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Abstract: We propose an online diagnosis approach for a class of hybrid systems. The normal
and the faulty behaviors of the system are modeled with rectangular hybrid automata. Our
approach is based on the use of a diagnosis procedure which performs, online, an estimation of
the system states, within a given time window, and based on the current record of observable
timed events. Each new estimation can be triggered either, by a new event observation, or simply
by the elapse of time. We give examples to illustrate the use of our hybrid systems diagnosis
approach.

Keywords: Diagnosis, Online, Rectangular Hybrid Automata, Symbolic Analysis.

1. INTRODUCTION

Fault diagnosis is an important task for the design and
development of man-made systems such as embedded
systems, industrial process control systems, . . . etc. This
importance is due to the crucial role diagnosis plays in
protecting human life, and increasing the efficiency and
productivity of these systems. The diagnosis task consists
of the detection of anomalous system behaviors, followed
by the isolation and the identification of the causes behind
these faults.

The diagnosis problem has been extensively studied in the
automatic control and discrete event systems (DES) liter-
atures, during the last two decades. Several model-based
diagnosis techniques has been proposed within the context
of continuous, discrete, and hybrid systems (Lin and Won-
ham, 1994; Sampath et al., 1996; McIlraith et al., 2000;
Derbel et al., 2006; Tripakis, 2002; Bhowal et al., 2007). In
the most widely used DES diagnosis approach (Sampath
et al., 1995, 1996), a finite state machine called diagnoser is
compiled offline, based on another finite state model, cap-
turing the normal and the faulty behaviors of the system.
In (Zad et al., 1999), a timed model of the system is used,
capturing time with a tick event. In (Derbel et al., 2006;
Tripakis, 2002) dense time extensions have been proposed,
using timed automata (Alur, 1994) as a system model.
In (Tripakis, 2002), the author proposes an online state
estimator, and a good/faulty partition of the state space,
to perform the system diagnosis.

Case studies of hybrid systems diagnosis have been de-
veloped, using system models capturing both the dis-
crete events and the continuous variables. Most recently,
in (Bhowal et al., 2007), a discrete time hybrid system
model is used for constructing, offline, a diagnoser.

This paper is inspired from our contribution to the di-
agnosis of dense time systems (Derbel et al., 2006). It
generalizes the online timed systems diagnosis approach
in (Tripakis, 2002), to provide an effective online diagnosis
for hybrid systems. The fact that our diagnosis approach
works online helps us overcome many of the issues re-
lated to the undecidability and intractability of hybrid
systems (Henzinger et al., 1998).

Our approach is based on Rectangular Hybrid Automata
(RHA) (Henzinger et al., 1998) models, under the nonzeno
condition. RHA represent an interesting class of hybrid
systems, that can very closely capture the dynamics of
real systems. They allow the description of arbitrary closed
approximation of continuous behaviors, using lower and
upper bounds on derivatives. Furthermore, the symbolic
analysis of these automata can be easily performed using
polyhedron structures (Alur et al., 1995).

The underlying idea of our approach consists of using
a diagnosis procedure, which performs an online state
estimation. The used system model captures both nor-
mal and faulty system behaviors. Failures are modeled as
discrete transitions on unobservable events. The diagnosis
procedure uses a symbolic analysis approach to perform
online estimation of the system states, based on the current
record of observable timed events, and within a lookahead
time window (Ben.Hadj-Alouane et al., 1994). Our online
diagnosis procedure is time/event driven. In fact, perform-
ing a new state estimation is triggered either by the arrival
of an observable event, or the expiration of a timer. The
expiration deadline of this timer, is dynamically computed,
after performing each estimation.

This paper is organized as follows. The next section
provides the necessary background on rectangular hybrid



automata. Section 3 formally defines our diagnosis model
for hybrid systems. Section 4 describes, in detail, our online
diagnosis procedure. We conclude in section 5. Throughout
this paper, we use a simple example to illustrate the
various features of our online diagnosis approach for hybrid
systems.

2. AN OVERVIEW OF RECTANGULAR HYBRID
AUTOMATA

Let X = {x1, . . . , xn} be a finite set of real-valued
variables. We denote by Ẋ = {ẋ|x ∈ X} the set of
first derivatives of the variables of X. A variable x is
called clock, if ẋ = 1. We denote by ∼ an element of the
operators {<,≤,=,≥, >}. A rectangular inequality over
X, is an inequality of the form x ∼ c, where x ∈ X, and
c ∈ Z 1 . A rectangular predicate over X is a conjunction
of rectangular inequalities over X. We denote by Rect(X)
the set of rectangular predicates over X. A polyhedral
inequality over X is an inequality of the form c1x1 + · · ·+
ckxk ∼ c, where x1, . . . , xk ∈ X, and c, c1, . . . , ck ∈ Z.
A polyhedral predicate over X is boolean combination of
polyhedral inequalities over X. We denote by Ψ(X) the
set of polyhedral predicates over X.

The vector v = ( v1, . . . , vn ), is an element of Rn, that
represents a value vi ∈ R, for every variable xi ∈ X. 2

A subset of Rn is called a region. For a region z and a
variable xi ∈ X, z(xi) = {vi|v ∈ z}. We denote by [[ψ]],
the region composed of the set of vectors v ∈ Rn, for which
the predicate ψ is true, when each variable xi is replaced by
vi for each i ∈ {1, . . . , n}. For a rectangular predicate ψ,
and a variable xi, we write [[ψ]](xi) to denote the interval
of values described by vi, for all v ∈ [[ψ]].

A Rectangular Hybrid Automaton(RHA) (Henzinger et al.,
1998), H, is a tuple (L,X,Σ, E, inv, flow, init), where:

• L is a finite set of locations.
• X is a finite set of real valued variables.
• Σ is a set of events.
• E ⊆ L×Σ×Rect(X)×Rect(X)× 2X ×L, is a finite

set of edges. An edge (l, σ, g, r, R, l′) corresponds to a
switch from location l to location l′, on the event σ,
under the condition that v ∈ [[g]], where the vector v
corresponds to current values of the variables. Upon
the location switch, each variable xi ∈ R is reset,
nondeterministically, to a value in the interval [[r]](x),
and the variables in X −R remain unchanged.

• inv : L → Rect(X) captures the invariant conditions
for the locations. The automaton H can remain in
the same location as long as the value of each variable
xi ∈ X, belongs to the interval [[inv(l)]](xi).

• The function flow : L → Rect(Ẋ), assigns a flow
condition to each location l ∈ L. While the automaton
H involves in the location l, the first time derivative
of each variable xi ∈ X remains within the interval
[[flow(l)]](xi).

• init ⊆ L × Rect(X), specifies the initial condition of
the automaton.

1 Z denotes the set of integers.
2 R denotes the set of real numbers, and Rn denotes the n-
dimensional euclidean space over R.

A state (l,v) of the automaton H, consists of a discrete
part l ∈ L together with a continuous part v ∈ Rn such
that v ∈ [[inv(l)]]. The trajectories of the states of H
progress, in the system state space, by performing one of
the following transitions:

• Flow transition: The discrete part of the state re-
mains in the same location l, and the continuous part
involves from valuation v to valuation v′, via any
smooth trajectory satisfying the constraints imposed
by inv(l) and with derivatives of the variables re-
maining within the flow intervals specified by flow(l).
We denote this transition by (l,v) δ−→ (l,v′), where
δ ∈ R+is the time elapsed during the transition. 3

• Discrete transition: corresponds to a discrete and in-
stantaneous location switch, defined using the tuple
e = (l, σ, g, r, R, l′) ∈ E. We denote this transition
by (l,v) e−→ (l′,v′). The discrete transition is enabled
only if the guard predicate is satisfied by the continu-
ous part of the state; i.e., v ∈ [[g]]. The discrete part
of the state changes from l to l′, and the continuous
part is updated according to the reset assignments.

A run is a finite or infinite sequence of transitions
(l0,v0) −→ (l1,v1) −→ (l2,v2) −→ . . . , where (l0,v0) ∈ init.
A state (lk,vk) is said to be reachable, if there exist a
finite run (l0,v0) −→ (l1,v1) . . . −→ (lk,vk). A timed trace,
denoted as ω = (σ1, δ1)(σ2, δ2) . . . (σn, δn) . . . , is a finite or
an infinite sequence of pairs (σi, δi), where σi is an event of
Σ, and δi ∈ R+ denotes the delay between the occurrences

of σi and σi+1. We denote by time(ω) =
n∑

k=1

δi the (limit

of the) sum of all the delays in the timed trace ω. A trace
ω is accepted by H, if there exists a run of H over the
elements of ω. The run over ω are said to be divergent, if
ω is infinite and time(ω) = ∞. The hybrid system H is
said to be nonzeno if every finite run of H is a prefix of
some divergent run of H.

Since the state space of a RHA is uncountably infinite,
we use the symbolic representation to perform the analysis
over this space. The symbolic state of the automaton
H is a pair (l, z), where l corresponds to a location of
L, and z is a region over X. The pair (l, z) represents
the set of states {(l,v)|v ∈ z}. The continuous suc-
cessor operator of a symbolic state (l, z) is defined as:
Postc((l, z)) = {(l,v′)|(l,v) δ−→ (l,v′),v ∈ z, δ ∈ R+}.
Similarly, we define the discrete successor operator of a
symbolic state (l, z), over a transition e ∈ E, defined
as: Postd((l, z), e) = {(l′,v′)|(l,v) e−→ (l′,v′),v ∈ z}. We
define the successor operator Post, over an edge e ∈ E, as
the composition of the discrete and continuous successor
operators; i.e., Post((l, z), e) = Postc ◦ Postd((l, z), e).

Computing discrete and continuous successors is equiv-
alent to performing some geometrical operations on n-
dimensional regions (Alur et al., 1995). We note that
some tools like HyTech (Henzinger et al., 1997), and
PHAVer (Frehse, 2005), implement such operations on
regions, using polyhedral libraries, to perform the symbolic
3 R+ denotes the set of positive real numbers.



analysis of a more general class of automata called linear
hybrid automata.

3. A MODEL FOR THE DIAGNOSIS OF HYBRID
SYSTEMS

To perform a reliable model-based diagnosis, we must have
a complete system model, describing both normal and
faulty behaviors of the system. The normal behavior of the
system corresponds to the expected operating modes and
trajectories, whereas the faulty behaviors correspond to
deviations from the normal behaviors, due to malfunctions
called failures. These malfunctions typically affects the
discrete and continuous dynamics of the system. Generally,
due to limited instrumentations, these malfunctions are
not directly measurable, and so, their detection cannot be
straightforwardly performed. In a hybrid systems frame-
work, a failure can affect the continuous dynamics; e.g., a
stuck of a valve modifying the corresponding feeding rate,
or the discrete behavior; e.g., a fluid level sensor generating
an alarm when it detects an overflow.

In our work, we use the RHA model as our basis for the
diagnosis of hybrid systems. We assume that all continuous
variables are not measurable. Furthermore, the event set
Σ is partitioned into observable and unobservable sets of
events Σ = Σo ∪ Σuo (Lin and Wonham, 1988). Hence,
the diagnosis system can only observes the events in Σo,
which correspond, typically, to discrete control commands
and sensor feedbacks.

The diagnosis model, we use, must fulfill the following
requirements:

• The system is modeled by an RHA, H = (L,X,Σ, E,
inv, flow, init).

• Failures are modeled using discrete transitions on
unobservable events. We denote by Σf ⊆ Σuo, the
set of failure events.

• The failure set Σf is partitioned intom disjoint failure
subsets (or modes) Σf = {F1, . . . , Fm}.

• Failures are permanent; i.e., return to the normal
behavior is not possible.

• Only single failure scenarios are considered. However,
extensions of our work to deal with multiple failures
scenarios can be easily developed.

• The system starts in normal mode; i.e., no failure has
already happened.

To illustrate our approach, we consider the following man-
ufacturing system example. This example is used for illus-
tration purposes throughout the paper.

Consider the simple fluid mixing system, shown in Fig-
ure 1. Two fluids of different types are mixed into an empty
container. The first fluid is introduced by opening the valve
V1. The second fluid, is introduced through the valve V2

(the first fluid serves to dilute the second). As soon as the
level of the first fluid reaches the maximal level, detected
by the sensor LS2, the valve V1 is closed, and the second
fluid is introduced until reaching the desired concentration
of the mix, notified by the concentration sensor CS. In the
next step, the mix is evacuated through the valve V3, and

Example 1.

V1

V2

LS2

LS1

V3

CS

M

Fig. 1. A Simple Fluid Mixing System.

filled in a final product box. When the container becomes
empty (notified by the sensor LS1), the system waits for
5 t.u., then, starts the next mixing cycle.

The RHA in Fig. 2, captures the normal and the faulty
behaviors of the system. The model has three continuous
variables, x1 measuring the mix volume in the container,
x2 measuring the concentration of the mix, and a clock x3

used as a timer.

For simplicity purposes, we only capture the case of two
failures, affecting the dynamics of the variables x1 and
x2, of the mixing system. The first failure, modeled by the
event sc1, corresponds to a stuck of the valve V1 in the close
position. The second failure, modeled by the event so3,
corresponds to a stuck of the valve V3 in the open position.
We note that the transition edges on unobservable events
(sc1, so3, and σu) are represented using dashed arrows.
The observable events ls1, ls2, and cs, correspond to no-
tifications of the sensors LS1, LS2, and CS, respectively.
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ẋ2 = [3, 6]

x2 ≤ 70
?

cs, x2 ∈ [60, 80]

3x1 ≥ 0
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ẋ1 = −6

7
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Fig. 2. An RHA Model of the Simple Fluid Mixing System.

4. DESCRIPTION OF THE DIAGNOSIS
PROCEDURE

We describe in this section our failure diagnosis procedure
which constitutes the heart of our diagnosis approach. We
assume that the system is modeled as an RHA, H =



(L,X,Σ, E, inv, flow, init), designed under the conditions
discussed in Section 3. We assume that the system model
H is nonzeno. This requirement assures the time progress
of the system runs, which constitutes a necessary condition
to apply our diagnosis procedure.

Before describing the diagnosis procedure, let define the
needed formal background to perform that. We define
the projection operator P , which erases all unobservable
events from a given timed sequence, and summing the
delays of the erased events. We associate to each failure
mode Fi, i ∈ {1, . . . ,m}, a failure label Fi. We denote
by N the normal label, associated to normal states of
the system. Let Φ denotes the set of m + 1 diagnosis
labels {N ,F1, . . . ,Fm}. We define the label propagation
operator ⊗ : Φ× Σ → Φ as follows:

φ⊗ σ =

{Fi, if φ = Fi,
Fi, if φ = N and σ ∈ Fi,
N , if φ = N and σ /∈ Σf .

A diagnosis state q is a set of triplets, {(li, zi, φi) ∈ L ×
Ψ(X) × Φ, i ∈ {1, . . . , k}}. Let Q denotes the set of all
diagnosis states. We define the function A : Q → Φ ∪
{⊥}, which evaluates a given diagnosis state q ∈ Q. The
function A returns a failure label Fi, i ∈ {1, . . . ,m}
(respect. the normal label N ), whether all the elements
in q contain the label Fi (respect. N ), and returns the
symbol ⊥, otherwise. The function A is formally defined
as follows:

For a given state q = {(l1, z1, φ1), . . . , (lk, zk, φk)},

A(q) =
{
φ, if q 6= ∅ and φ1 = · · · = φk = φ,
⊥, otherwise.

A diagnosis state q is said to be Fi-certain, for i ∈
{1, . . . ,m}, if A(q) = Fi.

Before applying our diagnosis procedure, we add to the
system model H, an extra clock y, taking the value 0, in
all the initial states, and resets to 0 after any location
switches, on observable events 4 . The clock y allows the
measurement of the elapsed time, since the occurrence of
the last observable event.

In the following, we give a formal definition of the time
bounded unobservable reach function, denoted UR.

The function UR, illustrated in Algorithm 1, computes
the set of reachable states from qin, over executing any
possible sequences of unobservable events, and the elapse
of exactly ymax t.u., since the last occurrence of an observ-
able event . In fact, the clock y will be equal to ymax, for
all reached states. The failure labels are propagated during
this computation using the operator ⊗.

We note that, due to the time divergence property pro-
vided by the nonzenoness assumption, the halting condi-
tion of this algorithm is guaranteed. Hence, the clock y will

4 We add the assignment y := 0 to the reset condition of any
transition edges, labeled with observable events.

Algorithm 1 Function UR(qin ∈ Q, ymax ∈ N) : Q
1: Initially, Waiting := {(l, Postc(z), φ)|(l, z, φ) ∈ qin},
V isited := Waiting.

2: repeat
3: Get and remove an element (l, z, φ) from Waiting.
4: for all transitions l σuo−−→ l′ in E, such that σuo ∈

Σuo do
5: Compute (l′, z′, φ′), such that (l′, z′) :=

Post((l, z), l σuo−−→ l′), and φ′ := φ⊗ σuo.
6: Add (l′, z′, φ′) to V isited, if z′ 6= ∅.
7: Add (l′, z′ ∧ (y < ymax), φ′) to Waiting, if z′ ∧

(y < ymax) 6= ∅.
8: end for
9: until Waiting = ∅.

10: qout := {(l, z̃, φ), such that (l, z, φ) ∈ V isited, z̃ := z ∧
(y = ymax), and z̃ 6= ∅}.

11: return qout.

necessarily exceed the bound ymax, after a finite number of
successor computations (especially, when considering the
case of a cycle of transitions on unobservable events).

The diagnosis procedure is a passive 5 , state estimator al-
gorithm, run on-line with the system. The procedure takes
as input a sequence of observable events, and estimates the
possible states of the system. Each estimated state can be
reached over a run, on a timed trace, having an identical
observable projection with the timed sequence of events,
generated by the system. Using the estimated states, the
procedure performs the diagnosis of the system.

Algorithm 2, illustrates our diagnosis procedure.

Our diagnosis procedure operates as a state machine. The
current state, denoted qcur ∈ Q, captures an estimation
of the current system states, reached after observing a
sequence of events generated by the system. The set of
estimated states are symbolically captured, using symbolic
states {(li, zi), i ∈ {1, . . . , k}}. We associate to each sym-
bolic state (li, zi) in qcur, a diagnosis label φi. The label φi

tracks the occurred failures in runs, reaching each state of
(li, zi). The label φi is equal to Fj , j ∈ {1, . . . ,m}, whether
a failure from the set Fj occurred. If the system operates
in the normal mode, the label φi is equal to N .

The initial diagnosis state is denoted (l0, z0,N ). A switch
of the procedure, to the next diagnosis state, is triggered
by (1) the observation of an event, or (2) the expiration of
a timer t, without observing any events.

The diagram in Fig. 3, informally describes, the different
operations performed while executing the main loop of the
diagnosis procedure.

As illustrated in Fig. 3, we start the main loop of the
procedure, by computing an integer waiting delay τ . The
value τ corresponds to the smallest integer delay, after
which, all the estimated states are Fi-faulty; i.e., a failure
from the set Fi has affected the system before reaching
any estimated states. So, the estimated diagnosis state
qcur, after this delay, will be Fi-certain. A finite value
5 The procedure does not influence the behavior of the system to be
diagnosed.



Algorithm 2 Diagnosis Procedure:
Require: Parameter T .
1: qcur := {(l0, z0,N )}.
2: yref := 0.
3: loop
4: if A(UR(qcur, yref + T )) 6= Fi, for any i ∈

{1, . . . ,m} then
5: τ := T .
6: else
7: τ := inf{θ ∈ {1, . . . , T}, such that

A(UR(q, yref + θ)) = Fi, i ∈ {1, . . . ,m}}.
8: end if
9: Initialize the timer t to 0.

10: Arm the expiration of the timer t after τ t.u.
11: Await for an event σ ∈ Σo, or for the expiration of

the timer t.
12: Compute qsucc := UR(qcur, yref + t).
13: if an event σ ∈ Σo is observed then
14: qcur := {(l′i, z′i, φi), such that (l′i, z

′
i) =

Postd((li, zi),
σ−→), for all (li, zi, φi) ∈ qsucc}.

15: yref := 0.
16: else
17: qcur := qsucc.
18: yref := yref + t
19: end if
20: if A(qcur) = Fi, i ∈ {1, . . . ,m} then
21: Announce the occurrence of a ‘Failure Fi’.
22: Halt the algorithm.
23: else if A(qcur) = N then
24: Announce that the system has ‘No failures’.
25: else
26: Announce that current state of system is an

‘Uncertain state.’
27: end if
28: end loop
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Fig. 3. Diagnosis Procedure Flow-Chart.

for τ may not exist in some cases (e.g., when the system
operates permanently in the normal behavior). Therefore,
we check the existence of the value τ , into a bounded set
of discrete integer values {1, . . . , T}, called the lookahead
time window (Ben.Hadj-Alouane et al., 1994), given the
parameter T . If the estimated diagnosis state qcur, after
the elapse of T t.u., is not Fi-certain, τ will be equal to
the value T . In this case, the diagnosis procedure will only

update the diagnosis state qcur, without announcing any
failures.

In the next step, we arm the expiration of the timer t
after the elapse τ t.u., and we await for the occurrence
of an observable event, or the expiration of the timer t.
If one of these conditions occurs, the algorithm updates
the diagnosis state qcur, w.r.t. the elapsed time t, and the
eventual observed event σ, as described in the following:

We compute, in the first step, the time successor of the
diagnosis state qcur, denoted qsucc, using the function UR.

In the second step, we compute the discrete successors
of the elements of qsucc, if an event σ ∈ Σo have been
observed. The obtained result corresponds to the current
diagnosis state qcur. If no events have been observed,
and the timer t expires, the current diagnosis state qcur

corresponds to the time successor qsucc.

In the last step, we evaluate the diagnosis state qcur, using
the functionA. As illustrated in Diagram 3, there are three
possible diagnostics, regarding the result of A(qcur):

(1) A(qcur) is Fi-certain, for i ∈ {1, . . . ,m}: we announce
the occurrence of a ‘Failure Fi’ In this case, all the
estimated system states, elements of qcur, are reached
over runs, containing a failure from the set Fi.

(2) A(qcur) = N : we announce that the system operates
in the ‘Normal’ mode. So, no failures has been oc-
curred, before reaching any estimated states in qcur.

(3) A(qcur) = ⊥: we announce that the system has an
‘uncertain state’. In this case, the estimated states of
the system contain at least a pair of states, where the
first is Fi-faulty, i ∈ {1, . . . ,m}, and the second is
Normal, or Fj-faulty, j ∈ {1, . . . ,m} and j 6= i.

We note that our procedure may output, indefinitely, the
diagnostic ’uncertain state’. In this case, our procedure
cannot distinguish between two runs of the system, having
identical observable behavior, the first contains a failure
from Fi, and the second not, for a given i ∈ {1, . . . ,m}.
In this case, the system model is said to be not diagnos-
able (Sampath et al., 1995). Diagnosability issues consti-
tute the interest of our future works.

Example 2. To illustrate the execution of our diagno-
sis algorithm, let consider the Example 1. We suppose
that the system generates the following traces: ω1 =
(ls2, 22)(cs, 22)(so3, 14)(ls1, 23)(σu, 5)(ls2, 50) and ω2 =
(ls2, 22)(cs, 22)(ls1, 37)(σu, 5)(sc1, 10)(ε, 100). Both traces
ω1 and ω2 correspond to failure behaviors, the former
contains a failure so3, and the latter contains a failure sc1.
We note the use of the silent action ε, to represent the time
progress of the run over ω2, without observing any more
events. We denote by P (ω1) = (ls2, 22)(cs, 22)(ls1, 37)
(ls2, 55) and P (ω2) = (ls2, 22)(cs, 22) (ls1, 37)(ε, 115), the
observable projections of the traces ω1 and ω2, respec-
tively. We assume that the failure set Σf = {so3, sc1} is
partitioned as: F1 = {so3}, F2 = {sc1}, and T equals to
30. We give in the following, some execution statements,
of our diagnosis procedure, given in the Algorithm 2. We



suppose that the system generates the timed trace P (ω1)
in our first execution example:

(1) Initially qcur := {(1, (x1 = x2 = x3 = y = 0),N )}.
(2) τ := 26. The event ls2 is observed at t = 22,

qcur := {(2, x1 = 200 ∧ x2 = x3 = y = 0,N )}, the
diagnostic ‘Normal’ is output.

(3) τ := 30. The event cs is observed at t = 22, qcur :=
{(3, x1 = 222 ∧ x2 ∈ [66, 80] ∧ x3 = y = 0,N )}, the
diagnostic ‘Normal’ is output.

(4) τ := 30. The timer expires at t = 30, qcur := {(3, x1 =
42 ∧ x2 ∈ [66, 80] ∧ y = 30 ∧ x3 = 0,N ), (7, x1 = 42 ∧
x2 ∈ [66, 80] ∧ y = 30 ∧ x3 = 0,F1)}, the diagnostic
‘Uncertain state’ is output.

(5) τ := 30. The event ls1 is observed at t = 7, qcur :=
{(4, x1 = x2 = x3 = y = 0,N ), (8, x1 = x2 =
x3 = y = 0,F1)}, the diagnostic ‘Uncertain state’
is output.

(6) τ := 30. The timer expires at t = 30, qcur := {(1, x1 =
200 ∧ y = 30 ∧ x2 = x3 = 0,N ), (5, x1 ∈ [50, 100] ∧
y = 30 ∧ x2 = x3 = 0,F1), (9, x1 ∈ [0, 200] ∧ y = 30 ∧
x2 = x3 = 0,F2)}, the diagnostic ‘Uncertain state’ is
output.

(7) τ := 30. The event ls2 is observed at t = 25,
qcur := {(6, x1 = 200 ∧ x2 = x3 = y = 0,F1)}. The
procedure announces a ‘Failure F1’, and the algorithm
halts.

We remark that, the observation of the event ls2, later
than the expected date in the normal behavior, allows the
detection of the failure stuck open, affecting the valve V3.
In other cases, the system may become silent after the
occurrence of a failure; i.e., the system stop generating
events, as illustrated in the following example.

Let us consider now the example of the trace ω2. We
suppose that the system generates the timed sequence
P (ω2). When the timed sequence (ls2, 22)(cs, 22)(ls1, 37),
is observed, the diagnosis procedure repeats the state-
ments 1 to 6, performed in the previous example. After
that, the system will stop generating events, while the time
continue to elapse for 115 t.u.. We give in the following,
the continuation of the diagnosis procedure execution.

• τ := 30. The timer expires at t = 30, qcur := {(5, x1 ∈
[110, 200] ∧ y = 60 ∧ x2 = x3 = 0,F1), (9, x1 ∈
[0, 200] ∧ y = 60 ∧ x2 = x3 = 0,F2)}, the diagnostic
‘Uncertain state’ is output.

• τ := 30. The timer expires at t = 30, qcur := {(5, x1 ∈
[170, 200] ∧ y = 60 ∧ x2 = 0 ∧ x3 = 0,F1), (9, x1 ∈
[0, 200]∧y = 60∧x2 = 0∧x3 = 0,F2)}, the diagnostic
‘Uncertain state’ is output.

• τ := 16. The timer expires at t = 16, qcur := {(9, x1 ∈
[0, 200] ∧ y = 76 ∧ x2 = x3 = 0,F2)}. The procedure
announces the occurrence of a ‘Failure F2’, and the
algorithm halts.

5. CONCLUSION AND FUTURE WORKS

In this paper, we presented an online approach for the
diagnosis of systems modeled with Rectangular Hybrid
Automata. This approach is based on the use of a diagnosis
procedure, performing an online estimation of the system
states, within a lookahead time window, given a record

of observable timed events, generated by the system.
The diagnosis procedure is driven by event observations,
or time elapsing. Our approach is applicable under the
nonzenoness condition on the used system model.
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