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Abstract: This paper investigates the diagnosability of Rectangular Hybrid Automata used for
modeling a class of hybrid systems. First, a generalized definition of Limited-Time Lookahead
diagnosability of timed languages, for multiple failure modes, is proposed. Then, we provide a
systematic approach, for checking the LTLa diagnosability of systems modeled with Rectangular
Hybrid Automata, and verifying some realistic assumptions. A practical example is considered

throughout the paper for illustration purposes.
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1. INTRODUCTION

Fault diagnosis is an important task for the design and
development of man-made systems such as embedded
systems, industrial process control systems, ...etc. This
importance is due to the crucial role diagnosis plays in
protecting human life, and increasing the reliability and
robustness of these systems. The diagnosis task consists of
the detection of anomalous system behaviors, followed by
the isolation and the identification of the causes behind
these faults.

The fault diagnosis-related problems have been extensively
studied within the context of continuous (), discrete (Lin
and Wonham, 1994; Sampath et al., 1996), and hybrid
systems (Bhowal et al., 2007; Zhao et al., 2005; McIl-
raith et al., 2000), during the last two decades. Among
the important problems, often addressed in the model-
based diagnosis literature is the verification of the system
diagnosability. A system is said to be diagnosable if it is
possible to detect every unobservable failure event, within
a finite delay from its occurrence, given a record of observ-
able events it generates.

In the model-based diagnosis context, verifying the diag-
nosability of a system provides modeling its correct and
faulty behaviors, using good/faulty partition of the sys-
tem states (Zad et al., 1998), or observable/unobservable
partition of the system events (Lin and Wonham, 1988;
Sampath et al., 1996). The verification consists in identi-
fying whether the occurrence of a failure can be inferred
within a finite delay of its occurrence, given a trajectory of
observable events following it. In (Sampath et al., 1995), a
diagnosability verification approach for untimed Discrete
Event Systems (DESs), modeled with Finite State Ma-
chines (FSMs), has been developed. In fact, it has been
shown that a system is diagnosable, if the corresponding

FSM diagnoser does not contain F;-indeterminate cycles.
Extensions of this approach to timed and hybrid models
have been proposed. In (Tripakis, 2002), a dense-time
extension of the untimed diagnosability definition has been
proposed, called A-diagnosability. A system, modeled with
a timed automaton(TA) (Alur, 1994), is A-diagnosable if
it is possible to detect a failure after a time delay bounded
by A since the fault has occurred. The diagnosability
verification for TA models was reduced to a zeno cycles
detection problem. In (Derbel et al., 2006), we proposed
an approach to check the diagnosability of a class of TAs,
based on the detection of F;-indeterminate cycles, which
provides less computation efforts.

Diagnosability of hybrid systems was considered in (Fourlas
et al., 2002), where a notion of diagnosability is proposed
for I/O hybrid automata. Case studies of hybrid systems
diagnosis and diagnosability have been developed for dis-
crete time hybrid system (DTHS) modeling framework
in (Bhowal et al., 2007). To our knowledge, only few results
studying the diagnosability of dense-time hybrid models,
have been developed. In fact, undecidability problems re-
lated to hybrid system models, prevent the development
of such works. Indeed, considering simple classes of hybrid
system models, can contribute to overcome such difficul-
ties.

In this context, we proposed, in (Derbel et al., 2009),
an online diagnosis approach for simple class of hy-
brid systems, modeled with Rectangular Hybrid Au-
tomata ()(RHAs) (Henzinger et al., 1998a). Despite the
simplicity of this formalism, the class of RHAs repre-
sents an interesting class of hybrid systems, that can very
closely capture the dynamics of real systems. They allow
for the description of arbitrary closed approximation of
continuous behaviors, using lower and upper bounds on
derivatives(e.g. @ € [2,5]). Unfortunately, RHA model



presents many decidability difficulties, as the undecidabil-
ity of the reachability problem (Henzinger et al., 1998a).
Indeed, studying the diagnosability of RHAs represents an
interesting and challenging task, and will correspond to the
main topic of this paper.

In this paper, following our previous contribution (Derbel
et al., 2009), we focus our attention to the problem of
diagnosability for hybrid systems modeled with RHAs. We
discuss the notion of diagnosability for timed languages.
In fact, we generalize the definition of A-diagnosability,
defined in (Tripakis, 2002) for timed models, to deal
with multiple failure modes. In fact, we will adopt the
term Limited-Time Lookahead(LTLa) (Ben.Hadj-Alouane
et al., 1994) diagnosability rather than A-diagnosability,
throughout this paper. We consider, from our point of
view, that this term is more appropriate to designate
this notion. The LTLa diagnosability is defined w.r.t. a
'failure/delay’ mapping function 6, specifying that each
failure in F;, must be detected at most in 6(7) t.u., after
its occurrence.

Our main contribution consists of studying the LTLa
diagnosability of systems modeled with RHAs. In fact,
we propose a systematic approach for checking the LTLa
diagnosability of timed languages, accepted by RHAs
verifying some realistic assumptions. This approach is
inspired from the diagnosability checking approach for
timed automata, proposed in (Tripakis, 2002). Indeed, our
approach is based on the construction of an RHAs product,
for each failure mode, and the application of a reachability
analysis on it.

We note that the considered assumptions help us to
surmount many decidability problems, related to the the
verification of hybrid system models. From our point
of view, studying the LTLa diagnosability, rather than
the time-unbounded diagnosability, does not decrease the
application abilities of our contribution. In fact, failure
detection in real processes must be, generally, performed
within a bounded time delay, after the failure occurrence.
Considering randomly unbounded delays is not suitable for
performing the diagnosis of critical systems, and is avoided
in real practices.

This paper is organized as follows. The next section pro-
vides the necessary background on rectangular hybrid au-
tomata. Section 3, defines formally the notion of LTLa
diagnosabilty in timed languages; we introduce a simple
example to illustrate this notion. Section 4, first describes
the needed assumptions for checking the LTLa diagnos-
ability of systems modeled with RHA. Then, a detailed
systematic approach for checking LTLa diagnosability, in
RHA is given. We conclude in section 5.

2. BACKGROUND ON RECTANGULAR HYBRID
AUTOMATA

Let ¥ denotes a set of labels (also called, events). We
assume that 3 is partitioned into two subsets of observable
and unobservable events (Lin and Wonham, 1988) ¥ =
Yo UXyo. Let X = {z1,...,2,}, be a finite set of real-

valued variables. We denote by X = {i | z € X} the

set of first derivatives of the variables of X. A variable x
is called stop-watch, if & € {0,1}. We use, ~, to denote
an element of the set of operators, {<,<,=,> >}. A
rectangular inequality over X, is an inequality of the form,
x ~c, where z € X, and ¢ € Z'. A rectangular predicate
over X is a conjunction of rectangular inequalities over X.
We denote by Rect(X) the set of rectangular predicates
over X. A polyhedral inequality over X is an inequality of
the form ciz1 + -+ ¢z ~ ¢, where z1,...,x, € X, and
¢, Cl,. .., Ck € Z. A polyhedral predicate over X is boolean
combination of polyhedral inequalities over X. We denote
by ¥(X) the set of polyhedral predicates over X.

The vector v = (v1,...,v, ), is an element of R™, that
captures the value, v; € R, of every variable z; € X.?
A subset of R" is called a region. For a region z and
z; € X, z(z;) = {vilv € z}. We denote by [¢], the
region composed of the set of vectors v € R™, for which
the predicate 1 is true when each z; is replaced by its
corresponding v;, for each i € {1,...,n}. For a rectangular
predicate ¢, and a variable x;, we write [¢](z;) to denote
the interval of values captured by v;, for all v € [¢].

A Rectangular Hybrid Automaton(RHA) (Henzinger et al.,
1998b), H, is a tuple (Q,X,%, E,inv, flow,init, M),
where:

Q is a finite set of locations,
X is a finite set of real valued variables,
Y. is a set of events,
E CQxYxRect(X) x Rect(X) x 2% x @, is a finite
set of transition edges. A transition, (q,0, 9,7, R,q’),
corresponds to a switch from location ¢ to location
q’, on the event o, under the condition that v € [g],
where the vector v corresponds to current values of
the variables. Upon the location switch, each variable
xz; € R is reset, nondeterministically, to a value in the
interval [r](z), the other variables, not in R, remain
unchanged. We use the operator Source(e),e € E, to
denote the source location of the transition,

e inv:Q — Rect(X) captures the invariant conditions
for the locations, The automaton H can remain in
the same location as long as the value of each variable
x; € X, belongs to the interval [inv(q)](z;),

e The function flow : Q@ — Rect(X), assigns a flow
condition to each location ¢ € . While the system
H evolves in the location g, the first time derivative of
each variable z; € X must remain within the interval
[flow(q)](zs),

e init C Q x Rect(X), specifies the initial condition of
the automaton,

e M C (@ corresponds to the subset of marked loca-

tions.

An initialized Rectangular Hybrid Automata is an RHA
where: for each edge (¢,0,9,7, R,q') € E, and for each
variable z; € X: z; € R, if [flow(q)](x;) # [flow(q")](x;).
Definition 1. (Synchronized Product). Let H; = (Q1, X3

7217 El,i?’l’l}l, flowhinitl)Ml) and H2 = (QQ; X27 227 Eg,in’l)g

, flows, inite, Ms) denote two RHA such that Q1 N Q2 =
(). The synchronized product, denoted by, H; ® Hs, is

1 7 denotes the set of integers.
2 R denotes the set of real, and R™ denotes the n-dimensional
euclidean space over R.



the RHA H = (Q,X,%; U X9, E,inv, flow,init, M),
where Q = Q1 X Q2, X = X7 U Xo, init = init; A
inity, and for each pair of locations ¢1 € Q1,q2 € Qo,
flow((q1,q2)) = flow(q1) A flow(gz), and inv((q1,¢2)) =
invy(q1) A invz(ge).

A transition e = ((q1,¢2),0,9,7, R, (4}, ¢5)) € E iff either:

® 0 C El - 227 (QI7Ua97T7 R7 qi) € E17 and qo = qé’

® 0C 22 - Ela (QQ7U,97T7 Ra Qé) € E27 and q1 = qa:

o0 € X1 Ny, (q1,0,91,71,R1,41) € En, (q2,0,92
.72, Ra,q5) € B2, g = g1/A\g2, 7 = r1Ur2, R = R{URs.

A location (q1,q2) is marked; i.e., (q1,q2) € M, if either,
q1 € M or g2 € M.

Lemma 1. The synchronized product of two initialized
RHAs is also an initialized RHA.

A state (q,v) of the RHA H, consists of a discrete part
q € Q together with a continuous part v € R™ such that
v € [inv(q)]. The trajectories of the states of H progress in
the system state space by performing one of the following
transitions:

e Flow transitions: The discrete part of the state re-
mains in the same location ¢, while the continuous
part evolves from valuation v to valuation v’, via
any smooth trajectory satisfying the constraints im-
posed by inv(q), and with derivatives of the vari-
ables remaining within the flow intervals specified by

flow(q). We denote this transition by (g, v) 9, (g, v"),
where § € R, is the time elapsed during the transi-
tion. 3

e Discrete transitions: corresponds to a discrete and
instantaneous location switch, as specified by the
tuple e = (q,0,9,7,R,q') € E. We denote this
transition by (¢,v) = (¢/,v'). The discrete transition
is enabled only if the guard predicate is satisfied by
the continuous part of the state; i.e., v. € [g]. The
discrete part of the state changes from ¢ to ¢’, and
the continuous part is updated according to the reset
assignments.

A run is a finite or infinite sequence of transitions
(q07V0) - (CI17V1) - (CI27V2) e where (q()vVO) €
init. An edge cyclic run is a run that crosses one transition
edge, at least, more than once. A state (g, vk) is said to
be reachable, if there exists a finite run leading to it; i.e.,

(90, vo) = (q1,v1) ... — (qr, Vk)-

A timed trace, is a finite or infinite, sequence of events al-
ternated with positive reals: dg, 01,01, 092,02, ...,0%,0% . . .,
where o>1 are elements of 3, and d>1 € Ry, denotes the
elapsed time between the occurrences of the events, o,
and o;11. We define the operator time(w), which gives the
(limit of the) sum of all the delays in the timed trace w;

ie., time(w) = Zé, We define the observable projection
i>0

operator P, which erases all unobservable events from a

given timed sequence w, and updates the delays between

the remaining events. As an example, given the timed trace

w = b,01,23,04,5,09,12, its corresponding observable

projection is P(w) = 5,01,28,09,12. A timed trace w is

3 R4 denotes the set of positive real numbers

accepted by an RHA H, if there exists a run of H over the
elements of w. A timed language is a (finite or infinite) set
of timed traces. A timed language L is said to be accepted
by an RHA H, if every trace in L is accepted by H.

A run over an infinite timed trace w is said to be time-
divergent, if time(w) = co. An RHA is said to be Strongly
Non-Zeno(SNZ), (?) if there exists a integer d > 0, such
that, all edge-cyclic runs have durations greater than d.
We give in the following, a sufficient structural condition,
to guarantee the strongly non-zenoness of an RHA.

An RHA H is SNZ, if every cycle of transitions, q; —

T et @ 5 q1, in H, verifies the following
conditions:

e There exists a variable x € X, such that & is strictly
positive (or, respectively, strictly negative) in all
locations of the cycle.

e There exist a pair transitions e, e’ € {ey,...,ex}, and
two integers ¢, ¢’ € Z, with ¢ < ¢/, such that: (1) If
& > 0, z is reset to ¢ in e, and upper-bounded by
diie,x <, ine. (2) If £ <0, x is reset to ¢ in

e, and lower-bounded by c¢; i.e., x < ¢, in the guard

condition of ¢’

Lemma 2. The synchronized product of two SNZ au-
tomata is a SNZ automata.

Proof: Each cycle in the product H; ® Hs corresponds
to a cycle in Hy or Hs, or to the synchronization of a
pair of cycles, the first in Hy, and and the second in Hs.
Hence, an edge-cyclic run in the product automaton have
a duration greater or equal to the minimal duration of
edge-cyclic runs in Hy or/and Hs. Since, every edge-cyclic
run in H; (respect. in Hy) is greater than d; > 0 (respect.
ds > 0). We conclude that every edge-cyclic run in H; ® Ho
is greater than the minimum between d; and ds.

Since the state space of an RHA is uncountably infinite,
we use the symbolic representation to perform analysis
over its space. The symbolic state of the automaton H is
a pair (g, z), where ¢ corresponds to a location of @ and
z is a region over X. The pair (g, z) represents the set of
states {(¢,Vv)|v) € z}. The continuous successor operator
of a symbolic state (g,z) is defined as: Post.((¢,2)) =

{(@v)@v) % (¢,v),v € 26 € Ry}. Similarly, we
define the discrete successor operator of a symbolic state
(g, 2), over a transition e € E, denoted by Posty((q, 2),¢e)
as: Posty((q,2),¢e) = {(¢',v)|(¢,v) = (¢/,V'),v € z}. We
define the successor operator Post, over an edge e € E, as
the composition of the discrete and continuous successor
operators; i.e., Post((q, z),e) = Post. o Posty((q, 2),¢e).

Computing discrete and continuous successors is equiv-
alent to performing some geometrical operations on n-
dimensional polyhedra (Alur et al., 1995). The polyhedral
part, z’, of the continuous successor (g, z') = Post.((g, 2))
is equal to the intersection of the corresponding invariant,
inv(q), with the continuous extension® of z. The discrete
successor (¢, z') = Postq((q, 2),e), where ¢’ is the desti-

4 defined as the set of values reached from each elements of z, by
applying the flow condition.



nation location of the transition e, and 2’ is computed as
follows: (1) compute z1 by intersecting z with the guard g
of the considered transition; (2) compute 22 by applying
on z; the update function of the transition e; (3) finally get
z' by intersecting zs with inv(q’), the invariant of the lo-
cation ¢’. We note that some tools like HyTech (Henzinger
et al., 1997), and PHAVer (Frehse, 2005), implement such
operations using polyhedral libraries, to analyze a more
general class of automata called linear hybrid automata.

Given an RHA H, and two states (¢,v), and (¢/,v’), the
reachability problem consists of verifying whether there
exists a run of H which starts from (g,v) and ends at
(¢’,v'). The forward reachability analysis uses an iterative
symbolic computation, to check whether a state (¢, v’)
is reachable from an initial state. The following function
performs forward reachability analysis. It returns ‘YES’,
when there exists a reachable state, having as discrete part
a marked location, starting from an initial state in (qgo, 20),
and returns ‘NO’; otherwise. The pair (qo, z9) corresponds
to the initial symbolic state, which captures all initial
states of H.

Algorithm 1 Symbolic Reachability Analysis Function

1: function Reachable(H):{'YES’,'NO’}

2: Wait := {(qo, 20)}; Visited := ()

3: while Wait # () do

4:  Get and remove (g, z) from Wait

5 if ¢ € M then

6: return ‘YES’.

7. elseif z & z;,Y(q, z) € Visited then
8

9

Add (g, 2) to Visited
for all e € E such that ¢ = Source(e) do

10: (¢',2") = Post((g, 2),e)

11: Add (¢, 2') to Wait, if 2/ # 0.
12: end for

13:  end if

14: end while
15: return ‘NO’.
16: end function

It has been shown that this algorithm may not terminate,
since the symbolic forward reachability analysis of RHA
is only semi-decidable (Henzinger et al., 1998a). However,
some decidability results of forward reachability analysis,
have been established for subclasses of RHA, like the
initialized RHA (Henzinger et al., 1998a). Indeed, the
function described in algorithm 1 will alawys halt after
a bounded number of iterations.

3. LIMITED-TIME LOOKAHEAD DIAGNOSABILITY
OF TIMED LANGUAGES

We give in this section a definition of the Limited-Time
Lookahead (LTLa) diagnosability for general timed lan-
guages. We suppose that the considered languages are
time-divergent. We illustrate the intuition behind our def-
inition using an example of timed language accepted by
an RHA.

Our definition of diagnosability deals with multiple failure
sets. In fact, we assume that all failure events are unobserv-
able, and the failures set Xy C X, is partitioned into m >
0 disjoint failure subsets (or modes) Xy = {F1,..., F,,}.

Moreover, all failures are assumed to be permanent; i.e.,
no return to the normal behavior is possible. In our work,
multiple failure scenarios are not considered; i.e., only
one failure mode can affect the system behavior at once.
However, extensions dealing with multiple failure can be
developed in future works. We suppose that the initial
states are failure safe (also called, normal).

We define the failure/time mapping function 6 : {1,...,m}
N associating with each failure set Fj,i € {1,...,m}, a
positive number, 6(i), denoted also by 6;.

Let L denotes a timed language. We associate with each
failure mode F;,i € {1,...,m}, a sublanguage L; of
L. Each trace of L; contains at least one failure from
the set F;. Let L?"’, i € {1,...,m}, denotes a sublan-
guage of L;, where in each trace of Lfi, at least 6; t.u.
have been elapsed, since the first occurrence of a failure

from F;. In fact, given a timed trace w in Lfi, w =

00,01,01,02,...,05,0n ..., we have Zék > 0;, where oy,
k>j

j > 0, denotes the first occurrence of F; in w. We denote

by Lo C L, the subset of traces of L, containing no failure

events.

The following is a formal definition of the LTLa diagnos-
ability, for a partition of m failure modes:

Definition 2. (LTLa diagnosability). Given a failure/time
mapping function 6, a timed language L is said to be LTLa
diagnosable w.r.t. 6 iff:

Vie{l,...,m},Vwe L% Vo' € L:

Pw)=PW)=uw' € L;

According to definition 2, a timed language is LTLa diag-
nosable if, each pair of timed traces, the first containing a
failure from F;, i € {1,...,m}, and the second not, must
have different observable projections, within 6; t.u. of the
failure occurrence.

In fact, the LTLa diagnosability of a timed language
guarantees the detection of all failures F;,i € {1,...,m},
at latest, after 6; t.u. from its occurrence, given the
observable behavior of the system.

The interval [0,6;] constitutes a limited-time lookahead
window, in which we compare the observable behaviors
of the system, after the occurrence of a failure F;. Each
system behavior affected by a failure from F;, must be
distinguished from other behaviors within this time win-
dow.

The non LTLa diagnosability of a timed language does
not imply its absolute non diagnosability. In fact, it can
be LTLa diagnosable w.r.t. larger values of 8. However, we
cannot decide the existence or not of such values.

To illustrate the LTLa diagnosability, let us consider the
following example, consisting of a simple fluid heating
system. We will use this example for illustration purposes
throughout the paper.



Example 1. Consider the simple fluid heating system,
shown in Figure 1.

Vi

S1

52

Fig. 1. A Simple Fluid Heating System

The fluid to be heated, is introduced through the valve
V1. As soon as the fluid level, measured by the variable
x, reaches the maximal level, z = 500, the sensor S
sends a notification to the controller, thereby, closing the
valve Vj. Then, the fluid is heated for 40 t.u.; i.e., until
the timer ¢ reaches the value 40. In the next step, the
fluid is evacuated through the valve V5; i.e., until the level
variable, x, reaches the value 0. Following this, the sensor
S5 sends a notification to the controller to close the valve
Vo and, the heating system proceeds to the next cycle.

The RHA H, illustrated in Fig. 2, captures the normal and
the faulty behaviors of the system. For simplicity purposes,
only important events are shown in the model. Moreover,
we suppose that only one failure can affect the system,
represented by the event leak, which corresponds to a leak-
age in the fluid tank. Due to the viscosity of the fluid, the
occurrence of a leakage affects its input and output rating,
during the phases of filling, heating, and evacuation. We
note that the transitions on unobservable events (leak, and
u) are represented using dashed arrows. The events si,
s are observable and correspond, respectively, to sensor
notifications S1, and Ss.

so,x =0
1 [« < 504 s1, = 500, 2]e <40 u, t = 40 slz>0
— & € [3,5] t'=0':c'=5(I? @ = 0] z € [~8, —6]
i=1 o i=1 i=1
: T:=40;z := 5
:leak
Y
< t < 40
4‘{1_50 s1,z = 500 5‘ = w, t = 40 6{z20
&€ (2,4 [T T e € [—2, —1] @ € [-9, —8]
t=1 e i=1 i=1
so,x =0

Fig. 2. An RHA Model of the Simple Fluid Heating System

In this example, we have one failure set X; = {Fy}, F} =
{leak}. In what follows, we shall consider two values for
01, to illustrate the LTLa diagnosability of the timed
language, accepted by H.

In the first case, we take 61 equal to 150. We consider
a pair of timed traces, from timed language accepted by
H, denoted wy; = 125, 51,40, u, 70, s2, 143, s1,40,u, 10 and
wo = 125,51,40,u,70, s2,10,leak, 133, 51,40, u, 10. It is
obvious that P(wy) = P(ws) = 125, s1, 110, s5, 143, 51, 50
and wy € L?l. Since the timed trace w; does not contain
any failures from Fj, we conclude that the language L is
not LTLa diagnosable w.r.t. the given 6.

Let us now take 6; = 300. Intuitively, we can detect
the occurrence of the leakage within 300 t.u.. In fact,
the presence of the leakage affects the quantity of fluid
contained in the tank. This quantity will be less than the
expected quantity in the normal operating mode, and thus,
the event so will occur later. Indeed, by analyzing the
occurrence time of the event so, we are able to distinguish
between the normal and the faulty behaviors. However,
the event so may not be observed within 150 t.u. of the
failure occurrence, keeping the observable projections, of
the normal and faulty behaviors, non distinguishable.

Intuitively, we can conclude that timed language accepted
by H is LTLa diagnosable for #; = 300, and is not,
for 67 = 150. In the next section, we shall develop the
systematic approach that will enable us to prove the LTLa
diagnosability of this system for 6 = 300.

4. CHECKING THE LTLA DIAGNOSABILITY OF
RHA

We propose in the following a systematic approach for
checking the LTLa diagnosability of the timed languages
accepted by RHA, under some assumptions.

We start by characterizing the different assumptions we
make on the system model, on which we apply our LTLa
diagnosability checking approach. Then, we illustrate the
different steps to check the LTLa diagnosability of the
timed language accepted by an RHA. Finally, we present
the key theorem linking the LTLa diagnosability of RHA
and our proposed approach for checking it.

We assume that both normal and faulty behaviors of our
system are captured by a given RHA H. Let L denotes
the timed language accepted by H. We denote by Hy,
the restricted version of the system model, capturing only
system’s normal behavior. It can be obtained from H, by
simply removing all the transitions labeled with events in
Y (failure events).

We define the location/failure mapping function ¢ : Q —
{0,...,m} as following: to each location ¢ of H, ¢ asso-
ciates to it, either ¢ € {1,...,m}, if there exists a run of
H reaching ¢, and containing a failure from F;, otherwise,
©(g) = 0. However, some locations may be reached by runs
containing different mode failures. Indeed, some struc-
tural transformations on the system model are needed,
to guarantee the existence of exactly one value, for each
location of H. This transformation consists in duplicating
some transition edges and locations, to separate transition
sequences, containing failures of different modes.



We propose to check the LTLa diagnosability of the
timed language accepted by an RHA H, and verifying the
following assumptions:

Ai: H is SNZ.

Ay: The normal behavior automaton, resulting from he
transformation of H, described above, is an initialized
RHA.

Our LTLa diagnosability checking approach works by ex-
ploring all the pairs of timed traces w and w’, where
we ¥ W e L—L; and P(w) = P(w'). The existence of
such pairs of traces implies the non LTLa diagnosability
of L, w.r.t. to the failure/time map 6.

Our approach consists of four steps. In the first step, we
construct, for each failure set F;,i € {1,...,m}, a pair of
RHAs, denoted H; and Hj, corresponding respectively, to
the system behaviors containing, respectively, not contain-
ing, failures from F;. In the second step, we build, for each
i € {1,...,m}, the product of H; and H;, synchronized on
observable events. Then, each obtained RHA is composed
with a simple RHA, denoted T'B. Finally, a reachability
analysis of the resulting RHAs, is performed.

Our approach consists of three steps. In the first step,
we build, for each failure set Fj,i € {1,...,m}, a pair of
RHAs, denoted H; and H;, corresponding respectively, to
system behavior containing, respectively, not containing,
failures from Fj.

The RHA H; and H; are obtained by performing some
structural transformations on copies of the system model

stop-watch y* measures the elapsed time, since the first
occurrence of a failure from F},

Lemma 3. We denote by L(H;) and L(H;), the timed
languages accepted by the RHAs H; and Hj, respectively.
Fori e {1,...,m}, we consider the following equivalences:
o L(H)=L-L;
o L(H)=1L— U Ly =LoUL;
k=1,k#i

We remark that each stop-watch y*,k € {1,...,m}, is
activated when a location, mapped to a failure mode Fj
(¢(q) = k) is reached, and will not stop (permanent fail-
ures assumption). Thus, the stop-watch y*, k € {1,...,m}
measures the elapsed time, since the first occurrence of a
failure from F}.

The second step of the LTLa diagnosability verification
approach consists of building, for each ¢ € {1,...,m}, the
synchronous product, H = H; ® H;. Note that the RHA
H, - synchronizes H; and H;, on observable events, since
¥i N Y- = Y,. Hence, each timed trace accepted by Hﬁ,
and which contains a failure from F}, proof the existence
of a pair of traces in Ly and Lz, with identical observable
projections.

Lemma 4. For a given i € {1,...,m}, the following state-
ments are equivalent:

(1) There exists a pair of runs in H; and Hj, over timed
traces w; and ws, respectively, and reaching states
(q1,v1) and (g2, v2), such that P(w1) = P(wa).

(2) There exists a run of H, ;, over a timed trace w, and

H, as follows. The RHA H; = (Qi, X;, %, B, invy, flows, initi, M) reaching the state (g1, g2), [o1 v2]7).

i € {1,...,m} is a copy of H, on which the following
modifications are applied:

Rename each event oy in X,, — X to o}.

Update, correspondingly to the above modifications,

all the names of all the variables, events, and locations

used in all the edges, invariance, and flow conditions.

(6) Add a stop-watch y® as follows: (1) y* is initialized to
0 in the initial condition; (2) For each location g € Q;,
we add the condition ¢ = 1 to flow;(q), if ¢(q) = i,
otherwise, we add ¢* = 0.

The RHA H; = (Q;, XZT, E;, E{, inv;, flOU)ZT, th;, 1\4;)7 1€

{1,...,m} is a copy of H, on which the following trans-

formations are applied:

)
)
corresponding transitions.
)
)

(1) Remove all events of F; from X7, and all the the
corresponding transitions.

(2) For all j € {1,...,m}, j # i, we add a stop-watch
y? as follows: (1) ¢/ is initialized to 0 in the initial
condition; (2) For each location ¢ € Q;, we add the
condition ¢/ =1 to flows(q), if ¢(g) = j, otherwise,
we add ¢/ = 0.

We note that each stop-watch y*, k € {1,...,m}, is

activated when a location mapped to a failure mode F},
(¢(q) = k) is reached, and will not be stopped. Thus, each

Lemma 5. For a given i € {1,...,m}, the following state-
ments are equivalent:

(1) There exists a run of H,

i Over a timed trace w,
and reaching the state ((q1,¢2), [v1 UQ]T), such that
w contains a failure from F},.

(2) There exists a pair of runs of Ly and L — Ly, k €
{1,...,m}, respectively, over timed traces w; and ws,
and reaching states (q1,v1) and (go,v2), such that

P(wl) = P(WQ).
Proof:

(1) = (2) : We suppose that there exists a run of H, 7, over

a timed trace w, and reaching the state ((q1, ¢2), [v1 vg]T),
such that w contains a failure from Fj. By Lemma 4, there
exists a pair of runs of H; and Hj3, respectively, over timed
traces wy and we, and reaching states (¢1,v1) and (g2, v2),
such that P(wy) = P(ws). By Lemma 3, w; € LoUL;, and
we € L— L.

Since, w contains a failure from F, k € {1,...,m}, then,
v(ykz > 0. According to the value of k, we have either,
v1(y*) > 0, or va(y*) > 0. Indeed, one of the traces,
w1 Or wo, contains a failure from Fj. Two cases can be
distinguished:

e i=k:w € (LoUL;)NL; and wy € L — L;. Then,
w1 € L, and wy € L — L;.



e i #* k :w € LoUL;, and wy € L — L;. Since
Lo C L—Liand L; C L— Ly, then, LoUL; C L— Ly,
and thus, wy € L — L.

wo contains a failure from Fy, then, wy € (L—L;)N
L. However, (L - Li) NL, = (Lk - Li) NL = Ly,
since L; N Ly =0, and L;, C L.

In conclusion, wy € L — Ly, and wo € Ly.

2)=1):

Lemma, 6. Let Hj (respectively H{) denotes a restriction
of the RHA H; (respectively H;), obtained by removing
all transitions on failure events, then:

Immediate.

o H'® HZQ is identical to the normal behavior version
of H i obtained by removing from all transitions on
failure events.

o HY® Hg is an initialized RHA (by assumption As
and Lemma 1).

The third step of our approach consists of constructing the
product of each RHA H i with the following two location
automaton, TB = ({¢z7, am }» {¥*, - - -
shown in Fig. 3. Let ﬁﬁ = (Qi’;7 X, 52,5 E, 7 i, 5, flow,
init, - Mz‘j)v denotes the RHA resulting from this prod-

7,17
uct. In fact, in H i the time progress is blocked on the
runs containing failures from Fy, k € {1,...,m}, after the
expiration of the lookahead window; i.e., 0 t.u.. Indeed,
a run, in ﬁi;, containing a failure Fy,k € {1,...,m},
will perform a discrete jump to a marked location, when
y* reaches 6, from where, the invariant is automatically
violated, leading to the blocking of time.

Sy poyt > 01
I— I
y! € 0,61] yl €10,61
A A
: wyt > 04 .
A . A
y™ € [u&N/ y™ € [0, .
vk > 0y,

Fig. 3. Time Bounder Automaton T B

The final step of our approach for checking LTLa diag-
nosability, consists of determining whether there exists a
run, reaching a marked location, in the product automaton

-, for each ¢ € {1,...,m}. For this, we make use of
our forwards reachability function, illustrated in Section 2.
The halting of this function in this case, is guaranteed by
the following theorem.

Theorem 1. For all ¢ € {1,...,m}, the forward reach-
ability analysis of the RHA H, ;, using Algorithm 1, is
decidable.

Proof: To proof the decidability of the algorithm, we split
the execution of the algorithm into two steps: (1) In the
first step, the algorithm will not explore the successors
of symbolic states, reached on edges labeled with failure
events(from X ;). Hence, each symbolic state, reached over
a transition on a failure event, will be put into an inter-
mediate set, called Pending, and will not be added to
the Wait set. (2) In the second step, we initialize the
set Wait by Pending, and we execute the algorithm to
explore the successors of symbolic states in Pending, not
explored during the first step. It is easy to establish that

T Apt, B, inv, flow, %n]ﬁﬁj\ﬂ

performing these two steps is equivalent to executing the
original version of the algorithm.

The termination of the first step is guaranteed. In fact,
successors of symbolic states, reached over transitions on
failure events, will not be explored. Thus, the algorithm
will only perform the analysis of the restriction HY ®

H0 ® TB of H . Since H0 ® H0 is an initialized RHA

(Lemma 6), the ﬁrst step of the algorlthm will halt (Hen-
zinger et al., 1998a).

In the second step, we execute the algorithm, starting
from symbolic states in Pending. Each symbolic state in
Pending is reached tlfl\rough a a transition on a failure
event. By Lemma 2, Hi; is SNZ. Furthermore, for each
symbolic state in Pending, there exists a stop-watch
k ke {1,...,m}, such that, y* will be active (¥ = 1),
in all the locations of its successors. Moreover, when
performing successors computation, the SNZ property
make each stop-watch y* to increase from 0 to 6, by
t.u. for each edges cyclic run. Consequently,
he the tlme upper bound 65 will be reached within a

00 ﬁmte number of steps, and the time will be blocked at

y* = 0y, after reaching a marked location. In fact, the
upper bounded invariance condition associated with SNZ
condition, guarantees the termination of the symbolic
successors computation starting from the set Pending, and
thus, the halting of the algorithm.

The product RHAs, H,; ® T'B, i € {1,...,m}, allow us
to isolate all pairs of traces in Ly and Ly, k € {1,...,m},
with 0 t.u. having passed after the first occurrence of a
failure from F}. In fact, the existence of a timed trace,
reaching a marked location in one of these RHAs, is
equivalent to the existence of a pair of traces in Lz’“ and
Ly, with identical observable projections.

Lemma 7. The following statements are equivalent:

(1) There exists a reachable marked location in ﬁl 7, for

ie{l,...,m}.

(2) There exist a pair of timed traces w € LZ’“, and w €

L — Ly, for k € {1,...,m}, such that P(w) = P(®).
Proof:
(1) = (2) : We suppose that there exits i € {1,...,m}

and a run over a trace & in H, ;, reaching a state (q,v),
such that, g is a marked location (cf € M,5), and v is
a valuation of X, ;. The timed trace @, has as suffix the

event p, which labels the last discrete transition of the
run. Since this transition has a guard on the form y* > 6y,
k € {1,...,m}, we conclude that there exists a stop-watch
vy, k € {1,...,m}, such that v(y*) > 6 . Therefore, the
trace W contains necessarily a failure from Fj.

Since ﬁzg = H,; ® TB, we suppose that the location q
corresponds to the pair (qi);,qM), where q;;is a location
of the RHA H,3, and gy is a location T B. Let w denotes
the timed trace reaching the state (g, ;,v) (w is obtained

by trimming the event p from ©). Since w contains a
failure from F}y, and according to Lemma 5, there exists
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Fig. 4. Product RHA H, 1

a pair of traces, wi; € Lp and wo € L — Ly, such
that P(wq) P(ws), reaching, respectively, the states
(q1,v1) in Hy, and (g2,v2) in H;, where 47 (¢1,42) and

v =[v UQ}T. Two cases can be distinguished:

e First case: k = 7, wy contains a failure from F;, and
v1(y?) > 0;. Therefore, w; € Lfi and wy € L — L;.
e Second case: k # i, wy contains a failure from Fy, k #
i, and vo(y*®) > 6. Therefore, w; € L — Lj and
wo € sz
We conclude that, in both cases, there exist two traces
in, respectively, LZ’“ Lg, k € {1,...,m}, having identical
observable projections.
(2)=(1):
We suppose that there exist k& € {1,...,m}, and two
traces, wi € LZ"‘, and wy € L — Ly, such that P(w)
P(ws). Since sz C Ly, by Lemma 5, there exists i €
{1,...,m}, and a timed trace w, accepted by the RHA
f[i,;, such that, w contains at least a failure from Fj. Two

cases are possibles:

e i # k, and ws € Lfi. Then, w contains two failures
from F; and F}. Let d denotes the minimum between
(t; + 6;) and (tx + 0%), where t; and t; denote,
respectively, the dates of the first occurrences of
failures from F; and F} in w.

Let us consider the prefix & of w, such that

time(@ = d. We merge the trace & with the event
1, in the suffix position.
i =k, orwy ¢ L?i. We consider the prefix @ of w,
such that time(w = ¢ + 0, where t; denotes the
date of the first occurrence of a failures from Fj, in w.
We merge the trace & with the event p, in the suffix
position.

In both cases, we conclude that there exists a timed trace
W, reaching a marked location in H, ;.

Let H denotes an RHA verifying assumptions A; and
As; let L denotes the corresponding accepted 1anguige,
and 0 a failure/delay mapping function; and, let Hi,;,
for ¢ € {1,...,m}, denotes the corresponding product
RHAs, as given above. The following theorem establish
the relation between the reachability of marked locations

in H.-, and the LTLa diagnosability of L.

Theorem 2. The timed language L is LTLa diagnosable
w.r.t. 0, iff, for all ¢ € {1,...,m}, no marked locations

are reachable in ITIH (Vie{1,...,m}, Reachable(ﬁﬂ)
‘FALSE').

Proof:

=) We suppose that a marked location is reachable is
in I;TZ; Hence, 3¢ € M, 3,7 € {1,...,m}, such that the
marked location ¢ is reachable, over a run of ffﬁ, on a
timed trace w. By Lemma 7, there exist two timed traces,
w € Li’“, and @ € L — Ly, k € {1,...,m}, such that
P(w) = P(w). We conclude that L is not LTLa diagnosable
w.r.t. 6.

<) We suppose that L is not LTL a diagnosable. Then,

there exist k € {1,...,m}, and a pair of traces w € Li’“
and @ ¢ Ly, such that P(w) = P(@). Sincew € L— Ly, and
by Lemma 7, we conclude that there exist ¢ € {1,...,m},
and a run in H, -, reaching a marked location.

Ezxample 2. As an illustration of our LTLa diagnosability

verification approach, we apply it below on the system of
Example 1, given above.



It is clear by inspection of the RHA in Fig.??, that is the
system model in Example 1, satisfies the assumptions Ay
and As,. In this example we consider two applications of
our LTLa diagnosability procedure for two values of 8: 125
t.u., and 300 t.u..

As a first step, we build the RHA H, 1 = H; ® Hy, given
in Figd. For space limitations reasons, we do not provide
the product H, ; @ T'B.

By substituting 6; by the value 125 in Hlj ® TB, and
applying the reachability function, given in Algorithm 1,
we conclude that there exists a reachable marked location
in H1,T ® TB. In fact, it can be easily checked that the
state, ((2,5,qu), (x = ' = 500,t = t! = 0,y! = 125)),
having as discrete part the marked location (2,5, qar),
is reachable. Therefore, there exists a pair of traces in
L?l and L7, having identical observable projections, that
implies the non LTLa diagnosability of the system, w.r.t.
0, = 125.

In the second case, we substitute #; by the value 300,
The reachability function, applied to the RHA Hl,T ®

TB, returns ‘FALSE’, indicating the non existence of
runs reaching marked locations. We conclude that the
timed language, corresponding our system model, is LTLa
diagnosable for §; = 300, confirming our intuitive result,
established in Section3.

5. CONCLUSION

In this paper we presented a definition of LTLa diag-
nosability for timed languages, accepted by RHAs. A
systematic approach for checking the LTLa diagnosabil-
ity, of these systems, under some special assumptions,
is given. Our approach consists of constructing a set of
RHA products, and exploring them with a reachability
analysis function. Finally, we have formally established the
relation between our checking approach, and the the LTLa
diagnosability.

REFERENCES

Alur, R. (1994). A theory of timed automata. Theoretical
Computer Science, 126, 183-235.

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger,
T.A., h. Ho, P., Nicollin, X., Olivero, A., Sifakis, J., and
Yovine, S. (1995). The algorithmic analysis of hybrid
systems. Theoretical Computer Science, 138, 3-34.

Ben.Hadj-Alouane, N., Lafortune, S., and Lin, F. (1994).
Variable lookahead supervisory control with state in-
formation. IEFEE Transactions on Automatic Control,
39(12), 2398-2410.

Bhowal, P., Sarkar, D., Mukhopadhyay, S., and Basu, A.
(2007). Fault diagnosis in discrete time hybrid systems
- a case study. Inf. Sci., 177(5), 1290-1308.

Derbel, H., Alla, H., Ben.Hadj-Alouane, N., and Yeddes,
M. (2009). Online diagnosis of systems with rectangular
hybrid automata models. In to appear in INCOM’09,
Moscow.

Derbel, H., Yeddes, M., Ben.Hadj-Alouane, N., and Alla,
H. (2006). Diagnosis of a class of timed discrete event
systems. In 8th International Workshop on Discrete
FEvent Systems, 256-261.

Fourlas, K., Kyriakopoulos, K., and Krikelis, N.
(2002). 10th mediterranean conference on control and
automation-med2002, lisbon, portugal. In §th Interna-
tional Workshop on Discrete Event Systems, 3994-3999.

Frehse, G. (2005). Phaver: Algorithmic verification of
hybrid systems past hytech. In Fifth International
Workshop on Hybrid Systems: Computation and Control
(HSCC), 258-273.

Henzinger, T., Kopke, P., Puri, A., and Varaiya, P.
(1998a). The what’s decidable about hybrid automata?
Journal of Computer and System Sciences, 57, 94-124.

Henzinger, T.A., Ho, P.H., and Wong-Toi, H. (1997).
HYTECH: A model checker for hybrid systems. In-
ternational Journal on Software Tools for Technology
Transfer, 1(1-2), 110-122.

Henzinger, T.A., Kopke, P.W., Puri, A., and Varaiya,
P. (1998b). What’s decidable about hybrid automata.
Journal of Computer and System Sciences, 57, 94—124.

Lin, F. and Wonham, W.M. (1988). On observability
of discrete-event systems. Information sciences, 44(3),
173-198.

Lin, F. and Wonham, W.M. (1994). Diagnosability of
discrete event systems and its applications. Discrete
Event Dynamic Systems, 4(2).

Mecllraith, S.A., Biswas, G., Clancy, D., and Gupta, V.
(2000). Hybrid systems diagnosis. In HSCC ’00:
Proceedings of the Third International Workshop on
Hybrid Systems: Computation and Control, 282-295.
Springer-Verlag, London, UK.

Sampath, M., Sengupta, R., Lafortune, S., and Sinnamo-
hideen, K. (1996). Failure diagnosis using discrete event
models. IEEE Trans. on Control Systems Technology,
4(2), 105-124.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen,
K., and Teneketzis, D. (1995). Diagnosability of discrete
event systems. I[IEEFE Trans. on Automatic Control,
40(9), 1555-1575.

Tripakis, S. (2002). Fault diagnosis for timed automata.
In FTRTFT ’02: Proceedings of the 7th International
Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems, 205-224. Springer-Verlag, Lon-
don, UK.

Zad, S.H., Kwong, R.H., and Wonham, W.M. (1998). Fault
diagnosis in discrete-event systems. In in Proc. 1998
IEEE Conference on Decision and Control (CDC98,
3769-3774.

Zhao, F., Koutsoukos, X.D., Haussecker, H W., Reich, J.,
and Cheung, P. (2005). Monitoring and fault diagnosis
of hybrid systems. IEEFE Transactions on Systems, Man,
and Cybernetics, Part B, 35(6), 1225-1240.



