
HAL Id: hal-00377321
https://hal.science/hal-00377321

Submitted on 21 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterization of a naphthalene dioxygenase endowed
with an exceptionally broad substrate specificity toward

polycyclic aromatic hydrocarbons
Yves Jouanneau, Christine Meyer, Jean Jakoncic, V. Stojanoff, Jacques

Gaillard

To cite this version:
Yves Jouanneau, Christine Meyer, Jean Jakoncic, V. Stojanoff, Jacques Gaillard. Characterization of a
naphthalene dioxygenase endowed with an exceptionally broad substrate specificity toward polycyclic
aromatic hydrocarbons. Biochemistry, 2006, 45, pp.12380-12391. �hal-00377321�

https://hal.science/hal-00377321
https://hal.archives-ouvertes.fr


 1

Characterization of a naphthalene dioxygenase endowed with an exceptionally broad 1 

substrate specificity towards polycyclic aromatic hydrocarbons†  2 

 3 

Yves Jouanneau *, ‡, Christine Meyer‡, Jean Jakoncic§, Vivian Stojanoff§, Jacques Gaillard|| 4 

 5 

‡CEA, DSV, DRDC, Lab. Biochim. Biophys. Syst. Intégrés; CNRS, UMR 5092, F-38054 6 

Grenoble, France ; 7 

§Brookhaven National Laboratory, National Synchrotron Light Source, Upton, NY 11973, 8 

USA; 9 

||CEA, DRFMC, SCIB, LRM, UMR UJF-CEA 3, F-38054 Grenoble , France. 10 

 11 

 12 

Running title : A broad specificity ring-hydroxylating dioxygenase 13 

 14 

 15 

† This work was supported by grants from the Centre National de la Recherche Scientifique, 16 

the Commisariat à l’Energie Atomique and the Université Joseph Fourier to UMR5092.  17 

 18 

Corresponding author:  19 

  Yves Jouanneau  20 

 CEA-Grenoble, DRDC/BBSI, 21 

 F-38054 Grenoble Cedex 9, France. 22 

 Tel. : 33 (0)4.38 78.43.10; Fax : 33 (0)4.38 78.51.85 23 

 Email : yves.jouanneau@cea.fr 24 

25 



 2

Abbreviations 1 

GC-MS, gas chromatography coupled to mass spectrometry; 2 

HEPES, N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid!; 3 

HPLC, high performance liquid chromatography; 4 

Ht, His-tagged; 5 

IMAC; immobilized metal affinity chromatography; 6 

IPTG, isopropyl--D-thiogalactopyranoside; 7 

PAH; polycyclic aromatic hydrocarbon; 8 

RedB356, reductase component of the biphenyl dioxygenase from C. testosteroni B356; 9 

RHD, ring hydroxylating dioxygenase 10 
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Abstract 1 

In Sphingomonas CHY-1, a single ring-hydroxylating dioxygenase is responsible for the 2 

initial attack of a range of polycyclic aromatic hydrocarbons (PAHs) composed of up to five 3 

rings. The components of this enzyme were separately purified and characterized. The 4 

oxygenase component (ht-PhnI) was shown to contain one Rieske-type [2Fe-2S] cluster and 5 

one mononuclear Fe center per alpha subunit, based on EPR measurements and iron assay. 6 

Steady-state kinetic measurements revealed that the enzyme had a relatively low apparent 7 

Michaelis constant for naphthalene (Km= 0.92 ± 0.15 µM), and an apparent specificity 8 

constant of 2.0 ± 0.3 µM-1 s-1. Naphthalene was converted to the corresponding 1,2-9 

dihydrodiol with stoichiometric oxidation of NADH. On the other hand, the oxidation of eight 10 

other PAHs occurred at slower rates, and with coupling efficiencies that decreased with the 11 

enzyme reaction rate. Uncoupling was associated with hydrogen peroxide formation, which is 12 

potentially deleterious to cells and might inhibit PAH degradation. In single turnover 13 

reactions, ht-PhnI alone catalyzed PAH hydroxylation at a faster rate in the presence of 14 

organic solvent, suggesting that the transfer of substrate to the active site is a limiting factor. 15 

The four-ring PAHs chrysene and benz[a]anthracene were subjected to a double ring-16 

dihydroxylation, giving rise to the formation of a significant proportion of bis-cis-17 

dihydrodiols. In addition, the dihydroxylation of benz[a]anthracene yielded three 18 

dihydrodiols, the enzyme showing a preference for carbons in positions 1,2 and 10,11. This is 19 

the first characterization of a dioxygenase able to dihydroxylate PAHs made up of four and 20 

five rings. 21 

22 
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Ring-hydroxylating dioxygenases (RHDs) are widely spread bacterial enzymes that play a 1 

critical role in the biological degradation of a large array of aromatic compounds, including 2 

polycyclic aromatic hydrocarbons (PAHs)(1, 2). RHDs catalyze the initial oxidation step of 3 

such compounds, which consists in the hydroxylation of two adjacent carbon atoms of the 4 

aromatic ring, thus generating a cis-dihydrodiol. This reaction converts hydrophobic, often 5 

toxic, molecules, into more hydrophilic products, allowing for their subsequent metabolism 6 

by other bacterial enzymes. Some RHDs were found to attack highly recalcitrant 7 

environmental pollutants, including dibenzo p-dioxin (3, 4), polychlorobiphenyls (5), and 8 

PAHs (6-8), thus promoting studies on this type of enzymes with the ultimate goal of 9 

improving bioremediation processes (2, 9). RHDs are multi-component enzymes, generally 10 

composed of a NADH-oxidoreductase, a ferredoxin and an oxygenase component that 11 

contains the active site. Sometimes, the reductase and the ferredoxin are fused in a single 12 

polypeptide. The oxygenase component is a multimeric protein, with either an nn (n=2 or 3) 13 

or 3 structure, that contains one [2Fe-2S] Rieske cluster and one non-heme iron atom per  14 

subunit (1). During a catalytic cycle, two electrons from the reduced pyridine nucleotide are 15 

transferred, via the reductase, the ferredoxin and the Rieske center, to the Fe(II) ion at the 16 

active site. The reducing equivalents allow the activation of molecular oxygen, which is a 17 

prerequisite to dihydroxylation of the substrate (10).  18 

So far, only a few RHDs have been purified and extensively characterized, including 19 

phthalate dioxygenase (11, 12), naphthalene dioxygenase (13, 14) and biphenyl dioxygenase 20 

(15). None of these enzymes is able to oxidize substrates with more than three fused rings, 21 

and data on the mechanism, kinetics and efficiency of the oxidation of high molecular weight 22 

PAHs by bacterial dioxygenases are relatively scarce (16).   However, the four-ring PAHs 23 

chrysene and benz[a]anthracene, and the five-ring benzo[a]pyrene are of particular concern 24 

because they are well-documented carcinogens (17). Recently, a Sphingomonad endowed 25 
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with the remarkable ability to grow on chrysene as sole carbon and energy source was 1 

isolated in our laboratory (18). In this strain, called Sphingomonas sp. CHY-1, a single 2 

dioxygenase was shown to be responsible for the oxidation of polycyclic hydrocarbons made 3 

of 2 to 4 rings (6). In the present study, the three components of the dioxygenase were 4 

purified and characterized, and the catalytic properties of the enzyme with respect to the 5 

oxidation of nine PAHs were examined. Due to the broad specificity of this enzyme, the 6 

kinetics and coupling efficiency of the dioxygenase-catalyzed reaction with 2 to 5-ring PAHs 7 

could be compared for the first time. Steady-state kinetic parameters were determined for 8 

representative 2-ring PAHs. In addition, the reactivity and regioselectivity of the enzyme 9 

towards benz[a]anthracene was further investigated by means of  single turnover chemistry 10 

and EPR spectroscopy. 11 

12 
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MATERIALS AND METHODS 1 

Bacterial strains and growth conditions 2 

 Strains of Escherichia coli and Pseudomonas putida carrying the relevant expression 3 

plasmids, as well as general culture conditions, have been previously described (6). Large-4 

scale cultures required for the purification of the enzyme components were grown on rich 5 

medium, either Luria-Bertani or Terrific broth (19), in a 12-L fermentor (Discovery 100, SGI-6 

Inceltech/New Brunswick Scientific, Paris, France). Cultures destined to the overproduction 7 

of the oxygenase or the ferredoxin component were supplemented with 50 µM ferrous 8 

ammonium sulfate. The medium was inoculated with 400 ml of an overnight culture, then 9 

incubated at 37°C under constant aeration and agitation (500 rpm), until the bacterial density 10 

(OD600) reached about 1.0. The temperature was then lowered to 25°C, IPTG was added to 11 

0.2 mM final concentration, and the culture was further incubated for 20 h before being 12 

harvested by centrifugation. The bacterial pellet was washed with 50 mM Tris-HCl buffer (pH 13 

7.5), and kept frozen until use. 14 

 15 

Protein purification 16 

All purification procedures were carried out under argon, using buffers equilibrated for at 17 

least 24 h in a glove box maintained under anoxic conditions (O2 <2 ppm, Jacomex , France). 18 

The temperature was kept at 0-4 °C except when otherwise indicated. Crude extracts were 19 

prepared by thawing the bacterial pellets in twice as much lysis buffer by volume, followed 20 

by lysozyme treatment (0.5 mg/ml) for 15 min at 30°C. The lysis buffer was either 50 mM 21 

Tris-HCl, pH 7.5 (oxygenase preparation), 50 mM Tris-HCl, pH 8.0, 0.5 M NaCl, 10% 22 

glycerol (reductase preparation) or 50 mM potassium phosphate, pH 7.5, 0.5 M NaCl, 10% 23 

glycerol, 2 mM -mercaptoethanol (ferredoxin preparation). The suspension was then 24 

subjected to ultrasonication for a total time of 5 min at 80% of maximal intensity, using a 25 
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Vibra Cell apparatus run in pulse mode at 5 s/pulse (Fisher Bioblock Scientific, Illkirch, 1 

France). The lysate was centrifuged at 12,000 g for 30 min, and the resulting cell extract was 2 

used as the starting material for protein purification. 3 

Purification of the oxygenase component PhnI 4 

A cell extract was prepared as described above from P. putida  KT2442 carrying plasmid 5 

pSD9 (6). The extract obtained from approx. 50 g of cells was diluted two-fold with TGE 6 

buffer (25 mM Tris-HCl, pH 7.5, containing 5% glycerol, 5% ethanol, and 2 mM -7 

mercaptoethanol), and applied to a 40-ml column of DEAE-cellulose (DE52, Whatman) 8 

equilibrated with TGE buffer. After washing the column with four bed volumes of the same 9 

buffer, the oxygenase was eluted as a brown band with buffered 0.3 M NaCl. The eluate was 10 

immediately applied to a small column (7 ml) of immobilized metal affinity chromatography 11 

(IMAC) resin loaded with Co2+ (TALON, BD Biosciences Ozyme, France). The column was 12 

washed successively with 8 bed volumes of TGE buffer containing 0.5 M NaCl, and 5 bed 13 

volumes of the same buffer supplemented with 20 mM imidazole. A brown protein fraction 14 

was then eluted with TGE buffer containing 0.15 M imidazole. This fraction was diluted 6-15 

fold with TGE buffer and applied to a small column of DEAE-cellulose (4 ml). The purified 16 

protein was eluted in a small volume of TGE buffer containing 0.3 M NaCl, and frozen as 17 

pellets in liquid nitrogen. This preparation, designated ht-PhnI, was judged to be at least 95% 18 

pure by SDS-PAGE.  19 

Purification of the ferredoxin component PhnA3 20 

PhnA3 was overproduced in E. coli BL21AI (Invitrogen) carrying plasmid pEBA3 (15). The 21 

cell extract prepared from 154 g packed cells was loaded onto two columns of IMAC-22 

TALON, 13 ml each, equilibrated in PG buffer (50 mM potassium phosphate, pH 7.5, 10% 23 

glycerol, 2 mM -mercaptoethanol), containing 0.5 M NaCl. Each column was washed with 24 

100 ml of equilibration buffer, followed by 50 ml of buffered 20 mM imidazole. A brown 25 
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protein fraction was eluted with PG buffer containing 0.15 M imidazole. This fraction was 1 

immediately diluted 5-fold with PG buffer, and loaded onto a 10-ml DEAE cellulose column. 2 

After washing with two bed volumes of PG buffer, the brown ferredoxin fraction was eluted 3 

with buffered 0.3 M NaCl in a volume of 8.6 ml. This preparation was designated ht-PhnA3.  4 

Part of the purified His-tagged protein (4.7 µmoles) was cleaved by incubation with thrombin 5 

(10 U/ µmole) for 16 h at 20°C, in buffer containing 0.15 M NaCl and 2 mM CaCl2, pH 8.2. 6 

The digested protein was passed through a 2-ml IMAC-TALON column, diluted 5-fold with 7 

PG buffer, then loaded onto a 2-ml column of DEAE-cellulose. The ferredoxin was eluted in 8 

a small volume PG buffer containing 0.3 M NaCl, and frozen as pellets in liquid nitrogen. 9 

This preparation was referred to as rc-PhnA3. 10 

  11 

Purification of the reductase component PhnA4 12 

PhnA4 was overproduced in E. coli BL21(DE3) carrying plasmid pEBA4 (15). The crude 13 

extract from 16 g of cells was applied to a 2-ml column of IMAC-TALON equilibrated in TG 14 

buffer (Tris-HCl, pH 8.0, 10% glycerol) containing 0.5 M NaCl. The column was washed 15 

with 10 bed volumes of equilibration buffer, and 3 bed volumes of TG buffer containing 0.5 16 

M NaCl and 10 mM imidazole. A yellow protein fraction was then eluted with TG buffer 17 

containing 0.15 M imidazole. This fraction was dialyzed for 16 h against TG buffer, and 18 

further purified on a second column of IMAC-TALON (1 ml). The column was successively 19 

washed with TG buffer containing 0.5 M NaCl (10 ml), and the same buffer containing 10 20 

mM (9 ml), and 20 mM (4 ml) imidazole. The reductase was eluted in a small volume of TG 21 

buffer containing 0.15 M imidazole, dialyzed as above, and concentrated to 0.8 ml by 22 

ultrafiltration using an Ultrafree centifugal device with 30-kDa cut-off (Millipore, Amilabo, 23 

France). The purified protein was stored as pellets in liquid nitrogen. 24 

 25 
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Purification of ht-RedB356 1 

The reductase component of the biphenyl dioxygenase from C. testosteroni B-356, designated 2 

as ht-RedB356, was purified from E. coli SG12009(pREP4)(pEQ34::bphG) (20), as previously 3 

described (21). 4 

 5 

Enzyme assays 6 

Dioxygenase activity was assayed either by following NADH oxidation at 340 nm or by 7 

measuring the rate of O2 consumption using a Clark-type O2 electrode (Digital model 10; 8 

Bioblock Scientific, Illkirch, France). Polarographic measurements (standard assay) were 9 

performed at 30°C in reaction mixtures (1 ml) containing 0.13 µM ht-PhnI, 1.57 µM PhnA3, 10 

0.40 µM ht-RedB356 , and 0.5 mM NADH in 50 mM potassium phosphate buffer, pH 7.0. The 11 

PAH substrate was supplied at 0.1 mM from a concentrated solution in acetonitrile. The 12 

concentration of all three enzyme components was doubled for assays with 4- and 5-ring 13 

PAHs. The reaction was initiated by injecting, with a gas-tight syringe, a 100-fold 14 

concentrated mixture of the proteins kept under argon on ice in phosphate buffer containing 15 

10% glycerol, 10 mM dithiothreitol and 0.05 mM ferrous ammonium sulfate. The enzyme 16 

activity was determined from the initial rate of O2 consumption and expressed as µmol O2 per 17 

min per mg ht-PhnI. Reaction rates were calculated from duplicate assays and corrected for 18 

the O2 consumption measured in control assays carried out in the absence of PAH substrate.  19 

The O2 electrode was also used to determine the coupling between PAH oxidation and O2 20 

consumption as follows. After approx. 50 nmol O2 had been consumed, 300 U of bovine liver 21 

catalase (Sigma) was added as a means to estimate the amount of H2O2 generated during the 22 

reaction. Then, 0.6 ml of reaction mixture was withdrawn and immediately mixed with an 23 

equal volume of ice-cold acetonitrile. The dihydrodiols present in these samples were directly 24 
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quantified by HPLC as described below. When appropriate, the dihydrodiols were extracted 1 

with ethyl acetate, derivatized and analyzed by GC-MS (see below). 2 

To determine the coupling efficiency between NADH and PAH oxidation, some reactions 3 

were carried out in Eppendorf tubes containing 0.1 mM of substrate and 0.2 mM of NADH in 4 

0.6 ml of reaction mixture. In those assays, the concentrations of the enzyme components 5 

were 0.38 µM  (ht-PhnI), 6 µM (PhnA3) and 2 µM (ht-RedB356). After an incubation time of 2 6 

to 10 min at 30°C, depending on the substrate, the reaction was stopped by addition of an 7 

equal volume of acetonitrile. Residual NADH, and the dihydrodiols formed during the 8 

enzymatic reaction, were separated and quantified by HPLC.  9 

Steady-state kinetic parameters of the dioxygenase-catalyzed reaction were determined from 10 

sets of enzyme assays where the substrate concentration was varied over a 0.5-100 µM range. 11 

The component ratio was the same as in the standard assay, but the protein concentration in 12 

the assays was 1.67-fold higher. The initial NADH concentration was 0.2 mM. Reactions 13 

were carried out at 30°C in quartz cuvettes, and the absorption at 340 nm was recorded at 0.1-14 

s intervals over 1 min with a HP8452 spectrophotometer (Agilent Technologies, Les Ulis, 15 

France). The enzyme activity was calculated from the initial linear portion of the time course, 16 

using an absorption coefficient of 6,220 M-1.cm-1 for NADH. When biphenyl was used as 17 

substrate, NADH oxidation was recorded at 360 nm (360 = 4,320 M-1.cm-1), because biphenyl 18 

2,3-dihydrodiol absorbed at 340 nm.  All assays were performed in duplicate, and at least 12 19 

concentrations were tested per substrate. Plots of the initial reaction rate versus substrate 20 

concentration were fitted to the Michaelis-Menten equation using the curve fit option of 21 

Kaleidagraph (Synergy Software). Only curve fits showing correlation coefficients better than 22 

0.98 were considered. 23 

 24 
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Single turnover reactions 1 

Ht-PhnI was diluted to 57 µM in 20 mM HEPES, pH 7.0 containing 10% glycerol and 5 µM 2 

methyl viologen under argon, then reduced with a stoichiometric amount of dithionite. The 3 

reduction was checked by monitoring the protein absorbance in the 300-600 nm range. A 4 

portion of the reduced protein (50 µL) was diluted in 0.55 ml of air-saturated HEPES buffer 5 

containing 0.1 mM of PAH substrate. In some experiments, the buffer also contained a 6 

proportion of acetonitrile, as indicated. After incubation at 30°C for up to 10 min, the reaction 7 

was stopped by mixing with an equal volume acetonitrile containing 0.8% acetic acid. The 8 

mixture was heated for 2 min at 90°C, centrifuged and subjected to HPLC analysis as 9 

described below. Part of the solution was also extracted with ethyl acetate, and analyzed by 10 

GC-MS. 11 

 12 

Identification and quantification of reaction products 13 

Determination of dihydrodiols and the residual NADH concentration at the end of the 14 

dioxygenase-catalyzed reactions was performed by HPLC using a Kontron system equipped 15 

with F430 UV detector. Samples (0.2 ml) were injected onto a 4150-mm C8 reverse-phase 16 

column (Zorbax, Agilent Technologies, France) run at 0.8 ml/min. The column was eluted 17 

with water for 2 min, then with a linear gradient to 80% acetonitrile for 8 min, and finally 18 

with 80% acetonitrile for 5 min. Detection was carried out at 340 nm (for residual NADH), 19 

and one of the following wavelengths, which was varied as a function of the absorbance 20 

maxima of the PAH dihydrodiols: 220 nm (naphthalene), 303 nm (biphenyl), 260 nm 21 

(phenanthrene), 244 nm (anthracene), 263 nm (benz[a]anthracene), 278 nm (chrysene), 280 22 

nm (benzo[a]pyrene). Quantification was performed on the basis of peak area using 23 

calibration curves obtained by injecting known amounts of each dihydrodiol. Residual NADH 24 

was determined from the peak eluting at 2.6 min. The three benz[a]anthracene dihydrodiols 25 
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formed by ht-PhnI were not resolved under the HPLC conditions used, and were estimated as 1 

a sum of their individual contribution, given that their absorbance coefficients at 263 nm were 2 

close to 31,000 M-1.cm-1. Purified 1,2-dihydroxy-1,2-dihydrobenz[a]anthracene was used for 3 

HPLC calibration. The extent of oxidation of fluorene and fluoranthene by the dioxygenase 4 

was determined from HPLC measurements of the amount of residual substrate. Wavelengths 5 

used for their detection were 262 and 236 nm, respectively.  6 

PAH oxidation products generated by PhnI were also analyzed by GC-MS. Ethyl acetate 7 

extracts of samples were dried on sodium sulfate, evaporated under N2, and derivatized with 8 

bis(trimethysilyl)trifluoroacetamide :trimethylchlorosilane (99:1) from Supelco (Sigma-9 

Aldrich), prior to GC-MS analysis using a HP6890/HP5973 apparatus (Agilent 10 

Technologies). Operating conditions were as previously described (22), and mass spectrum 11 

acquisitions were carried out either in the total ion current or the single ion monitoring mode.  12 

 13 

Determination of the iron content of proteins 14 

To extract iron from proteins, samples (150 µl) were treated with 2.5 N HCl for 30 min at 15 

95°C, then diluted with 0.7 volume of water. Iron was reacted with bathophenanthroline 16 

disulfonate (Sigma-Aldrich), and the complex formed was assayed by absorbance 17 

measurements at 536 nm (23). Assays were performed in triplicates. A calibration curve was 18 

generated by assaying serial dilutions of a standard solution of ferric nitrate, containing 1g/L 19 

of iron (Merck). 20 

 21 

Protein analyses 22 

Routine protein determinations were performed using the Bradford assay (24), or the 23 

bicinchoninic acid reagent kit (Pierce) using bovine serum albumin as a standard. The protein 24 

concentration of purified preparations of ht-PhnI was determined by a modification of the 25 
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biuret assay (25). The absorbance coefficient of ht-PhnI at 458 nm was calculated to be 1 

12,500 M-1.cm-1, on the basis of the latter assay. The concentrations of ht-PhnA3 and rc-2 

PhnA3 were estimated from absorbance measurement at 460 nm, using an absorbance 3 

coefficient of 5,000 M-1.cm-1. SDS-PAGE on mini-slab gels was performed as previously 4 

described (26). The molecular masses of purified ht-PhnI and rc-PhnA3 were determined by 5 

size-exclusion chromatography on HR 10/30 columns of Superdex SD200 and SD75, 6 

respectively (both from Amersham Biosciences). The columns were run at a flow rate of 0.2 7 

ml/min and calibrated with the following protein markers: Ferritin (443 kDa), catalase (240 8 

kDa), aldolase (150 kDa), bovine serum albumin (67 kDa), ovalbumin (43 kDa) and 9 

myoglobin (17 kDa), aprotinin (6.5 kDa), all from Sigma-Aldrich, and ferredoxin VI from 10 

Rhodobacter capsulatus (11.58 kDa; (27)). 11 

 12 

EPR spectroscopy 13 

Protein samples were adjusted to a concentration of 20-40µM (ht-PhnI) or 100-500 µM 14 

(PhnA3) in argon-saturated phosphate buffer, pH 7.0, containing 10% glycerol. The redox 15 

status of the protein sample was checked by recording the absorbance spectrum, and, when 16 

appropriate, the protein was fully oxidized by injecting stoichiometric amounts of air with a 17 

gas-tight syringe.  Ht-PhnI-nitrosyl complexes were prepared in a glove-box under argon 18 

(Jacomex) by incubating 190 µl of protein sample with 10 µl of 20 mM diethylamine NO-19 

NOate (Cayman Chemical, Interchim, France) for 15 min. Samples were then introduced into 20 

EPR tubes and frozen in liquid nitrogen. In some experiments, protein samples were 21 

preincubated for 10 min with a PAH (0.1 mM) or a dihydrodiol, prior to NO-NOate addition. 22 

For analysis of the Rieske clusters, protein samples were reduced with an excess of sodium 23 

dithionite (1 mM). Full reduction was checked by absorbance recording prior to transferring 24 

the samples in EPR tubes and freezing them in liquid nitrogen. Spectra were recorded at a 25 
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temperature set between 4 and 20 K with an X-band EMX Bruker spectrometer equipped with 1 

an ESR900 liquid helium cryostat (Oxford Instruments). Spin quantification was performed 2 

by integrating the appropriate signal, and comparing the signal intensity to that of the [2Fe-3 

2S] ferredoxin (FdVI) from Rhodobacter capsulatus, taken as a reference (0.1 mM; (27)). The 4 

iron content of this reference sample was checked by chemical assay. All EPR tubes were 5 

calibrated in diameter.  6 

 7 

Chemicals 8 

NAD+, NADH, PAHs, and most other chemicals were purchased from Sigma-Aldrich (Saint-9 

Quentin-Fallavier, France). The cis-dihydrodiols used in this study were prepared from 10 

cultures of E. coli recombinant strains overproducing the PhnI dioxygenase, and incubated 11 

with a PAH. The purification and characterization of the diol compounds will be described 12 

elsewhere. The dihydrodiol concentrations were calculated using the following absorption 13 

coefficients: 262 = 8,114 M-1.cm-1 for cis-1,2-dihydroxy 1,2-dihydronaphthalene (28); 252 = 14 

38,300 M-1.cm-1 and260 = 43,000 M-1.cm-1  for cis-3,4-dihydroxy 3,4-dihydrophenanthrene 15 

(29); 244 = 55,600 M-1.cm-1 and287 = 17,000 M-1.cm-1  for cis-1,2-dihydroxy 1,2-16 

dihydroanthracene (29); 278 = 57,650 M-1.cm-1 for cis-3,4-dihydroxy 3,4-dihydrochrysene 17 

(30); 280 = 66,500 M-1.cm-1 for cis-9,10-dihydroxy-9,10-dihydrobenzo[a]pyrene (31); 263 = 18 

31,000 M-1.cm-1 for cis-1,2- dihydroxy-1,2-dihydrobenz[a]anthracene and 275 = 37,000 M-19 

1.cm-1 for cis-10,11-dihydroxy-10,11-dihydrobenz[a]anthracene (32). 20 

 21 

22 
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RESULTS 1 

Purification and properties of the oxygenase component PhnI 2 

The His-tagged oxygenase component of strain CHY-1 dioxygenase, hereafter referred to as 3 

ht-PhnI, was anaerobically purified from P. putida KT2442(pSD9) in three steps as described 4 

under Materials and Methods. The procedure yielded approx. 12 mg of purified protein per 5 

liter of culture. The oxygenase was also produced in E. coli BL21(DE3)(pSD9), but the 6 

purification resulted in a lower yield. In addition, strain BL21(DE3) always produced a 7 

variable amount of insoluble recombinant protein (inclusion bodies), which was not the case 8 

when using strain KT2442 as host (data not shown). The latter strain was therefore preferred 9 

for overproduction and subsequent purification of ht-PhnI. SDS-PAGE analysis revealed that 10 

the ht-PhnI preparation was at least 95% pure, and was composed of two subunits with 11 

apparent Mr of 52.000 and 20.000 (Fig. 1), consistent with the molecular masses of the 12 

polypeptides deduced from relevant gene sequences (6). Purified ht-PhnI exhibited a 13 

molecular mass of approx. 200 kDa by gel filtration chromatography, indicating that it is an 14 

33 hexamer. The brown protein showed a UV-visible absorbance spectrum with maxima at 15 

280, 458 nm and a shoulder near 570 nm (data not shown), which is typical of proteins 16 

containing Rieske-type [2Fe-2S] clusters. The absorbance coefficient at 458 nm was found to 17 

be 12,500 M-1.cm-1 on average, as calculated from the protein content of three independent 18 

preparations of ht-PhnI with a similar content of [2Fe-2S] cluster (see Table 1). In contrast to 19 

related oxygenases previously characterized, ht-PhnI did not show a well-defined absorption 20 

band near 325 nm, but instead a shoulder likely resulting from two poorly resolved absorption 21 

bands. The A280/A458 ratio was relatively high (26.9) compared to that of naphthalene 22 

dioxygenase (17.6, (33)), a feature which might be partly explained by the higher content of 23 

aromatic residues of PhnI (Trp and Tyr account for 2.70 and 4.46 % of the total number of 24 

residues in PhnI versus 2.18 and 3.73% in naphthalene dioxygenase). EPR analysis of the 25 
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reduced protein gave a rhombic signal with apparent g values at 2.02, 1.92 and 1.71, which is 1 

characteristic of Rieske-type [2Fe-2S] clusters (data not shown).  2 

The iron content of the oxygenase was found to vary between 1.73 and 2.55 Fe atoms per pair 3 

of subunits depending on preparations (Table I). In order to estimate the proportion of iron 4 

in each metal center, the ht-PhnI preparations were subjected to two independent EPR 5 

measurements. Upon reaction with NO, ht-PhnI gave rise to the formation of an Fe(II)-6 

nitrosyl complex which was detected as an heterogeneous S = 3/2 EPR signal near g=4 (see 7 

Fig. 3). Based on the integration of that signal, the occupation rate of Fe(II) at the active site 8 

of the enzyme was found to vary between 0.20 and 0.92 (Table I). On the other hand, the 9 

estimation of the ratio cluster/ calculated from the integration of the S= 1/2 signal in fully 10 

reduced protein samples, yielded values ranging between 0.75 and 0.85. Remarkably, the iron 11 

content of the preparations calculated from the sum of the two EPR determinations was in 12 

fairly good agreement with the total iron found by chemical assay.  13 

The specific activity of the dioxygenase increased as a function of its iron content, but no 14 

clear correlation was observed between activity and the occupation rate of the active site 15 

(Table 1). In addition, preincubation of ht-PhnI with ferrous ions under reducing conditions  16 

prior to enzyme assay resulted in a marginal increase of activity (data not shown).  17 

 18 

Purification of the ferredoxin and reductase components 19 

The ferredoxin component was anaerobically purified as a His-tagged recombinant protein by 20 

IMAC chromatography, and designated ht-PhnA3. The purification procedure described 21 

herein yielded about 20 mg of ferredoxin per liter of culture, when strain BL21AI was used as 22 

a host for expression. Lower yields were observed with strain BL21(DE3)(pEBA3). The 23 

preparation was >90% pure as judged from SDS-PAGE. Cleavage of the protein with 24 

thrombin, followed by two short purification steps, gave an essentially pure preparation 25 
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containing a 12-kDa polypeptide (Fig.1). The molecular mass of this protein, referred to as rc-1 

PhnA3, was 13.5 kDa by gel filtration, which was slightly higher than the theoretical mass of 2 

the polypeptide calculated from the phnA3 gene sequence (11,225 Da, (6)), but indicated that 3 

the ferredoxin was monomeric. Both ht-PhnA3 and rc-PhnA3 exhibited absorbance spectra 4 

indicative of partial reduction upon isolation under anoxic conditions, but rapidly oxidized in 5 

air. In the oxidized state, the two preparations of ferredoxin had identical spectra, featuring 6 

absorbance maxima at 278, 325 and 460 nm. The iron content of the ht-PhnA3 and rc-PhnA3 7 

preparations was estimated to be 1.5 and 1.7 mol/mol of ferredoxin, respectively. EPR 8 

analysis of the reduced ferredoxin gave a signal with g values at 2.02, 1.90 and 1.82, which 9 

integrated to 0.86 spin/molecule. Taken together, these data provide strong evidence that the 10 

ferredoxin component  contains one Rieske-type [2Fe-2S] cluster. 11 

The reductase component of the dioxygenase encoded by phnA4 was overproduced as a 45 12 

kDa polypeptide in E. coli BL21(DE3)(pEBA4). However, a large proportion of the 13 

recombinant protein accumulated in the cells as inclusion bodies, and this problem was not 14 

solved by changing the host strain, or by lowering the temperature during induction. Although 15 

a low level of the reductase was recovered from the soluble cell extract, the recombinant 16 

protein was purified as a His-tagged fusion (ht-PhnA4) by affinity chromatography (0.2 mg/L 17 

of culture). The isolated ht-PhnA4 protein was yellow in color, and showed an absorbance 18 

spectrum typical for a flavoprotein, with absorbance maxima at 375 and 450 nm. Attempts to 19 

overexpress the reductase in P. putida, either intact or as a His-tagged fusion, under 20 

conditions similar to those described for PhnI, were unsuccessful (data not shown). These 21 

observations suggested that PhnA4 was an unstable protein. For our studies on the catalytic 22 

activity of the dioxygenase, we replaced PhnA4 by the more stable component, RedB356, of 23 

the biphenyl dioxygenase from C. testosteroni (20). Enzyme assays performed under standard 24 

conditions showed that RedB356 efficiently substituted for PhnA4, and titration experiments 25 
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with increasing concentrations of the reductase indicated that the two isoforms had almost 1 

identical affinities for rc-PhnA3 (data not shown). 2 

 3 

Catalytic properties of the dioxygenase complex : dependence of activity on electron carrier 4 

concentrations  5 

Purified ht-PhnI catalyzed the oxidation of naphthalene to cis-1,2-dihydroxy-1,2-6 

dihydronaphthalene, in a reaction that required the presence of the reductase (RedB356) and 7 

ferredoxin (ht-PhnA3) components. When the reductase concentration was varied, at constant 8 

concentrations of the ferredoxin and the oxygenase, activity reached half-saturation for a 9 

reductase concentration of 0.05 µM (data not shown). When the ht-PhnA3 concentration was 10 

varied, half-saturation was obtained when ferredoxin was added to an approx. 14-fold molar 11 

excess over the oxygenase concentration (4.5 µM). rc-PhnA3 was found to be equally active, 12 

indicating that the His-tag did not alter the enzyme function. At a ferredoxin concentration 13 

close to saturation (20 µM; 60-fold molar excess), the specific activity of the enzyme complex 14 

was calculated to be 1.25 ± 0.04 U/mg ht-PhnI. For most of the assays performed in this 15 

study, the reductase and ferredoxin concentrations were set at concentrations 2.4-fold and 12-16 

fold higher than that of PhnI, respectively. A suboptimal level of ferredoxin was chosen to 17 

limit non-specific NADH oxidation by the protein mixture in the absence of PAH substrate.  18 

 19 

Specific activity and coupling efficiency 20 

To examine the ability of the dioxygenase to oxidize PAHs, the enzyme activity was first 21 

determined by measuring the initial rate of oxygen consumption in the presence of an excess 22 

of substrate. The dihydrodiol products formed in the reaction mixture were quantified by 23 

HPLC as described under Materials and Methods. When fluorene and fluoranthene were 24 

tested, substrate oxidation was rather estimated by measuring the amount of residual PAH at 25 
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the end of the enzymatic reaction, because the oxidation products of these PAHs have not yet 1 

been fully characterized (see below and Table 3). In a second and independent set of 2 

experiments, the coupling efficiency of the PAH oxidation reactions catalyzed by the 3 

dioxygenase was determined by measuring the rates of NADH oxidation and dihydrodiol 4 

formation during catalysis. Table 2 compares the results obtained for nine PAHs in terms of 5 

specific activity, and reaction coupling between oxygen consumption, NADH oxidation and 6 

dihydrodiol formation.  7 

Naphthalene appeared to be the only substrate yielding a stoichiometry close to 1, indicating a 8 

tight coupling between substrate and cofactor oxidation. It was also the best substrate as it 9 

gave the highest rates of O2 consumption or NADH oxidation. Other substrates were utilized 10 

at rates that decreased with the number of fused rings, in reactions that gave rise to significant 11 

uncoupling between NADH oxidation and dihydrodiol formation. Chrysene appeared to be 12 

the worst substrate in terms of both oxidation rate and coupling efficiency. Although 13 

discrepancies were observed with some substrates when comparing enzyme activities assayed 14 

by O2 consumption and NADH oxidation, the coupling efficiencies calculated as either 15 

dihydrodiol/O2 or dihydrodiol/NADH ratios were similar within experimental error, except 16 

for phenanthrene and anthracene. It is unclear why different ratios were obtained in the two 17 

latter cases.  18 

During steady-state catalysis, hydrogen peroxide was produced, with a H2O2/O2 ratio that 19 

increased with the uncoupling of the reaction (Table 2). Depending on the substrate, the 20 

fraction of oxygen utilized for dihydrodiol formation varied between 8% (chrysene) and 21 

100% (naphthalene), the balance of O2 consumed being mainly allocated to H2O2 formation. 22 

However, some peroxide was produced even in the tightly coupled naphthalene hydroxylation 23 

reaction, the amount of which corresponded to the background O2 consumption observed in 24 

the absence of PAH.  Since the enzyme was saturated with naphthalene, the involvement of 25 
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ht-PhnI in H2O2 formation was unlikely, suggesting that the electron carriers were responsible 1 

for this side reaction. In a control experiment, we observed that electron carriers alone gave 2 

rise to an O2 consumption of 3.9 nmol.min-1 compared to 5.1 nmol.min-1 for the complete 3 

enzyme system, and generated 0.42 H2O2 per O2 consumed (versus 0.57 for the complete 4 

system). Hence, a large proportion of the peroxide produced during in vitro catalysis of PAH 5 

hydroxylation was contributed by the electron carriers alone, most likely through air-6 

oxidation of the reduced PhnA3 ferredoxin component. 7 

 8 

Steady-state kinetics  9 

Using naphthalene and biphenyl as substrates, the steady state rate of the PhnI-catalyzed 10 

reaction was determined in the 0.5-100 µM concentration range. The reaction was monitored 11 

spectrophotometrically, by measuring the kinetics of NADH oxidation. This assay method 12 

was preferred to the polarographic method, since at low substrate concentrations, the response 13 

time of the oxygen electrode was too long to account for the rapid consumption of the 14 

substrate. The dioxygenase exhibited a Michaelis-type behavior with respect to substrate 15 

concentration, and results indicated that the enzyme had an apparent Km as low as 0.92 ± 0.15 16 

µM for naphthalene. The apparent turnover number for this substrate was 1.82 ± 0.03 s-1. The 17 

enzyme showed a similarly low Km for biphenyl (0.42 ± 0.20 µM), the latter value being only 18 

an estimate as enzyme kinetics were extremely short (<4 s) and difficult to calculate 19 

accurately at substrate concentrations below 1.0 µM. The turnover number, expressed in 20 

terms of rate of dihydrodiol formed, was smaller (1.01 ± 0.04 s-1), taking into account a 21 

dihydrodiol/NADH ratio of 0.67 in the calculation (Table 2). The apparent specificity 22 

constant was calculated to be 2.0 ± 0.3 µM-1 s-1 for naphthalene, and 2.4 ± 1.0 µM-1 s-1 for 23 

biphenyl. 24 

 25 
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Dihydroxylations and monohydroxylations catalyzed by PhnI 1 

GC-MS analysis of the PAH oxidation products revealed that a single dihydrodiol was 2 

generated by the dioxygenase in most cases, except when fluorene, fluoranthene, chrysene 3 

and benz[a]anthracene were used as substrates (Table 3 and Fig. 2). Biphenyl, naphthalene, 4 

phenanthrene were hydroxylated at positions 2,3-, 1,2- and 3,4-, respectively. as previously 5 

determined (6), whereas anthracene was most likely converted to the 1,2-dihydrodiol, as 6 

found for the dioxygenase present in S. yanoikuyae B1 (29). Fluorene oxidation gave rise to 7 

the formation of five detectable products, four of which had mass spectra corresponding to 8 

monohydroxylated derivates (Table 3). While 9-fluorenol resulted from a monohydroxylation, 9 

the other products might have arisen from either a single hydroxylation or spontaneous 10 

dehydration of unstable dihydrodiols primarily produced by the enzyme, as proposed in a 11 

previous study on fluorene oxidation by naphthalene dioxygenase (34). Fluoranthene 12 

oxidation yielded only one detectable product with a mass spectrum characteristic of a 13 

monohydroxylated molecule (the prominent fragment at m/z=290 in Table 3 corresponds to 14 

the mass of the trimethylsilyl derivate of hydroxyfluoranthene), and a UV absorbance 15 

spectrum identical to that of 8-hydroxyfluoranthene (35). This result suggested that the 16 

dioxygenase catalyzed a monohydroxylation of fluoranthene on the C8 position. With 17 

chrysene, the major product detected was the cis-3,4-dihydrodiol, as determined by 18 

comparison of GC-MS and UV absorption data with those of the previously characterized diol 19 

(30). A more polar compound was also detected by HPLC, which accounted for less than 10% 20 

of the total products based on peak area. This compound, which gave a trimethysilyl derivate 21 

with a mass of 584 (Table 3), had the same chromatographic properties as the 3,4,9,10-bis-22 

cis-chrysene dihydrodiol. We have independently identified this product based on proton and 23 

13C NMR (Jouanneau, Meyer, and Duraffourg, unpublished results). Finally, the dioxygenase-24 

catalyzed oxidation of benzo[a]pyrene yielded a single product with a mass spectrum 25 
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characteristic of a dihydrodiol derivate (Table 3). The UV spectrum of this product was 1 

identical to that of the cis -9,10-benzo[a]pyrene dihydrodiol (31). 2 

Dihydroxylation of benz[a]anthracene 3 

Benz[a]anthracene was converted by CHY-1 dioxygenase to three cis-dihydrodiol isomers 4 

and one bis-cis-dihydrodiol (Table 3 and Fig. 2). The three dihydrodiols have been 5 

independently purified and identified as the 1,2-, 8,9- and 10,11-isomers, based on a good 6 

match of GC-MS and UV absorbance data with previously published data (32). Quantitative 7 

analysis of the diols by GC-MS in several experiments showed that the 1,2-isomer was most 8 

abundant (68 ± 7%), with the 8,9- and the 10,11-isomers representing 9 ± 3% and 23 ± 4 % of 9 

the diols formed, respectively (average of 6 determinations). The proportion of bis-cis-10 

dihydrodiol increased during the course of the enzymatic reaction, suggesting that at least one 11 

of the dihydrodiol reacted a second time with the enzyme to form the bis-cis-dihydrodiol. To 12 

test this hypothesis, the 1,2- and 10,11-isomers were independently provided as substrates to 13 

the dioxygenase. Interestingly, the two dihydrodiols triggered a fast and uncoupled oxidation 14 

of NADH, with small amounts of bis-cis-dihydrodiol produced (Table 2). Nevertheless, since 15 

the two isomers yielded the same product as judged from HPLC and GC-MS analysis, it is 16 

inferred that the bis-cis-dihydrodiol bore hydroxyls on carbons in positions 1, 2, 10 and 11 of 17 

the benz[a]anthracene molecule. The enzymatic reaction generated hydrogen peroxide at a 18 

rate much higher than that attributed to the electron carriers, indicating that, in this case, the 19 

formation of H2O2 was mainly due to futile cycling of the oxygenase.  20 

 21 

Reactivity of ht-PhnI toward benz[a]anthracene as investigated by single turnover 22 

experiments 23 

To further investigate the reactivity of the dioxygenase toward benz[a]anthracene, single 24 

turnover reactions were carried out under conditions similar to those previously described for 25 
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naphthalene dioxygenase (10). In these experiments, the oxygenase component alone was 1 

allowed to react with the substrate in air-saturated buffer, and a rapid formation of 2 

dihydrodiol was expected at the enzyme active site. In a control experiment with naphthalene 3 

as substrate, the formation of dihydrodiol was observed on a time scale lower than 1 min. 4 

Surprisingly, the conversion of benz[a]anthracene was much slower and reached completion 5 

only after approx. 20 min. In addition, bis-cis-dihydrodiol was detected and its concentration 6 

increased linearly during the course of the reaction. These results suggested that the rate of the 7 

reaction was limited by the solubility of the substrate, which in turn reduced the accessibility 8 

of the substrate to the enzyme active site. On the other hand, the dihydrodiols produced which 9 

are soluble in water, might compete with the PAH for enzyme active sites, thus explaining the 10 

formation of bis-cis-dihydrodiol. This interpretation was tested in experiments where the 11 

solubility of the PAH was increased by adding an organic solvent to the reaction (Table 4). 12 

By carrying out the reaction in 20% acetonitrile, the solubility of benz[a]anthracene was 13 

increased 100-fold, and the reaction was completed in less than 1 min. In 30% acetonitrile, the 14 

reaction was also fast, but the product yield was lower, probably because of enzyme 15 

inactivation. GC-MS analysis of the diols formed showed that the 10,11-isomer was most 16 

abundant, and no bis-cis-dihydrodiol was detectable in reactions carried out in the presence of 17 

solvent. These results contrasted with those obtained in steady-state experiments, since in the 18 

latter case, the 1,2-isomer was the predominant product. However, the two sets of data could 19 

be reconciled by assuming that, under steady state conditions, the 10,11-isomer is converted 20 

to bis-cis-dihydrodiol faster than the 1,2-isomer (see below). The results of single turnover 21 

experiments demonstrate that the oxygenase preferentially hydroxylates benz[a]anthracene on 22 

carbons in positions 10,11. It is also shown that the reactivity of the enzyme towards water-23 

insoluble substrates, which is limited by substrate transfer to the active site, could be 24 
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enhanced by carrying out the reaction in aqueous medium containing up to 20% organic 1 

solvent. 2 

 3 
Interaction of ht-PhnI with benz[a]anthracene and dihydrodiols as probed by EPR 4 

spectroscopy 5 

The high level of uncoupling observed when benz[a]anthracene dihydrodiols were incubated 6 

with the dioxygenase indicated that these compounds did not interact correctly with the 7 

enzyme active site. As a means to probe this interaction, we carried out EPR analysis of 8 

complexes between the active site Fe(II) and NO, in the presence or absence of substrate (Fig. 9 

3). The spectrum of the substrate-free enzyme showed a complex signal centered at g=4.0, 10 

which might reflect the existence of more than one NO binding site. Alternatively, the signals 11 

might arise from different conformations due to different orientations of the Fe-NO bond. 12 

Interestingly, two pairs of resonance lines at 3.68/4.40 and 3.98/4.07, which were prominent 13 

in the spectrum of the free enzyme, underwent dramatic changes upon substrate binding (Fig. 14 

3). These lines almost disappeared in the spectrum of the benz[a]anthracene-bound enzyme, 15 

and were undetectable in the case of the naphthalene-bound enzyme complex. The shape of 16 

the signals obtained for the dihydrodiol-bound enzyme complexes showed patterns 17 

intermediate between the substrate-free and the benz[a]anthracene-bound enzyme, the 18 

spectrum of the 10,11-isomer-bound enzyme being closer to the latter. These observations 19 

could be taken as indirect evidence that the dihydrodiols were not correctly oriented in the 20 

substrate-binding pocket to allow for a productive catalytic conversion into bis-cis-21 

dihydrodiol. Based on these EPR data, the 10,11-isomer would bind the active site in a more 22 

favorable position than the 1,2-isomer. Alternatively, our data might indicate that the enzyme 23 

was not saturated by the dihydrodiols, although concentrations in molar excess over the 24 

enzyme catalytic sites were used. Accordingly, in experiments where the concentration of the 25 

dihydrodiols was doubled (0.2 mM), we observed that the relative intensity of the resonance 26 
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lines at 3.68/4.40 and 3.98/4.07, attributed to the free enzyme (see above), was significantly 1 

reduced compared to that found in spectra b and c in Fig. 3. The spectra of the enzyme-2 

dihydrodiol complexes were then only slightly different from those obtained with naphthalene 3 

or benz[a]anthracene as ligands (data not shown). We therefore conclude that the differences 4 

seen in spectra b and c, compared to spectrum d, are likely due, in great part, to the 5 

contribution of substrate-free enzyme, thus reflecting a relatively low affinity of the enzyme 6 

for the two benz[a]anthracene dihydrodiols. 7 

 8 

DISCUSSION 9 

 10 
The ring-hydroxylating dioxygenase described in this study exhibits one of the broadest 11 

substrate specificities toward PAHs ever reported. It is a rare example of an enzyme able to 12 

attack aromatic substrates composed of 2 to 5 rings, which gave us an opportunity to compare 13 

the kinetics of dioxygenation for a wide range of PAHs. Consistent with previous in vivo 14 

observations (6), the specific activity of strain CHY-1 dioxygenase was highest with 15 

naphthalene, and declined as a function of substrate size. Ironically, while strain CHY-1 was 16 

isolated for its ability to grow on chrysene as sole carbon source (18), chrysene appeared to be 17 

the worst substrate in terms of both oxidation rate and coupling efficiency (Table 2). This 18 

finding suggested that a dioxygenase other than PhnI might be responsible for the initial 19 

attack of chrysene in strain CHY-1. However, such a hypothesis can be ruled out on the basis 20 

of our previous work showing that a mutant strain lacking PhnI failed to grow on and oxidize 21 

chrysene, as well as any other PAH used as substrate by the parental strain CHY-1 (6). Hence, 22 

PhnI is essential for growth on chrysene, and its low activity towards this substrate is 23 

probably one of the main reason why strain CHY-1 shows slow growth and poor cell yields 24 

when provided with chrysene as sole carbon source (18). In comparison, benz[a]anthracene, 25 

another 4-ring PAH which was oxidized at a much higher rate, failed to support growth of 26 
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strain CHY-1 (18). Possible reasons which might explain this paradox are discussed below. 1 

The present study also unveiled interesting new features of strain CHY-1 dioxygenase, 2 

including its ability to utilize fluoranthene and benzo[a]pyrene. Hence, this enzyme has the 3 

remarkable potential to initiate the degradation of at least half of the 16 EPA priority PAHs, 4 

including the carcinogenic benz[a]anthracene and benzo[a]pyrene. A dioxygenase activity 5 

with a similarly broad substrate specificity has only been found in S. yanoikuyae B1, but the 6 

corresponding enzyme has not yet been described (36). 7 

The dioxygenase from strain CHY-1 is a three-component enzyme that shares many of 8 

the biochemical properties of counterparts found in other bacteria degrading aromatic 9 

hydrocarbons. Based on the properties of the associated electron carriers, it would belong to 10 

class IIB of the dioxygenase classification proposed by Batie et al. (37), together with 11 

benzene and biphenyl dioxygenases (1). However, amino acid sequence analysis of the PhnI 12 

 and subunits rather indicated that the enzyme was more closely related to naphthalene and 13 

phenanthrene dioxygenases (6), consistent with the substrate specificity of the dioxygenase 14 

determined herein. Purified ht-PhnI contained Rieske [2Fe-2S] and mononuclear Fe (II) 15 

centers as expected, but quantitative analysis based on EPR spectroscopy revealed that the 16 

two types of metal binding sites were not fully occupied. We cannot rule out metal loss during 17 

purification, despite employing conditions likely to minimize such losses. However, it is also 18 

possible that the biosynthesis of the oxygenase in Pseudomonas recombinant cells yielded a 19 

protein that did not have its full content of metal centers. Examples of purified oxygenases 20 

having a full complement of iron have occasionally been reported (10, 38, 39), but enzyme 21 

preparations partially lacking iron are more frequently obtained (4, 40-42). Hence, our EPR-22 

based method to determine the occupancy of both iron binding sites might be of general 23 

interest for the characterization of such types of enzymes. 24 
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 The in vitro activity of the dioxygenase was highly dependent on the component ratio 1 

ferredoxin over oxygenase, half saturation occurring for a 14-fold molar excess of the 2 

ferredoxin. Likewise, a high molar excess of ferredoxin was required to reach maximal 3 

activity in the case of naphthalene (10), and biphenyl dioxygenase (39). As a consequence, 4 

comparison of the apparent specific activities or kcat of enzymes from different sources should 5 

be regarded with caution.  At a ferredoxin/oxygenase ratio of 14, the CHY-1 dioxygenase 6 

showed an apparent kcat of 1.82 ± 0.03 s-1 and a specificity constant of 2.0 ± 0.3 µM-1 s-1
 with 7 

naphthalene as substrate. A velocity constant 2.5-fold as high (4.48 s-1) was found at a molar 8 

ratio of 60. In comparison, the biphenyl dioxygenase from C. testosteroni exhibited a kcat of 9 

7.0 ± 0.2 s-1 and a specificity constant of 1.2 ± 0.1 µM-1 s-1, at a ratio of 23 (39). An apparent 10 

kcat of 2.4 s-1  and a specificity constant of 7.0 µM-1 min-1 (equivalent to 0.11 µM-1 s-1), was 11 

reported for 2-nitrotoluene dioxygenase from Comamonas JS765, at a ratio of 3.7 (42).  12 

The present study revealed that the coupling between substrate oxidation and O2 (or 13 

NADH) utilization varied widely depending on PAHs.  While the conversion of naphthalene 14 

to dihydrodiol by the dioxygenase involved a stoichiometric amount of O2, the oxidation of  15 

all other PAHs, except fluorene, gave rise to significant uncoupling. This uncoupling was 16 

associated with the release of H2O2, although a large proportion of the peroxide could be 17 

attributed to auto-oxidation of the electron carriers alone. Assuming that most of the peroxide 18 

detected in our in vitro assays is an artifact due to the great molar excess of electron carriers 19 

used in these assays, it is unclear whether peroxide would be produced in significant amounts 20 

in vivo as a consequence of the dioxygenase-catalyzed oxidation of PAHs, given that electron 21 

carriers are certainly in limiting amounts in natural host cells. Nevertheless, because of this 22 

uncoupling, part of the energy recovered from the catabolism of PAHs as NAD(P)H, is 23 

probably lost as unproductive transfer of reducing equivalents to O2. This energy burden 24 

might affect growth yield, and could explain, at least in part, the higher resistance of 4- and 5-25 
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ring PAHs to bacterial biodegradation, inasmuch as the coupling efficiency of the 1 

dioxygenase reaction was lowest with those PAHs. Other dioxygenase systems were found to 2 

give rise to partially uncoupled reactions when challenged with poor substrates, and this was 3 

associated to a release of H2O2. Uncoupling occurred when naphthalene dioxygenase was 4 

incubated with benzene, and the peroxide formed was found to irreversibly inactivate the 5 

enzyme, probably because of the damage done by the product of the Fenton reaction between 6 

peroxide and the active site Fe(II) (33). Biphenyl dioxygenase also catalyzed uncoupled 7 

reactions and H2O2 production when provided with certain dichlorobiphenyls, which might 8 

result in the inhibition of the dioxygenation of other chlorobiphenyls. This effect, combined 9 

with the deleterious action of peroxide on cells, was predicted to inhibit the microbial 10 

catabolism of polychlorobiphenyls (39). Interestingly, some PAH-degrading bacteria were 11 

shown to specifically induce a catalase-peroxidase when grown on PAHs, thereby providing a 12 

means to cope with the dioxygenase-mediated formation of peroxide (43). 13 

The oxidation of benz[a]anthracene by the dioxygenase from strain CHY-1 is of 14 

particular interest  because this PAH was converted into three dihydrodiols, two of which 15 

were subjected to a second dihydroxylation in a highly uncoupled reaction. The amount of 16 

bis-cis dihydrodiol formed in this secondary reaction within the time of an assay (around 5 17 

min) was estimated to be between 20 and 40 % of the total amount of diols primarily 18 

produced by the enzyme. These observations have several implications as for the reactivity 19 

and the coupling efficiency of the enzyme with respect to benz[a]anthracene. The rapid 20 

accumulation of bis-dihydrodiol indicated that the 1,2- and 10,11-dihydrodiols competed with 21 

benz[a]anthracene for the enzyme active site, which they reached faster than the PAH because 22 

of their much higher water solubility. This interpretation is supported by single turnover 23 

experiments showing that organic solvent accelerated benz[a]anthracene oxidation and 24 

suppressed bis-dihydrodiol formation. Because the dihydrodiols are poor substrates for the 25 
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dioxygenase, as confirmed by EPR probing of nitrosyl-enzyme complexes, the competition 1 

they exert on benz[a]anthracene oxidation was expected to alter the coupling efficiency. A 2 

ratio dihydrodiol/O2 of 0.31 was calculated without taking into account the formation of bis-3 

dihydrodiol (Table 2). A calculation of the O2 consumed for bis-dihydrodiol formation, 4 

assuming that 2 O2 molecules were required per each molecule formed, allowed to bracket the 5 

ratio (bis-dihydrodiol + dihydrodiols)/O2 between 0.42 and 0.55. This is definitely higher than 6 

the dihydrodiol/O2  ratios found for chrysene and benzo[a]pyrene. Hence, based on coupling 7 

efficiency and oxidation rates, benz[a]anthracene appeared to be a better substrate than 8 

chrysene, and yet, it could not support growth of strain CHY-1. In S. yanoikuyae B1, a strain 9 

which  cannot grow on benz[a]anthracene either, previous studies showed that the oxidation 10 

of this PAH led to the accumulation of three metabolites identified as 1-hydroxyanthranoic 11 

acid, 2-hydroxy 3-phenanthroic acid and 3-hydroxy 2-phenanthroic acid (44). These 12 

metabolites were predicted to arise from five similar degradation steps of benz[a]anthracene, 13 

involving an initial dihydroxylation on positions 1,2-, 8,9- and 10,11-, respectively. The data 14 

suggested that a subsequent step in the catabolic pathway of this PAH might be too slow to 15 

allow efficient processing of the metabolites, thereby preventing bacterial growth. 16 

Alternatively, the possibility was considered that the peroxide formed in the dioxygenase-17 

catalyzed oxidation of benz[a]anthracene, or in the secondary oxidation of dihydrodiols, could 18 

inhibit growth. The secondary reaction generating bis-dihydrodiol is highly uncoupled, but it 19 

is unknown whether it would occur in vivo in strain CHY-1. S. yanoikuyae B1 did not 20 

produced any detectable bis-dihydrodiol when degrading benz[a]anthracene (44), indicating 21 

that dihydrodiols were rapidly metabolized. Accordingly, we have recently characterized a 22 

dihydrodiol dehydrogenase which can efficiently convert the three dihydrodiol isomers of 23 

benz[a]anthracene to corresponding catechols (22). Hence, in PAH-degrading 24 

Sphingomonads, the coupling between the first and the second enzymatic step of the catabolic 25 
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pathway likely prevents the dioxygenase from catalyzing unproductive and potentially 1 

deleterious reactions. 2 

In this work, we have purified and characterized a ring-hydroxylating dioxygenase with 3 

an exceptionally broad substrate specificity, which provides a good model for further 4 

structure-function studies on this class of enzymes. The oxygenase component has been 5 

recently crystallized and subjected to X-ray diffraction analysis. The structure of the protein 6 

has been solved to 1.85 Å resolution and will be described elsewhere (J. Jakoncic, Y. 7 

Jouanneau, C. Meyer,  V. Stojanoff, unpublished data).  8 

 9 
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 1 

Table 1 : Specific activity and iron content of different preparations of ht-PhnI .  2 

Iron was determined by chemical analysis and EPR spectroscopy. The standard error for each 3 

determination was less than 10%. 4 

 5 

Ht-PhnI preparation 1 2 3 

Concentrationa    (µM) 21.0 25.7 19.7 

Total Fe     (atoms/ 1.73 2.54 2.55 

Fe(II)-NO   (spin/ 0.20 0.78 0.92 

[2Fe-2S]    (spin/ 0.75 0.85 0.75 

Specific activity b (U/mg) 0.41 ± 0.035 0.86 ± 0.01 0.58 ± 0.01 

a The protein concentration were estimated from the microbiuret assays, using a molecular 6 

mass of 215 kDa for ht-PhnI. Based on these determinations, the absorbance coefficient of ht-7 

PhnI at 458 nm was calculated to be 458 = 12,500 M-1.cm-1 8 

b as determined by the NADH oxidation assay with naphthalene as substrate. The molar ratio 9 

PnA3/PhnI was approx. 9.5 in these assays.  10 

 11 

 12 
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Table 2 : Specific activity and coupling efficiencies of the dioxygenase as a function of PAH substratesa 
 

Substrate O2 consumption Dihydrodiol 

formed 

Dihydrodiol/O2
 b H2O2/ O2 NADH oxidation Diol/NADH 

 nmol.min-1.mg-1 nmol.min-1.mg-1   nmol.min-1.mg-1  

Naphthalene 460 (20) 418 (20) 1.03 (0.07) 0.122 (0.010) 510 (50) 0.92 (0.06) 

Biphenyl 410 (40) 260 (12) 0.70 (0.01) 0.28 (0.015) 290 (35) 0.67 (0.03) 

Phenanthrene 370 (30) 300 (30) 0.83 (0.03) 0.128 (0.028) 465 (10) 0.46 (0.01) 

Anthracene 360 (30) 130 (10) 0.36 (0.02) 0.53 (0.02) 141 (6) 0.62 (0.01) 

Fluorene 91.5 (7) 91 (5) c 0.99 (0.05) - - - 

Fluoranthene 147 (24) 76 (5) c 0.51 (0.04) - - - 

Benz[a]anthracene  167 (20) 52 (5) d 0.31 (0.04) 0.48 (0.04) 46 (2) 0.40 (0.07) 

Chrysene 49 (2) 2.5 (0.3) 0.082 (0.011) 0.59 (0.08) 9.6 (0.6) 0.098 (0.007) 

Benzo[a]pyrene 43 (8) 7.8 (0.7) 0.33 (0.02) 0.50 (0. 005) 10 (1)  0.19 (0.01) 

1,2-Benz[a]anthracene diol 2500 (400) 11 (2) 0.0044 (0.001) 0.83 - - 

10,11-Benz[a]anthracene diol 1500 (150) 16.5 (0.5) 0.011 (0.0005) 0.66 - - 

a The indicated values represent means obtained from two to four determinations, with standard deviations given in parentheses. - means not 

determined. O2 consumption and NADH oxidation represent initial rates corrected for the background activity observed in the absence of PAH 
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substrate. The rates of dihydrodiol formation are average rates calculated over the duration of the assay which lasted between 4 min(naphthalene) 

and 11 min (benzo[a]pyrene). 
b Values were calculated as ratios between the rates of dihydrodiol formation (column 3), and the average rates of O2 consumption over the 

duration of the assay, which are lower than the initial rates of O2 consumption given in column 2.  
c These values represent rates of substrate oxidation, because the oxidation products from florene and fluoranthene could not be measured 

accurately (see text). 
d Three diol isomers were produced, which were not separated by HPLC and quantified as a mixture (see Methods). The contribution of bis-cis-

dihydrodiol, also produced in the reaction, was not taken into account in the calculations. 
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Table 3 : GC-MS identification of PAH oxidation products formed by CHY-1 dioxygenase. 
 
Substrate Properties of trimethylsilyl derivates of products Identification 

GC retention 

time (min) 

Relative peak 

area (%) 

m/z and relative abundance (%) of major 

fragments 

Fluorene 15.18 6 254(M+, 41), 239(8), 166(15), 165(100) 9-Fluorenola 

 16.18 6 254(M+, 100), 239(39), 224(19), 223(89), 

178(8), 165(13) 

Hydroxyfluorene 

 16.49 14 254(M+, 100), 239(70), 223(3), 195(2.5), 

178(11), 165(63) 

Hydroxyfluorene 

 16.67 16 254(M+, 100), 239(67), 223(2), 195(2), 

178(10), 165(25) 

Hydroxyfluorene 

 17.70 58 342(M+, 100), 327(4), 253(62), 238(5), 

178(5), 164(5), 163(5) 

Dihydroxyfluorene 

Fluoranthene 20.74 100 290(M+, 100), 275(70), 219(11), 215(11), 

201(14), 200(14), 189(15) 

8-Hydroxyfluoranthene 

Chrysene 23.08 >90b 406(M+, 28), 317(14), 316(18), 303(32), 3,4-dihydrodiolc 
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244(14), 228(40), 226(33), 215(66), 191(100) 

 24.55 <10b 584(M+, 8), 393(8), 355(8), 282(13), 281(40), 

207(100), 191(73) 

3,4,9,10-bis-dihydrodiolc 

Benz[a]anthracene 22.65 68 406(M+, 28), 316(26), 303(30), 281(14), 

228(28), 226(25), 215(36), 191(50), 73(100) 

1,2-Dihydrodiolc 

 22.95 23 406(M+, 32), 316(29), 303(59), 228(21), 

226(14), 191(46), 73(100) 

10,11-Dihydrodiolc 

 23.43 9 406(M+, 31), 316(27), 303(80), 281(16), 

228(18), 226(14), 215(29), 191(68), 73(100) 

8,9-Dihydrodiolc 

 23.53 20-40 d 584(M+, 46), 481(21) 392(9), 355(16), 

281(22), 207(48), 191(100) 

1,2,10,11-bis-Dihydrodiolc 

Benzo[a]pyrene 25.88 100 430(M+, 5.5), 415 (1.5), 341(5), 327(8), 

281(20), 252(8), 207(100) 

9,10-Dihydrodiolc 

a Identification based on match of mass spectrum and GC retention time with those of an authentic sample. 

b Percentages estimated from HPLC peak area. 

c Identification based on comparisons of the GC-MS and UV absorbance data of the products with previously published data (see text). 
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d The indicated range represents an estimation of the bis-dihydrodiol/dihydrodiols ratio, as indicated in the text. 

 

 

 

Table 4 : Solvent-facilitated formation of benz[a]anthracene cis-dihydrodiols catalyzed by PhnI in single turnover reactions.  
  

Acetonitrile 

% in the reaction

Benz[a]anthracene 

solubilized (µM) 

Incubation time  

(min) 

Total diols/PhnI Percentage of dihydrodiols produced asa 

1,2-diol                10,11-diol              8,9-diol 

0 0.025 1 0.44    

  10 2.12b 28 64 8 

20 2.5 1 2.01 30 53 17 

  10 1.94 36 50 14 

30 27.0 1 1.12 29 43 28 

  10 0.96 28.5 54 17.5 

       

a As determined from the peak area of trimethylsilyl derivates analyzed by GC-MS 
b Some bis-cis-dihydrodiol was also produced which accounted for about 1.5% of the total diols formed, based on HPLC determination. 
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Figure legends 
 
 
FIGURE 1: SDS-PAGE of the purified components of the ring-hydroxylating dioxygenase of 

Sphingomonas strain CHY-1. Polypeptides were electrophoresed on a 15% polyacrylamide 

slab gel. Lane 1: molecular mass markers. Lane 2: ht-PhnI, 3.2 µg. Lane 3: ht-PhnA3, 1.0 µg. 

Lane 4: ht-PhnA4, 1.8 µg. 

 

FIGURE 2 : Dioxygenation reactions of four-ring PAHs catalyzed by ht-PhnI. 

Benz[a]anthracene was converted into three dihydrodiols isomers (a), in proportions which 

varied depending on experimental conditions (see text). The 1,2- and 10,11-isomers were 

subjected to a second dihydroxylation, yielding the same bis-cis-dihydrodiol (b). Chrysene 

was oxidized to a single dihydrodiol, which could subsequently react with the dioxygenase to 

yield the 3,4,9,10-bis-cis-dihydrodiol (c). Reaction products were identified as indicated in 

the text. Stereochemical configurations were assumed to be identical to those reported in 

previous studies on the S. yanoikuyae enzyme (32, 45). 

 

FIGURE 3 : EPR spectra of nitrosyl complexes of ht-PhnI in the presence or absence 

substrates.  

Protein samples contained 22.0 µM ht-PhnI in 0.18 ml of 50 mM potassium phosphate, pH 

7.5, and, either no substrate (spectrum a) or one of the following substrates (0.1 mM) added in 

10 µl acetonitrile : 1,2-benz[a]anthracene dihydrodiol (spectrum b); 10,11-benz[a]anthracene 

dihydrodiols (spectrum c); benz[a]anthracene (spectrum d); naphthalene (spectrum d). After 

15 min at room temperature under argon, nitrosyl complexes were prepared (see Materials 

and Methods), samples were transferred into EPR tubes and frozen. Acquisition conditions : 

Temperature; 4K; Microwave power: 250 µW; modulation frequency: 100 kHz; modulation 

amplitude: 1mT. Relevant g values are indicated. 
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