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Abstract

A graphG is (k, 0)-colorable if its vertices can be partitioned into subsetsV1 andV2 such that
in G[V1] every vertex has degree at mostk, while G[V2] is edgeless. For every integerk ≥ 1, we
prove that every graph with the maximum average degree smaller than3k+4

k+2
is (k, 0)-colorable.

In particular, it follows that every planar graph with girthat least7 is (8, 0)-colorable. On the
other hand, we construct planar graphs with girth6 that are not(k, 0)-colorable for arbitrarily
largek.

1 Introduction

A graphG is calledimproperly(d1, . . . , dk)-colorable, or just(d1, . . . , dk)-colorable, if the vertex
set ofG can be partitioned into subsetsV1, . . . , Vk such that the graphG[Vi] induced by the vertices
of Vi has maximum degree at mostdi for all 1 ≤ i ≤ k. This notion generalizes those of proper
k-coloring (whend1 = . . . = dk = 0) andd-improperk-coloring (whend1 = . . . = dk = d ≥ 1).

Proper andd-improper colorings have been widely studied. As shown by Appel and Haken [1, 2],
every planar graph is 4-colorable, i.e.(0, 0, 0, 0)-colorable. Eaton and Hull [11] and independently
Škrekovski [15] proved that every planar graph is 2-improperly 3-colorable (in fact, 2-improper
choosable), i.e. (2,2,2)-colorable. This latter result was extended by Havet and Sereni [14] to not
necessarily planar sparse graphs.

Theorem 1 [14] For everyk ≥ 0, every graphG with mad(G) < 4k+4
k+2 isk-improperly 2-colorable

(in factk-improperly 2-choosable), i.e.(k, k)-colorable.

Recall thatmad(G) = max
{

2|E(H)|
|V (H)| , H ⊆ G

}

is the maximum average degree of a graphG.

In this paper, we focus on(k, 0)-colorability of graph. So, a graphG is (k, 0)-colorableif its
vertices can be partitioned into subsetsV1 andV2 such that inG[V1] every vertex has degree at most
k, while G[V2] is edgeless.

Let g(G) denote the girth of graphG (the length of the shortest cycle inG). Glebov and Zambal-
aeva [12] proved that every planar graphG is (1, 0)-colorable ifg(G) ≥ 16. This was strengthened
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by Borodin and Ivanova [6] by proving that every graphG is (1, 0)-colorable ifmad(G) < 7
3 , which

implies that every planar graphG is (1, 0)-colorable ifg(G) ≥ 14.
The purpose of our paper is to extend the result in [6] as follows:

Theorem 2 Let k ≥ 1 be a integer. Every graph with maximum average degree smaller than 3k+4
k+2

is (k, 0)-colorable.

On the other hand, we construct non-(k, 0)-colorable graphs whose maximum average degree
exceeds3k+4

k+2 not much (in fact, by less than1
k+3 , see Section 3).

Since each planar graphG satisfies

mad(G) <
2g(G)

g(G) − 2
,

from Theorem 2 we have:

Corollary 1 Every planar graphG is:

1. (1, 0)-colorable ifg(G) ≥ 14,

2. (2, 0)-colorable ifg(G) ≥ 10,

3. (3, 0)-colorable ifg(G) ≥ 9,

4. (4, 0)-colorable ifg(G) ≥ 8, and

5. (8, 0)-colorable ifg(G) ≥ 7.

Note that Corollary 1.5 is best possible in the sense that foranyk ≥ 1 there is a planar graph
with girth 6 which fails to be(k, 0)-colorable:

2k + 1 2k + 1

2k + 12k + 1

Figure 1: A non(k, 0)-colorable graphG with girth 6.

The key concepts in the proof of our main result, Theorem 2, are those of soft component and
feeding area. These further develop those of soft cycle and feeding path introduced by Borodin,
Ivanova, Kostochka in [7] and used in [7, 5] to improve results in [10, 8] about homomorphisms
of sparse graphs to the circulantC(5; 1, 2) and cycleC5. A distinctive feature of the discharging
in [7, 5] is that charge can be transferred along ”feeding paths” to an unlimited distance. Note that
similar ideas of ”global discharging” were also used by Havet and Sereni in [14]. In fact, the proof
of Theorem 2 below further develops the argument in [6].

An induced cycleC = v1v2 . . . v2k in a graphG is called2-alternatingif d(v1) = d(v3) = . . . =
d(v2k−1) = 2. This is perhaps the first and simplest example of a ”global” reducible configuration
in some graph-theoretic problems. The feeding area in this case is a tree consisting of edges incident
with vertices of degree 2. This notion, introduced by Borodin in [3], as well as its subsequent
variations, turned out to be useful in some coloring and edge-decomposition problems on sparse and
quasiplanar graphs (see, for example, [9, 4, 13, 16, 17]).

Section 2 is dedicated to the proof of Theorem 2. Section 3 contains some final remarks.
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2 Proof of Theorem 2

Let G be a minimal counterexample to Theorem 1. Due to [6], we can assume thatk ≥ 2. Fur-
thermore, the proofs below fork = 2 andk ≥ 3 will differ a little (namely, in the treatment of
(1, 1, 1, 0)-vertex, which will be defined later). [Words concerning only casek = 2 appear three or
four times, in brackets.]

Clearly,G is connected and its minimum degreeδ(G) is at least 2. By definition, we have

∑

v∈V

(

d(v) −
3k + 4

k + 2

)

< 0 ,

whered(v) is the degree of a vertexv. This can be rewritten as

∑

v∈V

((

2 +
4

k

)

d(v) −

(

6 +
8

k

))

< 0 . (1)

Let thechargeµ(v) of each vertexv of G be(2 + 4
k
) d(v)− (6 + 8

k
). Sinceδ(G) ≥ 2, it follows

that inG only 2-vertices have negative charge (equal to -2). We shalldescribe a number of structural
properties ofG (Section 2.1) which make it possible to vary the charges so that the new chargeµ∗

of every vertex becomes nonnegative (Section 2.2). Since the sum of charges does not change, we
shall get a contradiction with (1), which will complete the proof of Theorem 2.

In what follows, by ak-pathwe mean a path consisting of preciselyk vertices of degree 2, while
by a(k1, k2, . . .)-vertexwe mean a vertex that is incident withk1-, k2-, . . . paths. A vertex of degree
k (resp. at leastk, at mostk) is called ak-vertex(resp.≥ k-vertex, ≤ k-vertex). We will color the
vertices of the independent set by the color 0, and the vertices of the subgraph of maximum degree
at mostk by the colork.

A vertex of degree at leastk + 2 is calledsenior. Note that if a vertexv is senior, then

µ(v) =

(

2 +
4

k

)

d(v) −

(

6 +
8

k

)

≥ 2d(v) +
4

k
(k + 2) − 6 −

8

k
= 2d(v) − 2 .

2.1 Structural properties

Lemma 1 Every≤ (k + 1)-vertex is adjacent to at least one senior vertex.

PROOF. We delete such a vertexv and extend a coloringc of the graph obtained toG as follows.
If v has all its neighbors colored withk, then we are done by puttingc(v) = 0. Now, if v has at
mostk neighbors colored withk, then we putc(v) = k. We are in trouble only ifv is adjacent to a
(k + 1)-vertexx which is colored withk together with all its neighbors. But then we can recolorx
with 0. The same argument is then applicable to every other neighbor ofv. 2

It follows that:

Corollary 2 G has no≥ 3-paths.

A triangle isspecialif has at least two 2-vertices. SinceG 6= C3, a special triangle actually has
just two vertices of degree 2.

Corollary 3 There is no≥ 3-vertex of degree at mostk + 1 incident with a 2-path, or a special
triangle, or adjacent to a(1, 1, 0)-vertex. Moreover ifk ≥ 3, then there is no≥ 3-vertex of degree
at mostk + 1 adjacent to(1, 1, 1, 0)-vertex.

A vertex isbad if it is either a 2-vertex belonging to a 2-path or a(1, 1, 0)-vertex. Otherwise, a
vertex isgood.
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Lemma 2 Every≥ 3-vertex ofG has at least one good neighbor; furthermore, ifk ≥ 3 then it has
a good neighbor that is not a(1, 1, 1, 0)-vertex.

PROOF. By contradiction, assume that a vertexv of G is not adjacent to good vertices. We delete
the vertexv and all its neighbors. To extend a coloringc of the graph obtained toG, we color the
vertexv with 0 and color all neighbors ofv by k.

2

Corollary 4 G has no(2, 2, . . . , 2)-vertices.

By asoft vertexwe mean a senior vertex whose each neighbor either has degree2, or is a(1, 1, 0)-
vertex, or [unlessk = 2] a (1, 1, 1, 0)-vertex.

By a feeding area, denoted byFA, we mean a maximal (by inclusion) subgraph inG consisting
of:

(i) soft vertices mutually accessible from each other along 1-paths, of

(ii) the following three types of vertices adjacent to soft vertices ofFA: 2-vertices,(1, 1, 0)- and
[unlessk = 2] (1, 1, 1, 0)-vertices. See Figure 2.

(iii) 2-vertices belonging to those 1-paths whose both end-vertices belong toFA.

Note that according to this definition, every edgexy joining x ∈ FA with y /∈ FA has the
following properties: (a) ifd(x) = 2, theny is not soft ; (b) ifx is a (1, 1, 0)- or [unlessk = 2]
(1, 1, 1, 0)-vertex, thend(y) = 2.

soft vertex

senior vertex

2-vertex

(1, 1, 0)-vertex
or[unless k = 2] (1, 1, 1, 0)-vertex

Figure 2: Example of a feeding area.

By asoft componentwe mean a feeding areaFA such that every edge fromFA to G \FA leads
to a non-senior vertex.

Lemma 3 G has no soft components.
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PROOF. Let FA be a soft component. (It is not excluded thatFA = G.) We first take a coloring
c of G\FA. Now for each edgexy such thatx ∈ FA andy /∈ FA, we colorx with k. Now if y is a
(k+1)-vertex coloredk together with all its neighbors, we recolory with 0. Then we color every soft
vertex ofFA with 0. Finally, we color all yet uncolored vertices ofFA (namely, 2-,(1, 1, 0)-, and
[unlessk = 2] (1, 1, 1, 0)-vertices adjacent only to vertices ofFA) with k to get a desired coloring
of G. 2

Corollary 5 For each feeding areaFA of G there exists a 1-pathxyz such thatx ∈ FA is a soft
vertex, whiley ∈ FA, z /∈ FA, wherez is a senior vertex incident with at least one 0-path.

A feeding area isweak, and denotedWFA, if it has only one 1-pathxyz such thatx ∈ FA is a
soft vertex, whilez /∈ FA, wherez is a senior vertex incident with at least one 0-path.

By a special vertexwe mean a senior vertexz such that:

(i) z is incident with precisely one 0-path going to a vertex whichis neither(1, 1, 0)-vertex nor
[unlessk = 2] (1, 1, 1, 0)-vertex, and

(ii) every 1-path fromz leads to aWFA.

WFA

WFA

6=

Figure 3: Example of a special vertex.

The notion of a special soft component, denotedSSC, is very close to that of a soft component.
The only difference is thatSSC includes just one vertex, called its special vertex, thatSC fails to
include. Namely, aspecial soft componentSSC consists of a special vertexz, all 2-, (1, 1, 0)-, and
[unlessk = 2] (1, 1, 1, 0)-vertices adjacent toz, and the vertices of all thoseWFA’s joined toz
along their unique outgoing 1-paths. Informally speaking,a SSC is a collection ofWFA’s joined
by a special vertex.

Note that a smallestSSC consists of its special vertexz and k + 1 adjacent 2-vertices, all
belonging to 2-paths incident withz. Furthermore,z is incident with precisely one 0-pathzx, andx
is neither(1, 1, 0)-vertex nor [unlessk = 2] (1, 1, 1, 0)-vertex.

Lemma 4 Each(1, 0, 0)-vertexw is adjacent to a(t least one) senior non-special vertex.

PROOF. Suppose a(1, 0, 0)-vertexw is adjacent to≥ 3-verticesz1, z2 such that eachzi is either
a special vertexzi ∈ SSCi or hasd(zi) ≤ k + 1, where1 ≤ i ≤ 2. Deletew; if zi ∈ SSCi then
also deleteSSCi (together withzi). We first take a coloringc of the graph obtained and recolor
the 2-vertex adjacent tow with a color different from the color of its undeleted neighbor. Now if
zi ∈ SSCi thenSSCi can be colored as in the proof of Lemma 5; in particular, each such zi is
colored with 0. Next, we colorw with k. Now, the only obstacle is that there is azi such that
d(zi) = k+1 (zi is a non-senior vertex) andzi is coloredk together with all its neighbors. However,
then nothing prevents us from recoloring such azi with 0.

2
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2.2 Discharging procedure

Our rules of discharging are:

R1. Every 2-vertex that belongs to a 1-path gets charge 1 from itsends, while each 2-vertex that
belongs to a 2-path gets charge 2 from the neighbor vertex of degree greater than 2.

R2. Each(1, 1, 0)-vertex gets charge 2 from its senior neighbor.

R3. If k ≥ 3, then each(1, 1, 1, 0)-vertex gets charge 1 from its senior neighbor.

R4. Each(1, 0, 0)-vertex gets charge 1 from its senior non-special neighbor.

R5. Every weak FA gets charge 1 along its only 1-path that leads toG \ FA.

Lemma 5 The total chargeµ∗(FA) of all soft vertices in each feeding area FA after applying rules
R1–4 is nonnegative if FA is not weak and is at least−1 otherwise.

PROOF. We perform a series of transformations, each of which makesa feeding areaFA
into another, ”more standard”, feeding areaFA′ of the same type (weak or otherwise) such that
µ(FA′) ≤ µ(FA). Eventually, any original feeding areaFA will be transformed into a(n ultimate)
feeding areaFA0 which consists of a(k + 2)-vertexv whose all neighbors have degree 2. Further-
more, ifFA0 is weak then precisely one of the neighbors ofv will belong to a 1-paths, which means
thatµ(FA0) ≥ −1 in this case; ifFA0 is not weak then the number of 1-paths incident withv will
be at least 2, so thatµ(FA0) ≥ 0. We reduceFA to FA0 as follows:

Step 1. If FA has a cycle of 1-paths, then we replace one of its 1-paths by a 2-path and get a feeding
areaFA′ such thatµ(FA′) = µ(FA) − 2 due to R1. We repeat this procedure until all the
cycles of 1-paths disappear.

Step 2. If FA has a 2-pathP joining verticesu, w of FA, then we replaceP by two 2-paths one of
which is incident only withu, while the other only withw, so that the other ends of these new
2-paths ”are loose” (do not belong toFA′). As a result we haveµ(FA′) = µ(FA).

Step 3. If FA has a(1, 1, 0)-vertexv joined to verticesu andw by 1-paths, then we delete the 2-
neighbors ofv. Now add a loose 1-path tov and add a loose 2-path to each vertex in{u, w}∩
FA. As a result we haveµ(FA′) = µ(FA) − |{u, w} ∩ FA| ≤ µ(FA) due to R1 and R2.

Step 4. If FA has a(1, 1, 1, 0)-vertex then arguing as in Case 3, we haveµ(FA′) < µ(FA) by R1
and R3.

From now on, ourFA is a tree consisting of senior (soft) vertices and 2-vertices with the property
that each path between two senior vertices is a 1-path.

Step 5. Let Pi = xiyizi, 1 ≤ i ≤ t be all 1-paths such thatxi ∈ FA while {zi} ∩ FA = ∅. (Recall
thatt ≥ 1 andFA is weak if and only ift = 1.) If t ≥ 3 then we replace eachPi with i ≥ 3
by a 2-pathxiyiy

′
izi. This results inµ(FA′) ≤ µ(FA).

Note that in none of Steps 1–5 we changed the status ofFA to be weak or non-weak. The same
is true for remaining two subcases.

Step 6. SupposeFA has at least two senior vertices. Letv be a pendent senior vertex inFA, i.e. joined
by 1-path with precisely one senior vertexw ∈ FA. Supposev is incident withp outgoing
1-paths. SinceFA has at least two pendant vertices and at most two outgoing 1-paths, we can
assume thatp ≤ 1. If p = 0 then we replacev and its neighbors by a 2-path incident with
w, which impliesµ(FA′) = µ(FA). If p = 1, we replacev and and its neighbors by a loose
1-path going out ofw, which again impliesµ(FA′) = µ(FA) by R1.

6



Step 7. If v is the only senior vertex in FA andd(v) > k + 2, then we makev into a(k + 2)-vertex by
deleting incident 2-paths. This results inµ(FA′) = µ(FA) − 2(d(v) − k − 2) = 2k + 2 <
µ(FA).

Finally, we obtainFA0 with µ(FA0) = −1 is FA0 is weak and withµ(FA0) ≥ 0 otherwise.
2

We now check that after applying R1–R5, the new chargeµ∗ of each non-soft vertexv and of
each feeding area is nonnegative.

Indeed, ifd(v) = 2 thenµ∗(v) = −2 + 2 = 0 by R1 due to Corollary 2.

Supposed(v) = 3. By Lemma 1,v is not a(≥ 1,≥ 1,≥ 1)-vertex andv is not incident with a
2-path. Ifv is a(1, 1, 0)-vertex thenµ∗(v) = 4

k
− 2 × 1 + 2 > 0 by R1 and R2 due to Lemma 1. If

v is a(1, 0, 0)-vertex thenµ∗(v) = 4
k
− 1 + 1 > 0 by R1 and R4 due to Lemma 4. Finally, ifv is a

(0, 0, 0)-vertex thenµ∗(v) = 4
k

> 0.

Next supposek ≥ 3 andd(v) = 4. Now µ(v) = 2 + 8
k

> 2. By Lemma 1 and Corollary 3,v is
adjacent to a senior vertex and is not incident with 2-paths.This implies thatµ∗(v) = 2+ 8

k
−2×1 >

0, unlessv is a (1, 1, 1, 0)-vertex, in which caseµ∗(v) = 2 + 8
k
− 3 × 1 + 1 > 0 by R1 and R3

combined with Lemma 1.

Now supposek ≥ 4 and5 ≤ d(v) ≤ k + 1. By Lemma 1 and Corollary 3,v gives 1 to at most
d(v) − 1 vertices of degree 2 by R1 and does not participate in other rules of discharging, which
impliesµ∗(v) > 2(d(v) − 3) − (d(v) − 1) × 1 = d(v) − 5 ≥ 0.

Finally, let v be senior, i.e., havingd(v) ≥ k + 2. Recall thatµ(v) ≥ 2d(v) − 2. It follows
from the first part of Lemma 2 thatv cannot give 2 along each incident path according to R1 and R2,
which implies thatµ∗(v) ≥ µ(v) − 2(d(v) − 1) − 1 ≥ −1.

Supposev is not soft. Ifv is special thenv does not give charge 1 along its (only) 0-path by
R4, which implies thatv only gives away at most 2 along its≥ 1-paths by R1 and R5. Thus,
µ∗(v) ≥ µ(v) − 2(d(v) − 1) ≥ 0.

It remains to consider a senior vertexv which is neither soft nor special. Such av has either at
least two 0-paths that do not lead to(1, 1, 0)-vertices (and thus take away at most 1 fromv by R3
and R4), in which caseµ∗(v) ≥ µ(v)− 2(d(v)− 2)− 2× 1 ≥ 0, or has just one 0-path that leads to
a vertex other than(1, 0, 0)-, (1, 1, 0)- or [unlessk = 2] (1, 1, 1, 0)-vertex (so that this 0-paths takes
away no charge fromv), in which caseµ∗(v) ≥ µ(v) − 2(d(v) − 1) ≥ 0.

By Lemma 5, after applying rules R1–R5, the total chargeµ∗(FA) of all soft vertices in each
feeding areaFA of G, both weak and non-weak, is nonnegative. Since the feeding areas are disjoint,
it follows that the totalµ∗-charge of all soft vertices inG is nonnegative.

This contradiction with (1) completes the proof of Theorem 2.

3 Conclusion

We proved that, fork ≥ 1, every graph with maximum average degree smaller than3k+4
k+2 is

(k, 0)-colorable. We present now a non-(k, 0)-colorable graphs with small maximum average de-
gree. Letp, k ≥ 1 be two integers. LetGp,k be the graph obtained from an odd cycleC2p+1 =
x1x2 . . . x2p+1x1 by addingk triangles on each vertexxi with oddi, as depicted in Figure 4.
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C2p+1

k k

k k

Figure 4: A non(k, 0)-colorable graphG with small maximum average degree.

One can observe thatGp,k is not(k, 0)-colorable. Indeed, suppose the contrary; then there should
exist two consecutive verticesvi andvi+1 in C2p+1 both belonging toG[V1] due to parity. W.l.o.g.,
let i be odd; this implies thatvi has at least one neighbor inG[V1] in each ofk incident triangles, so
that∆(G[V1]) ≥ k + 1, a contradiction.

Furthermore, by consecutively adding pendant triangles toC2p+1, we see that the average de-
gree ofGp,k is less than 3. The opposite process of removing vertices from Gp,k then shows that
mad(Gp,k) ≥ mad(H) for eachH ⊆ Gp,k. Thus,

mad(Gp,k) =
2|E(Gp,k)|

|V (Gp,k)|
=

3k + 2 − 1
p+1

k + 1 − 1
2(p+1)

,

lim
p→∞

mad(Gp,k) =
3k + 2

k + 1
= 3 −

1

k + 1
<

3k + 4

k + 2
+

1

k + 3
.

Finally we propose the following conjecture:

Conjecture 1 Every graph with maximum average degree less than3k+2
k+1 can be partitioned into an

edgeless induced subgraph and an induced subgraph with maximum degree at mostk.
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