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Abstract

This paper investigates the integration of the employee timetabling and pro-
duction scheduling problems. At the first level, we manage a classical employee
timetabling problem. At the second level, we aim at supplying a feasible pro-
duction schedule for a set of interruptible tasks with qualification requirements
and time-windows. Instead of hierarchically solving these two problems as in the
current practice, we try here to integrate them and propose two exact methods
to solve the resulting problem. The former is based on a Benders decompo-
sition while the latter relies on a specific decomposition and a cut generation
process. The relevance of these different approaches is discussed here through
experimental results.

Key words: Employee Timetabling Problem, Production Scheduling Problem,
Cut Generation, Benders Decomposition, Energetic Reasoning

1. Introduction

The ultimate purpose of any production system is merely to produce goods
to meet some demand. To do so, one must find a production schedule, that is
an allocation of human and material resources to the different tasks (or jobs)
that have to be processed. However, such a schedule has to take into account
the availability of the resources, in particular the human ones: this means that
an appropriate employee timetable has to be built up simultaneously to the
production schedule. When the production is intended to meet a given, fixed
demand, production costs (raw material, energy, ...) do not vary significantly,
whatever the actual schedule is, with regard to labor costs. It is hence reasonable
to consider that employee timetabling should aim at minimizing labor costs
while production scheduling should insure that the production can actually be
done on time.
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Although an integrated approach should clearly be adopted when looking for
a global optimum, the resulting problem is usually considered as too complex
to be solved in practice, and it is decomposed into an assignment part and a
scheduling part. As a consequence, even though there is a huge literature on
both scheduling problems (e.g., see Pinedo [16]; Leung [14]) and timetabling
problems (see Ernst et al. [8]; Soumis et al.[17] for states of the art), only few
attempts exist for the integrated problem (see Artigues et al. [3] for an integrated
approach and an exhaustive state of the art; see Hooker [11, 12] for a hybrid
method mixing Linear Programming and Constraint Programming).

In this paper, we exploit the ideas of Lasserre [13] and Dauzère-Pérès and
Lasserre [6] for an integrated job-shop lot-sizing problem. These authors propose
to solve the integrated problem alternatively at two different stages: either to
compute lot-sizes for a sequence of jobs, or to compute a sequence for given lot-
sizes. A similar decomposition approach has also been successfully applied by
Detienne et al. to an employee timetabling problem with a given work load [7].

In the remainder of this paper, we propose two exact methods to solve the
integrated employee timetabling and production scheduling problem. The prob-
lem description is given in Section 2, together with integer linear models. An
exact method based on a Benders decomposition is addressed in Section 3 while
the fourth section introduces an exact method based on a specific decomposition
and cut generation process. We then discuss, in Section 5, about the relevance of
these methods by comparing their computational results on generated instances.
Some conclusions are finally drawn in Section 6.

2. Problem description and MIP models

We want to schedule a set J of n independent jobs (tasks) with a set O of m

resources (operators) over a planning horizon H. Each job j ∈ J is characterized
by a processing time pj , a time window Dj = [rj , dj ] and requires an operator
o ∈ O who masters one needed competence cj ∈ C. Jobs may be interrupted
and can be processed by different operators. However, processing instants of
any given job cannot overlap in time. An operator cannot process several jobs
simultaneously. Each operator o ∈ O has a set Co ⊆ C of competences and
owns a set Ωo ⊆ Ω of eligible work patterns. A work pattern ω ∈ Ω defines a
sequence of actual working time instants and breaks over the whole planning
horizon. This formulation permits to take into account several contractual, legal
or other constraints (vacations, individual preferences, . . .). Each relevant pair
work pattern - operator (ω - o) is given a cost ηo

ω standing for the resulting labor
cost of assigning work pattern ω to operator o.

Our problem consists in both scheduling the n jobs and assigning a work
pattern to each operator in order to satisfy each need for workforce (number of
operators and qualification requirements) at minimum cost.

Through this paper, we will consider a descriptive instance with 3 operators
(o1, o2, o3), 2 competences (c1, c2), 3 jobs (j1, j2, j3) and 2 work patterns
(ω1 = [0, 8), ω2 = [8, 16)). Operators o1 and o2 only master competence c1
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whereas o3 masters c1 and c2. The characteristics of this instance -Example 1-
are given in Table 1.

j1 j2 j3 o1 o2 o3

rj 0 2 8 ηo
ω1

10 7 2
dj 10 8 16 ηo

ω2
5 3 9

pj 9 2 3
cj c1 c1 c2

Table 1: Characteristics of Example 1

A feasible solution (cost: 26) for Example 1 consists in assigning ω1 to o1 and
o2 and ω2 to o3. The following Gantt chart (Figure 1) illustrates the operations
processed by operators.

o3

1680

j1o1

0 2 8 164

j2o2

0 8 169 11

j1 j3

Figure 1: Gantt chart

2.1. Time-indexed formulation

yo
ω is a binary decision variable where yo

ω = 1 if work pattern ω is assigned
to operator o and yo

ω = 0 otherwise. Binary variable xjt = 1 if and only if one
unit of job j is processed at time instant t and binary variable zoct = 1 if and
only if operator o uses competence c at time t.

Any work pattern ω can be expressed by a boolean vector σω over H such
that σt

ω = 1 if t ∈ H is a working time instant and σt
ω = 0 otherwise.

Using notations mentioned above, an intuitive MIP formulation can hence
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be given:

[Q] : min
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω (1)

∑

ω∈Ωo

yo
ω = 1 ∀o ∈ O (2)

∑

t∈Dj

xjt = pj ∀j ∈ J (3)

∑

j∈J|
cj=c

xjt =
∑

o∈O|
c∈Co

zoct ∀t ∈ H,∀c ∈ C (4)

∑

c∈Co

zoct ≤
∑

ω∈Ωo

σt
ω · yo

ω ∀t ∈ H,∀o ∈ O (5)

yo
ω ∈ {0, 1} ∀o ∈ O,∀ω ∈ Ωo (6)

xjt ∈ {0, 1} ∀j ∈ J,∀t ∈ H (7)

zoct ∈ {0, 1} ∀o ∈ O,∀c ∈ Co,∀t ∈ H (8)

Constraints (2) ensure that exactly one work pattern is assigned to each
employee. Each job has to be fully processed within its time-window (3). There
are as many operators using competence c as processed units of jobs requiring c

at each time instant t (4). Each operator uses at most one competence at each
instant he is available according to his assigned work pattern, and exactly 0 if
he is not (5).

We can see that there are two decision stages in the timetabling process.
It is first necessary to set effective working periods to operators by assigning a
work pattern to each of them. Then we must decide which competence is really
used by the related operator at each time instant.

2.2. Formulation by time intervals and with competence pattern

In order to restrict the number of variables involved in the time-indexed
formulation [Q], we propose a second model [P ] based on an aggregate of time
instants in intervals and on a combination of individual employee qualifications
in effective competence patterns.

We first extract from H the release date rj and the due date dj of each
job j and bounds associated with presence intervals for each work pattern
ω ∈ Ω. Such time instants are then sorted by ascending order and coupled
by successive pairs in order to get a partition of H into kmax time intervals Ik

(k ∈ K = {1, 2, . . . , kmax}). Resource needs and requirements (operators and
competences) over each time interval Ik are constant. Indeed, by definition, no
job can start neither has to end and no operator can start neither has to stop
to work at any unextracted time instant. It is thus unnecessary to distinguish
time instants of each time interval Ik in order to solve the overall problem.

We then combine individual qualifications of operators in competence pat-
terns in order to restrict the number of operator-competence resources variables
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(zoct) of [Q]. These variables do not directly operate in the cost function. It
is therefore useless to distinguish operators with exactly the same competences
when we assign competences to time intervals. So we introduce a new notation
Θ ⊆ P(C) to denote the set of competence patterns θ ∈ Θ. Each operator o ∈ O

is given a single competence pattern θo. Two distinct operators are given the
same work pattern θ if and only if they both master only and exactly the same
competences c ∈ θ.

For Example 1, we can define four time intervals: I1 = [0, 2), I2 = [2, 8),
I3 = [8, 10) and I4 = [10, 16) and two competence patterns: θ1 = {c1} for o1

and o2 and θ2 = {c1, c2} for o3.
We can therefore propose a second MIP formulation (deriving from [Q]):

[P ] : min
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω (9)

(2)
∑

k∈K|
Ik⊆Dj

xjk = pj ∀j ∈ J (10)

∑

j∈J|
cj=c

xjk =
∑

θ∈Θ|
c∈θ

zθck ∀k ∈ K,∀c ∈ C (11)

∑

c∈θ

zθck ≤
∑

o∈O|
θo=θ

∑

ω∈Ωo|
Ik⊆ω

lk · yo
ω ∀k ∈ K,∀θ ∈ Θ (12)

(6)

xjk ∈ {0, . . . ,min(pj , lk)} ∀j ∈ J,∀k ∈ K (13)

zθck ∈ {0, . . . , lk · card{o ∈ O|θo=θ}} ∀θ ∈ Θ,∀c ∈ θ,∀k ∈ K (14)

where lk stands for the length of Ik, xjk is the number of units of j processed
over Ik and zθck is the number of units of competence c used by competence
pattern θ over time interval Ik. The other notations are the same as the ones
used for the time-indexed formulation [Q].

We ensure that a time-indexed solution can always be extracted from a
solution of formulation [P ] by solving a maximum flow problem (see Appendix:
Time-indexed solution).

Solution methods proposed in the remainder are based on this formulation
[P ] because they are more effective (in practice) in terms of computing time.
Furthermore experimentations reveal that using formulation [P ] instead of [Q]
reduces substantially the number of columns and rows involved. Indeed, models
based on formulation [P ] has about 3.3 times less columns and 5.9 less rows
than models based on [Q].
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3. Benders Decomposition

Due to its intrinsic two-decision-stage structure, it seems quite natural to
investigate a Benders Decomposition for solving problem [P ]. To ensure the
existence of a bounded feasible solution, we use a slight modification of [P ].
Positive slack variables skθ are added to constraints (12). A new MIP formula-
tion [P ′] is thus obtained:

[P ′] : min
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω + M ·

(

∑

k∈K

∑

θ∈Θ

skθ

)

(2), (10), (11)
∑

c∈θ

zθck − skθ ≤
∑

o∈O|
θo=θ

∑

ω∈Ωo|
Ik⊆ω

lk · yo
ω ∀k ∈ K,∀θ ∈ Θ

skθ ≥ 0 ∀k ∈ K,∀θ ∈ Θ (15)

(6), (13), (14)

Clearly, for a given M >
∑

o∈O (maxω∈Ωo
ηo

ω − minω∈Ωo
ηo

ω) 1, if [P ] is fea-
sible, both [P ] and [P ′] achieve the same feasible and optimal solution.

Let now us assume a fixed assignment ȳ of work pattern to operators. We
can hence introduce the related sub-problem [SP ′(ȳ)] deriving from [P ′(ȳ)] by
setting ȳ to [P ′].

[SP ′(ȳ)] : M · min
∑

k∈K

∑

θ∈Θ

skθ

(10), (11)
∑

c∈θ

zθck − skθ ≤
∑

o∈O|
θo=θ

∑

ω∈Ωo|
Ik⊆ω

lk · ȳo
ω ∀k ∈ K,∀θ ∈ Θ (16)

(13), (14), (15)

It is quite easy to check that, if [P ] is feasible, there is always a bounded fea-
sible solution for [SP ′(ȳ)] (thanks to slack variables skθ). Also, if the optimum
of [SP ′(ȳ)] is zero then ȳ is a partial feasible solution for [P ′].

1

Proof on the appropriate choice of M.
P

o maxω ηo
ω is an intuitive upper bound for [P ] and

P

o minω ηo
ω + M is a lower bound for [P ′] for any solution {x̄, ȳ, z̄, s̄} where it exists at least

one positive slack variable s̄kθ ≥ 1, i.e. for any unfeasible solution of [P ]. So to ensure to
achieve the same feasible and optimal solution for both [P ] and [P ′], one has to find a large
number M > 0 such that

P

o maxω ηo
ω <

P

o minω ηo
ω + M .
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Furthermore, notice that the constraint matrix of [SP ′(ȳ)] is totally uni-
modular. Integrity constraints ((13), (14)) can hence be relaxed since all basic
feasible solutions of [SP ′(ȳ)] are integer.

Dual problem [DSP ′(ȳ)] of [SP ′(ȳ)] is:

[DSP
′(ȳ)] : max gȳ(a, b, c, d, e) =

X

j∈J

aj · pj +
X

k∈K

X

θ∈Θ

ckθ ·
X

o∈O|
θo=θ

X

ω∈Ωo|
Ik⊆ω

lk · ȳo
ω +

X

j∈J

X

k∈K

djk · min(pj , lk) +
X

θ∈Θ

X

c∈θ

X

k∈K

eθck · lk · card{o ∈ O|θo=θ}

αk
j aj + bkcj

+ djk ≤ 0 ∀j ∈ J,∀k ∈ K (17)

−bkc + ckθ + eθck ≤ 0 ∀θ ∈ Θ,∀c ∈ θ,∀k ∈ K (18)

−ckθ ≤ 1 ∀k ∈ K,∀θ ∈ Θ (19)

aj ≶ 0 ∀j ∈ J (20)

bkc ≶ 0 ∀k ∈ K,∀c ∈ C (21)

ckθ ≤ 0 ∀k ∈ K,∀θ ∈ Θ (22)

djk ≤ 0 ∀j ∈ J,∀k ∈ K (23)

eθck ≤ 0 ∀θ ∈ Θ,∀c ∈ θ,∀k ∈ K (24)

Binary parameter αk
j = 1 if and only if Ik ⊆ Dj .

Let ζ∗(y) be the optimal solution of [SP ′(y)]. [P ′] can thus be rewritten:

[P ′] : min
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω + M · ζ∗(y)

s.t. (2) , (6)

Let D be the polyhedron defined by D = {(a, b, c, d, e)|(17),(24)}. By duality,
we get:

[P ′] : min
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω + M · max
(a,b,c,d,e)∈D

gy(a, b, c, d, e)

s.t. (2) , (6)

Since a bounded feasible solution for [SP ′(y)] always exists, [DSP ′(y)] is
bounded. The optimum of [DSP ′(y)] therefore matches an extreme point of
D. Furthermore, D does not depend on y. So, if we consider the set Q of its

q extreme points defined by Q =
{

(ã1, b̃1, c̃1, d̃1, ẽ1), . . . , (ãq, b̃q, c̃q, d̃q, ẽq)
}

, [P ′]

should be rewritten as follows:

[P ′] : min
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω + M · max
l∈[1..q]

g(
yãl, b̃l, c̃l, d̃l, ẽl)

s.t. (2) , (6)
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[P ′] is thus equivalent to the following master problem :

[MP ′] : min ψ

s.t. (2) , (6)
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω + M · gy(ãl, b̃l, c̃l, d̃l, ẽl) ≤ ψ ∀l ∈ [1..q]

If we assume that there exists at least one feasible solution to [P ], then a
solution yf such that the optimum of [DSP ′(yf )] is zero necessarily exists. In

that case, ψ =
∑

o∈O

∑

ω∈Ωo

ηo
ω · (yf )

o

ω
and we can state:

[MP ′] : min
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω

s.t. (2) , (6)

gy(ãl, b̃l, c̃l, d̃l, ẽl) ≤ 0 ∀l ∈ [1..q]

This master problem can be solved by a cut generation process (Benders cut
[5]). Let [RMP ′r] be a relaxed master problem with only a small subset Qr of
constraints:

[RMP ′r] : min
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω

s.t. (2) , (6)

gy(ãl, b̃l, c̃l, d̃l, ẽl) ≤ 0 ∀l ∈ Qr

Using a MIP solver, we can get the optimum ȳr for [RMP ′r]. To check
whether ȳr is a feasible solution for [MP ′], we solve [DSP ′(ȳr)] and obtain a
solution (ār, b̄r, c̄r, d̄r, ēr) with cost ν̄∗

r .
If ν̄∗

r ≤ 0, ∀l ∈ Q gȳr
(ãl, b̃l, c̃l, d̃l, ẽl) ≤ 0. It follows that ȳr is an optimal

solution for [MP ′] and, by extension, for both [P ′] and [P ].
If ν̄∗

r > 0, constraint of [MP ′] linked to (ār, b̄r, c̄r, d̄r, ēr) from D is not satis-
fied by solution ȳr. We therefore add the new constraint gy(ār, b̄r, c̄r, d̄r, ēr) ≤ 0
to [RMP ′r] and solve the resulting problem. Since the number of extreme points
is finite, the overall process stops in a finite number of steps.

Computational results showing the relevance of this Benders decomposition
are reported in section 5.

4. Specific Cut Generation Process

4.1. Overall process

In this section, we present an alternative exact approach for solving problem
[P ]. As the Benders decomposition, it exploits the splitting of [P ] into two
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sub problems. A master problem [MP ] first assigns a work pattern to each
operator. Using this entry, the satellite sub-problem [SP ] checks feasibility in
terms of processing the whole set of jobs as well as matching competences to
operators. If solving [SP ] fails in finding a feasible solution for [P ], a valid cut is
added to [MP ] in order to invalidate the current associated assignment. Since
[MP ] provides a minimum cost assignment of work pattern to operators that
both satisfies constraints relating to operators and cuts so far generated, the
first assignment fixed by [MP ] that is proved to be feasible by [SP ] is optimal
for [P ]. Process can hence be stopped. If [P ] is unfeasible, process iterates until
no feasible solution exists for [MP ].

Master problem [MP ] can be formalized as follows:

[MP ] : min cy =
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω

s.t. (2) , (6)

Cut

where Cut is the set of cuts iteratively added to the model. They invalidate
solutions that are not feasible according to the whole set of constraints of [P ].

Let us assume a fixed assignment ȳ of work pattern to operators as a solution
for [MP ]. We have to check whether ȳ is feasible with regards to the other
constraints of [P ]. We thus introduce the satellite sub-problem [SP (ȳ)]:

[SP (ȳ)] : max fȳ =
∑

j∈J

∑

k∈K|
Ik⊆Dj

xjk

∑

k∈K|
Ik⊆Dj

xjk ≤ pj ∀j ∈ J

(11)
∑

c∈θ

zθck ≤
∑

o∈O|
θo=θ

∑

ω∈Ωo|
Ik⊆ω

lk · ȳo
ω ∀k ∈ K,∀θ ∈ Θ

(13), (14)

fȳ represents the number of units of jobs which can be scheduled according
to ȳ. Since [P ] aims at fully scheduling each job, ȳ is feasible for [P ] if and only
if it leads to an optimal flow value fȳ =

∑

j∈J pj .
[SP (ȳ)] is a maximum flow problem on a directed transportation network

Gȳ = (X,U) with:

• Set of nodes : X = {s} ∪ J ∪ KC ∪ ΘK ∪ {t}

– s : source

– t : sink

9



• Set of edges : {α, β} ∈ U - (capacity γαβ) -

– ∀j ∈ J : (s, j) ∈ U with γsj = pj

– ∀j ∈ J,∀a ∈ KC : (j, a) ∈ U ⇔ (cj = ca) ∧ (Ika
⊆ Dj)

with γja = min(pj , lka
)

– ∀a ∈ KC,∀b ∈ ΘK : (a, b) ∈ U ⇔ (Ika
= Ikb

) ∧ (ca ∈ θb)
with γab = lka

· card{o ∈ O|θo=θa
}

– ∀b ∈ ΘK : (b, t) ∈ U

with γbt =
∑

o∈O|
θo=bθ

∑

ω∈Ωo|
Ikb

⊆ω

lkb
· ȳo

ω

Figures 2 and 3 respectively describe Gȳ in the general case and for Exam-
ple 1.

lk · card{o ∈ O|θo=θ}

k1c0

k1c1

s

j0

jj

j1

k0c0

k0c1

θ0k0

θ0k1

θ1k1

θ1k0

⇔

(cj = c)

(j, kc) ∈ U
⇔

∧

t

J

(c ∈ θ)

(Ik1 = Ik2)
∧

(k1c, θk2) ∈ U

(Ik ⊆ Dj)

pj min(pj , lk)

KC ΘK

Notation: γαβ

∑

o∈O|
θo=θ

∑

ω∈Ωo|
Ik⊆ω

lk · ȳ
o
ω

Figure 2: Structure of Gȳ

If fȳ <
∑

j∈J pj , jobs cannot be fully scheduled according to ȳ. We therefore
have to introduce the valid cut fȳ ≥

∑

j∈J pj in order to invalidate ȳ from the
set of feasible solutions for [MP ].

Applying maximum flow minimum cut theorem [10] on Gȳ (see Figure 4),
we can state:

fȳ =
∑

j∈J−

γsj +
∑

j∈J+

∑

a∈KC−

γja +
∑

a∈KC+

∑

b∈ΘK−

γab +
∑

b∈ΘK+

γbt

with the following notations:

• ∀u ∈ U (φu, γu) : (flow, capacity) of edge u
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2(ȳ1
2 + ȳ2

2)

6

2

2

3

2

4

2

2

6

6

4

2

2

6

6

12

12

2

s tj2

j1

j3

2

9

3

k1c1

k1c2

k2c1

k2c2

k3c1

k3c2

k4c1

k4θ2

k4θ1

k3θ2

k3θ1

k2θ2

k2θ1

k1θ2

k1θ1

k4c2

2(ȳ1
1 + ȳ2

1)

2ȳ3
1

6(ȳ1
1 + ȳ2

1)

6ȳ3
1

2ȳ3
2

6(ȳ1
2 + ȳ2

2)

6ȳ3
2

Figure 3: Structure of Gȳ for Example 1

• X = X+ ∪ X− with

– X+ = {s} ∪ J+ ∪ KC+ ∪ ΘK+

– X− = X+ = J− ∪ KC− ∪ ΘK− ∪ {t}

– ∀u = (α, β) ∈ U |{(α∈X+)∧(β∈X−)} : φu = γu

– ∀u = (α, β) ∈ U |{(α∈X−)∧(β∈X+)} : φu = 0

Ξ =
{

u = (α, β) ∈ U |{(α∈X+)∧(β∈X−)∧(φu=γu)}

}

ΘK−

ΘK+

J−

J+

KC−

KC+

t

{

u = (α, β) ∈ U |{(α∈X−)∧(β∈X+)∧(φu=0)}

}

s

Figure 4: Minimum cut Ξ of Gȳ

The valid minimum flow cut (that invalidates ȳ) which has to be added to
set Cut of [MP ] is hence:

∑

b∈ΘK+

∑

o∈O|
θo=θb

∑

ω∈Ωo|
Ikb

⊆ω

lkb
· yo

ω ≥ ν

11



where:

ν =
X

j∈J

pj−fȳ =
X

j∈J+

pj−
X

j∈J+

X

a∈KC−

min(pj , lka)−
X

a∈KC+

X

b∈ΘK−

lkb
·card{o ∈ O|θo=θb

}

The only elements depending on ȳ which restrict fȳ are the saturated edges
{u = (α, t) ∈ U |{α∈ΘK+}}. Thus, to get a flow greater than fȳ, one has to find
an assignment leading to higher capacities for these latter edges. The optimum
assignment y∗ for [P ] therefore has to satisfy the minimum flow cut of Gȳ.

The MIP formulation of a restricted master problem [MP r] with only a
small subset Qr of cuts is:

[MP r] : min cy =
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω

(2) , (6)
∑

b∈ΘK+

i

∑

o∈O|
θo=θb

∑

ω∈Ωo|
Ikb

⊆ω

lkb
· yo

ω ≥ νi ∀i ∈ Qr

Using a MIP solver, we can get the optimum ȳr for [MP r]. To check whether
ȳr is a feasible solution for [P ], we use a capacity scaling algorithm [1] to solve
[SP (ȳr)]. If fȳr

=
∑

j∈J pj , process stops. Otherwise, minimum cut flow of
Gȳr

is added to set Cut of [MP ] and process iterates. Since there is a finite
number of eligible assignments of work pattern to operators, process stops in a
finite number of steps. Algorithm 1 gives a formal algorithmic description of
the overall process.

Algorithm 1 Specific decomposition and cut generation process

LB ← 0
repeat

ȳ ← solve([MP ])
LB ← cȳ

if fȳ <
∑

j∈J pj then

add minimum flow cut of Gȳ to the set Cut of [MP ]
end if

until fȳ =
∑

j∈J pj

return LB

[MP ] is a Multiple-choice Multi-dimension Knapsack Problem (NP-hard
problem). MIP solver is hence really useful in order to solve [MP ] up to opti-
mality. We can mention here that several good heuristics for MMKP (e.g., see
[2]) are described in the literature. Such an effective heuristic would provide
a near optimal solution method for [P ] that does not require any MIP solver.
However, in this paper, we are interested in exact methods, but such a heuristic
approximation could be an interesting extension of this work.

12



4.2. Initial cuts

In the specific cut generation process, cut quality is dominant. Indeed, the
more assignments of work pattern to operators a cut invalidates the faster the
process converges to the overall optimum. It easily appears that an initialization
of cuts should speed up the overall process. This part of the paper is dedicated
to initial cuts added to set Cut in a preprocessing stage.

To define initial cuts, we use an energetic reasoning. This notion has been
broadly successfully used, in particular by Lopez et al. [15] and Baptiste et
al. [4], for scheduling problems. Competences are considered as consumable
resources, operators as suppliers and jobs as consumers. The underlying idea of
this concept is to define time periods where a strictly positive required energy
consumption can be established for a subset of jobs. On such periods, resource
supplies have to be high enough to allow consumption.

Let δ = [δb, δe] ∈ ∆ be a time period with ∆ ⊆ P(H), C ⊆ C a subset of
competences.

In the remainder, we will use the notation (a)+ = max(a, 0) ∀a ∈ ℜ.

4.2.1. Required energy consumption of job j over δ

The required energy consumption of j over δ is defined as the difference
between pj and the number of units of j that can be processed apart from δ:

ujδ =
(

pj − (δb − rj)
+ − (dj − δe)

+
)+

4.2.2. Overall required energy consumption of competence c over δ

The overall required energy consumption of competence c over δ is defined
as follows:

Ucδ =
∑

j∈J|
cj=c

ujδ

4.2.3. Capacity of available resources C over δ

Over δ, each operator can work as many time instants he is available ac-
cording to his assigned work pattern. Consequently, as soon as an operator o

is available, one and only one its competences can be used at each time instant
t ∈ δ:

capaδC =
∑

t∈δ

∑

o∈O|
{Co∩C6=∅}

∑

ω∈Ωo

σt
ω · yo

ω

4.2.4. Energetic constraint - Initial cut

A feasible solution for [P ] has to satisfy:

∑

t∈δ

∑

o∈O|
{Co∩C6=∅}

∑

ω∈Ωo

σt
ω · yo

ω ≥
∑

c∈C

Ucδ

13



uj2δ = (2 − (1 − 2)+ − (8 − 7)+)+ = (2 − 0 − 1)+ = 1

7 8 10210

r1 r2δb δe d1d2

j2

j1 cj1 = c1

cj2 = c1

pj1 = 9

pj2 = 2

Uc1δ = 5 + 1 = 6 > 0 ⇒ Cut

uj1δ = (9 − (1 − 0)+ − (10 − 7)+)+ = (9 − 1 − 3)+ = 5

Figure 5: Initial cut over δ = [1, 7] and with C = {c1}

For Example 1, an initial valid cut can be generated over δ = [1, 7] and with
C = {c1} (see Figure 5).

The number of eligible initial cuts can be considerable, particularly when
the number of time periods, δ, is large. Furthermore, many of these cuts might
not be ultimately tight in any optimal solution. Hence, we select a set of initial
valid cuts.

To introduce the selection used in our experiments, we first have to define

τC
δ =

P

c∈C Ucδ

δe−δb
as the proportional overall required energy consumption of com-

petence pattern C over δ. This meaningful indicator allows us to define likely
major cuts. Indeed, if we consider two time periods δ ∈ ∆ and δ′ ∈ ∆ such as
τC
δ > τC

δ′ , it seems logical to suppose that the cut generated with C over δ is
more restrictive than the one generated over δ′.

The approach of selecting initial cuts used in our experiments consists in
taking interest in the sorted set Υ of bounds υ associated with presence intervals
for each work pattern. Indeed, these time instants are the only ones where
number of available operators (and thus competences) can be modified. Let
[υi, υi+1] and [υj−1, υj ] two time periods with (i, j) ∈ |Υ|2 and υi < υj . We
chose to generate, for each pair (i, j) ∈ |Υ|2, an initial energetic cut for the time
period δ defined as follows:

δ = argmax
δ′=[δ′

b
,δ′

e]

τC
δ′

where δ′b and δ′e are two extracted time instants from H, that is to say two bounds
associated with time intervals Ik (k ∈ K = {1, 2, . . . , kmax}) (see Section 2.2).
Besides δ′b ∈ [υi, υi+1] and δ′e ∈ [υj−1, υj ].

The preprocessing stage initializing Cut used in our experiments begins by
generating an initial energetic cut for each pair (i, j) ∈ |Υ|2 and each subset of
competences C ∈ {Θ ∪ S} where Θ is the set of competence patterns and S is
the set of singletons (one competence).

14



Dominated cuts2 are then eliminated and the linear relaxation of [P ] includ-
ing the cuts so far generated is solved. Initial cuts matching constraints with
small slack variables can hence be considered. In our experiments, we arbitrar-
ily pick up constraints whose ratio of slack variable to second member is less
or equal to 12%. We have to notice here that unselected (but non-dominated)
initial cuts are therefore kept for the specific decomposition and cut generation
process. Indeed as soon as an integer solution for a given master problem [MP ]
is found, violated unselected initial cuts are added to the set Cut of [MP ].

Initial cuts are proved to be really useful because they invalidate many un-
feasible assignments for a negligible calculation time. Moreover, by nature, they
quickly point out strong assignment restrictions on precise time periods. This
way of acting is different from minimum flow cuts involved all along process
because these latter ones permit an overall view of the problem. A proof of this
deduction is that, in practice, minimum flow cuts and initial cuts do not dom-
inate one another. Thus those two different kinds of cuts are complementary
and their mixed use is really useful for this specific approach.

5. Experiments

Approaches described previously have been implemented in Java and tested
on a PC (Intel Pentium D 930, 3 GHz, 2 GB RAM) which operating system
is MS Windows XP. Used MIP solver is ILOG CPLEX 9.1. We use all default
options for ILOG CPLEX 9.1 with the exception that we set the parameter MIP
Emphasis at Feasibility because experiments prove that it is an effective choice
for each method.

5.1. Test bed

Our test bed is made up of generated feasible instances. Release dates,
processing times and margins (time window range) are respectively distributed
with an uniform and two binomial laws. A maximum processing time pmax and
a maximum margin mmax are given as parameters to these probability laws. In
order to better tally with reality, work patterns match 3-shift-work constraints.
Quarter of an hour is the time accuracy unit for work pattern generation. Work
patterns are generated over a week (without week-end) and are transposed from
week to week in order to cover the whole horizon. Each operator is randomly
assigned a set of eligible work patterns and a set of mastered competences.
A cost is given to each pair of operator and eligible work pattern. This cost
depends on working time instants (day - night), operator’s salary level (length of
service, qualification, . . . ) and on operator’s requirements. Table 2 summarizes
parameters used in order to get our 270 feasible instances. Notice that 3 different
instances are generated for each set of parameters.

2
X

o

X

ω

(ao
ω)1 · yo

ω ≥ b1 dominates
X

o

X

ω

(ao
ω)2 · yo

ω ≥ b2 if ∀o ∀ω (ao
ω)1 · b2

b1
≤ (ao

ω)2
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Parameter min max step
m 15 25 10
n 4 · m 6 · m m

mmax 30 90 30
|C| 1 5 1

pmax 30
|H| 480

Table 2: Instance parameters

5.2. Exact Methods

The generated instances have been solved using the three methods described
above: the MIP solver (MIP ), the Benders decomposition (Benders) and the
specific decomposition and cut generation process (Cut). CPU time has been
limited to 5 minutes for each.

A first point is that 205 (73.7%) instances are solved by at least one of the
three methods; 100 (37.0%) instances are solved by all three methods.

Table 3 reports the percentage of instances solved by each method. Columns
Success give the percentage of success of the given method. Columns Gap(F)
give the deviation to the best value found UB∗ (found with a CPU time limit of
one hour) when the concerned method fails to find optimum. Notice here that
when it fails, (MIP ) provides an upper bound for the instance whereas both
(Cut) and (Benders) give a lower bound. Therefore, the deviation to the best
value found is given by the ratio UB∗

value
for (MIP ) and value

UB∗ for both (Cut) and
(Benders).

For the proposed instances (Cut) is the most effective exact method, in the
sense that it solves more instances than (MIP ) and (Benders). Furthermore,
(Cut) provides tight bounds when it fails.

We can also notice that (Benders) does not seem to be a relevant approach
to our problem. It solves fewer instances than the two other methods, and when
it succeeds, it requires as much computing time as (MIP ) and about 5 times
more time than (Cut). (Benders) even gives a worst lower bound than (Cut)
when it fails.

Table 4 enables us to compare effectiveness (in terms of CPU time) of (MIP )
and (Cut). Instances solved by both (MIP ) and (Cut) are compared. Notice
that (MIP ) solves 8 instances where (Cut) fails. In return (Cut) solves 47
instances not solved by (MIP ). Column #inst. indicates the number of com-
pared instances. Column # initial cuts indicates the average number of non
dominated initial cuts found in the preprocessing stage. Columns # selected
init. cuts provides the average number of selected initial cuts. The average
number of unselected initial cuts and of minimum flow cuts added along the
process are respectively given by columns # other init. cuts and # flow cuts.

We remark (see Table 4) that (Cut) is several orders of magnitude faster
than (MIP ) for each set of parameters. Such results therefore prove the real
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(MIP ) (Benders) (Cut)
m |C| mmax# instancesSuccess Gap(F) Success Gap(F) Success Gap(F)
15 1-2 30 18 50.0% 100.0% 33.3% 97.1% 100.0% X

60 18 88.9% 100.0% 88.9% 98.5% 100.0% X
90 18 94.4% 100.0%100.0% X 100.0% X

3-5 30 27 74.1% 99.9% 3.7% 94.6% 77.8% 98.7%
60 27 85.2% 99.4% 18.5% 97.0% 70.4% 98.3%
90 27 77.8% 99.9% 66.7% 98.6% 81.5% 98.5%

(m = 15) 135 78.5% 99.9% 47.4% 96.4% 85.9% 98.5%
25 1-2 30 18 22.2% 99.8% 11.1% 94.4% 55.6% 99.2%

60 18 50.0% 99.9% 55.6% 97.7% 72.2% 99.2%
90 18 66.7% 99.9% 94.4% 100.0%100.0% X

3-5 30 27 18.5% 99.0% 7.4% 95.5% 33.3% 97.0%
60 27 37.0% 99.6% 22.2% 98.0% 40.7% 98.9%
90 27 37.0% 99.7% 66.7% 97.9% 66.7% 99.0%

(m = 25) 135 37.0% 99.6% 40.7% 96.5% 58.5% 98.4%

Total 270 57.8% 99.6% 44.1% 96.4% 72.2% 98.4%

Table 3: Percentage of success for the 3 exact methods

(MIP ) (Cut)

m |C| mmax# instances Time Time
# initial# selected # other # flow

cuts init. cuts init. cuts cuts
15 1-2 30 9/18 50.1s 11.3s 141.6 28.3 2.8 2.9

60 16/18 31.4s 1.3s 120.4 27.0 3.0 3.9
90 17/18 14.9s 0.6s 126.3 23.4 1.1 2.6

3-5 30 18/27 53.8s 8.3s 450.1 42.8 13.1 21.4
60 19/27 62.8s 19.8s 434.0 40.7 13.0 19.2
90 20/27 43.7s 30.2s 414.2 25.4 12.3 32.3

(m = 15) 99/135 42.8s 12.8s 302.8 31.7 8.3 15.4
25 1-2 30 4/18 85.2s 0.1s 117.8 13.8 1.3 2.0

60 9/18 29.0s 1.9s 144.1 23.9 1.7 2.6
90 12/18 82.6s 10.2s 135.4 21.8 0.6 3.8

3-5 30 5/27 30.0s 18.4s 622.8 31.4 11.8 16.0
60 9/27 67.7s 13.4s 680.6 28.2 8.6 19.3
90 10/27 40.8s 4.0s 629.3 22.8 4.0 6.6

(m = 25) 49/135 56.3s 8.0s 386.2 23.9 4.1 8.1

Total 148/270 47.3s 11.2s 330.4 29.1 6.9 13.0

Table 4: CPU time for (MIP ) and (Cut)

interest of this approach for our problem.
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6. Conclusions

We have proposed two exact methods for solving an integrated employee
timetabling and production scheduling problem. We can especially mention
the real interest of an exact method based on a specific decomposition and cut
generation process which is several orders of magnitude faster than one of the
best current MIP solvers (Ilog Cplex).

Future research directions should address several issues. The most promising
one is to reduce CPU time spent in solving the master problems [MP ] for the
specific decomposition and cut generation approach (Cut). Indeed solving [MP ]
takes about 98.5% of the overall average CPU time required by this method.
One possible way should be to use alternative approaches (Feasiblity Pump [9],
Combining MIP and Constraint Programming as Hooker did in a production
planning and scheduling problem [11, 12], . . . ). Designing a specific Branch-and-
Bound upon the initial energetic cuts also seems to be an interesting research
direction.

Appendix : Time-indexed solution

As mentioned in Section 2.2, a time-indexed solution can always been ex-
tracted from a solution of formulation [P ] by solving a maximum flow problem.
Thus to get the full time-indexed solution related to solutions given by both the
Benders decomposition (Section 3) and the specific cut generation process (Sec-
tion 4), one has to find a maximum flow on a directed transportation network
Gindex = (X,U) given below (Figure 6).

(t1 = t2)

s
t

1 1

⇔

JK

∧

capacities: 1

HC

⇔

∧

∧

(t1c, ot2) ∈ U

(j1k, tc) ∈ U

OH

x̄jk

Notation : (x̄jk, ȳo
ω) → partial solution of formulation[P ]

(cj = c)

(c ∈ Co)

(σt1
ω = 1 with ω|{ȳo

ω=1})

(t ∈ Ik)

Figure 6: Structure of Gindex

A full time-indexed solution for [P ] is given as follows (φu denoting the flow
on the edge u ∈ U):

• ∀j ∈ J,∀t ∈ H x∗
jt = 1 ⇔ φ(jk)→(tcj) = 1 with k ∈ K|{t∈Ik}

• ∀o ∈ O,∀c ∈ Co,∀t ∈ H z∗oct = 1 ⇔ φ(tc)→(ot) = 1
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