj+ jyj+ " ;jyj � jxj+ jzj + " ;hene �� jxj � jyj ��� " � jzj � jxj+ jyj+ " :We onlude again by letting "!0 . �
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